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Abstract

Background

Air pollution is one of the major environmental challenges cities worldwide face today. Plan-

ning healthy environments for all future populations, whilst considering the ongoing demand

for urbanisation and provisions needed to combat climate change, remains a difficult task.

Objective

To combine artificial intelligence (AI), atmospheric and social sciences to provide urban

planning solutions that optimise local air quality by applying novel methods and taking into

consideration population structures and traffic flows.

Methods

We will use high-resolution spatial data and linked electronic population cohort for Helsinki

Metropolitan Area (Finland) to model (a) population dynamics and urban inequality related

to air pollution; (b) detailed aerosol dynamics, aerosol and gas-phase chemistry together

with detailed flow characteristics; (c) high-resolution traffic flow addressing dynamical

changes at the city environment, such as accidents, construction work and unexpected con-

gestion. Finally, we will fuse the information resulting from these models into an optimal city

planning model balancing air quality, comfort, accessibility and travelling efficiency.
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Introduction

Decreased air quality is one of the major environmental challenges cities worldwide face today

and is estimated to cause 4.2 million premature deaths worldwide per annum [1]. Planning

healthy environments for future populations, whilst considering the ongoing demand for

urbanisation and provisions needed to combat climate change, remains a difficult task. This

study combines the fields of artificial intelligence (AI), atmospheric and social sciences to pro-

vide urban planning solutions that optimise local air quality by applying novel methods and

taking into consideration population structures and traffic flows.

Road traffic is a dominant factor in air pollution of both gaseous pollutants and particu-

late matter [2]. Unfortunately, the highest pollution levels are commonly seen at the pedes-

trian level [3] and might thus discourage healthy urban outdoors activities and active

transport [4], which would otherwise alleviate traffic, noise and air pollution. The spatial

attributes of the urban landscape (i.e. surface roughness of buildings) and turbulent mixing

of the air can lead to inefficient pollutant transport from the street level under prevailing

meteorological conditions [5]. The turbulent properties and pollutant transport of the flow

are modified by these street canyons [6, 7] and their thermal properties [8, 9]. Although the

pollutant sources and main features of pollutant dispersion in urban areas have largely been

identified, we still poorly understand pollutant distribution at the micro-level of real urban

surfaces and are lacking in air quality models that can efficiently solve their complex flow

and pollutant distributions equations [10]. The 3D pollutant distributions within real urban

neighbourhoods can be resolved using high-resolution air quality modelling, such as large

eddy simulations [11–13].

Another important factor in the distribution of air pollutants is the traffic flow in a city. It is

a key aspect of planning sustainable cities. When planning new traffic networks not only pri-

vate and public transport need to be considered, but also cycle and pedestrian pathways as well

as green spaces. Efficient traffic flow is essential in reducing traffic congestion, carbon and air

pollutant emissions. Predicting traffic flow is, however, not a straightforward process as it is

subject to large temporal fluctuations due to weather, roadworks or local events. Currently

used machine learning (ML) methods that predict traffic flow are based on deep neural net-

works (DNNs) analysis [14]. These are based on semi-supervised methods in need of training

data and therefore not feasible for the planning of new areas. Reinforcement learning (RL) is a

novel ML method that uses a reward function and does not need a training dataset [15] and is

thus better suited to planning of new city areas.

Exposure to air pollution might also have a larger impact on certain socio-economic groups

which can indicate environmental inequality [16]. An unequal exposure distribution might

worsen already existing health disparities between different population groups. Empirical

research from the U.S. has established that individuals and communities with lower socioeco-

nomic status are in many cases exposed to higher levels of pollutants [16, e.g. 17], although the

opposite has been shown to be true for example in New York [18]. The built environment and

access to blue-green spaces have an important impact on the mental health of urban dwellers

[19–21]. Distance to facilities, street connectivity, safety and population density have all been

shown to affect healthy walking behaviours (for example walking to schools [22, 23]), which in

turn affect the use of public transport and driving behaviour and ultimately air pollution.

Exposure might also differ by housing tenure type, although this might only be true for private

housing [24]. Moreover, earlier research from the UK concluded that despite owning fewer

cars, the poor drive older cars with higher emissions, and thus significantly contribute to air

pollution [25]. However, more recent research [26] contradicts such conclusion and demon-

strates an inverse relationship between transport-related emissions generation and poverty,
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and further indicates (in line with [25]) that young children, young adults, and poor house-

holds experience the highest levels of exposure. Further information on the socio-economic

spatial inequality of pollutant exposure is needed as well as information on urban planning

decisions aiming to alleviate or avoid such inequality.

Helsinki, the capital city of Finland, is experiencing a rapid population growth and a grow-

ing demand in housing. The city has pledged the implementation of the Agenda 2030 Sustain-

able Development Goals on local level [27] and aims to become carbon neutral by 2035. The

city has a high percentage of active transport, with 77% of all journeys attributed to walking,

cycling or public transport [28]. However, this still leaves hundreds of thousands private vehi-

cle journeys at certain city areas every day. The city is currently in the early stages of designing

and developing the so-called city boulevard areas around two major access roads. Additionally,

we have limited and outdated knowledge about the existence of air pollution-related environ-

mental inequalities in Helsinki. Research from 2000–2001 indicate lower levels of air pollution

exposure with higher level of education and (gendered) occupational status [29, 30], however,

the dynamic socio-spatial dimensions of environmental inequalities have never been studied

in Finland to date.

According to Chi & Voss [31] small-area population forecasts are essential for sound local

planning and decision making, but are dependent on a variety of factors, that are usually

ignored in traditional forecasting methodologies. These relate particularly to neighbourhood

characteristics and choices, such as accessibility to transportation and services [e.g. 32, 33], the

physical environment [21, e.g. 34] and housing preferences [e.g. 35, 36]. Moreover, these pref-

erences are likely to change with circumstances and age [e.g. 33, 37, 38]. It has also been shown

that “desirable” neighbourhoods are more easy to predict than, for instance, rural areas [39].

The majority of these small-area population forecasts are, however, based on aggregated data

at community or municipality level and not on micro-level data of households or neighbour-

hoods and are thus likely to misinterpret the neighbourhood context.

In this study we are going to combine high-resolution traffic flow and pollutant distribution

models with micro-level population data to help design a new “city boulevards” neighbour-

hood in Helsinki in such a way as to minimise local air pollutant concentrations, accessibility,

travelling efficiency and environmental inequality.

Methods and analysis

Study design, aims and hypotheses

This study combines three different paths: (i) we are going to use high-resolution micro-level

urban, demographic and meteorological data to create a retrospectively linked electronic

cohort for all residents of Helsinki (60˚ 12’ 49.395" N, 24˚ 53’ 3.8502" E) between 2010 and

2020 (depending on individual dataset coverage); (ii) an air quality model will be built, based

on detailed Vihdintie boulevard layouts and high-resolution 3D surfaces (see Fig 1); (iii) a

deep learning-based traffic flow model will be developed using historical traffic data from an

area with similar characteristics as the Vihdintie boulevard (iv) fusing models (i)-(iii), a sophis-

ticated tool, based on Reinforcement Learning, will be built, that outputs advice about how the

traffic should be arranged for the Vihdintie boulevard study area for optimizing comfort, min-

imal pollution emissions, accessibility and travelling efficiency; this simulation will be based

on a realistic representation of the planned city area layout.

Our study has four main aims:

1. Quantify the possible co-locations of urban population groups, urban amenities, and air

quality effects both in the present and future situation.
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2. Understand the high-resolution spatial and temporal variability of air quality at street space

in different planning and traffic flow scenarios using a novel LES based air quality model

that can account in detail urban neighbourhoods.

3. Create a tool based on artificial intelligence methods providing suggestions for traffic plan-

ning for optimizing comfort, air quality, accessibility and travelling efficiency.

4. Estimate and provide recommendations for the most optimal planning solution from air

quality, comfort, accessibility and travelling efficiency aspects.

The project will attempt to answer the following main research questions:

• What are the main factors in the urban structure (both thermal and mechanical effects) caus-

ing formation of air quality hotspots?

• Is there a relationship between socioeconomic status and air pollution exposure? What

explains the possible relationship?

• How can we predict future population using AI-modelling utilizing detailed micro-level data

on population and various sources of GIS (Geographic Information System) data about built

environment structures?

• How should the reward function in Reinforcement Learning be composed to reliably accom-

modate all information of very different nature (traffic, population, air quality) and to pro-

vide finally a good suggestion for city planning?

• What is the most optimal urban planning choice including traffic scenario for creating the

best air quality in the planned city boulevard in Helsinki?

How well can the Machine Learning models built, trained and tested in one city be scaled

for other cities in Europe?

Fig 1. Current (left) and future envisioned view (right) of the Vihdintie Boulevard. Photo: Tietoa Finland Oy (Accessed on 23/06/

2121 from https://kerrokantasi.hel.fi/bulevardikaupunkia/gMuQSTFoRuyx8CixB5hYMK171lbbaxEW?lang=en).

https://doi.org/10.1371/journal.pone.0260009.g001
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Modelling platforms and datasets

A) Micro-level data modelling. We will be using the Finnish Online Access (FIONA)

Remote Access System of Statistics Finland to access the Statistics Finland micro-level popula-

tion data relating to demographics and housing. These data will be augmented with data from

other sources, such as housing data and air pollution data. The full list of the data and their

sources is presented in Table 1.

B) High-resolution air quality modelling. The highly resolved air quality distributions in

the planned city boulevard in Helsinki will be simulated and analysed using the LES model

PALM, which presents the state-of-the-art in urban atmospheric modelling [43]. It is the first

model of its kind that allows to simulate both detailed aerosol dynamics, aerosol and gas-phase

chemistry together with detailed flow characteristics. In PALM, aerosol dynamics are simu-

lated using the Sectional Aerosol module for Large Scale Applications (SALSA) [44] allowing

to examine in detail deposition, nucleation coagulation and condensation of aerosol particles,

and basic gas compounds. PALM has successfully been used to examine high-resolution pol-

lutant concentrations in e.g. Helsinki and Berlin [12, 47] and particularly how different urban

planning solutions can lower local pollutant concentrations [11, 48].

C) High-resolution traffic flow modelling. The traffic flow model will be developed

using deep learning methods. The model will generate traffic addressing different dynamic

changes in the city environment, arising from changes in weather and seasons, accidents,

Table 1. Data and data sources for the CouSCOUS project.

Data type Source File format Size

Traffic data, vehicle numbers per vehicle type City of Helsinki (https://hri.fi/en_gb/) csv ~100MB

Air quality, meteorological and turbulence

data

City of Helsinki (https://hri.fi/en_gb/) & European collaborator

cities

csv / txt ~50MB

ENFUSER 2.0 air quality data Finnish Meteorological Institute (https://en.ilmatieteenlaitos.fi/)

Johansson et al. [40, 41]

netcdf ~ 265GB

Climate data European branch of the Coordinated Regional Climate

Downscaling Experiment (https://www.euro-cordex.net/)

netcdf >1 GB

3D surface model Nordbo et al. [42] raster ~10MB

Emission factors City of Helsinki (https://hri.fi/en_gb/) & national Lipasto

database (http://lipasto.vtt.fi)

csv ~10MB

ECWMF re-analysis and FLEXPART datasets

for ADCHEM runs

ECWMF (https://www.ecmwf.int/) & FLEXPART (https://www.

flexpart.eu/) websites

netcdf > 1GB

Population statistical data & Open data for the

Helsinki Region

Statistics Finland micro-level data (remote access FIONA)

(https://www.stat.fi/tup/mikroaineistot) & Statistics Finland

gridded data (https://www.tilastokeskus.fi/tup/ruututietokanta/

index_en.html) & Helsinki Region Infosphere (https://hri.fi/en_

gb/) & Avoin Data (https://www.hsy.fi/avoindata) & Helsinki

Region Service Map (https://palvelukartta.hel.fi/en/)

txt, .xlsx, csv, geojson, .shp

Population & built environment statistical data LIITERI-database by Finnish Environmental Institute SYKE

(https://www.syke.fi/en-US)

txt, .xlsx, csv, geojson, .shp

Planning data from City of Helsinki City of Helsinki Planning Department

Input and output data of the PALM model and

ADCHEM model runs

PALM: Maronga et al. [43], Kurppa et al. [44] ADCHEM: Roldin

et al. [45] Data produced

netcdf files, model scripts in fortran,

scripts using common programming

languages such as Python

~10MB

Analysis of traffic flow with different

parameters based on the DRL runs presented

as optimal ratios of each traffic mode

Data produced pdf ~5 MB

Examples of the CARLA analysis runs Dosovitskiy et al. [46] https://www.unrealengine.com/en-US/

Data produced

MP4 ~100

MB

https://doi.org/10.1371/journal.pone.0260009.t001
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construction work and other events changing the traffic flow. Traffic flow modelling is a chal-

lenging task due to its spatio-temporal nature and because it is prone to influence by the

above-mentioned external factors and many more. The state-of-the-art methods do not solve

the challenges at sufficient level, and therefore there is a need to develop sophisticated deep

learning methods for traffic flow prediction [49]. The generated traffic will be fed to the

CARLA open source, flexible urban driving simulator [46], which was originally designed for

aiding the research on automated vehicles. The simulator will be augmented with the 3D city

models, obtained from the plans for the Vihdintie boulevard.

D) Fusion of the models into a city planning tool. At present, the use of Reinforcement

Learning (RL) in complex tasks is quite limited due to the complexity of its implementation.

Because the goal of our project is not to do traditional traffic flow prediction using existing

traffic data, but to combine traffic data with data of very different nature, air quality and popu-

lation-related, research for developing sophisticated RL methods for city planning is needed

[50]. Model Based Reinforcement Learning is anticipated to be the best ML method to be used

in traffic control due to its somehow predictive nature [51]. Therefore, we will develop novel

RL methods for combining traffic data and novel LES modelling to optimise local air quality

and to fuse the population data with them.

Data management plans

Each consortium party will use their file services to store data gathered during the project.

During the project the data created for training and resulting from the deep neural networks

will be stored in a MongoDB database that will be set up into CSC’s ePouta cloud service

(https://research.csc.fi/). CSC will back up the data.

The model calculations will mainly be made on the CSC IT Center supercomputers and

input and output model data will be uploaded to the secure archive storage of CSC from the

"work directories" where the actual calculations are run. Some of these data will also be down-

loaded to local computers if the datasets are small enough. CSC is responsible for data backup.

Individual-level microdata from Statistics Finland will be handled and stored according to

their rules and using their distance-use connection. All results will be stored on protected serv-

ers and nothing that is identifiable will be published.

Status and timeline of the study

We are currently awaiting access to the micro-level data. We have conducted several test runs

of high-resolution air quality modelling for Malmö, Sweden using PALM and are now prepar-

ing micro-level input files (down to 1 m resolution) for PALM simulations to study the influ-

ences of different urban planning solutions on street-level air quality. We will then prepare the

input files for the boulevards of interest in Helsinki and conduct dozens of PALM runs under

different scenarios. In this way, we can provide enough data for the Reinforcement Learning

to optimise local air quality. For traffic modelling and simulation, the data has been chosen

and the work to combine the different sources of data has been started. Development of the

traffic generation system is ongoing, the network and training decisions have been made. The

anticipated timeline of the study is shown in Table 2.

Data analysis

A) Micro-level data modelling. We will study the patterns of locations and relocations of

population, and potential relationships they have with air quality at the city scale. The focus is

on possible co-locations of certain socioeconomic groups, their propensity to move, and local

emissions and air quality. This analysis leans on the tradition of environmental equity [52], yet
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the approach is improved by using micro-level population data and modelled environmental

exposure at very granular resolution, in contrast to traditional approach of self-reported sur-

vey-data or proxies, such as distances to roads. The key data sources for improvements are

high-quality FMI-ENFUSER air quality data [40, 41], and micro-level population data from

Statistics Finland. Descriptive and visual spatial analyses of the population and environmental

quality are done. Attention is also paid to the types of neighbourhoods, their amenities and

built environment structures, to see whether e.g. newly built residential areas differ from the

typical suburbs built in the 60s and 70s. Similarly, the locations of certain services, such as

schools and kindergartens, is combined with the air-quality data, to see whether there are dif-

ferences in exposure.

We then will run and compare more advanced models to explain air quality exposure and

different inequality metrics. More traditional spatial models, such as multivariate models and

multilevel models, are tested along with spatial modelling options including, e.g. spatial gener-

alized additive models (GAM) and spatial autoregressive models. The key issue is to take into

account the spatial structure of air pollution data (spatial autocorrelation), a trait that is often

neglected in previous studies [see 53].

A model for urban population forecasting is developed using micro-level data on popula-

tion and information on various built environment structures, such as accessibility data. The

model is tested using the existing data on population development and then used to predict

the population structure in the investigated city neighbourhood given the plans. Population

structure prediction also includes prediction of car-ownership rates, which will be used in cre-

ating socio-economic mobility types. The applicability of machine learning techniques to pre-

dict the population is investigated, and the results are compared to more traditional statistical

forecasting methods. Using and understanding the novel methods and their usefulness for

population forecasting is beneficial not only for understanding the health effects, but also for

service planning purposes. In the realm of population forecasts, ML techniques have been

applied already a couple of times: to forecast the prevalence non-communicable diseases at US

state level [54] as well as residential relocation patterns in Seoul [55]. The different single-

parameter models are developed to predict the age distribution in the planned neighbourhood

on building resolution as step one, also other socioeconomic variables can be estimated with

Table 2. Proposed timeline of the project.

Task 2020 2021 2022 2023 2024

H2 H1 H2 H1 H2 H1 H2 H1

Data collection and dialogue with stakeholders

Recruitment

Environmental justice and population forecasting

1) Review of literature

2) Access to micro-level data

3) Modelling

LES model

1) Modelling

2) Data analysis

DRL/DNN modelling

1) Traffic generation

2) Deep reinforcement learning

Synthesis and scalability

https://doi.org/10.1371/journal.pone.0260009.t002
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similar techniques. In step two, we work towards a multi-parameter model, which would give

more detailed individual-level estimations on simulated residents.

B) High-resolution air quality modelling. One of the major tasks in LES based air qual-

ity modelling is the creation of modelling domain and selection of appropriate boundary

conditions. In the model runs, one-way nesting capability of PALM will be used. A higher

resolution child domain (e.g. 1536x1536x96 m3 with 1 m resolution [12]) will cover the

neighbourhood of interest and within this domain the aerosol processes will only be treated.

The parent domain (e.g. 2304x2304x288 m3 with 2–4 m resolution) and root domain

(6912x6912x606 m3 with 8–12 m resolution) will cover larger areas to allow the flow to

adjust to the urban surface. Dynamic meteorological boundary conditions will be used in

the root domain. Within the child domain, detailed city boulevard layouts will be obtained

from the City of Helsinki, whereas for the parent domain 3D surface model based on Lidar

data will be used [56]. Climate scenarios and present-day knowledge on background con-

centrations will be used as model boundary conditions. Other boundary conditions include

information about vehicle fleet and emission factors which can be obtained from a similar

approach as used by [11].

The ongoing transition from gasoline vehicles to electric vehicles will be taken into account

in the calculation of emission factors based on the predictions provided by traffic authorities

[11]. There will be significant amount of time when both vehicle types will co-exist during

which particle emissions still take place. And even if all vehicles would be electric vehicles, in

northern latitudes resuspended road dust causes significant source for particles in springtime.

As electric vehicles are heavier than gasoline cars due to batterie) the road dust emissions are

expected to increase in future. This will be included in the calculation of emission factors given

to the model [11].

The spatial and temporal variability of aerosol particles (size distribution, mass) and gas-

eous compounds (NO, NO2 and O3) will we simulated for selected representative days in sum-

mer and winter periods in the planned city boulevard. Model runs will be made for different

urban planning alternatives with varying traffic scenarios with the aim of creating reward

functions for the deep reinforcement learning (DRL) algorithm. The exact number of the

modelled alternatives depends on plausible options the city of Helsinki is considering but will

be around 20–40 model runs. From these runs, the spatial and temporal variability of the con-

centrations fields and hotspots will be evaluated and controlling factors determined. Due to

the highly variable pollutant fields and great amount of data the model is providing, together

with the stakeholders we need to carefully design a ranking system to decide for which areas

(i.e. pavements, tram stops, different building floors) the reward functions will be created.

C) High-resolution traffic flow modelling. At present, CARLA enables simulation of the

traffic flow at a microscopic level, namely simulates the movement of individual vehicles and

generates other actors in the traffic using standard Unreal Engine’s (https://www.

unrealengine.com/en-US/what-is-unreal-engine-4) vehicle model and their motion using a

basic controller defining their behaviour. To achieve our research goals, we need to have more

intelligence on the generation of vehicles, pedestrians and bicycles into traffic than just the

existing random process.

A DNNs method will be developed for generating the prediction of the amount of people in

the traffic. For this, a number of socio-economic mobility profiles will be constructed based on

micro-level socio-economic data and car ownership data, which will feed into training the

learning algorithm, together with historical traffic data. The result will be a DNNs algorithm

that has learned to predict the number of travellers of all transport profiles (vehicles, public

transportation, pedestrian, bicyclist) passing the city area conditional on the weather, time of

day, season, events, construction works and demographic structure at the area. Distributional

PLOS ONE The CouSCOUS study protocol

PLOS ONE | https://doi.org/10.1371/journal.pone.0260009 December 2, 2021 8 / 14

https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://doi.org/10.1371/journal.pone.0260009


effects of consequent predicted changes in air pollution will be examined to aid decision mak-

ing on identifying optimal urban planning scenarios.

D) Fusion of the models into a city planning tool. The outcome of our research will be a

DRL-based algorithm fusing the information obtained from the models developed in steps a)-

c). The most challenging part of the DRL algorithm development is the design of the reward

function [15]. Some research using RL for traffic flow prediction has been done, but their

approach is very simplistic, e.g. they use very simple reward functions [50]. Our solution will

not only predict the traffic flow, but will give recommendations of how the traffic should be

organized (spatially and considering different traffic modes) for optimizing the sustainability

aspects of the area. Therefore, the reward function will be formed as a combination of smallest

pollution effects, efficient commuting, liveability, accessibility, and other factors agreed with

all stakeholders.

The interplay of all three analysis paths is shown in Fig 2.

Synthesis and scalability

The final aim of the project is to provide recommendations for the planned city boulevard in

Helsinki and examine the scalability of the developed methods to other neighbourhoods in dif-

ferent cities. The short-term air pollutant concentrations with different planning alternatives

in the planned city boulevard accounting for accessibility, travelling efficiency and socio-eco-

nomic structures are estimated and recommendations for urban planning provided. For exam-

ple, with one urban built environment structure certain population groups are more likely to

move in, creating particular traffic scenarios furthermore impacting the local air quality and

Fig 2. Modelling interconnection between the different research teams and methods.

https://doi.org/10.1371/journal.pone.0260009.g002
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air pollution exposure to the different population groups. The local air quality distributions are

largely dependent on the built environment structure (including buildings, trees, etc.) and

therefore we will also examine the scalability of the DRL algorithms with different neighbour-

hoods. Some information is provided with the different urban planning alternatives of the

planned city boulevard, but we will furthermore examine the performance of the algorithms

with existing street canyons in Helsinki. The neighbourhood was selected in addition to

PALM produced air quality fields.

In addition to Helsinki, the scalability of the DRL algorithm in other cities will be studied.

The high-resolution distributions of air pollutant concentrations in neighbourhoods in

Malmö (Sweden), Turin (Italy) and Guildford (UK) will be simulated for selected few hour

periods using PALM. The model outputs together with known traffic distributions and socio-

economic information provided via collaboration with the respective researchers allow us to

examine how well the algorithms developed in Helsinki will reproduce the air quality fields in

these cities with different neighbourhoods. The cities were selected as there are also measured

data available allowing to evaluate the model performance at the same time when testing the

algorithms. The ADCHEM model [45] will be used to provide boundary conditions for pollut-

ants whereas other needed data with 3D surface maps, emissions factors and meteorology will

be obtained from the respective researchers.

Ethics and dissemination

No ethical or other conflicts are expected in the experiments or material, and no experiments are

performed that would require permissions. Work with databases, data, codes, and models will not

cause any intellectual property infringement, as none of these are subject to official restrictions.

Sensitive population data will be analysed within the FIONA remote desktop of Statistics

Finland. Output of these data are subject to disclosure control. Results for this project will be

disseminated to city developers and wider audiences.

Discussion

In this study we will combine high-resolution traffic flow and pollutant distribution models

with micro-level population data to help design a new “city boulevards” neighbourhood in

Helsinki in such a way as to minimise local air pollutant concentrations, accessibility, travelling

efficiency and environmental inequality. However, combining these separate fields of science

is a high-risk, yet potential high-reward, strategy in itself, and the ability of the project to pro-

vide usable tools for practice and local decision-making needs constant and careful attention

during the execution of the study.

Limitations of the study

Factors that might affect air pollution exposure might not be available to us. For instance, we

have information for buildings, but not for individual households or floors within buildings

[57]. We also have no information on the type of residential heating [58] or on indoor air qual-

ity. Only outdoor air pollution is included in our study. Furthermore, it is still to some extent

unclear how well scalability of the models to other neighbourhoods and cities work, as the data

availability we have for Helsinki can differ from that in other cities.

Project dissemination

This project will be conducted in close collaboration with policy makers and city planners and

developers of the City of Helsinki. Aside from presenting future findings to the academic
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community we will also disseminate them to the wider public via social media and a project

website and blog (https://www2.helsinki.fi/en/projects/couscous).
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