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We propose quantitative conservation
geography, as a subfield of conservation
science.

Quantitative conservation geography
studies where, when, and what conser-
vation actions could be implemented in
order to mitigate biodiversity threats and
support sustainable people–nature inter-
actions.

We outline relevant methods and data
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Ongoing biodiversity loss represents the erosion of intrinsic value of living nature,
reduces the contributions nature provides to people, and undermines efforts to
move towards sustainability. We propose the recognition of quantitative conserva-
tion geography as a subfield of conservation science that studies where, when, and
what conservation actions could be implemented in order to mitigate threats and
promote sustainable people–nature interactions. We outline relevant methods and
data needed in quantitative conservation geography. We also discuss the impor-
tance of filling information gaps, for example by using emerging technologies and
digital data sources, for the further advancement of this subfield. Quantitative
conservation geography can help inform the implementation of national and inter-
national conservation actions and policy to help stem the global biodiversity crisis.
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Human activities and conservation actions
Human activities are eroding biodiversity, causing extinction of species, and loss of ecosystems,
and consequently reducing the contributions nature provides to people [1]. Human pressures
include land and sea use change, climate change, pollution, unsustainable use of biodiversity,
and the introduction of invasive alien species [2]. Robust global conservation policy and practice
require understanding the status, trends, and future of the links between people and nature in
order to guide conservation actions, such as the creation of protected areas [3] or restoration
of habitats [4], to halt and reverse nature’s decline. These interactions take place in the broader
context of socioecological systems (see Glossary) [5] where both positive and negative
outcomes for people and nature can emerge from the ways people shape natural systems [6],
and the ways they are affected by nature in return [7]. In the context of such systems, conserva-
tion actions have the potential to deliver positive outcomes for both people and nature if properly
and carefully planned [8]. Because people–nature interactions vary widely in space and time, it is
important to understand where, when, and what conservation actions can address threats and
support sustainable people–nature interactions [9].

Geography provides the foundations to explore conservation actions at relevant temporal and
spatial scales, from global to local and their interplay, and within the socioecological contexts in
which conservation actions take place [10]. There is an important and growing body of literature
on conservation, which draws from qualitative geographical tradition [11], including studies in
political, critical and feminist human geography. Studies that investigate conservation actions in
space and time using quantitative geographical approaches are also abundant and increasing
[e.g. 12]. We argue that while the contribution of geographers is strong in conservation science,
and conservation is inherently spatial, this role of ‘geography’ is not fully recognized. To fill part of
this gap, we propose the recognition of quantitative conservation geography, as a subfield at
the overlap between conservation science and geography that studies where, when, and what
conservation actions could be implemented in order to mitigate threats and support sustainable
people–nature interactions. Quantitative conservation geography combines aspects of human
geography (i.e., people and their communities, cultures, and economies) and physical geography
(i.e., the living nature across levels of ecological organization encompassing genetic diversity,
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Glossary
Citizen science: the collection and
analysis of biodiversity data by members
of the public, often as part of a project
coordinated by scientists.
Conservation biogeography: the
study of distributional dynamics of taxa
individually and collectively to inform the
conservation of biodiversity.
Conservation culturomics: the study
of people–nature interactions through
the analysis of digital data.
Quantitative conservation
geography: the study of where, when,
and what conservation actions could
be implemented in order to mitigate
threats and support
sustainable people–nature interactions.
Scenario analysis: process of
analyzing representations of possible
futures for one or more components of
a system, namely drivers of change in
nature and nature’s benefits, including
alternative policy or management options.
Spatial conservation planning: the
use of quantitative methods to guide
resource allocation in an efficient manner
towards priority areas for conservation
actions.
Socioecological systems: complex
adaptive systems where social and
biophysical agents interact at multiple
temporal and spatial scales.
Telecoupling: combined
socioeconomic and environmental
interactions or flows between two or
more socioecological systems that are
separated in space.
species, and ecosystems). Quantitative conservation geography is different from, but comple-
ments the existing subfield of conservation biogeography, which is ‘concerned with the distri-
butional dynamics of taxa individually and collectively to problems concerning the conservation of
biodiversity’ [13], in that it also addresses the human dimensions of conservation actions. In the
following sections, we discuss the main themes, approaches, and challenges associated with
quantitative conservation geography research.

Planning conservation actions: where, when, and what
Existing standard classification systems of threats and conservation actions provide a
basis for quantitative conservation geography research [14]. Traditional approaches use
information on the spatial distribution, exposure, intensity, and timing of threats [15], in
combination with information on the spatial distribution of biodiversity, to identify where and
when different conservation actions are necessary. For example, studies have identified
areas where conservation actions should be implemented to stop specific causes of ecosystem
conversion, such as agriculture [16], urbanization [17], extractive industries [18], and roads and
other transportation corridors [19]. Some of these analyses can also incorporate models of
projected land use change [20]. Increasingly, studies are also mapping important areas for
reducing the vulnerability of biodiversity to climate change [21,22]. Studies have also identified
regions for implementation of conservation actions to address unsustainable harvesting [23],
invasive species [24,25], and pollution [26].

More proactive approaches can also incorporate information on the spatial distribution of oppor-
tunities and constraints, in addition to information on threats and biodiversity, to identify where,
when, and importantly what conservation actions should be implemented to help achieve
sustainable people–nature interactions. Such approaches require mapping social, economic,
political, institutional, and/or cultural factors, which enable or otherwise add to the occurrence
or persistence of direct threats. In their simplest form, these approaches require mapping
costs, feasibility, and benefits [12]. More advanced approaches, which are often only possible
at a regional to local scale, require mapping the values, views, and preferences of multiple stake-
holders in the socioecological context under study [27].

Combining multiple data sources
Here, we introduce some of the key data sources, including actionable biodiversity and conser-
vation knowledge products [28], threat, and socioeconomic data, which in our view are important
for quantitative conservation geography. Available biodiversity and conservation knowledge
products include data on where threatened species occur, what is threatening them and where
they are protected [29]. The International Union for Conservation of Nature (IUCN) Red List
[30], for example, uses quantitative categories and criteria, to allow transparency, consistency,
and repeatability to provide an assessment of species extinction risk [31]. The IUCN Red List
has now been implemented to assess the extinction risk of 134 425 species, finding 37 480 to
be threatened with a high risk of extinction [32]. More than 82% of these (>111 000 species)
have spatial data available. The IUCN Red List also includes information on threats for all species
that have been assessed [2,14]. The IUCN Red List of Ecosystems has now been established to
assess the risk of ecosystem collapse [33]. International frameworks to assess long-term,
cumulative, anthropogenic impacts on biodiversity [34] and the impacts of conservation actions
[35] are also under development and can be used to generate data for quantitative conservation
geography analyses.

Threats are often difficult to map and thus surrogates, such as accessibility and land use change
maps, are often used in place [23,36]. A current limitation, especially at the global level, is the lack
Trends in Ecology & Evolution, January 2022, Vol. 37, No. 1 43

CellPress logo


Trends in Ecology & Evolution
OPEN ACCESS
of threat data with spatial resolution, accuracy, timeliness, repeatability, and accessibility
necessary to inform conservation decision-making [37]. Aggregate maps of human impacts
on land [38], freshwater [39], and the ocean [40] are available, but they mask the variation in
impact of their constituent drivers, making it challenging to identify what conservation actions
are best suited to tackle specific threats. Threat maps also often fail to consider how biodiversity
responds to conservation actions that mitigate threats in order to guide conservation
actions towards where and when they can have the greatest positive impact on biodiversity
conservation [15].

Besides threats, quantitative conservation geography also needs information about where and
when conservation actions can be implemented without negatively affecting people. Such infor-
mation is often neither readily available nor easy to map (especially at a global scale), and/or time
consuming to collect. Mapping the economic costs and benefits of conservation actions can help
identify important areas for conservation actions where limited resources should be invested
[41,42]. Mapping people’s values, views, and preferences can help identify where local people
benefit or are affected by nature, allowing them to have an active voice in planning and
implementing conservation actions. Data gathered through surveys, for example, have been
used to develop and apply a spatially explicit sociocultural index to inform conservation actions
about public values toward wildlife [43]. Indigenous Peoples manage or have tenure rights over
a quarter of global terrestrial land that intersects about 40% of all terrestrial protected areas
and ecologically intact landscapes [44]. Failure to map their values, views and preferences can
result in identifying inadequate conservation actions.

Key methods
Here we introduce some of the key methods that, in our view, are foundational for quantitative
conservation geography. Specifically, we focus on approaches that use data introduced above
and can be used to identify the conservation actions that should be implemented.

Analyses of telecoupling
In recent years, it has become clear that many of humanity’s impacts on biodiversity are
telecoupled – that is, the point of impact is distant, often internationally, from the driver. Two
methods – environmentally extended input–output analysis and life cycle assessment – both
originating in industrial ecology, are becoming increasingly important in understanding
telecoupled impacts [45] and have great potential in quantitative conservation geography.
Input–output analysis considers the flow of money along each supply chain [46]. Environmentally
extended input–output analysis then connects this flow to environmental impacts at each step,
for example, for biodiversity, where ~30% of species threats across the IUCN Red List were
found to be due to international trade [47]. By contrast, life cycle assessment considers the pres-
sures caused by the production and consumption of specific products [48], but recent innova-
tions have extended this to impacts on species [49] and ecosystems [45]. Hybrid approaches
have begun to emerge, combining the benefits of the two methods, for example, to assess em-
bodied impacts of consumption of soy from the Brazilian Cerrado [45] and to map the spatiotem-
poral changes in global deforestation footprints [50].

Spatial conservation planning
Spatial conservation planning uses quantitative methods to guide resource allocation in an
efficient manner towards priority areas for conservation action [12]. Spatial conservation
planning aims to identify areas of high biodiversity value for conservation action, or areas of
lesser importance to allow for planning of other land uses. Spatial conservation planning can
be carried out at multiple scales, from global to local, using ecological, social, economic, and
44 Trends in Ecology & Evolution, January 2022, Vol. 37, No. 1
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political data. Global analyses have helped identify priority areas for the expansion of the global
protected area network to help meet Aichi target 11 (Figure 1) [20,51] and national to local anal-
yses are being used to inform biodiversity conservation and other sustainability policies (Box 1).
Many spatial conservation planning analyses have accounted for economic costs to help
achieve conservation solutions that meet biodiversity targets under budgetary constraints.
Studies that incorporate economic costs in spatial conservation planning, for example, show
that an equal or greater level of biodiversity representation can sometimes be achieved with
fewer resources when economic costs are included in the analysis [52]. Similarly, win–win op-
portunities for biodiversity and people can be unveiled when the benefits of biodiversity and
ecosystem services are included in conservation planning [41]. However, such analyses gener-
ally assume that people are interested in an optimal solution and pursue these solutions ratio-
nally. While this assumption is a reasonable first approximation within global analyses,
especially in the context of efficient allocation of resources, at finer scales there is a need to bet-
ter account for social and institutional factors that affect the success of conservation actions.
The integration of additional information generated via socioecological research can help ad-
dress this gap [53]. Public participation geographic information systems can be used to exam-
ine the spatial concurrence of a range of spatially explicit social values and land-use
preferences and this information can then be included together with ecological data in spatial
conservation planning [54]. Spatial conservation planning assessments should also be in-
cluded into broader land-use planning, as this allows addressing multiple sustainability chal-
lenges (e.g., biodiversity loss, climate change, food security) together [8]. Multiple spatial
conservation planning tools, including Marxan [55] and Zonation [56], are available.
09-08 %001-0907-06 08-0705-04 06-0503-52 04-0317-25Expansion to 17 %Current PAs
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Figure 1. Priority areas for the expansion of the global protected area network, taking future (2040) projected land-use change into account, to help
meet Aichi target 11 (i.e., conserving 17% of all terrestrial land and inland water). The analysis combined species rangemaps from the International Union for the
Conservation of Nature Red List and protected areas from the World Database on Protected Areas. Adapted from [20].
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Scenarios and models
Scenarios and models can be used to assess the projected outcomes of conservation actions in
space and time [57]. Models can be qualitative or quantitative descriptions of people–nature
interactions, while scenario analysis provides a tool to investigate how biodiversity might respond
to different pathways of future human activities and conservation actions [57,58]. Scenario
analysis is particularly important for assessing which human activities may lead to unsustainable
outcomes for biodiversity and which conservation actions can best counteract them [59,60]. It
can also be applied retrospectively to understand likely outcomes in the absence of action, and
thus conservation impacts [61]. Most scenarios investigate the impact of human activities on
biodiversity, but have not accounted for the role of biodiversity in enhancing human well-being
[57]. Integrated assessment models combine information on human activities and scenarios of
future development to make projections about the future of biodiversity and people [58]. It
remains crucial for future research to better assess and integrate potential synergies and trade-
offs between biodiversity conservation and other sustainable development goals, as well as
address feedbacks between nature, nature’s contributions to people, and human well-being
[57]. For this, future research should consider the use of participatory approaches that integrate
multiple stakeholders across sectors, the inclusion of indigenous and traditional knowledge, and
the development of national to local scenarios that are linked to global scale scenarios and
address needs of policy-makers [62].

Filling information gaps
The dynamic nature of socioecological systems demands continued efforts to generate updated
knowledge products [63], ensuring the underlying data needed in quantitative conservation ge-
ography are relevant and up to date [64]. In the case of biodiversity, citizen science platforms,
such as iNaturalist (https://www.inaturalist.org/) or eBird (https://ebird.org/home), have amassed
millions of locality records. Using citizen science data could help generate more accurate species
Box 1. Spatial conservation planning at the national scale

Spatial conservation planning analyses at the national scale are important, as countries are the main actors in charge of the
implementation of conservation policies. Furthermore, national to regional conservation planning assessments can include
detailed information about social, economic, and political factors affecting on-the-ground implementation thatmay not be readily
available at global and continental level. Such information is essential to the successful planning and implementation of conser-
vation actions, including the establishment of new protected areas. For example, as a signatory of the Convention of Biological
Diversity, Uruguay needed to identify priority areas for the expansion of Uruguay's presently very limited protected area network
(<1% of Uruguay was protected) to help reach Aichi target 11. Conservation authorities also aimed to include the strategy for
protected area expansion within a broader land-use planning strategy to meet other sustainable development objectives.

Di Minin et al. [88] used the spatial conservation planning software Zonation to maximize the representation of biodiversity
features and ecosystem services, while exploring the trade-offs with agricultural and commercial forestry production and land
cost (Figure I). Specifically, they explored four policy scenarios, ranging from a business as usual scenario where only biodiver-
sity and ecosystem services were included in the analysis to a potentially unsustainable scenario where expansion of
alternative land uses and economic development would be given higher priority over biodiversity and ecosystem services. They
used information on the spatial distributions of biodiversity, ecosystem services, alternative land uses, and economic data, to
identify the most important landowners to engage in the implementation of conservation actions in Uruguay.

At the 17% land target proposed for conservation, the representation levels for biodiversity and ecosystem services were, on
average, higher under the business as usual scenario than they were when alternative land uses and land cost were included
in the analysis. However, they found that a small addition to the proposed conservation target (17–20% of terrestrial land)
would allow to meet same representation levels for biodiversity and ecosystem services, while decreasing conflict with
agricultural and commercial forestry production and opportunity costs to landowners. Overall, the results highlighted that
more realistic and potentially higher conservation targets, than politically set targets, can be achieved at the country level
when sustainable development needs are also accounted for. Surveys with some of the identified landowners are now being
used to identify what conservation actions should best be implemented in the identified priority areas in order to avoid
conflicts [89]. Data gathered through these surveys can potentially be used to further refine the earlier conservation
planning assessment by mapping, for example, landowners’ willingness and capacity to participate in conservation actions.
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Figure I. Priority rank map for the conservation of biodiversity and ecosystem services in Uruguay obtained
by including biodiversity, ecosystem services, alternative land uses and land cost. (A) location of Uruguay (B)
the areas identified for the expansion of the protected area network to meet the 17% land protection target (dark
green); and (C) how the prioritization used cadastral units as planning units. Departments represent local administrative
boundaries within Uruguay. Areas in white are transformed (e.g., intensive agriculture). Adapted from [88]. Abbreviations:
PAs, existing protected areas.
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range maps and consequently help reduce uncertainty when identifying priority areas for conser-
vation actions [65]. Citizen science data can also be used in telecoupling research to better un-
derstand large-scale people–nature interactions [66]. There is great potential to harness the same
data to strengthen assessment of the impacts of human activities in space and time. In this
context, obtaining volunteered geographic information from citizen science can represent an
important tool to engage multiple stakeholders (e.g., citizen scientists and experts) in monitoring
threats [67]. However, there is an as-yet-vacant niche for established global citizen science
platforms to improve documentation of threats (e.g., unsustainable use) to biodiversity, and of
conservation responses. Furthermore, citizen social science [68] approaches offer new opportu-
nities to account for social processes when investigating where, when, and what conservation
actions should be implemented to support sustainable people–nature interactions through, for
example, participation and mutual learning between stakeholders [69]. Public participation
geographic information systems and citizen social science can provide an important means of
collecting spatially explicit social data (e.g., about the values people associate with biodiversity,
places and land-use preferences, therefore indicating their support or conflict over where conser-
vation actions should be implemented).

Emerging technologies provide one promising way forward to minimize an important data gap in
relation to biodiversity and threats [70]. Remote sensing has a long history of use in conservation
research and can provide valuable data for quantitative conservation geography research. For
Trends in Ecology & Evolution, January 2022, Vol. 37, No. 1 47
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example, Google Earth Engine was used to create the first-ever global high-resolution map of for-
ests allowing for near-real-time tracking of illegal deforestation [71]. Increasing access to un-
manned aerial vehicles (UAVs or drones), however, provides a cheaper and timely alternative to
satellite remote sensing, complementing our ability to monitor land use or climate changes at
Box 2. Innovative solutions using digital data and automated content analysis

Social media geotags, as well as text, image, and video content, have already been used in spatial analysis of people–
nature interactions [78]. Hausmann et al. [80] collected social media data from Flickr and Twitter geolocated in Important
Bird and Biodiversity Areas and assessed threats from tourists’ visitation and to harness the potential benefits of tourism
for conservation. Specifically, social media data was combined with information from the IUCNRed List to map threats and
benefits from human visitation in sites of global conservation importance. Continuously accumulating social media data
can help reveal temporal patterns and long-term trends in people–nature interactions [90]. Other digital data sources that
can be potentially georeferenced, and thus deployed in quantitative conservation geography, include webpages, books,
e-commerce platforms, online media and digital encyclopedias [77].

Because of the deluge of data potentially available from digital platforms, automated content analysis is required to cost-
efficiently filter and analyze this information (Figure I) [78,91]. Applying computer vision and natural language processing
techniques to data from digital platforms can help map the use of natural areas [82] or threats from wildlife trade
[91,92]. These novel data sources can potentially be combined with spatial data from the IUCN Red List and telecoupling
methods to assess interconnections between demand and supply countries in the supply chain of the wildlife trade.
Similarly, information on threats potentially gathered from digital media can help inform biodiversity risk assessments as
part of the IUCN Red List and thus inform conservation policy. Social media data can also be leveraged to map opportu-
nities for conservation, for example to assess people’s reactions and sentiment for conservation actions [93] and/or
threats to both biodiversity and people (e.g., mining). Finally, social media data could potentially be deployed to study
socio-ecological systems too (e.g., social network analyses to link multiple stakeholders across space and time).

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Automated analysis of people–nature interactions from geolocated images obtained from social
media platforms using dense captioning that identifies areas of interest in the images and creates a
linguistic description for each area. Adapted from [78]. Picture by Tuuli Toivonen in Pallas-Ylläs National Park, Finland.
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relevant temporal and spatial scales. UAVs can be used for example to enhance law enforcement
in protected areas [72]. Big-data approaches are also expanding into the aquatic realm [73]; for
example, by combining satellite-tracked movements of species and human pressure assessed
from global fishing fleets [36], to carry out near-real-time global spatial risk assessments.

The global spread of the internet has also spurred the emergence of new research approaches
aiming to take advantage of data hosted in multiple digital platforms [74–76]. One such area is
conservation culturomics, which focuses on exploring people–nature interactions using a
variety of digital data sources [75,77,78]. Among these digital data sources, social media are a
particularly relevant data source [79] because their content is often associated with detailed
spatial and temporal metadata [78] (Box 2), potentially allowing for real-time monitoring of
human activities in areas important for the conservation of biodiversity [80]. Information about
people–nature interactions in socioecological systems can be extracted efficiently from text,
TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 2. Flickr and Instagram data from the Greater Kruger area in Southern Africa. An important aspect of social media data is that it contains information
about the spatial and temporal distribution of biodiversity, their interactions with people, but also information (e.g., the car in the picture) that, while geolocated within a
socioecological system, is not relevant for analyses in quantitative conservation geography. To filter this deluge of data and retain only relevant information, automated con-
tent analysis, using machine learning and natural language processing, is needed. Social media data available for 2015 were collected from Instagram’s (www.instagram.
com/developer) and Flickr’s (www.fickr.com/api) application programming interface.
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Outstanding questions
How can we develop enhanced
models on the distribution of threats,
opportunities, and conservation actions
to inform conservation decision-making?

How to better integrate multiple
stakeholders and include indigenous
and traditional knowledge and other
social data in the development of
national to local scenarios that are
linked to global scale scenarios?

How can emerging technologies and
digital platforms be leveraged to
assess, monitor, and forecast the
status of socioecological systems by
integrating biodiversity, threat, and
social data at multiple scales?

How can mix-method approaches
be used to combine qualitative and
quantitative methods and data from
multiple sources to understand what
conservation actions are most ade-
quate at relevant temporal and spatial
scales?
images and video using automated content analysis [78,81,82] (Figure 2). Images and text
collected from digital platforms could be, for example, used to assess the views, values, and
preferences of multiple stakeholders [83].

As a note of caution, emerging technologies and conservation culturomics approaches should be
used in full respect of human rights and carefully consider ethical guidelines and data privacy and
protection concerns [79,84].

Way forward for quantitative conservation geography
We believe quantitative conservation geography provides a useful framework for quantitative
research exploring conservation action in socioecological systems and captures growing
research interest in this topic. A search in Web of Science’s Core Collection for scientific literature
at the intersection between conservation science and geography, followed by automated content
analysis [85] of the abstracts of 17 899 studies, allowed the identification of a topic in this literature
that addresses the human dimensions of conservation (see Table S1 in supplemental information
online). Within this diverse topic, many studies focus on threats, opportunities, and conservation
actions in space and time, fitting well with the scope of quantitative conservation geography
proposed here. While this suggests there is indeed a growing body of research within the
scope of quantitative conservation geography, a systematic review of this literature and further
discussion will help refine the scope and implementation of this subfield.

In the future, we call for a broader use of ‘conservation geography’ to cover ‘geographies of’
and ‘geographies for’ conservation [11]. We foresee broader conservation geography
research benefiting from combining qualitative and quantitative methods and bridging
between scholarly traditions. From the perspective of quantitative conservation geography
this could be achieved e.g. through the increased use of mixed methods approaches [86].
For example, qualitative interview data were integrated with quantitative land use change
models to develop future scenarios of agricultural expansion in order to inform traditional
land production while avoiding deforestation and land degradation in Indonesia [87]. Further
advancements in this direction would help position quantitative conservation geography as
a research field that promotes better integration between conservation science, geography,
and sustainability science.

Furthermore, quantitative conservation geography can contribute to the development of a global
digital platform to assess, monitor, and forecast the status of socioecological systems by inte-
grating biodiversity (e.g., the IUCN Red List, the World Database of Protected areas, etc.), threat
(e.g., plans for infrastructure development, satellite images of deforestation, etc.), and social
(e.g., public participation geographic information system data, spatial maps incorporating tradi-
tional knowledge, etc.) data at multiple scales. Ideally, this platform would allow the integration
of traditional and novel data sources and methods. It could also support the engagement of mul-
tiple stakeholders across sectors and inclusion of indigenous and traditional knowledge to inform
decision-making.

Concluding remarks
We propose that quantitative conservation geography can be used to identify sustainable and
equitable conservation actions to address the global biodiversity crisis and other sustainability
challenges (see Outstanding questions). This new research subfield is well positioned to inform
the implementation of national and international conservation agreements, including the emerging
post-2020 Global Biodiversity Framework, as well as the 2030 Agenda for Sustainable
Development overall.
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