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1. Introduction 

During training, many empirical researchers have likely heard phrases along the lines of 

“causality cannot be inferred from cross-sectional data”, wherein “inferring causality” refers to 
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distinguishing a cause from its consequence. This statement is actually wrong. It probably 

reflects the huge role that the correlation coefficient has played in empirical research. One cannot 

infer causation from a product-moment, or Pearson’s, correlation coefficient, without 

supplementing it with other knowledge. More recent research, however, has derived several 

other statistics that are able to infer direction of causation in a cross-sectional setting 

(Wiedermann and von Eye 2016). So far these have seen relatively little use in epidemiologic 

research, even though inferring causation (i.e., etiology) is a central topic in epidemiology. This 

may reflect, in part, a healthy streak of conservatism at the face of novel methods. Eventually, 

however, too much conservatism may frustrate scientific progress, because many questions of 

epidemiology do not lend themselves well for experimentation. Neglecting possibilities available 

for observational data is a luxury we cannot always afford. 

This chapter aims to familiarize researchers in epidemiology and related fields with the 

topic of distribution-based causal inference methods, and to discuss how to build trust in the 

results from such methods. We review, replicate, and extend some of the few studies that have 

used the methods in real-world epidemiological issues where the ground truth was not known a 

priori (Rosenström et al. 2012; Helajärvi et al. 2014). In particular, we concentrate on simple 

cases of distribution-based causal inference applied to survey data and linear models. These 

types of data and models permeate much research in epidemiology, including our example case 

of research on causality between sleep problems and other depressive symptoms, introduced 

below. 
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2. Direction of dependence in linear regression 

While correlation does not imply causation, Dodge and Rousson (2000) were perhaps first to 

derive “other expressions of the correlation coefficient” that do make it possible to infer which 

among two skewed variables, X and Y, causes the other, or in other words, which variable is the 

proverbial ‘cart’ and which variable the ‘horse’. Specifically, it is possible to distinguish between 

two models, one with 𝑌 as the dependent variable and the other with 𝑋 as the dependent, or 

‘causally descendent’, variable. This amounts to distinguishing between two systems of 

equations: 

{
𝑌 = 𝜇𝑌 + 𝛽𝑥𝑋 + 𝜖𝑌

𝑋 = 𝜇𝑋 + 𝜖𝑋
      (1a) 

and 

{
𝑌 = 𝜇𝑌 + 𝜖𝑌

𝑋 = 𝜇𝑋 + 𝛽𝑦𝑌 + 𝜖𝑋
,     (1b) 

where 𝛽, 𝜇𝑌, and 𝜇𝑋 are constants (i.e., regression coefficient, or slope, and means, or intercepts) 

and the “residual” variables 𝜖𝑋 and 𝜖𝑌 are independent of each other and also independent of the 

predictor. Dodge and Rousson observed that, under Eq. 1, a following relation holds 

asymptotically for skewed variables: 

{
𝑋 causes 𝑌 if 𝑇(𝑋, 𝑌) > 0
𝑌 causes 𝑋 if 𝑇(𝑋, 𝑌) < 0

, 

where the test statistic 𝑇(𝑋, 𝑌): = 𝑀(𝑋, 𝑌)21 − 𝑀(𝑋, 𝑌)12 is based on sample versions of the 

difference in squared and centralized third cumulants, defined as 𝑀(𝑋, 𝑌)𝑖𝑗 = {𝐸[(𝑋 − 𝜇𝑋)𝑖(𝑌 −

𝜇𝑌)𝑗]/(𝜎𝑋
𝑖𝜎𝑌

𝑗)}2. Here 𝐸 is the expectation operator and 𝜎𝑋 refers to variance of the variable 𝑋. 
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As shown by Dodge and Rousson (2000), as well as others with slightly different formulations 

(Hyvärinen and Smith 2013), sufficient conditions for causal inference are that one and only one 

of the two linear models hold (1a or 1b) and that at least one of the variables has a skewed 

distribution. We do not reproduce the analytic proofs, but instead offer the following intuition 

and then proceed to more general estimators.  

Many frequently studied variables in epidemiology have “right-skewed” population 

distributions (e.g., alcoholic drinks per week, number of children, and depressive symptoms). 

Right-skewness means that a variable gets ‘small’ values frequently and ‘high’ values only rarely 

in comparison to a normal (a.k.a., Gaussian) distribution (a case of left-skewed variable can be 

transformed to right-skewed without loss of information by multiplying by minus one). Then if a 

variable 𝑌 is a sum of two independent right-skewed variables, 𝛽𝑋 and 𝜖𝑌, it gets high values 

whenever either one of the two variables gets a high value, which is necessarily more often than 

for 𝛽𝑋 and 𝜖𝑌 on average.1 Thus, the dependent (causally descendent) variable is less skewed 

than the independent (causally antecedent) variable and they show a characteristic pattern in 

bivariate scatter plots (non-symmetry over permutation of axes; cf. Figure 1).2 A similar signal is 

absent when the data is generated from the same linear model operating on two normally 

distributed variables (lower-right panel of Figure 1). Any weighted sum of normally distributed 

(Gaussian) variables is also a Gaussian variable, implying no skewness or excess kurtosis, and no 

                                                        

1 Probability distribution of a sum of two independent random values is a convolution of the two 
original distributions (Klenke, 2008). “Convolution” operation is a concept of mathematical 
(functional) analysis, and formalizes a sort of “smearing” of two distributions to a new one. 

2 If 𝜖𝑌 is normally distributed and the causal antecedent X is not, it can be shown analytically that 
𝛾𝑌 =  𝛾𝑋𝐶𝑜𝑟(𝑋, 𝑌)3 < 𝛾𝑋, where 𝛾𝑋 is “skewness coefficient” of X (Dodge and Rousson, 2000). 
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information beyond correlations in any of the higher moments that characterize bivariate 

probability distributions (Hyvärinen, Karhunen, and Oja 2001; Klenke 2008). 

 

[FIGURE 1 HERE] 

 

However, it has later turned out that the measures 𝑀(𝑋, 𝑌)21 and 𝑀(𝑋, 𝑌)12 can also be 

based on kurtosis instead of skewness of the distribution, and even more generally, on any type 

of deviation from normal distribution (Dodge and Yadegari 2010; Hyvärinen and Smith 2013; 

Shimizu et al. 2006; Wiedermann 2018). According to the Central Limit Theorem (CLT) of 

probability theory, sums of independent random variables of almost any probability distribution 

tend towards a normal distribution (Hyvärinen, Karhunen, and Oja 2001; Klenke 2008). More 

precisely, this is Lindeberg’s version of CLT, according to the Finnish mathematician Jarl 

Waldemar Lindeberg (1876-1932), which only requires that the random variables have finite 

variance and that their sequence satisfies a certain (i.e., “Lindeberg’s”) regularity condition (e.g., 

Klenke 2008). There is necessarily more summation in the causal descendent than in the 

antecedent in linear model, because the descendent is a weighted sum of the antecedent plus the 

residual variable. Thus, one can infer the causal antecedent as being the variable that leads to 

least Gaussian distributions for antecedent and the residual (one of which can even be Gaussian; 

Hyvärinen and Smith 2013). Unless, of course, both already are Gaussian, or the linear models 

does not apply. That is, necessary conditions for pairwise distribution-based causal inference are 

that (i) at least one of the variables must have non-Gaussian distribution, that (ii) the linear 

model applies (lest the causal descendent is some other function than the weighted sum required 

by CLT), and that (iii) the residual variable must be independent of the causal antecedent (again, 
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required to apply CLT to the components 𝛽𝑋 and 𝜖𝑌 of the descendent variable Y). The 

assumption iii is already present in ii, but worth highlighting separately for its important role. 

When explicitly stated, the assumption iii also suggests an algorithm to evaluate direction 

of causation between two variables. Assuming the variables are non-Gaussian and one of the 

above two linear systems of equations holds, 1a or 1b (i.e., assuming conditions i and ii), then a 

result known as Darmois-Skitovich theorem implies that the causally antecedent variable is the 

variable that is independent of its residual when regressed onto the other variable (Shimizu et al. 

2011). That is, we can define the above 𝑀(𝑋, 𝑌)12 to be 𝑀𝐼^ (𝑋, 𝜖𝑌), an estimate of mutual 

information between 𝑋 and residual of Y when regressed on 𝑋, or 𝜖𝑌 = 𝑌 −
𝐶𝑜𝑣(𝑋,𝑌)

𝑉𝑎𝑟(𝑋)
𝑋, where 

𝐶𝑜𝑣(⋅,⋅) and 𝑉𝑎𝑟(⋅) are covariance and variance operators, respectively (Shimizu et al. 2011). 

Analogously, 𝑀(𝑋, 𝑌)21 is defined to be 𝑀𝐼^ (𝑌, 𝜖𝑋). Then, the statistic 𝑇(𝑋, 𝑌) from above will 

become an estimate of causal direction based on non-Gaussianity and least mutual information 

between a predictor and its residual. While there are many other estimators for distribution-

based causal inference (Hyvärinen and Smith 2013), here we will concentrate on this 

“DirectLiNGAM” estimator, which uses a kernel-based estimate of mutual information and has 

been found useful in previous empirical studies and simulations (Shimizu et al. 2011; 

Rosenström et al. 2012; Helajärvi et al. 2014). The name refers to a “direct” algorithm for 

estimating Linear Non-Gaussian Acyclic Models (i.e., LiNGAMs) as opposed to the earlier iterative 

algorithm (Shimizu et al. 2006; Shimizu et al. 2011). 

Mutual information is a measure for degree of dependence between two random 

variables. It tells how much information entropy in one variable can be obtained through the 

other variable. Theoretically, mutual information is defined as an expected difference between 
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true bivariate entropy and entropy of an ‘independence distribution’ (i.e., product of marginal 

distributions): 𝐸[𝑙𝑜𝑔(𝑝(𝑋, 𝑌)) − 𝑙𝑜𝑔(𝑝(𝑋)𝑝(𝑌))], where 𝑝(⋅,⋅) and 𝑝(⋅) are the bivariate and 

marginal probability density functions, respectively, and 𝐸 is the expectation operation with 

respect to the bivariate distribution. Thus, mutual information is quantified as departure from 

bivariate independence. The equation is noteworthy, because often one is interested in what 

happens in terms of the (population) distribution with respect to which the expectation is taken, 

rather than what happens for each and every observation per se. In other words, we have no 

reason to expect that a deviant minority with opposite causal direction would ruin our inferences 

about dominant population-level direction of causation. This is an important advantage, for 

example, in our target research problem on causal direction between sleep problems and other 

depressive symptoms, as there likely are sub-populations that exhibit rather different causal 

processes in comparison to most cases of depression (e.g., brain trauma patients). 

In what follows, we first (in section 3) give a review of previous empirical work and 

(section 4) introduce a practical research problem in epidemiology, which both represents a 

novel replication effort and is used as an example data throughout the rest of the chapter. Then, 

(section 5) we discuss strategies to evaluate the assumptions necessary for distribution-based 

causal inference, (section 6) analyze the example data and (section 7 & 8) discuss strategies to 

study robustness and statistical power of distribution-based causal inferences, and (section 9) 

strategies for, as well as importance of, “triangulation” with multiple methods that are non-

overlapping in their assumptions. Finally, in section 10, we conclude the chapter with comments 

on both present content and other causal-inference methodologies. 
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3. Previous epidemiologic applications of distribution-based causal 

inference 

Psychiatric epidemiology deals with complex disorders whose etiology is not yet understood to 

large extent. The classic ways of thinking in psychiatric epidemiology have been challenged by 

the recent, influential network theory (Cramer et al. 2010; Borsboom 2017). Whereas the 

traditional diagnostic practice perceives symptoms as passive reflections of an underlying 

psychiatric root cause, the network theory recognizes the symptoms as causally active entities 

that can ‘cause’ each other and thereby give rise to syndromes. A classic example in network 

theory has suggested that sleep problems can gradually give rise to a full-blown depressive 

syndrome, for example, through inducing fatigue and concentration problems, which then lead to 

performance issues in daily life, and ultimately to all other depressive symptoms (Cramer et al. 

2010; Borsboom 2017). This is a completely hypothetical example, however, and the direction of 

causation between sleep and the average of other depressive symptoms (a proxy of the 

syndrome) remains an open question. 

Rosenström et al. (2012) discuss about the multiple difficulties involving the study of 

causation between human sleep characteristics and depressive disorders. In such topics, it is 

nearly impossible to design a definitive study. It is not ethically acceptable to experimentally 

induce depression, because of the involved human suffering and the high risk of suicide in major 

depressive disorder. Due to possible lagged effects, temporal order of events may not directly 

inform about the causal order (the horse might as well push the cart as pull it). Furthermore, 

sleep problems and other depressive symptoms are relatively common phenomena in the 

population, and it is probably possible to find strong individual cases to argue the causation both 
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ways—as epidemiologists, we were interested in the direction that dominates on average in the 

population. Rosenström et al. (2012) used the above-introduced distribution-based causality 

statistic as a research tool fit to assessing population averages. As so often occurs in practice, 

however, it did not provide a unique answer: sleep problems was estimated to cause depression 

in most cases, but also opposite findings were obtained. Here, we return to the topic in our 

running example, using yet another classic real-world dataset, as well as computer simulations. 

Another previous application of distribution-based causal inference in epidemiology was a 

study on direction of causation between average television viewing time and obesity (Helajärvi et 

al. 2014). Overweight, obesity, insulin resistance, and diabetes have been major public health 

concerns in the Western world lately. Also the time spent in “sedentary behaviors” has increased 

in comparison to past times of manual labor. Especially watching television has been recognized 

as an activity with uncharacteristically low waking-time metabolic rates in evolutionary terms. 

The relative time spent watching television has been suggested to cause weight gain, but the 

proposition has been challenged by a reverse causation hypothesis, according to which obese and 

overweight people may find physical activity less appealing than lean people and therefore spend 

more time in a substitute activity of watching television. Helajärvi et al. (2014) used distribution-

based causal inference to show that high television watching times are more likely to cause 

changes in weight than the other way around. 

That distribution-based causal inference is possible to begin with often comes as a 

surprise for epidemiology researchers who are well-aware of the fact that an analogous 

correlation-based causal inference is not possible. Therefore, ‘toy examples’ using real datasets 

where the direction of causation is obvious have been necessary to demonstrate that the method 
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works. In this category, Shimizu et al. (2011) have shown that the method correctly infers 

father’s education and occupation as causes of his son’s education and occupation rather than 

other way around. Similarly, Rosenström et al. (2012) showed that the method suggests parents’ 

socioeconomic status as a cause of their children’s socioeconomic status rather than the other 

way around. While computer simulations and mathematical analyses are the primary tools to 

study how well statistical methods function, toy examples with real data are also indispensable in 

building trust on ‘black-box’ methods that reveal very little about the true mechanism behind the 

inferred causal effect. The target method of this chapter has so far withstood the test. In the later 

sections, we discuss about another method that has not always withstood similar tests. 

4. A running example: Re-visiting the case of sleep problems and 

depression 

Whereas Rosenström et al. (2012) studied epidemiologic, Finland-based “Young Finns” and USA-

based “Wisconsin Longitudinal Study” datasets, here we use data from the Swedish 

Adoption/Twin Study on Aging (SATSA) that were available to us through the Inter-University 

Consortium on Political and Social Research (Pedersen 2015). Specifically, these data include 

1439 observations both on a depression score and on average hours slept per night (1326 

complete and 1325 valid observations; one person reported no sleep at all). Sleeping hours was a 

self-reported quantity, whereas the depression score we used was an average of non-sleep-

related depressive symptoms assessed by the Center for Epidemiologic Studies Depression (CES-

D) scale (Radloff 1977). The symptom statuses were reported as amount of symptom presence 

during the past week (0 = “never/almost never”, 1 = “Rather seldom/never”, 2 = “Quite often”, 
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and 3 = “Always/almost always”). Figure 2 illustrates the data. Altogether 598 of the subjects 

were men (41.56%). Average age of participants was 63.42 years at the time of data collection in 

1990 (s.d. 13.01 years, range from 32 to 95). SATSA is a twin and adoption study and these 

participants constitute 134 pairs of monozygotic (i.e., “identical”) twins reared apart, 184 

monozygotic twin pairs reared together, 345 dizygotic (“fraternal”) twin pairs reared apart, and 

286 dizygotic twin pairs reared together. This feature of the data will be useful in the causal 

triangulation section of this chapter. 

 

[FIGURE 2 HERE] 

 

5. Evaluating the assumptions in practical work 

The assumptions of the DirectLiNGAM approach to distribution-based causal inference (in a 

bivariate case) are: 

i) Linear model: one and only one of the two systems of equations in Eq. 1 hold.  

ii) Non-Gaussian continuous variable: The variables have a continuous distribution and at least 

one of the two independent terms (predictor and residual) has some other distribution than the 

Normal distribution. 

iii) Independence: the predictor (causally antecedent) variable in Eq. 1 is statistically 

independent of the residual. 
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The following sub-sections discuss strategies for evaluating whether these necessary 

preconditions of distribution-based causality hold in practice. Applications of the strategies are 

provided for the example case of sleep problems and depression. 

5.1. Testing linearity 

It can be very difficult to know whether a given dataset reflects an essentially linear data-

generating process. In practice, one is typically willing to accept a linear approximation if both 

visual inspection and polynomial regression coefficients thus indicate. That is the approach we 

take here, as well. 

To illustrate using our running example, we found a significant regression coefficient for 

the quadratic effect as well as the linear, when regressing the depression variable of SATSA data 

on the standardized (z-score transformed to 0 mean and variance of 1) sleep-hours variable and 

its square (𝛽𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 = 0.062, p < 0.001), not just for the linear slope (𝛽𝑙𝑖𝑛𝑒𝑎𝑟 = -0.146, p < 

0.001). Standardization of variables is an important part of the polynomial regression method, 

because polynomials of unstandardized variables can be close to multicollinearity. Usually, it is a 

good idea to examine some of the higher-order polynomials as well (e.g., cubic transformation of 

𝑋, or 𝑋3), but typically these explain progressively less variance in noisy epidemiologic data 

compared to the lower-order polynomials (i.e., 1, X, and 𝑋2). 

To understand the nonlinearity we detected, we examined the panel “c” of the figure that 

illustrates the SATSA data from our running example (Figure 2). It shows a scatterplot of the 

sleep-hours and depression variables, revealing that both much less or much more sleep in 

comparison to the population average hours appears to be associated with high values of CES-D 

(i.e., with depression). This is an observation we can readily understand. Typically, researchers 
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consider both insomnia (too little sleep) and hypersomnia (too much sleep) as a symptom of 

depression, and in fact, diagnostic definitions of depression do not differentiate between 

insomnia and hypersomnia. Therefore, we considered absolute deviation from the population-

average hours slept per night as our new, continuous “sleep problems” variable in the analyses 

that follow (cf. panel d in Figure 2). With this transformation, we both understood what natural 

phenomenon our transformed variable stands for and were able to remove obvious 

nonlinearities in the data (𝛽𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 = 0.012, p = 0.231 for the new sleep deviation variable).  

It is generally not advisable to use arbitrary, uninterpretable transformations to linearize 

data before applying methods for distribution-based causal inference. This is because nonlinear 

transformations alter substantive meaning of variables, as well as their distributions. One might 

lose track of what phenomenon is being modeled, and at the same time, manipulate the inferred 

direction of causation. Thus, some substantive understanding is desirable prior to application of 

variable transformations in this context. However, the transformation need not be quite as 

straightforward as in our running example here. For example, Rosenström et al. (2012) discuss 

more advanced ways to re-interpret nonlinear psychometric data using Item Response Theory 

models. Similarly, one cannot remove seemingly ‘outlier’ observations to make the data more 

linear prior to application of distribution-based causal inference, because that alters the 

distributions in question towards something else than the distributions reflecting the natural 

data-generating process under investigation (one should of course remove very clear recording 

errors, etc.; for example, we verified that an individual who appeared to report zero hours of 

sleep throughout year had no consequences for our analyses). In our running example, the sleep 

measure derived as absolute deviation from population-mean hours slept per night is a 

substantively meaningful variable in that it quantifies both hyper- and insomnia, and it fulfills the 
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assumption of linearity with respect to the depression score. Taking absolute values increased 

skewness, however. Therefore, we also performed sensitivity analyses conducting DirectLiNGAM 

on separated datasets with hours slept below the mean of 7.21 (N= 620) and above it (N=706). 

As a cautionary note, even if one can statistically assess whether 𝑌 could be nonlinear in 𝑋 

or vice versa, undetected complex relationships between the variables typically cannot be fully 

ruled out by means of empirical analysis. Whether the assumption i (and iii) is reasonable must 

be assessed also in light of substantive understanding. To illustrate, the first panel of Figure 3 

shows a sample of apparently stochastic data which can be modeled using a linear model with a 

statistically significant slope and which shows no quadratic effect, but which has, in fact, been 

derived from a deterministic nonlinear system. 

 

[FIGURE 3 HERE] 

 

5.2. Testing non-Normality 

Non-normality can be verified by rejecting a hypothesis of normal distribution using, for 

example, Lilliefors’ test, which is an extension of Kolmogorov-Smirnov test (Lilliefors 1967). The 

test is readily available in statistical programs, but very sensitive to deviations from normality. As 

distribution-based causal inference relies on information in the higher, non-Gaussian, moments 

of statistical distributions, the statistical power of the method depends on the magnitude of the 

higher moments and is likely to be much lower than the power of the Lilliefors’ test. Therefore, 

the Lilliefors’ test and a visual inspection of histograms suit well for establishing the necessary 

condition ii (non-Gaussianity), but they may not be sufficient to ensure good statistical power for 
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causal inference. Statistical power can be assessed by simulation, as further illustrated in the 

section 8. In our running example, Lilliefors’ test rejected a null hypothesis of normal distribution 

for both sleep deviations (𝐷 = 0.163, p < 0.001) and depression (𝐷 = 0.127, p < 0.001). The 

sample skewness of the standardized sleep deviation and depression variables was 2.58 and 

1.03. The estimates of excess kurtosis were 13.39 and 0.78, respectively.  

5.3. Testing independence 

If the LiNGAM model holds, and if 𝑋 causes 𝑌, then 𝑋 should be statistically independent of the 

residual 𝜖𝑌 = 𝑌 − �̂� 𝑋, where �̂� is the ordinary least squares regression coefficient. By definition, 

𝑋 is uncorrelated with the least squares residual, but it should also be fully independent in the 

sense that 𝐸[𝑓(𝑋)𝑔(𝑌 − �̂� 𝑋)] = 𝐸[𝑓(𝑋)]𝐸[𝑔(𝑌 − �̂� 𝑋)] holds for all (absolute integrable) 

functions 𝑓 and 𝑔 (Hyvärinen, Karhunen, and Oja 2001; Klenke 2008). Studying independence of 

arbitrary distributions is a difficult task, but several general methods do exist (Hoeffding 1948; 

Kallenberg and Ledwina 1999; Einmahl and McKeague 2003; Gretton and Györfi 2010). However, 

the assumption iii is not strictly necessary in the sense that distribution-based causal inference 

may work despite confounding (Rosenström et al. 2012) and algorithms designed for estimation 

in presence of confounding exist (Shimizu and Bollen 2014). As discussed above, the 

DirectLiNGAM test statistic compares expected values instead of testing strict hypotheses. The 

best course of action in practice may be to test whether the independence between predictor and 

estimated residual variable holds fully, and if not, use sensitivity analyses and triangulation (see 

below) instead of totally abandoning distribution-based causal inference. 

In our running example, we observed that there was no linear dependence between the 

depression score and its residual when regressed on sleep deviations (𝑝 = 0.996), but a clear 
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statistical dependence when assessed with tests such as Kallenberg ’s and Ledwina’s V test (p < 

0.001), Hoeffding’s test (𝑝 = 0.005), and empirical likelihood test (𝑝 < 0.001), all of which are 

sensitive to dependencies beyond simple linear relationships (Hoeffding 1948; Kallenberg and 

Ledwina 1999; Einmahl and McKeague 2003). Similarly, by definition, there was no Pearson’s 

product-moment correlation between sleep deviation and its residual when regressed on 

depression scores (𝑝 = 0.984), but there was a clear dependence when assessed using the above 

nonlinear measures (all 𝑝 < 0.001). That is, whereas the residual and the predictor are 

uncorrelated with each other by definition of Ordinary Least Square regression, they typically are 

not necessarily independent of each other. The residual that is least dependent on the associated 

predictor may be indicative of causation. 

6. Distribution-based causality estimates for the running example 

We report (standardized) DirectLiNGAM and skewness- and kurtosis-based estimators for 

pairwise causal direction between depression score and sleep deviations, as in our previous 

work (Rosenström et al. 2012). The latter two estimates may sometimes reveal specific 

distributional properties most important for the general DirectLiNGAM estimate. The kurtosis-

based estimator was previously called “tanh-based” because it is specifically based on 

hyperbolic-tangent approximation to likelihood ratio. In SATSA data, however, we observed that 

all the three estimators indicated absolute sleep deviations being a cause of other depressive 

symptoms rather than the other way around (Table 1). That is, whichever non-Gaussian 

moments of the respective distributions we looked at, they indicated sleep deviations as being a 

cause of depressive symptoms more likely, or more strongly (i.e., in expected value), than the 

other way around. The results of the sensitivity analyses we performed supported the same 

direction of dependence for both hypersomnic and insomnic sleep deviations, with the exception 
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of the DirectLiNGAM estimate in the hypersomnia subsample (Table 1). However, we did not 

further interpret the single deviant result as a key LiNGAM assumption failed in that case: the 

linear correlation coefficient between depression score and oversleep did not statistically differ 

from zero (r = 0.03, p = 0.482). The linear association between insomnia and depression score 

was statistically significant (r = 0.27, p < 0.001).   

[TABLE 1 HERE] 

7. Conducting sensitivity analyses 

 

7.1. Convergent evidence from multiple estimators 

In the running example, we observed a certain type of indication for robustness, because 

different estimators, using different types of deviation from Gaussian distributions, converged in 

their estimates of causal direction (Table 1). That is, the estimated causal direction was not 

sensitive to specific distributional property beyond the necessary requirement of non-Gaussian 

distribution. Such robustness property does not necessarily hold (e.g., Rosenström et al., 2012), 

and establishing it can be comforting and evoke trust. It only indicates robustness with respect to 

distributional characteristics, however, not with respect to model assumptions. Epidemiologic 

triangulation is a process to establish robustness over model assumptions and modeling 

approaches, and it will be discussed in the section 9. 

 

7.2. Simulation-based analysis of robustness to latent confounding 

As discussed above, the requirement of perfect independence between residual and predictor 

variable may be unnecessary for causal inference, as well as overly restrictive. When relaxing this 

assumption, it may be desirable to gather some insight on possible biases that could result. For 
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that and related purposes, one can conduct brief simulation studies to investigate the extent to 

which the method is sensitive to the simulated conditions. Unobserved confounding variables are 

a typical reason for failures of independence between the residual and the predictor variable in 

regression models. Complete confounding implies that there is no direct effect between X and Y 

(see Figure 4). In other words, experimental manipulations of X have no effect on Y despite their 

association with each other, unless also the ‘true’ causes of both the variables (variable Z in 

Figure 4) are manipulated. In practice, the possibility of confounding is difficult to definitively 

test in observation data. However, through simulation we can have a clue of the extent to which 

unobserved confounders may bias our causal inferences: by generating data which are as similar 

as possible to the observed data and by manipulating the degree of confounding in it. 

 

[FIGURE 4] 

 

For example, we generated a large number of simulated datasets with the same 

characteristics as our real-world data from the running example, and examined both possible 

directions of dependence, i.e. X and Y being the cause (i.e., sleep deviation causing other 

depression symptoms and vice versa). The datasets were manipulated so that they contained 

different degrees of ‘unobserved’ confounding in X and Y. Then, each one of the datasets was 

analyzed and the output saved. Finally, we investigated how robust DirectLiNGAM was to 

different degrees of confounding by obtaining the proportion of success in correctly picking the 

causally antecedent variable of a given simulation condition. 
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In what follows, we will walk the reader through the simulation step by step, displaying 

pseudocode and comments on it. By “pseudocode” we mean an informal code that is not based on 

a concrete programming language. Instead, it is a general-purpose text that allows one to 

understand and implement the simulation using whichever programming language that best 

serves the case. 

 

7.2.1. Obtain data-based parameters 

We estimated regression models in both directions on the standardized variables, and saved the 

regression residuals (𝜖�̂� and 𝜖�̂�).. The slope coefficient was the same in both models as a 

consequence of the standardization, regardless of which variable was set as predictor or outcome 

(�̂� =  0.148) Distributions of the predictor and the residual in the simulation were  approximated 

by a bootstrap distributions of their empirical distribution (Efron & Tibshirani, 1993). 

 

7.2.2. Define parameters and simulation conditions 

Once we had the parameters to simulate data akin to our running example, we defined the 

conditions for our simulation experiment. Our purpose was to check how sensitive DirectLiNGAM 

is to latent confounders by varying the degree of confounding. The parameter λ quantified the 

amount of variance due to the latent confounder Z (cf. Fig. 4).  In total, we had four simulation 

settings coming from two times two conditions: conditions A and B relate to the direction of 

dependency tested, and conditions 1 and 2 define alternative distributions for the latent 

confounder Z.  
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In condition A, the regression model emulated the situation in which the predictor was 

distributed as the sleep variable in SATSA data, with also other parameters being as in the 

empiric model (slope and residuals). In condition B, the assumed predictor was distributed as the 

CESD depression score. Conditions 1 and 2 were included because the distribution of the latent 

confounder Z is a potential factor affecting the statistical power inferred from our simulation. We 

addressed this aspect by switching the distribution of Z, so that in the condition 1 it had the same 

distribution as the antecedent variable, and in the condition 2 it had a different distribution (i.e., 

bootstrap distribution of the descendent variable). 

Because larger sample sizes (N) improve statistical power, we ran the sensitivity analyses 

using several sample sizes: 200, 500, 1000, 1325 (i.e., the sample size of our running example), 

and 5000. Thus, we could investigate whether DirectLiNGAM is more or less sensitive to latent 

confounding depending on sample size. DirectLiNGAM was computed for all combinations of N 

values and values of λ, totaling 30 parameter combinations for each simulation setting A1, A2, B1, 

and B2.Finally, one has to set the number of replications (R) the simulation will be run (a single 

run generates one dataset and the corresponding directLiNGAM estimate). We chose R=10 000. 

The larger the R, the more precise information we have on the unavoidable effects of sampling 

variance. 

 

7.2.3. Define the simulation model 

The structural model underlying the data-generating process of Y in accordance to LiNGAM 

assumptions is the linear model (e.g., 𝑌 = 𝛽𝑥𝑋 + 𝑒𝑦). Because our purpose was to introduce and 

investigate latent confounding, we had to generate the confounder Z and use it when generating 

Y. The data-generating linear model in this simulation is therefore: 𝑌sim = 𝜆(𝛽𝑍𝑍) + (1 −
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𝜆)(𝛽𝑥𝑋) + 𝑒𝑦, where λ controls the degree of confounding. The simulated predictor variable Xsim 

is then a weighted sum of “unconfounded” X and a regression on Z, that is, 𝑋sim = 𝜆(𝛽𝑍𝑍 + 𝑒𝑋) +

(1 − 𝜆)𝑋. The distribution of Z cannot be identified from empirical data and was therefore set to 

a specific distribution under two conditions: in condition 1, Z was bootstrapped from the same 

distribution as X (e.g. both X and Z were independently bootstrapped from the depression score 

variable), and in condition 2, Z was bootstrapped from the distribution of the other variable of 

the pair (e.g. when X was bootstrapped from the depression score, Z was bootstrapped from the 

sleep variable). Table 2 shows the respective roles of the empirical bootstrap distributions 

(SATSA variables) in the data generating process of the four simulation settings. The residual 

distributions were also bootstrapped from the empirical distribution. 𝛽𝑍 was set as equal to 𝛽𝑋. 

The next lines show a brief sketch of the data-generating procedure.  

[TABLE 2 HERE] 

 

The pseudocode for data simulation of simulation setting A1: 

R = 10000                                   

lambda = vector(0, .2, .4, .6, .8, 1)                  

N = vector(200, 500, 1000, sample_size_of (SATSA), 5000)  

residuals = residual_cesd 

predictor = sleep deviations 

confounder = sleep deviations 

output = initialize_array(rows = R, cols = length(lambda), dim = length(N)) 

x_PD = parametric_estimate(X) 

for each (n in N) do { 

  for each (j in lambda) do {  
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    for each (i in 1 to R) do { 

            % generate data 

            e = pick_random_with_replacement(residuals), n))  

            e2 = pick_random_with_replacement(residuals), n))  

            e = e - mean(e)  

            e2 = e2 - mean(e2)  

            x = pick_random_with_replacement(predictor), n))  

            z = pick_random_with_replacement(confounder), n))  

            y = ((1-j)*betax*x + e + j*betaz*z) 

            x = ((1-j)*x + j*(betaz*z + e2)) 

            % generate output 

            output[i,index_of(j),index_of(n)] = DirectLiNGAM(x, y)          

      } endfor              

   } endfor 

} endfor 

 

The “for” statement is used when repeating the same action across all values of a given 

vector, or from index 1 to another integer. In this case, we repeated the simulation R=10 000 

times per value of lambda (λ = .0, .2, .4, .6, .8, 1) and per sample size (N= 200, 500, 1000, 1325, 

5000). This sums up to 6*5=30 experimental conditions, each of which had R=10 000 

replications.3 

 

                                                        

3 In addition to the pseudo-code shown here, the actual Octave/Matlab code for the simulations 
can be found from the web page: http://www.iki.fi/tom.rosenstrom 

http://www.iki.fi/tom.rosenstrom/publications
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7.2.4. Run simulation and interpret results 

As the output of our simulation experiment, we computed the success rate of DirectLiNGAM in 

picking up the correct causal direction over all R replications, and plotted the success rate with 

respect to different degrees of confounding (λ) and for different sample sizes (N). Because we 

have ourselves generated the data, we know the ground truth behind it: (1) that X causes Y rather 

than vice versa and (2) the degree there is a common variable causing them both. Knowing the 

ground truth makes it possible to estimate how successful the method is despite latent 

confounding. The analysis revealed that the distribution of the confounder Z had a negligible 

effect on the results, as can be noted comparing simulation settings A1 to A2 and B1 to B2 (Figure 

5). Furthermore, switching the causal roles of the original cause and residual distributions in the 

simulation did not have a mentionable effect on the estimation success (Figure 5; a very small 

bias may be present at the 80% confounding, which could be further investigated in the future). 

 The success rate in causal estimation remained higher than 90% when introducing up to 

40% of latent confounding in samples equal or bigger than N=1000 (Figure 5). As expected, when 

latent confounding was 80‒100%, DirectLiNGAM estimates were nearly random, meaning that 

the method would pick up either X or Y as being the cause with almost the same probability. 

When the sample size was N=5000, DirectLiNGAM remained robust even up to 60% of latent 

confounding. In summary, the algorithm may be able to tolerate a considerable amount of latent 

confounding (violation of assumption iii) without noticeable performance loss in causal 

inferences. 

 

[FIGURE 5] 
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8. Simulation-based analysis of statistical power 

In the above section 7, we illustrated how to benefit from computer simulation in sensitivity 

analyses. There, the aim was to simulate controlled experiments that closely resemble the data at 

hand to investigate consequences of potential partially inaccurate model assumptions (i.e., 

degree of bias in the final estimate given a known degree of latent confounding). The conclusions 

one can draw from such sensitivity analyses are context specific by design. However, simulation 

studies are also helpful in collecting more general knowledge on algorithmic performance under 

different conditions. Here, we strive to provide the reader with intuition on statistical power of 

the DirectLiNGAM algorithm in estimation of pairwise directional dependence. Assumption of a 

non-Gaussian distribution is a necessary precondition for the kind of methods discussed here, but 

it does not automatically provide sufficient statistical power. This section tries to provide the 

reader with a rough intuition on how ‘big’ deviation from a Gaussian distribution is sufficient for 

a good statistical performance of the causal estimation algorithm. 

A “deviation” from Gaussian distribution is commonly quantified using skewness, excess 

kurtosis, or differential entropy. A Gaussian distribution has a zero skewness and excess kurtosis, 

and other things being equal, the greater the absolute value of these statistics the less the 

evaluated distribution resembles a Gaussian distribution. Gaussian distribution is also the 

distribution of random movement and errors of measurement: on average, observations of a 

variable with a Gaussian distribution provide the least information imaginable for a continuously 

distributed variable with a given variance (alternatively, they are the least ‘surprising’ events; 

Cover and Thomas, 2006). Therefore, Gaussian distribution with variance σ has the maximal 
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entropy (i.e., log(2πeσ2)/2), and the lower the entropy the more a distribution “deviates” from a 

Gaussian one. Thus, also information entropy can quantify deviations from normality for given 

variance. We arranged a simulation protocol to assess DirectLiNGAM estimation success under 

deviations of different magnitude, and to answer the question “how non-Gaussian variables one 

needs for causal inference”. 

Instead of distributions inferred from data, we used Log-normal distributions for the 

antecedent and residual variables (i.e., for X and 𝑒𝑦), which is a distribution for the exponent of a 

Gaussian variable (i.e., its logarithm would have a Gaussian distribution). Skewness, excess 

kurtosis, and entropy of a Log-normal variable are simple functions of mean and variance (σ) 

after log-transformation (i.e., for the generating Gaussian variable). We manipulated these 

parameters and calculated the estimation success by generating log-normally distributed 

predictors and residuals with varying scale parameters (eight conditions ranging from σ=0.05 to 

0.75; β was adjusted to hold Cor(X,Y) at a constant 0.4), with the following sample size conditions: 

N=100, 200, 500, 1000, 5000. Estimation success was computed as an average over R=10,000 

replications of each condition. The resulting Figure 6 provides the reader with intuition on how 

statistical power of DirectLiNGAM responds to changes in these commonly used quantitative 

characterizations of statistical distributions. In general terms, the larger the sample the smaller 

the departure from Gaussianity that is sufficient to reach correct detection of causality. Samples 

of size 200 or less require clear deviations (entropy difference of .09, skewness= 1.53, or excess 

kurtosis= 2.35), while samples of size 500 and larger achieve statistical power above 95% 

already when showing only small departures from normality (entropy difference of .02, 

skewness= .46, or excess kurtosis= .37). The largest sample-size condition (N=5000) reached 

power above 95% with minimal deviations from normality. 
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While simulations are a good way to answer questions like “what if model assumptions are 

violated or conditions not ideal”, triangulation, discussed below, is a technique that may be able 

to answer questions like “are difficult-to-test assumptions violated in the data at hand”. 

9. Triangulating causal inferences 

Epidemiologists frequently deal with issues of life and death, literally. They also have many 

historical examples on “spurious”, or misleading, findings. Thus, both the ramifications of false 

inferences and the previous experience warrant a cautious attitude towards translation of 

epidemiologic practice to public health policy. At the same time, doing so is an important part of 

evidence-based medicine. To cope with these conflicting demands, epidemiologists have 

introduced the idea of causal triangulation in etiologic epidemiology (Lawlor, Tilling, and Davey 

Smith 2017). Triangulation differs from generic attempts to show robustness across several 

estimators by aiming to show robustness across several estimators that have different key 

assumptions with respect to each other. 

Typically, all causal inference techniques involve some assumptions that are difficult to 

test for, but necessary preconditions for applying the technique. However, it is often possible to 

find methods that make use of entirely different, or even ‘opposite’ types of information, to derive 

their inference on causality. For example, we could seek for a cross-sectional observational 

technique that does not rely on non-Gaussianity of the data when deriving otherwise similar 

statements on direction of causation between two variables? One such technique would be 

Direction of Causation (DoC) models studied in behavior genetics (Heath et al. 1993; Duffy and 

Martin 1994). DoC models assume that normally distributed variables for distinct genetic and 
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environmental influences give rise to the observed (phenotypic) variables and correlations. 

Typical applications use twin models, where biological knowledge on monozygotic twins’ 100% 

genetic similarity and dizygotic twins’ 50% average genetic similarity is used to partition 

observed variance into additive genetic (A) influences, shared environmental influences common 

to both twins (C), and non-shared environmental influences unique to each twin (E; see, e.g., 

Neale and Cardon 1992). 

We consider structural models nested within the path diagram in Figure 7, which 

describes a set of possible causal relationships (arrows) and correlations (arcs) between 

observed (boxes) and unobserved latent (circles) variables. All the paths are not identified at the 

same time, but we can test a direct-effect model with no latent correlations (no arcs; “reciprocal 

causation model”) against the full correlational model it nests within (no arrows, but arcs; “no 

phenotypic causation model”). If the reciprocal causation model is not rejected, we can test if 

another one of the direct effects could be set to zero, indicating that sleep deviations cause 

depression, or vice versa.  

To intuitively understand how the DoC approach infers causal directions, consider a case 

where similarity between twins on a causally antecedent trait is explained by genes and the 

similarity on the causally descendent trait is explained by the shared environment of the twins. 

Then twins reared apart would show the same (genetic) cross-trait similarity as twins reared 

together. With the opposite causation, only twins reared together would show cross-trait 

correlations because of their shared environment. In practice, one does not necessarily need data 

on different rearing statuses. For successful causal inference, however, one needs to be able to 
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estimate three or more sources of familial similarity and their composition in the studied 

phenotypic/trait variables must differ across the variables (Heath et al. 1993). 

 

[FIGURE 7] 

 

In our running example, we had data on monozygotic and dizogotic twins reared together 

and reared apart, which we modeled using DoC models. We direct the reader to behavior genetics 

literature for more details (Neale and Cardon 1992; Heath et al. 1993), and simply provide the 

results here. For the DoC method, we used log-transformations to make the variables closer to 

being normally distributed. The reciprocal causation model was not rejected in a likelihood-ratio 

test (𝜒2 = 0.72, 𝑑. 𝑓. = 1, 𝑝 = 0.396), allowing us to test unidirectional causal hypotheses. 

However, both a DoC model with sleep as a cause for depression (𝜒2 = 3.55, 𝑑. 𝑓. = 1, 𝑝 = 0.059) 

and a DoC model with depression as a cause for sleep (𝜒2 = 3.27, 𝑑. 𝑓. = 1, 𝑝 = 0.071) were close 

to being rejected, though not quite statistically significant. In terms of Bayesian Information 

Criterion (lower values indicate better fit), the unidirectional causal models were practically 

indistinguishable from each other (-13479.2 and -13479.4, respectively), but not from the 

reciprocal causation model (-13475.9). 

Before we rush to conclude that we have a case of reciprocal causation, however, we must 

address the limitations of the DoC method in this specific case. First, we did not have the 

minimum of three biometric sources of variance required for detecting reciprocal causation, 

because neither of our variables had a statistically significant contribution from shared 
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environmental influences (Table 3). Under these conditions, we could not have rejected the 

hypothesis of reciprocal causation, even if it were false. Second, the inheritance pattern of 

depression and sleep variables had remarkably similar composition, meaning that we had little 

power to distinguish between directions of causation (Heath et al. 1993; Duffy and Martin 1994). 

Third, although we cannot directly assess the degree of third-variable confounding, a 

considerable extent is expected in this case and not well-handled by the DoC model (Heath et al. 

1993). Fourth, measurement error can bias causal inferences based on DoC models, and 

therefore efforts to minimize it would be a desirable part of a DoC analysis (Heath et al. 1993). 

Altogether, promising as it was, the DoC modeling approach provided little causal information in 

this case. However, it is to be expected in causal triangulation that some approaches turn out 

more informative than other approaches, and that confidence can be built only gradually. 

 

[TABLE 3] 

 

One could continue the process of causal triangulation using, for example, instrumental 

variable regression method for causal inference, which is yet another method based on different 

assumptions than distribution- and DoC-based causal inference (Heath et al. 1993). In 

instrumental variable regression, one needs an auxiliary variable that is a known cause of a 

target variable in causal inference and known to affect the other target variable only through the 

first target variable. For example, genes controlling the circadian clock might serve as an 

instrument that is causal for sleep deviations, and for depression only through their effect on 

sleep (Lawlor et al. 2008). Of course, that would be an assumption, and the clock genes might also 
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have other unknown effects on the brain. All in all, every causal-inference method at researcher’s 

disposal is an asset in causal triangulation, as any single method is unlikely to be decisive. 

10. Conclusion 

In this chapter, we briefly reviewed past epidemiologic studies using distribution-based causal 

inference (DirectLiNGAM in particular), discussed the novel method from the viewpoint of more 

established epidemiologic research, and replicated previous findings on causality between sleep 

problems and other depressive symptoms (running example). At the population level, sleep 

problems were more likely to cause at least mild forms of depressive symptoms than the other 

way around—a conclusion that may well differ in severely symptomatic clinical samples 

(Rosenström et al. 2012). In addition, we showed how to conduct simulation-based sensitivity 

analyses and how to study statistical power of the algorithm in different settings. Finally, we 

discussed use of DirectLiNGAM as a part of a general process of causal triangulation in etiologic 

epidemiology. To provide an example of alternative causal inference technique with very 

different assumptions to DirectLiNGAM, we applied Direction of Causation (DoC) models from 

behavior genetics. These turned out uninformative in our running example, but nevertheless 

served to illustrate the general process of triangulation. 

DoC models applied herein also illustrated that DirectLiNGAM is, in fact, a rather robust 

technique for causal inference. Population samples that reflect natural data-generating processes 

are often available, whereas it can be quite difficult to satisfy the assumptions of DoC or 

instrumental-variable methods (Heath et al. 1993; Duffy and Martin 1994; Lawlor et al. 2008). In 

addition to the above-discussed assumptions, validity of DoC models also depends on the validity 
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of the applied inheritance model; for example, the classic ACE model we used requires a number 

of conditions to hold, such as non-assortative mating and equal environments for identical twins 

and other siblings (Neale and Cardon 1992). Furthermore, the inheritance patterns that DoC 

methods use often are functions of changing environmental conditions (Heath et al. 1985), which 

could sometimes lead to surprises in DoC modeling. For example, a colleague once described a 

lack of trust toward DoC methodology due to having found that recent observations on a variable 

had ‘caused’ historical observations in the same variable according to his DoC application, thus 

reversing the ‘arrow of time’ (personal communication). So far DirectLiNGAM has not led to 

comparable spurious findings. It shows remarkably good robustness properties and statistical 

power, while making much less stringent assumptions than many alternative methods. However, 

more research is needed on possible biases of distribution-based causal inference methods in 

various real-world research problems. 

With complex constructs, such as psychiatric disorders, the assumption of no confounding 

due to third, unobserved variables may not be very realistic. Here and previously, we noted that 

the DirectLiNGAM approach can be quite robust against confounding. There are also later 

extensions of the method specifically developed to handle unobserved confounding (Shimizu and 

Bollen 2014). Distribution-based causal inference techniques have also been developed for time-

series analysis, for some nonlinear models, and for other special cases (Hyvärinen et al. 2010; 

Wiedermann and von Eye 2016). On the methodological side, the field is developing rapidly, 

whereas within epidemiology, it has yet to demonstrate its value. Distribution-based causal 

inference methods have essential similarities with a statistical signal-processing technique 

known as independent component analysis, which has generated much interest and many 
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applications (Hyvärinen, Karhunen, and Oja 2001; Shimizu et al. 2006). Time will show whether 

these methods find their place in the standard toolkit of epidemiologists as well. 
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Figure captions 

 

Figure 1: Illustration of skewness-based causal signal. Histogram of a Log-normal distributed 

variable X, and a variable that is a weighted sum of X and another similarly distributed “residual” 

variable. In the lower-left panel, a scatter plot of X and the weighted-sum variable (the outcome; cf. 

Y in text) are shown, whereas the lower-right panel shows similarly treated Gaussian variables. 

 

Figure 2: Illustrating the SATSA data. Whereas the histograms (a and b) show unstandardized data, 

data was standardized for bivariate analyses for cross-study comparability, as a wide range of 

alternative assessment tools exists. Both bipolar (c; direction of deviance matters) and 

absolute/unipolar (d; both directions equally ‘bad’) sleep deviations were studied. LOESS (local 

regression) lines in c and d panels show how use of absolute values linearizes the association. 

 

Figure 3: Illustrating lurking nonlinearities. The first panel shows a scatterplot of data points that 

an epidemiologist could legitimately approach via linear regression model. The second panel shows 

trajectories of the nonlinear Rössler system that was used to generate the data points by taking 

every 100th iteration from a numeric iteration of the system of differential equations. Rössler’s 

classic parameter values were used (a = b = 0.2 and c = 5.7; see, e.g., Wikipedia page for Rössler 

attractor). Human eye and brain are an exceptionally good pattern-detection device, and the reader 

may see the concentric pattern that hints about the underlying non-randomness even in the left-

most panel. However, even a minor degree of measurement noise would destroy the appearance. 
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Figure 4: Illustration of the assumed model in DirectLiNGAM (a; one variable causes the other) and 

a fully confounded model (b; neither X nor Y is causal despite their correlation). In our simulation 

protocol, the degree of confounding is manipulated so that Y is a weighted sum of situations (a) and 

(b) in a gradient from 0 to 100%, where λ=0 would correspond to situation (a) and λ=1 would 

correspond to situation (b). The simulation was tailored to inform about the power of 

DirectLiNGAM to detect the right causal direction specifically in our running example. 

 

Figure 5: Results for simulation-based sensitivity analyses of DirectLiNGAM in the investigated 

conditions of latent confounding. Different panels correspond to different assigned distributions for 

the simulated cause, residual, and confounder variables (assigned distributions in Table 2). 

 

Figure 6: Results for the power analysis of DirectLiNGAM in terms of skewness, excess kurtosis, and 

entropy difference (to a Gaussian variable of equal variance). 

 

Figure 7: Path diagram for Direction of Causation (DoC) models in the running example. By 

constraining different paths, DoC models study whether family data is best explained by simple 

correlations between the two observed variables’ (boxes) genetic (A) and shared (C) and non-shared 

(E) environmental influences (‘spurious’ association), by regression of one variable on the other 

(causation), or by regression of both variables on each other (reciprocal causation). 
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Tables 

 

Table 1. Estimates of causal direction for depression and sleep variables of the running 
example 

Method 
Depression 

as cause % 

Sleep as 

cause % 
Statistic Lower CI Upper CI 

Hypersomnia subsample, 

sleep as cause % 

Insomnia subsample, 

sleep as cause % 

DirectLiNGAM 0.20 99.80 -0.0461 -0.0964 -0.0115  40.1 99.65 

Skew-based 0.10 99.90 -0.0438 -0.0920 -0.0094  89.8 99.35 

Kurtosis-based 0.25 99.75 -0.0034 -0.0066 -0.0009 89.9 83.85 

Note: results are shown for 2000 bootstrap resamples. Percent selected as cause is shown for each estimator, 
as well as T(depression, sleep) statistic and its 95 percent bootstrap percentile confidence intervals (CI). The 
two last columns replicate the analysis in those who sleep more than average (‘Hypersomnia subsample’) and 
in those who sleep less than population average hours per night (‘Insomnia subsample’). 
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Table 2. Role of the variables on generating the data of the four simulation settings. 

Simulation setting Role SATSA variable 

A1 Predictor Sleep deviation 

 Confounder Sleep deviation 

 Residuals êCESD 

A2 Predictor Sleep deviation 

 Confounder CESD score 

 Residuals êCESD 

B1 Predictor CESD score 

 Confounder CESD score 

 Residuals êsleep 

B2 Predictor CESD score 

 Confounder Sleep deviation 

 Residuals êsleep 

Note: The variables in the simulation settings were bootstrapped from the standardized SATSA 
variables and regression residuals ê. 
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Table 3. Estimated biometric sources of variance for depression and sleep variables of the 
running example 

Variable: component Estimate Lower CI Upper CI 

Depression score: A 0.216 0.014 0.400  

Depression score: C 0.113 -0.071 0.299  

Depression score: E 0.671 0.554 0.801  

Sleep deviations: A 0.276 0.083 0.446  

Sleep deviations: C -0.001 -0.171 0.171  

Sleep deviations: E 0.725 0.597 0.863 

Note: “A” refers to additive genetic influences, “C” to shared environmental influences of the twins, 
“E” to non-shared environmental influences unique to only one member of each twin pair, and “CI” 
to 95% likelihood-profile confidence intervals. 
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