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Highlights
Over a decade of schizophrenia
research using human iPSC-based
neuronal models has enhanced our
understanding of the neurobiological
characteristics of the disorder.

Studies using iPSC-based models of
schizophrenia have identified alterations
in neural progenitor cell proliferation,
imbalanced differentiation of excitatory
and inhibitory cortical neurons, and
failure to establish projection neuron sub-
Over a decade of schizophrenia research using human induced pluripotent stem
cell (iPSC)-derived neural models has provided substantial data describing
neurobiological characteristics of the disorder in vitro. Simultaneously, transla-
tion of the results into general mechanistic concepts underlying schizophrenia
pathophysiology has been trailing behind. Given that modeling brain function
using cell cultures is challenging, the gap between the in vitro models and
schizophrenia as a clinical disorder has remained wide. In this review, we high-
light reproducible findings and emerging trends in recent schizophrenia-related
iPSC studies. We illuminate the relevance of the results in the context of
human brain development, with a focus on processes coinciding with critical
developmental periods for schizophrenia.
populations. Many of these impairments
have been associated with altered WNT
signaling during neurogenesis.

Studies in neurons derived from pa-
tients with schizophrenia have identi-
fied alterations in both excitatory and
inhibitory neurotransmission, as well
as disrupted synaptic maturation.

iPSC-based models have shed light on
the contribution of genetic risk factors
and prenatal environmental insults to
the development of schizophrenia and
other psychiatric disorders.
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Schizophrenia from a developmental perspective
Risk genes of schizophrenia and other mental disorders are highly expressed in the human
brain during midgestation, a time period coinciding with cortical neurogenesis, axonal pathfind-
ing, and neuronal functional development [1–5]. In turn, the typical onset age of schizophrenia
is from the early 20s to 30s [6,7], and is preceded by cortical excitatory synaptic remodeling
and maturation of the inhibitory system [8,9]. Neuroimaging and postmortem studies have
detected cortical layer disorganization [10] and loss of specific neuronal subtypes [11] in the
brains of patients with psychiatric disorders. However, the origin of these changes has
remained elusive. Likewise, altered structural and functional brain connectivity have been
linked to schizophrenia but the neurobiological mechanisms driving these changes are not
fully understood [12–19].

The developmental timeline of iPSC-derived neurons in culture recapitulates certain aspects
of fetal brain development [2,20,21] and, together with the ability to incorporate genetic risk
variants into these models, iPSC-derived brain cells have provided a valuable tool for study-
ing neurobiological characteristics of schizophrenia. Based on evidence from iPSC studies,
differences in brain development in health and schizophrenia appear to arise during
neurogenesis [2,22,23]. Aberrant neural progenitor cell (NPC) proliferation and differentiation
into neurons have been linked to changes in cortical morphogenesis and cell type compo-
sition in patient-specific neuronal models [22,23]. In addition, alterations in neuronal func-
tion, including excitatory–inhibitory imbalance, have been detected in iPSC-based models
of schizophrenia [24,25].

In this review, we discuss findings from iPSC studies of schizophrenia and emerging trends in the
field. The findings are arranged under threemain topics: cortical neurogenesis, brain connectivity,
and brain functional development. Each of the three sections is accompanied by an introductory
box (Boxes 1–3) that summarizes important aspects of the relevant developmental process
in vivo and in vitro. The boxes offer a context for the subsequent discussion of schizophrenia-
related abnormalities found in iPSC models of schizophrenia. Figure 1 (Key figure) presents a
timeline of the developmental phenomena discussed throughout the article.
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Box 1. Cortical neurogenesis in vivo and in vitro

Cortical neurogenesis in the human brain starts at GW5 by generation of NPCs in the ventricular zones of the cortical wall
[34,35]. Corticogenesis starts when reelin-expressing interneurons migrate to the cortex and form the first cortical layer.
The reelin-secreting neurons guide the entrance of glutamatergic neurons to the cortical plate starting from GW 7–8
[35]. Simultaneously, interneurons from the ganglionic eminence migrate toward the cortex and innervate the cortical plate
alongside locally differentiated glutamatergic neurons [36]. The early-born glutamatergic neurons form the deep layers of
the neocortex during the first trimester [37]. At the beginning of the second trimester, a new progenitor zone, called the
outer subventricular zone, appears and expands massively over the following month. The progenitor cells in this new zone
differentiate into both glutamatergic and GABAergic neurons [34]. Simultaneously, a new cortical region, called the
subplate, emerges between the progenitor zones and the cortical plate. The subplate harbors postmitotic neurons during
the second trimester, before the neurons enter the cortical plate [3,38]. The superficial cortical neurons differentiate during
the second trimester and complete the genesis of a six-layered neocortex [37].

Using human iPSCs, cortical neurons can be differentiated in vitro in a time-dependent manner corresponding to
neurogenesis in vivo [20]. By traditional, directed differentiation, the generation of NPCs is induced in dual SMAD inhibition
by blocking the BMP and TGF-β signaling pathways [20]. In a well-established differentiation protocol [20], TBR1-expressing
layer VI neurons andCTIP2-expressing layer V neurons appearwithin days after neural induction and aremostly differentiated
by days 30 and 35. Superficial layer BRN2-expressing layer II/III neurons are mostly generated by day 45 and are followed by
SATB2-expressing neurons between days 65 and 80 [20]. Importantly, the iPSC-derived neuronal cultures correspond to
the early and mid-fetal periods of brain development based on their gene expression patterns [2,39]. In addition to the con-
ventional, directed differentiation, a method using forced expression of the NGN2 transcription factor, to obtain excitatory
neurons with features of superficial layer cortical neurons, has gained popularity in recent years [40,41]. In addition to the
protocols yielding mainly excitatory neurons, cortical interneurons can be obtained by directed differentiation or by induced
expression of ASCL1 and DLX2 transcription factors [42,43].

Trends in Neurosciences
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Cortical neurogenesis in schizophrenia
Cortical neurogenesis is a vulnerable time for brain development. The rate of gene expression
changes has been estimated to be more than 100 times faster than in the adult brain [26],
genes intolerant tomutations are mostly expressed duringmidpregnancy [27], and environmental
insults during this period have been linked to aberrant brain development and risk for compromised
mental health later in life [28,29]. Not surprisingly, mental disorder-associated risk genes are highly
expressed during midgestation. Genes associated with schizophrenia, autism spectrum disorder
(ASD), and major depression (MD) share similarities in their prenatal expression trajectory, with a
peak at 16–19 gestational weeks (GW). Many risk genes for bipolar disorder (BP) reach their
expression peak shortly after, at 19–22 GW. In schizophrenia, prenatally expressed risk genes
are often associated with cell fate specification and morphogenesis [1,30]. Postmortem and
brain-imaging studies of schizophrenia have found abnormalities in cortical cell-type composition
and macroscopic tissue organization, possibly stemming from aberrant brain development.
Among the most prominent alterations reported in these studies are a reduced density of
parvalbumin (PV)-expressing interneurons in the prefrontal cortex (PFC) [11], decreased thickness
of the superficial cortical layers [31,32], and increased lateral ventricle volume [33] (Box 1).

Alterations in WNT signaling
Using patient-derived and genetically edited iPSC lines, several studies have found alterations in cor-
tical neurogenesis linked to schizophrenia. In an increasing number of studies, these abnormalities
have been associated with altered expression of WNT signaling pathway components, including
TCF/LEF transcription factors and GSK3 [22,44–50]. An early iPSC study that investigated the con-
sequences of WNT signaling abnormalities in schizophrenia used NPCs with engineered DISC1
exon 2/8 interruption [46], a rare strong genetic variant for schizophrenia, BP, and MD. The affected
Figure 1. Timeline of human brain development in vivo and in vitro. The timeline presents critical developmental periods for schizophrenia (SZ) and related
developmental processes in vivo. SZ risk genes are highly expressed during midgestation, coinciding with the differentiation of cortical neurons, subcortical afferent
ingrowth to the cortex, and the beginning of synaptic development. The onset of SZ coincides with a period of heightened synaptic pruning, which is preceded by
maturation of the inhibitory system. Human iPSC-based models recapitulate aspects of fetal brain development in vitro. The functional maturation of cortical neurons
requires interplay between excitatory neurons, inhibitory neurons, and glial cells. Abbreviations: GW, gestational week; NPC, neural progenitor cell.
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NPCs were found to exhibit elevated WNT signaling activity accompanied by altered expression of
neuronal fate-related genes, including increased expression of dorsal progenitor markers and
decreased expression of ventral progenitor markers. When the affected NPCs were treated with a
WNT antagonist, the phenotype was rescued [46]. DISC1 mutation in exon 8 was later found to
cause disorganization of ventricular structures, decreased NPC proliferation, and reduced expres-
sion of BRN2 in the superficial layer neurons in an organoid model (Figure 2) [47]. The alterations
were again rescued with a WNT antagonist [47]. Importantly, the effect of altered Wnt/β-catenin
signaling on cortical morphogenesis has been illuminated in rodent studies, with some of the
outcomes similar to those obtained using the iPSC models of DISC1 mutation. Specifically, over-
expression of β-catenin during corticogenesis has been shown to cause: (i) overproduction
of ventricular zone progenitors and deep-layer projection neurons; (ii) underproduction of
subventricular zone progenitors and superficial-layer neurons; and (iii) ventricular enlargement
[51,52]. Mouse models have also provided mechanistic insights into the role of Disc1 as a regulator
of WNT signaling activity by revealing direct physical interactions between Disc1 and the WNT sig-
naling mediator GSK3β [53]. In addition to the increased expression of WNT signaling components
observed in iPSC models with edited DISC1 mutations, such increases have been detected in neu-
rons derived from patients with schizophrenia [25,45].

In contrast to the findings from the DISC1 mutation models, decreased WNT signaling activity
was recently detected in iPSC-derived brain organoids from patients with schizoaffective disorder
and schizophrenia [22]. The reduced WNT signaling activity was accompanied by enhanced
GABAergic neuron differentiation, reduced NPC proliferation, and accelerated neuronal matura-
tion (Figure 2). In monolayer cultures, the patient-derived neurons were found to contain an
increased number of inhibitory neurons and elevated inhibitory synaptic density after 120 days
of differentiation. Here, activation of WNT signaling before neuronal maturation normalized the
number of GABAergic neurons [22]. In line with this study, elevated ventral neuronal gene expres-
sion and altered expression of WNT pathway components have been found in iPSC-derived
neurons of patients with BP or ASD [54–56]. Altogether, these results imply that alterations
in NPC proliferation and excitatory–inhibitory neuronal differentiation in schizophrenia and
associated disorders may arise during cortical neurogenesis due to altered WNT signaling.
However, in the developing brain, excitatory and inhibitory neurons are generated in separate
brain regions (Box 1) that are not recapitulated in brain organoids or monolayer cultures. The
genesis and migration of excitatory and inhibitory neurons during corticogenesis could be
modeled more accurately using fused cortical and ventrally specified organoids [57].

Prenatal immune activation
The heritability of schizophrenia is as high as 79%, whereas the concordance of the disorder in
monozygotic twins is only 33%, indicating that interactions between genetic and environmental
risk factors have a substantial role in the development of the disorder [58]. Among the factors
that might contribute to brain maldevelopment in schizophrenia are maternal immune activation
(MIA) and stressful life events during midpregnancy [28,29]. The effects of MIA on cortical
development have been studied extensively using animal models, although some of the spe-
cifics continue to be debated. In mice, MIA has been shown to result in abnormal neuronal pro-
liferation, radial migration, and cell type composition in the cortex. These alterations have long-
lasting effects on brain functional maturation and animal behavior [29,59,60]. Cortical
GABAergic neurons reportedly exhibit specific vulnerability to environmental insults [59,61].
MIA has been shown to affect interneuron proliferation, with early insults [embryonic day (E)
9.5] reducing proliferation and late insults (E16.5) increasing proliferation [59]. In addition,
MIA has been shown to impair the functional development of PV-expressing interneurons in
the mouse PFC [61].
Trends in Neurosciences, January 2022, Vol. 45, No. 1 11
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The impact of prenatal immune activation on cortical development was addressed in iPSC studies
only recently [62–64]. In one of these studies, IFN-γ treatment was found to partially recapitulate
transcriptomic changes typical for schizophrenia and ASD in healthy iPSC-derived NPCs and
neurons [62]. NPCs exposed to IFN-γ showed long-lasting upregulation of genes in the
major histocompatibility complex (MHC) I region and general dysregulation of genes overlapping
with schizophrenia risk genes, including synapse-related genes [62]. These findings imply that
early environmental insults may indeed trigger expression changes in genes associated with the
development of psychiatric disorders. In another study, iPSC-derived interneurons from patients
with schizophrenia and healthy controls were cultured with activated microglia-conditioned me-
dium [64]. After the treatment, the patient-derived neurons exhibited long-lasting metabolic dys-
function and reduced GABA release, whereas the control neurons recovered after an acute
response. When glutamatergic neurons were exposed to the same treatment, neither patient-
derived nor control neurons showed metabolic deficits [64]. The finding provides supporting evi-
dence for the observation that cortical interneurons are sensitive to prenatal immune insults
[59,61]. Notably, the long-lasting cellular dysfunction was induced only through interplay between
intrinsic risk factors and environmental insults. It was also recently shown that astrocytes derived
from patients with schizophrenia had a flattened response to proinflammatory cytokine IL-1β
and a reduced ability to recruit regulatory T cells in a migration assay compared with control astro-
cytes [65]. Altogether, these findings suggest that a reduced ability to react to immune insults and
recover from them underlies vulnerability to developing a psychiatric disorder. However, the role of
environmental insults in schizophrenia has been substantially less studied with iPSC-derived brain
cells compared with genetic risk factors, and models investigating the cooperative effect of these
two risk factors on the disease phenotype are still largely missing.

ECM abnormalities
An increasing number of iPSC studies have observed dysregulation of extracellular matrix (ECM)-
related pathways and processes in schizophrenia [48,49,63,66–70]. Two studies identified the
hepatic fibrosis/hepatic stellate cell activation pathway enriched with collagen genes as the top
dysregulated canonical pathway in patient-derived neurons [66,70]. Similar results have been
obtained in a preliminary transcriptomic analysis of patient-derived astrocytes [50], the brain
equivalent of ECM-producing hepatic stellate cells [71]. Recently, major abnormalities in collagen
gene expression were also found in patient-derived interneurons [69]. Notably, accumulation of
fibrous ECM has been detected in embryonic stem cell-derived organoids after exposure to
TNF-α [63], indicating that ECM remodeling in the brain may occur as a consequence of an
inflammatory response. When investigating organoids derived from a patient with schizophrenia,
comparable fibrous ECM accumulation was observed. The ECM accumulation in TNF-α-treated
organoids and patient-derived organoids was accompanied by dispersion of proliferating cells
into the cortical plate and cell clustering within scar-like ECM [63]. In an earlier study by the
same group [23], similar cortical disorganization accompanied by reduced expression of the
ECM protein reelin was detected in organoids derived from iPSCs of three patients with schizo-
phrenia (Figure 2). Altogether, these findings provide robust evidence for broad ECM-related
abnormalities in schizophrenia, possibly stemming from a cellular stress response and leading
to abnormal cortical morphogenesis.
Figure 2. Alterations in induced pluripotent stem cell (iPSC)-derived brain organoids modeling schizophrenia.
Differences in the development of brain cells in health and schizophrenia have already emerged during neurogenesis. Several
iPSC studies have reported decreased neural progenitor cell (NPC) proliferation and accelerated neuronal differentiation in
schizophrenia. Cortical disorganization, including changes in ventricle form, and disrupted organization of progenitor
zones, cortical plate, and cortical layers have been observed in iPSC-derived organoid models of the disorder. Imbalanced
differentiation of excitatory and inhibitory neurons has also been detected in patient-derived organoids. The images are
schematics based on general findings in the studies cited [22,23,47,104].
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Brain connectivity in schizophrenia
Abnormalities in structural and functional brain connectivity have been broadly implicated in
schizophrenia pathophysiology. A consistent body of research has reported alterations in both
functional and anatomical thalamocortical connectivity in the brains of affected individuals.
More specifically, decreased connectivity between thalamus and PFC and increased connectivity
between thalamus and sensorimotor cortex have been systematically observed in the brains of
patients with schizophrenia [12–14,17]. Notably, thalamocortical miswiring has also been re-
ported in other psychiatric disorders [14,72]. In support of the early developmental origin of
these alterations, individuals with familial risk for ASD have been found to display a caudal shift in
thalamocortical wiring in infancy [72], whereas toddlers with high risk for schizophrenia reportedly
exhibit hypoconnectivity in the thalamo-PFC tract [73]. Longitudinal studies have observed
alterations in brain white matter tracts in individuals at high risk for psychosis persisting from
childhood to adulthood, with no dramatic changes associated with transition to psychosis
[74,75] (Box 2). Thus, the risk for psychosis appears to be linked to developmentally established
structural alterations in brain connectivity. In addition to thalamocortical connections, disrupted
corticocortical connectivity within the default mode and frontoparietal networks has been observed
in patients with schizophrenia [15,16].

Axonal pathways
Dysregulated pathways related to axonal guidance have been among the most common findings in
transcriptomic and proteomic iPSC studies of schizophrenia. For instance, alterations in ephrin/Eph
signaling and SLIT/ROBO-mediated axonal guidance pathways have been reported in NPCs,
neurons, and astrocytes derived from patients with schizophrenia [22,44,48,50,66,85–87]. Despite
these indications of altered neuronal wiring in schizophrenia, studies examining axonal growth
abnormalities and responsiveness to guidance cues have been rarely performed with iPSC-based
models of the disorder. The obvious reason for this is the lack of long-distance growth targets for
axonal projections in conventional neuronal monocultures. Instead, decreased neurite length has
been frequently reported in patient-derived neurons (Table 1). The growth deficits have been
Box 2. Neuronal connectivity in vivo and in vitro

In the human brain, the first subcorticocortical axonal pathways emerge byGW8. During the first trimester, subcortical axons
cross critical morphogenic sorting points, such as the ventral telencephalon, on their way toward the cortex [4,76]. An impor-
tant intermediate target for the afferent fibers is the cortical subplate, which functions as a waiting compartment for ingrowing
axons [3,38,76]. During GW13–18, afferent axons from the thalamus, midbrain, and basal forebrain invade the subplate and
spread their fibers [3,4,77]. In turn, afferent ingrowth to the cortical plate occurs during the late second trimester and
coincides with the migration of subplate neurons to their final cortical position. The final identity and future projection target
of cortical long-range projection neurons is also defined in the subplate [3,4,76]. The transcription factors CTIP2 and FEZF2
are required for layer V corticospinal projection neuron specification, whereas the growth of corticothalamic projections from
layer VI is orchestrated by SOX5, TBR1, and TLE4 expression. Commissural connections are formed by neurons expressing
SATB2 [3,78,79]. The growth of axonal projections is guided by attractant and repellent guidance cues, such as netrins,
ephrins, and semaphorins, which neurons express receptors for [80,81].

Cortical long-range projection neuron fate selection has been elegantly demonstrated in vitro using human embryonic stem
cell (ESC)-derived neurons [3]. The study showed that ESC-derived postmitotic neurons undergo a subplate-stage during
which they adopt a corticofucal or corticocortical projection neuron fate. Between days 75 and 120 of differentiation, the
neurons were found to co-express the transcription factors NURR1, SATB2, TBR1, and CTIP2 characteristically for subplate
neurons. The activity of WNT signaling was identified as a critical factor in neuronal fate selection during this stage.
Specifically,WNT inhibition was shown to support the differentiation of SATB2-expressing neurons, whereasWNT activation
resulted in differentiation of CTIP2-expressing neurons and TLE4-expressing neurons [3]. In addition to projection neuron
differentiation, neuronal circuits have been modeled in vitro using compartmentalized culture platforms and brain organoids
[82–84]. The development of corticocortical and corticospinal projections has been detected in long-term cultures of cerebral
organoids grown on an air–liquid interface [84]. In addition, a differentiation protocol for thalamic organoids was recently
introduced and applied to model the formation of thalamocortical and corticothalamic projections in human stem cell-based
fused organoids [83].
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associated with reduced expression of adhesion protein-coding genes, including PCDHs, NRXNs,
and NCAM1 [2,88,89]. Given that neurite growth is an energy-demanding process, several studies
reporting mitochondrial dysfunction and oxidative stress in patient-derived neurons have also
observed deficits in neuritogenesis [64,85,90–92].

Importantly, expression of axonal guidance molecules in the cortex is known to influence
targeting of subcortical afferent axons to the appropriate cortical regions. In the mouse brain,
thalamic axons bearing the adhesion protein CHL1 and ephrin receptors EPHA3, EPHA4, and
EPHA7 are repelled in the ventral telencephalon toward rostral cortical targets by caudally
enriched ephrin-A5 and SEMA3A [93,94]. In the somatosensory cortex, ephrin-A5 acts as a
repellent toward limbic thalamic fibers that typically innervate the cingulate cortex. Reduced
cortical expression of ephrin-A5 causes excess innervation of thalamic fibers to the sensorimotor
cortex [95,96]. In several iPSC studies of schizophrenia, altered expression of ephrin-A ligands
and receptors was found in cortical neurons and astrocytes from affected individuals
[22,44,50,66]. In addition, CHL1 has been identified among the top differentially expressed
genes in iPSC-derived neurons and astrocytes from male patients with schizophrenia [24,50].
Altered SLIT/ROBO-mediated axon guidance, which has been detected in patient-derived neu-
rons [44], is also known to distort thalamocortical and corticothalamic axonal targeting as well as
corticocortical axonal pathfinding [97]. Altogether, these results suggest that differential expression
of axonal guidancemolecules by developing brain cells distorts axonal connectivity in schizophrenia.

In addition to axonal pathfinding, the establishment of axonal connections in the human brain con-
tinues postnatally through the process of axonal myelination. The myelination process generally
starts from caudal regions of the central nervous system and proceeds toward rostral parts of
the brain [98,99]. In humans, oligodendrocytes are mostly produced by 5 years of age, after
which the myelin thickness continues to increase until adolescence [99]. Given that in vitro oligo-
dendrocyte differentiation is time-consuming, only a few studies have investigated oligodendro-
cytes derived from patients with schizophrenia. These studies reported deficient oligodendrocyte
differentiation, morphological maturation, or viability in schizophrenia [100–102]. In one of these
studies, iPSC-derived oligodendrocyte precursor cells from patients with schizophrenia were
transplanted into the brain of a shiverer mouse [100]. As a result, the patient-specific cells migrated
prematurely to the mouse cortex, leading to deficient white matter expansion [100]. Considering
the gradual development of myelin, deficient production and misplacement of oligodendrocytes
in the brain could lead to uneven myelination and strengthening of axonal pathways in schizophre-
nia. In general, the current evidence suggests that schizophrenia is associated with persistent
developmental alterations in brain connectivity that could be caused by aberrant axonal pathfinding
or myelination [74,75]. However, these changes could also arise from remodeling of connections
later in adolescence, particularly in somatosensory and prefrontal cortices [103].

Projection neuron specification
In addition to the altered expression of axonal guidance molecules, shifts in cortical long-range
projection neuron fate specification have been studied in the context of schizophrenia using
neurons carrying DISC1 mutations. In a recent organoid model [104], neuronal postmitotic
fate specification failed in long-term cultures of sliced cortical organoids derived from patients
with schizophrenia and MD carrying DISC1 mutations. Unlike in control organoids, neurons ex-
pressing the layer-specific transcription factors SATB2, TBR1, RORB, and CTIP2 failed to
settle into correct cortical lamina in patient-derived organoids after 150 days of differentiation.
Second, there was a persistent overlap in the expression of SATB2 and TBR1, and RORB and
CTIP2 in the differentiated neurons (Figure 2). Interestingly, corresponding overlap was induced
in control organoids by either activating or inhibiting WNT/β-catenin signaling [104]. These results
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provide foundational evidence of disrupted establishment of corticocortically and subcortically
projecting neuronal populations in schizophrenia. The findings also demonstrate how altered
WNT signaling activity not only alters the excitatory–inhibitory balance, but has also broader
effects on neuronal fate specification in schizophrenia.

Notably, projection neuron disorganization has been observed in the primary somatosensory
cortices of mouse offspring affected by MIA [105]. In the mouse model, cortical disorganization
was most prominent in SATB2 and TBR1-expressing projection neurons and was accompa-
nied by loss of PV-expressing interneurons. Stimulating the disorganized neurons that
projected to the striatum and temporal cortex induced autism-like repetitive behavioral and
social abnormalities in the mouse offspring. These alterations were caused by MIA-induced
elevation of maternal IL-17a and subsequent protein translation arrest in the brains of male
offspring [105,106]. Conversely to the protein synthesis arrest in the MIA model, a prior iPSC
study of schizophrenia detected upregulation of translation initiation factors together with
increased total protein synthesis in patient-derived NPCs [107]. In postmortem brain samples,
local cortical disorganization has been observed in the PFC and auditory cortices of patients
with ASD [10]. All in all, these findings shed light on the importance of cortical area specificity
regarding deficits typical for psychiatric disorders and suggest that both known mutations
and environmental insults trigger comparable changes in brain development. Interestingly,
opposing gene expression alterations appear to result, at least in some cases, in convergent
alterations at the circuit-organization level.

Brain functional development in schizophrenia
Electroencephalography and magnetoencephalography studies of schizophrenia have reported
alterations in both low-frequency (delta, theta) and high-frequency (gamma) oscillations in the
brains of patients with schizophrenia [18,19,108]. Positive symptoms of the disorder have been
associated with increased slow wave activity in the temporal lobes [18], whereas decreased
gamma oscillatory power at 40 Hz frequency has been characteristic during auditory sensory
processing in patients [19,109]. However, the opposite pattern, of decreased slow frequency
activity and increased high frequency activity, has also been associatedwith psychotic symptoms
[110]. Since the discovery of NMDA receptor antagonists and their ability to induce psychosis in
healthy individuals, a glutamate hypothesis has been one of the prevailing theories of schizophrenia
alongside the dopamine theory and other conceptualizations [111]. Both schizophrenia and NMDA
receptor antagonist-mediated psychosis are hallmarked by reduced mismatch negativity (MMN),
an event-related auditory potential [112,113]. MMN has also been found to characteristically
deviate in children at risk of developing schizophrenia, suggesting that the disorder-related
alterations in brain function originate early in life [114]. In fact, many of the abovementioned impair-
ments in brain function have been shown to manifest in at-risk individuals before conversion to
psychosis and more strongly in those who display conversion to psychosis in the future compared
with those who will not [108,109,115] (Box 3).

Excitatory–inhibitory imbalance
The involvement of aberrant glutamate signaling in schizophrenia has been confirmed in multiple
iPSC studies. Altered expression of a variety of different glutamate receptor subunits (GRIN2A,B,
GRIK1-2, andGRM1,7) and glutamate transporter genes has been found in iPSC-derived neurons
from patients with schizophrenia [2,44,66,68,70]. In addition, numerous iPSC studies have
reported altered expression of GABA-synthesizing enzymes and differential expression of GABA
receptor subunits in neurons derived from patients with schizophrenia [22,24,44,68,70,129].
These findings imply that deficits in both glutamate and GABA-mediated neurotransmission are
involved in schizophrenia pathophysiology. Interestingly, both increased and decreased
Trends in Neurosciences, January 2022, Vol. 45, No. 1 17
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The first detectable oscillations in the brains of preterm human infants are low frequency delta waves (1–4 Hz) that are
generated by cortical and thalamic neurons [5,116]. In the cortex, delta waves arise from circuit dynamics involving
intrinsically bursting neurons in layer V, and NMDA receptor-mediated excitation by these neurons [116]. During the third
trimester, delta waves are coupled with rapid alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz) bursts [5]. In the
fetal brain, gamma oscillations are thought to be generated through rapid excitation and are replaced by inhibitory GABAA

receptor-mediated adult gamma oscillations after birth [117–119]. Spontaneous gamma waves are generated by neurons
in all cortical layers, whereas sensory-driven gamma oscillations at 40 Hz frequency arise mostly from layers III–IV
[120,121]. During early adolescence, the delta oscillatory power declines [122]. Simultaneously, sensory cortical gamma
oscillatory power at ~40 Hz frequency increases but declines again toward late adolescence [123]. These changes in brain
oscillatory patterns coincide with synaptic remodeling and maturation of the inhibitory system in the adolescent brain [8,9].

In human iPSC-basedmodels, the development of neuronal activity from unorganized spike trains into synchronous bursts
occurs as early as after 3 weeks of maturation in the presence of astrocytes. Excitatory synaptic inputs involving NMDA
and AMPA receptors develop simultaneously [41,124,125]. By contrast, the development of inhibitory activity has been
more rarely demonstrated in iPSC-derived neuronal cultures and depends largely on the cell type composition being used
and culturing time. Inhibitory activity has been reported in astrocyte-enriched cultures containing a mixture of excitatory
and inhibitory neurons [25,126,127]. Impressively, oscillatory patterns typical of late stages of human gestation have been
modeled in long-term cultures of iPSC-derived neurons [21,128]. Delta frequency oscillations (2–3 Hz) have been detected
in cortical organoids after 4 months of culturing, and the emergence of high-frequency gamma (100–400 Hz) activity has
been observed after 6 months of maturation, coinciding with the development of GABAergic neurons [21]. The generation
of the oscillatory events has been shown to involve both AMPA and NMDA receptor input, whereas GABAergic input is
required to maintain the oscillatory activity [128].
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expression of glutamate and GABA signaling-related genes have been reported in affected neu-
rons. Some of this contradiction has been found to stem from sex-specific differences [24].

Based on results from electrophysiological recordings, iPSC-derived neuronal models of schizo-
phrenia have provided evidence of decreased activity in the affected neurons (Table 2). Although
only a few iPSC studies have examined the mechanisms of neuronal malfunction in schizophrenia,
several studies have found alterations in glutamate- or GABA-mediated responses in the affected
neurons in calcium imaging or microelectrode array experiments (Table 2) [24,48,89,129]. Studies
investigating synaptic currents through intracellular recordings have further confirmed alterations in
excitatory and inhibitory synaptic activity in schizophrenia (Table 2) [25,130,131]. It was recently
found that neurons from treatment-responsive patients (typical antipsychotic users) and
treatment-resistant patients (clozapine users) exhibited different responses to GABA and gluta-
mate during calcium imaging [24]. Here, neurons from treatment-responsive patients displayed a
decreased response to GABA and a normal response to glutamate, whereas the neurons from
treatment-resistant patients exhibited an increased response to glutamate and a normal response
toGABA [24]. These observations suggest that neuronal dysfunction in schizophrenia can originate
from either abnormal excitation or inhibition, depending on the patient’s background. Furthermore,
preliminary data from a study comparing neuronal activity patterns derived from patients with
schizophrenia and the clinical status of the patients found a correlation between altered Na+

channel dynamics and the positive symptoms of the disorder [25]. In addition, increased inhibitory
postsynaptic current frequency was associated with a schizophrenia diagnosis in general [25].
Notably, iPSC-derived models are beginning to shed light on the factors underlying neuronal
malfunction in distinct phenotypes of schizophrenia.

NMDA receptor hypofunction
NMDA receptor antagonist-induced psychosis has been used as a model of schizophrenia
in which aberrant neuronal interactions in cortical disinhibitory circuits have been linked to
the brain malfunction [132,133]. More specifically, inhibitory neurons are thought to receive
attenuated input from excitatory neurons and thereby fail to effectively inhibit their target excitatory
neurons, leading to neuronal hyperactivity. The fact that NMDA receptor antagonists can induce
18 Trends in Neurosciences, January 2022, Vol. 45, No. 1
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overactivation of cortical neurons in rats supports this theory and suggests that inhibitory neurons
are more likely to be inhibited by these compounds than are excitatory neurons [132]. In line with
this notion, it was recently demonstrated that the NMDA receptor antagonist ketamine can drive
disinhibition by blocking NMDA receptors in somatostatin (SST)-expressing interneurons that
inhibit dendrites of superficial layer excitatory neurons in the mouse PFC [133]. Furthermore,
GluN2B knockdown in the SST-expressing neurons largely mimicked ketamine-induced disinhi-
bition in the mouse brain [133].

SST-expressing cortical interneurons also receive inhibitory input from vasoactive intestinal
peptide (VIP)-expressing interneurons that relay signals from long-range corticocortical projec-
tions during sensory processing [134,135]. Pituitary adenylate cyclase-activating polypeptide
(PACAP) is a neuropeptide that closely resembles and shares receptors with VIP [136]. It was
recently shown with two separate data sets that ADCYAP1, which encodes the PACAP protein,
was involved in the majority of top causal pathways that were dysregulated in iPSC-derived
neurons from patients with schizophrenia [70]. PACAP is known to enhance NMDA receptor-
mediated activity by activating cAMP/PKA signaling, which leads to RACK1 release from
GRIN2B subunits of NMDA receptors [137]. A high-affinity PACAP receptor, PAC1, is expressed
by all SST- and PV-expressing interneurons, and by most of the layer II/III and V glutamatergic
neurons in mouse cortex [138]. Hence, PACAP receptors are robustly expressed in neuronal
subtypes involved in disinhibitory control. All in all, schizophrenia-related PACAP deficiency
could result in reduced NMDA receptor-mediated activity, especially in SST-expressing inter-
neurons that are highly enriched with VIP/PACAP receptors and GRIN2B subunits.

In addition to PACAP, dysregulation of cAMP-synthesizing adenylyl cyclase enzymes (ADCY1-9)
and cAMP-degrading phosphodiesterase (PDE) enzymes has been observed in neurons derived
from patients with schizophrenia [22,44]. Recently, the PDE4 inhibitor rolipram was used to
rescue synaptic deficits and reduced excitatory synaptic activity in iPSC-derived neurons carrying
DISC1 mutations, as well as social and cognitive deficits in mice with the same mutation [139].
PDE4 inhibitors have also been shown to improve deficits in MMN and working memory-related
theta activity alterations clinically [140]. Interestingly, preliminary data linked schizophrenia-
associated SETD1A mutation to hyperactivity in the cAMP/PKA pathway in iPSC-derived
excitatory neurons [141]. As done in this study, it is critical to consider cell type specificity when
investigating neurobiological phenomena arising from excitatory–inhibitory neuronal interactions.
In addition to glutamate signaling, PDE4 is known to modulate dopaminergic neurotransmission
through the dopamine D1 receptor/PKA/DARPP-32 pathway [142]. Hence, cAMP/PKA signaling
could function as a link between the glutamate and dopamine hypotheses of schizophrenia.

Synaptic remodeling
In the developing human PFC, synaptic density increases significantly until childhood and peaks
before 10 years of age. During adolescence, the number of synapses decreases gradually and
continues to decrease until the third decade of life [9]. Microglial cells, the resident macrophages
of the brain, have an important role in pruning excess synaptic connections [143]. Several lines of
evidence support the hypothesis that aberrant synaptic remodeling could be linked to schizo-
phrenia. First, the typical age at onset for schizophrenia is from the early 20s to 30s following
the peak period of synaptic pruning [6,7]. Second, postmortem studies of schizophrenia have
reported decreased density of postsynaptic elements in the superficial PFC layers [31].

iPSC studies of schizophrenia have consistently reported decreased numbers of pre- and post-
synaptic elements in cultures of patient-derived neurons. Among the most consistent observa-
tions in these studies has been the reduced density of excitatory postsynaptic elements in the
20 Trends in Neurosciences, January 2022, Vol. 45, No. 1
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Outstanding questions
Does the imbalance between excitatory
and inhibitory systems in schizophrenia
arise during neurogenesis? A preference
toward excitatory or inhibitory neuronal
differentiation has been detected in
brain organoids modeling the disorder.
However, a more reliable representation
of neuronal subtype development and
migration to the cortex could be
accomplished with fused cortical and
ventrally patterned organoids.

Are the alterations in brain connectivity
in schizophrenia established already
prenatally? Miswiring of connections
from the thalamus to prefrontal and
sensory cortical regions is a largely
acknowledged but understudied feature
of the disorder. Current evidence
suggests that these alterations have an
early developmental origin that could be
studied with patient-specific models of
axonal pathfinding and myelination.

What is the contribution of environmental
factors to the development of
schizophrenia? Animal and iPSC-based
models have linked, for instance, prenatal
immune insults to altered cortical devel-
opment and transcriptomic changes
typical to psychiatric disorders. Although
both genetic liability and environmental
insults are known risk factors of schizo-
phrenia, models investigating the coop-
erative effects of the two are still largely
missing.

What are the neurobiological
mechanisms underlying neuronal
malfunction in schizophrenia? Studies
using patient-derived neurons have
linked altered excitatory and inhibitory
neurotransmission to distinct disease
phenotypes. In the future, the cell type
specificity of these alterations should
be investigated, and the background
of the patients should be considered
when interpreting the results.

What is the role of glial cells in the
development of schizophrenia? The
importance of astrocytes and microglia
in synaptic maturation and pruning has
been evidenced with iPSC-based
models. These processes are affected
in schizophrenia and should be studied
using co-cultures of patient-derived
neurons and glial cells.
affected neurons (Table 1), concordantly with genetic studies, which have identified genes
encoding postsynaptic proteins as schizophrenia risk genes [144]. These results suggests that
synapse deficiency in schizophrenia originates during early brain development and is primarily
associated with the excitatory postsynaptic compartment. However, in some studies that have
reported synaptic deficits, reduced expression of adhesion genes, including PCDHs and
NLGN2, have been found specifically in inhibitory iPSC-derived neurons [88,129].

In addition to altered synaptogenesis, impaired synaptic pruning has been demonstrated in vitro
using iPSC-derived neurons and monocyte-derived microglia-like cells from patients with schizo-
phrenia [145]. The study uncovered that a schizophrenia risk variant in the C4 locus of the MHC
region is associated with increased synaptic deposition of complement protein C3, which func-
tions as a tag for synaptic elimination [145]. This and other studies demonstrated how cell–cell
interactions can have a central role in the neuropathology of schizophrenia. For instance, interac-
tions between neuronal and glial cells are required for the circuit-remodeling effects of the
complement cascade [146]. All in all, incorporation of glial cells into in vitromodels of psychiatric
disorders could improve their relevance for disease modeling.

The expression of mitochondrial genes has been shown to follow closely the course of spine
density changes across postnatal brain development [147]. In addition, brain glucose uptake
increases during early childhood and decreases toward late childhood, in a trajectory reminiscent
of changes in synaptic density in the PFC [9,148]. In addition to deficits in synaptic development
as discussed earlier, various iPSC studies have linkedmitochondrial dysfunction to schizophrenia
[64,85,90–92,149,150]. Such changes have been consistently highlighted in patient-derived
neuronal models of 22q11.2 deletion syndrome [92,149,150]. Not surprisingly, the deleted region
contains multiple mitochondrial genes, including PRODH, MRPL40, TANGO2, ZDHHC8,
SLC25A1, and TXNRD2 [151]. A recent iPSC study of 22q11.2 deletion syndrome investigated
neurons derived from deletion carriers with and without schizophrenia [150]. Here, the neurons
derived from patients with schizophrenia displayed reduced ATP levels and electron transport
chain complex I and IV activity compared with neurons from deletion carriers without schizophre-
nia. Instead, the neurons from deletion carriers without schizophrenia expressed elevated expres-
sion levels of electron transport chain genes compared with neurons from healthy controls. In
other words, neurons from deletion carriers without schizophrenia appear to have protective fea-
tures that may compensate for the mitochondrial dysfunction linked to the deletion [150].
Altogether, these findings support the notion of mitochondrial dysfunction as a major risk factor
for schizophrenia. It would be interesting in future work to study schizophrenia-linked mitochon-
drial dysfunction in the context of synaptic maturation, given the high energy demands involved in
synaptic remodeling.

Concluding remarks
Human iPSC studies of schizophrenia have found evidence of cortical maldevelopment starting
from neurogenesis. An increasing number of studies have linked altered WNT signaling activity
to abnormal NPC proliferation, imbalanced differentiation of excitatory and inhibitory cortical
neurons, and failure to specify layer-specific projection neuron identities [22,46–48,104].
Postmortem and animal models of psychiatric disorders have detected comparable abnormali-
ties in the PFC and somatosensory cortices of affected individuals [10,105]. Furthermore, a
large body of recent imaging studies has reported thalamic miswiring to these cortical regions
in psychiatric disorders [12–14,17]. Together with postmortem and animal studies, iPSC studies
have also linked prenatal immune activation to impaired inhibitory system development and
cortical disorganization typical of psychiatric disorders [61,63,64,104]. All in all, iPSC-based
models have added a layer of understanding to the developmental origins of schizophrenia by
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providing insights into signaling pathways disrupted in the disorder and their potential implica-
tions for neuronal circuit miswiring. In the future, methodological advances in iPSC models
could help address additional questions regarding neural circuit development and disruption in
schizophrenia. For instance, fused cortical and ventrally specified organoids, instead of whole-
brain organoids that lack distinct brain regions, could be used to examine the development of
excitatory and inhibitory neurons, and their migration to the cortex (see Outstanding questions).
In addition, circuit-scale models comprising cortical and subcortical neurons could be used to
test the causality between altered cortical neurogenesis and miswiring between brain regions in
schizophrenia. Patient-specific iPSC-derived brain cells also provide an excellent platform for
studying the interplay between the genetic risks for schizophrenia and environmental insults
during prenatal development.

Functional and transcriptomic characterization of patient-derived neurons have revealed an
imbalance in the development of excitatory and inhibitory systems in schizophrenia
[2,22,24,25, 44,66,68,70,129]. The studies also provided not only evidence of excitatory post-
synaptic deficits, concordantly with postmortem and genetic findings [31,144], but also emerging
evidence of altered inhibitory synaptogenesis [88,129]. The possible contribution of altered cAMP
signaling to neuronal dysfunction has been acknowledged clinically and studied recently using
neuronal in vitro models of schizophrenia [139,141].

Although functional characterization of patient-derived neurons has been performed in an
increasing number of studies, relatively few of these studies have involvedmechanistic investigation
of the role of different neurotransmitter receptors, ion channels, and cell types in neuronal functional
alterations. To reveal whether an imbalance between glutamate and GABA-mediated neurotrans-
mission or altered ion channel function contribute to the early neuronal malfunction in patient-
derived neurons, neuronal functional development should be characterized more comprehen-
sively, cell type specifically, and considering the background of the patients. To investigate whether
deficient cAMP signaling could underlie NMDA receptor hypofunction and neuronal disinhibition in
schizophrenia, circuit-scale models comprising excitatory and inhibitory neuronal subtypes would
be needed. Given that glial cells function as pacers of synaptic maturation (Figure 1), they may also
critically participate in neuronal malfunction in schizophrenia, as early evidence from iPSC studies
suggests [50,100,145]. Fuller integration of glial cell types with iPSC-derived neurons could open
new avenues for investigating the neurodevelopmental origins of the disorder.
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