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Estimate for thermal diffusivity in highly irradiated tungsten using molecular dynamics simulation
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The changing thermal conductivity of an irradiated material is among the principal design considerations for
any nuclear reactor, but at present few models are capable of predicting these changes starting from an arbitrary
atomistic model. Here we present a simple model for computing the thermal diffusivity of tungsten, based on
the conductivity of the perfect crystal and resistivity per Frenkel pair, and dividing a simulation into perfect
and athermal regions statistically. This is applied to highly irradiated microstructures simulated with molecular
dynamics. A comparison to experiments shows that simulations closely track observed thermal diffusivity over a
range of doses from the dilute limit of a few Frenkel pairs to the high-dose saturation limit at three displacements
per atom (dpa).
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I. INTRODUCTION

Tungsten has been chosen as a plasma facing material
designs for future tokamak fusion reactors [1–3] due to its low
sputtering yield, high melting point, and high thermal con-
ductivity [4]. But under bombardment from 14.1 MeV fusion
neutrons, displacement damage within the bulk material will
generate lattice defects [5] which can adversely affect thermal
conductivity among other properties [6].

Unfortunately, predicting thermal conductivity based on
the damage microstructure is extremely difficult, as metal con-
ductivity is dominated by electrons, and so requires a quantum
mechanical treatment. The electron scattering rate can be writ-
ten from Fermi’s golden rule as proportional to the square
of a perturbing matrix element coupling two electron states.
For the electron-phonon coupling, this can be computed from
the elastic deformation due to the phonon [7]. In semicon-
ductors, at least sufficient electron localization is present
to permit fast scaling methods using density-functional per-
turbation theory [8]. Time-dependent tight binding has also
been used to find electron conductivity across molecules and
nanowires with open boundaries [9]. These calculations are
generally expensive and while transport calculations can be
performed in the Boltzmann theory approximation [10], and
scattering rates can be found [11–14], current state-of-the-
art ground-state density-functional calculations of dislocation
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loops are limited to order 1000 atoms [15]. When this scale
is compared to the minimum size for generating high-dose
microstructures, order 1 000 000 atoms [16], we must concede
that electronic-structure calculations must be supplemented
by more approximate methods if a fully multiscale picture of
a material’s response to stress, temperature, and irradiation is
to be developed.

This simplifying approach was followed by Zinkle [17],
who suggested a model for the resistivity of circular dis-
location loops in copper based on counting defected atoms
observed in TEM images and dividing these into dislocation
core sites and atoms in stacking fault sites. Reza et al. [18]
considered similar models, again based on TEM observations
of atoms. It is noteworthy that both these papers required an
extrapolation of the distribution of observed loops to sizes too
small to observe [19,20]. Caturla et al. [21] modeled resistivity
changes during post irradiation annealing using the resistivity
per Frenkel pair, following the count of pairs using kinetic
Monte Carlo.

We argue that to predict a thermal conductivity for en-
gineering purposes, it is sufficient to be able to divide an
arbitrarily complex, atomically detailed simulated microstruc-
ture into regions which are essentially perfect crystal, regions
which are elastically distorted and so are somewhat scattering,
and regions which are highly distorted and have substantially
greater scattering. If we can robustly predict and characterize
an irradiated material along these lines and reproduce the
scattering rates of simple defect types, we should be able to
reproduce the trends in conductivity change due to irradiation
dose, temperature, stress, and other external drivers through
their effect on the microstructure, even if the scattering rate for
an individual complex defect type is not exactly reproduced.

Existing methods for distinguishing athermal atoms from
bulk crystal atoms include analyzing bond angle distribu-
tions, common neighbor analysis, and graphs of connected
bonds [22,23]. Progress has also been made recently to detect
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athermal atoms based on machine learning [24]. We distin-
guish a perfect lattice from distorted using local potential
energy—a property generally available using empirical poten-
tials even if not well-defined in an ab initio calculation. This
choice is made because we can derive an expression for the
expected distribution of atomic potential energy for a system
in thermal equilibrium, combining the Maxwell-Boltzmann
distribution with the Debye-Waller factors for thermal vibra-
tions. We demonstrate that this distribution is a very good fit
to molecular dynamics (MD) simulations.

We then use a simple model for the electron scatter-
ing rate based on Mattheisen’s rule [25] for summing rate
contributions on an atom-by-atom basis. We use an em-
pirical model for the scattering rate due to an atom in a
defected configuration [26] and describe how to parametrize
an empirical potential to fit thermal conductivity quanti-
ties using the scattering rate per Frenkel pair—a num-
ber which has been experimentally determined for many
metallic elements. With this model, we can uniquely de-
fine the thermal conductivity of arbitrarily complex atomic
configurations.

The total thermal conductivity also has a component due
to the phonons. Typically, the phonon conductivity of met-
als is order 2–18 W/mK [27], significantly smaller than
the electronic contribution. Tungsten’s phonon contribution
at room temperature has been estimated from MD at 15–16
W/mK [28], an order of magnitude smaller than the total
thermal conductivity (174 W/mK) [29]. The phonon contri-
bution decreases with both temperature and the number of
irradiation-induced defects—mirroring the electronic contri-
bution. For this paper, it is therefore possible to find the
thermal conductivity, assuming it is electronic only in origin,
and ignore the small correction due to phonons. For other
metals, the validity of this assumption should be tested, and
we discuss how to add the phonon contribution below.

Finally, we compare the computed thermal diffusivity of
simulated high-dose tungsten microstructures, and compare
to experimental measurements of high-dose self-ion irradi-
ated tungsten with matching elastic boundary conditions.
We show a very high quality match between the two. Im-
portantly our simulated results are a much higher fidelity
match than estimate-based unrelaxed high-dose microstruc-
tures. This gives us confidence that our model is not just
finding an order-of-magnitude estimate but is tracking the
variation of thermal conductivity as microstructure evolves.

II. THEORY

We can write a simple kinetic theory expression for the
electronic thermal conductivity,

κel = 1

3�0
cev

2
F 〈re〉−1, (1)

where ce is the electronic heat capacity per atom,�0 is the
atomic volume, vF is the Fermi velocity, and re is the electron
scattering rate. The heat capacity is given in terms of the
temperature T and density of states at the Fermi level DF ,
ce = (π2k2

BDF /3)T .
Electron scattering comprises contributions from impurity

scattering, electron-phonon scattering, and electron-electron

scattering, with the condition that the electron mean-free path
cannot drop below the nearest-neighbor separation b0 [26]:

1

re
= b0

vF
+ 1

rimp + re−ph + re−e
. (2)

We expect impurity scattering to arise from electrons
scattering from the anomalous electrostatic potential at
defected sites, impurity atoms, and the like, and so be
temperature independent. Electron-phonon scattering should
be proportional to the number of phonons, and so scale
linearly with T . Finally, electron-electron scattering should
scale with T 2. It is beyond the scope of this paper to seek
analytic expressions for the latter two terms, so instead
we fit to the known variation of thermal conductivity with
temperature and write re−ph = σ1T and re−e = σ2T 2 [30]. We
note that this implies our model has an unphysical infinite
conductivity for the perfect lattice at zero temperature;
in reality, there will always be some residual defects and
scattering between s and d bands in transition metals [31],
but resistivity ratios ρ(273 K)/ρ(4.2 K) of order 105 can be
measured for very pure single crystal tungsten samples [32].

In this paper, we focus on the impurity scattering. The
experimental literature for scattering rates for specific defects
is sparse, owing to the difficulty of knowing exactly which
defects are present, but we summarize three important results.
In Ref. [33], the electrical resistivity per vacancy in tungsten
was observed to be proportional to linear strain. Second, if the
resistivity per Frenkel pair [34] is compared to the resistiv-
ity per vacancy [35] for molybdenum and tungsten, we find
similar ratios of 3.1 and 3.9, respectively. Third, in Ref. [11],
the resistivity for point defect pairs in copper (divacancy
and di-interstitial) is calculated to be slightly under double
the single point defect value, consistent with best estimates
from experiments. These three results suggest that the defect
scattering rate correlates with excess energy: the formation
energy per vacancy is expected to vary linearly with strain,
with the (tensorial) coefficient being the dipole tensor [36].
The formation energy ratios of Frenkel pair to vacancy com-
puted by DFT(using AM05 potential) for Mo and W are 3.5
and 4.0, respectively [37], which is a reasonable fit to the
second observation. The third observation would be consistent
with a small binding energy for point defects. We therefore
suggest an empirical model, rimp = σ0|E |, where E is the
excess potential energy of a defected atom [26,38]. Note that
we use the modulus to prevent unphysical negative rates; in
practice, few defected atoms have negative excess energies, so
for the purposes of exposition it is convenient to assume the
scattering rate from a defect at low temperature is proportional
to its formation energy. How we define excess energy and
whether an atom is defected or not is given below.

Consider a system of atoms thermalized using classical
MD at temperature T with an empirical many-body potential.
The energy E in a particular phonon mode with frequency
ω is given by the Boltzmann distribution, pB(E ; T )dE =
β exp[−βE ]dE , where β = 1/kBT is the inverse temperature.
From this, it is straightforward to show that the kinetic energy
of each atom follows the Maxwell-Boltzmann distribution,
pM−B(E ; T )dE = β(2βE )2 exp[−2βE ]dE . The potential en-
ergy of each atom does not quite follow this distribution, as
the atoms are not Einstein oscillators but rather have local
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energies determined by the distances to their neighbors. But
if we assume that for thermally equilibrated atoms, they nev-
ertheless appear to be close to Einstein oscillators, it follows
that the probability distribution of the position of each atom
is close to a spherically symmetric Gaussian. This approxi-
mation is often used in constructing Debye-Waller factors for
dynamical electron diffraction calculations: the Debye-Waller
factor, B, is related to the thermally averaged atom displace-
ment in the x direction, B = 8π2〈u2

x〉, where in the harmonic
approximation [39],〈

u2
x

〉 =
(

h̄

2m

) ∫
coth

(
h̄ω

2kBT

)
g(ω)

ω
dω, (3)

with g(ω) being the normalized phonon density of states. We
can find the temperature scaling of this displacement scale by
using the Debye formula in place of the density of states to
give [40]

〈
u2

x

〉 =
(

11492

8π2M

)(
T

	2
D

)[



(
	D

T

)
+ 1

4

(
	D

T

)]
, (4)

where 	D is the Debye temperature and 
(	D/T ) is the
Debye integral. If M is the atomic mass in Daltons, then 〈u2

x〉
is returned in units of Å2. Above the Debye temperature (or
in classical MD where quantum mechanical phonons are not
represented), 〈u2

x〉 scales linearly with T , and so〈
u2

x

〉 ∼ 145.55

M	2
D

T . (5)

For tungsten, 	D = 312 K [29].
With this Gaussian approximation for atom positions, the

probability distribution for the distance between the atoms
must also be Gaussian, albeit with a slightly larger half-width
of the distribution, w. If the perfect lattice distance between
atoms is R(0) � w, then the probability distribution at finite
temperature is

p(R) ≈ 1√
2πw2

exp

(
− (R − R(0) )2

2w2

)
, (6)

with w2 = 16〈u2
x〉/π2. Hence, we can say that the standard

deviation of the bond-length fluctuations scales as w ∼ √
T .

As we are assuming the thermal vibrations are small,
we can linearize the energy dependence in terms of atomic
separations, and so find the probability distribution for poten-
tial energies will be approximately given by the convolution
of the Maxwell-Boltzmann distribution and a broadening
function, g(E ; σ ) = exp[−E2/(2σ 2)]/

√
2πσ 2. The preced-

ing arguments suggest that σ 2 ∼ �kBT , with � a potential
dependent constant with energy units. We shall see below this
energy parameter is easily found from simulation. With the
convolution applied, we find our form for the distribution of
potential energies in a thermalized MD simulation:

pMD(E ; T ) = pM−B(E ; T ) ⊗ g(E ; σ )

= 2β3

{
exp

[
− E2

2σ 2

]√
2σ 2

π
(E − 2βσ 2)

+ exp[2β2σ 2 − 2βE ](σ 2 + (E − 2βσ 2)2)

× (1 + erf

(
E − 2βσ 2

√
2σ 2

)}
. (7)

FIG. 1. The variance of the potential energy of 65 000 atoms
thermalized in the NVT and NPT ensembles. The dashed line shows
the variance in the Maxwell-Boltzmann distribution, and the solid
line is the model including broadening [Eq. (7)] with σ = √

�(kBT ),
with � = 0.029 eV. The vertical line shows the position of the Debye
temperature in tungsten, 	D = 312 K.

The zero of energy is taken here to be the energy per atom
at zero temperature with appropriate supercell strains applied,
and so E is the excess potential energy.

The first few moments of pMD(E ; T ) are
∫

pMD(E ; T )
dE = 1,

∫
E pMD(E ; T )dE = 3/2kBT , and

∫
E2 pMD(E ; T )

dE = 3(kBT )2 + σ 2. The simple form for the second moment
means we can parametrize for σ by plotting the variance
of the potential energy as a function of temperature. We
thermalize a simulation box of 65 336 tungsten atoms using
LAMMPS [41] and an empirical potential [42] known to give
reasonable point defect and thermal expansion properties. In
Fig. 1, we show that the variance is a good fit to the form
var(E ) = 3/4(kBT )2 + �kBT in both NPT and NVT(number,
pressure, or volume and temperature) ensembles, and that
in both ensembles � = 0.029 ± 0.001 eV. The high quality
of a broadened Maxwell-Boltzmann distribution is further
shown in Fig. 2. Here we have generated a histogram of the

FIG. 2. A histogram of potential energies of 65 000 atoms ther-
malized in the NPT ensemble using LAMMPS. The dashed line is
the M-B distribution, and the solid lines are a convolution with a
Gaussian width σ = √

�(kBT ) [Eq. (7)].
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FIG. 3. A histogram of athermal atoms in a system of 65 000
atoms thermalized in the NPT ensemble at 300 K. The solid line
shows the expected count of thermal atoms in each bin, two orders
of magnitude higher than the athermal count. The symbols show the
predicted number of athermal atoms [Eq. (9)] for a defect-free lattice,
and for monovacancy crowdion configurations.

potential energy per atom for the 65 336-atom box in the NPT
ensemble. Note that the fit is good even in the tails of the
distribution.

If we generate a histogram of potential energies similar to
Fig. 2 but in a defected system of atoms, and compare to the
expected thermal distribution [Eq. (7)], we can estimate how
many atoms are thermal and how many are athermal. Note
that we can not say for certain whether an individual atom
is defected, only find the fraction of athermal atoms in each
energy bin.

If there are N atoms total in the system, then we expect
to find a number N̄ in the energy range E : E + dE given
by N̄ (E ; T ) = N pMD(E ; T )dE . The actual number of thermal
atoms we record should follow a Poisson distribution with this
average, i.e., the distribution �(n; N̄ ) = N̄n exp[−N̄]/n! [43].
If we actually record n atoms in the energy interval, then the
probability that k of these are nonthermal atoms must be given
by the Poisson probability that n − k are thermal:

p(k; n, N̄ ) = �(n − k; N̄ )∑n
k=0 �(n − k; N̄ )

. (8)

The expected number of nonthermal atoms in this energy
window is therefore

〈k〉 =
n∑

k=0

k p(k; n, N̄ ). (9)

Histograms of athermal atom counts using Eq. (9) for systems
containing a single point defect are shown in Fig. 3. Note that
the expected number of nonthermal atoms defined in this way
tracks the thermal count, simply because this is a stochastic
property of the system. (The athermal proportion is order 2%
for this potential and system size, a value largely independent
of temperature). The true signal of the point defects appears
where we expect to see very few thermal atoms. For the mono-
vacancy at 300 K, we see a signal at 0.3eV. This is generated
by the cage of high-energy atoms surrounding the vacancy

itself. For the crowdion, we see the individual atoms making
up this extended defect with very high energy (>0.5 eV).

We can compute expected scattering rates for thermal
atoms using Eq. (2),

rθ (T ) = vF (σ1T + σ2T 2)

b0(σ1T + σ2T 2) + vF
, (10)

and for athermal atoms with

ri(E ; T ) = vF (σ0|E | + σ1T + σ2T 2)

b0(σ0|E | + σ1T + σ2T 2) + vF
. (11)

We can therefore find the expected scattering rate due to
electron-phonon and impurity scattering from atoms in the
energy window E : E + dE is

r(E ; T ) =
n∑

k=0

p(k; n, N̄ (E ; T )) ((n − k)rθ (T ) + kri(E ; T )),

(12)
and the total scattering rate is

re =
∫

r(E ; T )dE . (13)

In practice, we need to generate a histogram, so this integral
is computed numerically. The scattering rate is not biased
by bin width provided the width is small compared with the
temperature scale. We use bin widths dE ∼ kBT/20.

A. Fitting the model to experiment

In the limit T → 0, all atoms in a perfect crystal have E =
0. For a crystal containing a point defect relaxed using con-
jugate gradients, no atoms will have exactly E = 0, although
most will be in a narrow bin −dE/2 : +dE/2. Atoms out-
side this bin can be assumed athermal in the low-temperature
limit.

We can compute the scattering rate for a defect relaxed
using conjugate gradients, assuming a small temperature T
were applied to avoid the singularity in the rate at T = 0,
provided we make some choice for the triplet {σ0, σ1, σ2}. The
scattering rate for a Frenkel pair, rFP(T ), is just the sum of
the rates for monovacancy and crowdion. We can then use the
Wiedemann-Franz law relating electrical resistivity to thermal
conductivity, ρ = LT/κ , where L = 2.44 × 10−8 W�K−2 is
the Lorentz number. At low temperature, the phonon heat
capacity, and hence the phonon thermal conductivity scales as
T 3 according to the Debye Law, and so we can neglect phonon
contributions in this limit. We can therefore match the defect
scattering constant, σ0 to the measured resistivity per Frenkel
pair, ρFP, by substituting Eq. (1):

ρFP = lim
T →0

3L�0

v2
F (ce/T )

rFP(T ). (14)

As limT →0 rFP(T ) is linear in σ0, we can use this to
fit σ0. Using vF = 9.5 Å/fs and ce/(T/�0) = 5.46 × 10−10

eV/(K2Å3), computed using density functional theory [26],
and the experimental value ρFP = 27 μ� m/at.fr. [34], we
find a target value rFP(T = 0) = 29.1 fs−1. Figure 4 shows
the fitting of our model to this computed scattering rate per
Frenkel pair, achieved by setting σ0 = 2.32 fs−1/eV. The error
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FIG. 4. Scattering rate computed for monovacancy and crowdion
point defects in perfect lattice, with assumed temperatures applied.
The solid line is an affine fit, so the y axis intercept gives the
scattering rate for the Frenkel pair at T = 0.

in this value due to the nonlinearity of the computed rates
rFP(T ) is very much smaller than the uncertainty in ρFP.

With σ0 fixed by the Frenkel pair calculation, we can
fit σ1 and σ2 to reproduce the experimental thermal con-
ductivity [29]. Many methods to fit the curves would be
appropriate here. We performed the fit efficiently by ob-
serving (empirically) that the fraction of athermal atoms
is very weakly dependent on temperature, in these simula-
tions f (T ) ≈ 0.022 + 0.156kBT , and their average energy is
linear in temperature, 〈E〉 ≈ 1.64kBT . With these approxima-
tions, we write the expected scattering rate at temperature T
as

〈r(T )〉 ≈ f (T )ri(〈E〉; T ) + (1 − f (T ))rθ (T ),

and hence the expected electronic thermal conductivity is

〈κel(T )〉 ≈ cev
2
F

3〈r(T )〉 . (15)

This is then a simple analytic form to fit for {σ1, σ2}. We con-
sider incorporating the correction due to phonon conductivity
below. The thermal conductivity predicted for a defect-free
but MD-thermalized lattice at finite temperature is shown in
Fig. 5. We find a fit σ MD

1 = 1.154 × 10−4 fs−1/K and σ MD
2 =

1.209 × 10−7 fs−1/K2. The points in Fig. 5 for thermalized
systems in the NVT and NPT ensembles use this set of pa-
rameters. Note that the small change in homogenenous strain
between the two ensembles does not significantly change the
distribution of atomic energies (except for their offsets) at low
temperatures, and so there is little difference in the calculated
thermal conductivity in these ensembles in this temperature
range.

In atomistic simulations, we also often work with lattice
statics, with relaxed atoms in their quasiharmonic minima.
Just as we must take care not to treat thermal noise in
atomic positions as genuine atomic disorder, we must not
treat the lack of noise in relaxed atomic configurations as
an absence of disorder. We can fit Eq. (15) to the experi-
mental data if the atoms are in ideal lattice positions. In that
case, we would expect no athermal atoms, i.e., a fraction

FIG. 5. Thermal conductivity of atoms in a defect-free condition
with three fitted sets of parameters for scattering: The perfect crystal
lattice with an assumed temperature using the scattering coefficients
σ CG

i (κ (0)), thermalized in the NPT ensemble using the scatter-
ing coefficients σ MD

i (κ), and incorporating the phonon correction
separately using the scattering coefficients σ exc

i and a Green-Kubo
calculation of the phonon conductivity (κel + κph). The phonon con-
ductivity alone is also plotted separately. Solid line experimental data
from Ref. [29].

f = 0. This gives a fit which is suited to an atomic sys-
tem which has been relaxed using conjugate gradients and
has no thermal noise. We find σ CG

1 = 1.194 × 10−4 fs−1/K
and σ CG

2 = 1.108 × 10−7 fs−1/K2. The points in Fig. 5 la-
beled as perfect crystal use this second set of parameters.
Note that σ MD

1 is slightly smaller than σ CG
1 as our statisti-

cal model always estimates a few percent of atoms in MD
are athermal and so are given a higher scattering rate. The
closeness of the absolute values of σ CG

i and σ MD
i is an indi-

cation that harmonic vibrations are being correctly accounted
for.

Note that in our model we ignore the contribution to
thermal conductivity from phonons, which is computable us-
ing MD if needed, but here is small compared to electron
conductivity. Thermal diffusivity, α, is defined from thermal
conductivity as α = κ/c, where c is the volumetric heat capac-
ity, here dominated by phonons, so c = 3kB/�0. A summary
of the values used to parametrize and resultant conductivity is
given for reference in Table I.

III. PHONON CONTRIBUTION TO THERMAL
CONDUCTIVITY

As noted above, the phonon contribution to thermal con-
ductivity is a small fraction of the total for a good conductor,
and as it mirrors the trends seen in electronic conductivity the
correction due to including a phonon calculation will often be
small. But it is quite possible to include phonon contributions
explicitly, and in this section we will briefly outline how this
can be done.

Phonon thermal conductivity can be computed in MD
using the nonequilibrium Müller-Plathe method [45] which
matches heat flux to thermal gradients, or using the equi-
librium Green-Kubo method [46,47] which uses the velocity
autocorrelation function. Both are implemented in LAMMPS.
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TABLE I. Parameters fitted to the experimental thermal conduc-
tivity as a function of temperature and scattering due to a Frenkel
pair in tungsten. We provide fitted parameters suited for a conjugate-
gradient relaxed system, for a snapshot from an MD simulation,
and for computing the electronic thermal conductivity independently
from the phonon contribution. Experimental properties given in
parentheses: (a) Ref. [44], (b) Ref. [29], (c) Ref. [35], (d) Ref. [34].

Fitted parameters

Impurity el-ph el-el
σ0 σ1 σ2

fs−1eV−1 fs−1K−1 fs−1K−2

CG-relaxed 2.32 1.194 × 10−4 1.108 × 10−7

MD 2.32 1.154 × 10−4 1.209 × 10−7

MD (exc κph) 2.32 1.344 × 10−4 1.010 × 10−7

Derived properties

Broadening � 0.029 eV
Atom vol (T=0 K) �0 15.86 (15.86)(a) Å3

Conductivity κ(T=273 K) 1.69 (1.74)(b) W/(cm K)
κ(T=900 K) 1.21 (1.21)(b)

Resistivity ρFP 27.0 (27)(c) μ� m/at.fr.
ρvac 8.11 (7)(d)

Constant
cev

2
F

3�0T 1.643 × 10−8 eV/K2/(Å fs2)

As our low-dose simulated irradiation described below may
be sensitive to changes in temperature, we have opted to use
the latter method.

As noted above, the phonon correction for the electron-
impurity scattering coefficient σ0 can be neglected. We can
refit the values for the electron-phonon and electron-electron
scattering coefficients if we assume that a proportion of
the experimentally measured thermal conductivity is through
phonons. We can compute this phonon contribution using
molecular dynamics. The phonon conductivity κph was com-
puted using the Green-Kubo method in the NVT ensemble
using a simulation box of 65 536 atoms is plotted in Fig. 5—
note its small magnitude compared to the total. This value we
subtract from the total experimental value, and refit Eq. (15)
to the lower electronic-only conductivity. This gives the new
fitted parameters σ exc

1 = 1.344 × 10−4 fs−1K−1 and σ exc
2 =

1.010 × 10−7 fs−1K−2.
When faced with a new atomic configuration, we can use

the refitted electronic scattering rates σ exc
1 and σ exc

2 in Eq. (2)
to compute an electron-only conductivity κel, and compute the
phonon part κph afresh using MD. For the defect-free system,
the sum of the two gives a total conductivity very close to
using Eq. (2) with the original coefficients σ MD

i or σ CG
i . This

demonstrates that for the defect-free system at least, there is
little advantage to adding a separate phonon calculation.

IV. HIGH DOSE MICROSTRUCTURES

A. MD simulation

To generate some representative simulated microstructures
for this paper, we employed a two-step process, described in
detail in Ref. [48]. First we used the creation-relaxation algo-
rithm (CRA) [16], which generates high-dose microstructures

rapidly but leaves an excessive number of high-energy defects,
then we relaxed further with low-energy MD cascade simu-
lations [49–52]. The convergence of the results of combined
CRA+MD with the results of MD-only simulations and their
match to other experiments is discussed in Ref. [48].

We start with a box of 64 × 64 × 200 conventional bcc
unit cells with a lattice parameter a0 = 3.1652 Å. The CRA
algorithm then selects some atoms at random and removes
them, leaving vacant sites. These are then replaced into ran-
dom positions and the simulation cell relaxed using conjugate
gradients. We chose LAMMPS and the MNB potential [42]
for the relaxations. During the relaxation, the x and y axes
were constrained to zero strain, but the z axis was allowed
to relax to zero stress. These elastic boundary conditions are
appropriate for simulating an irradiated thin surface layer,
constrained by a semi-infinite substrate. This is appropriate
for modeling self-ion irradiation in a thick sample [53]. The
process of removing and replacing atoms builds up damage,
with a canonical measure of the damage given by the ratio of
the number of atoms repositioned to the number in the simula-
tion. We displaced 1024 atoms per relaxation, corresponding
to 6.25 × 10−4 canonical displacements per atom (cdpa) per
relaxation.

The MD simulations started with the CRA simulations at
a range of cdpa values, given in Table II. These were then
strained in the x and y directions to the potential’s lattice
parameter at 300 K. The simulation was then thermalized for
20 ps, with a Berendsen thermostat and barostat [54] to keep
zero pressure in the z direction. The MD simulations were
performed using PARCAS [55–57] with the same potential
used for the CRA simulations. Displacement cascades were
initiated by shifting the cell randomly in x, y, and z directions,
maintaining periodic boundary conditions, then giving the
central atom 10 keV kinetic energy in a random direction.
The cascade was followed with an electronic friction applied
to atoms with kinetic energy over 10 eV [58] for 20 ps with a
thermostat applied to the border atoms. Finally, the simulation
was followed for a further 10 ps with a barostat on the z
direction. A new cascade was then initiated. A canonical dpa
level can be associated with these MD simulations by noting
the number of vacancies produced per cascade initiated at
the initial stages of damage production. From the first 40
cascades, we estimate a cdpa level 4.1 × 10−6 per cascade.

An illustrative simulated microstructure at a dose 1.1 dpa
is shown in Fig. 6. Note that vacancies are homogeneously
dispersed and dislocation loops of both interstitial and va-
cancy type can be seen. No isolated crowdions remain.

B. Experimental measurement

Samples of high purity tungsten (99.97 wt % purity, pro-
cured from Plansee) were annealed at 1500 ºC for 24 h in
vacuum to allow full recrystallization, and then mechanically
and electropolished using 0.1% NaOH solution to produce a
mirror finish. Ion implantations were then performed at the
Helsinki Accelerator Laboratory with 20 MeV W5+ ions [61].
A summary of the ion fluxes is given in Table III together with
a damage level computed using SRIM (Quick K-P method,
assuming threshold displacement energy 68 eV.) These calcu-
lations also suggest the peak damage is at a depth 1.25 μm,
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TABLE II. Simulation parameters for generating high-dose microstructures, together with the computed thermal conductivity and the
separated-out phonon contribution. The error on the computed phonon contribution is order ±0.4 W/m/K.

CRA dose MD dose Total dose κph κel + κph κ

(cdpa) (cdpa) (cdpa) W/m/K W/m/K W/m/K

0 0 0 14.2 173.5 172.6
0 4.1×10−5 4.1×10−5 169.3
0 1.63×10−4 1.63×10−4 160.3
0 4.07×10−4 4.07×10−4 149.9
0 0.00163 0.00163 132.9
0 0.00407 0.00407 123.6
0 0.00814 0.00814 118.4
0 0.0122 0.0122 116.7
0.00625 0.00651 0.0128 9.7 119.4 115.8
0.0188 0.00651 0.0253 10.0 112.3 107.6
0.0350 0.00651 0.0416 8.1 103.8 100.2
0.0625 0.00651 0.0691 8.7 99.3 94.6
0.113 0.00651 0.119 7.0 92.4 89.0
0.188 0.00651 0.194 7.1 96.6 93.4
0.350 0.00651 0.357 8.6 101.3 97.0
0.625 0.00651 0.633 7.3 92.9 89.2
1.13 0.00651 1.13 8.9 100.2 95.3
3.00 0.00651 3.01 8.0 97.9 93.8

falling to near zero at 2 μm. The peak concentration of in-
jected ions is at 1.7 μm. A full description of the preparation
and ion irradiation for these samples is given in Ref. [18].
We note that this set of samples has been analyzed for other
properties, including lattice strain [53] and hardness [62].

Thermal diffusivity measurements were made using laser-
induced transient grating spectroscopy (TGS) [38,63,64]. This
technique uses crossed, pulsed laser beams(0.5 ns dura-
tion, λ = 532 nm wavelength, 1 kHz repeat frequency) to
generate a temperature grating at the sample surface. The
time-dependent decay of this temperature grating is monitored
by diffraction of two continuous wave probe beams that are
detected using a fast photodiode connected to an oscilloscope.
A detailed description of the experimental setup is provided
elsewhere [65]. The thermal diffusivity is then determined
from the decay of the diffracted intensity. A full description
of the TGS setup for these measurements can be found in

FIG. 6. Simulated microstructure at a dose 1.1 cdpa. Disloca-
tion lines with Burgers vectors 1/2〈111〉 (green) and 〈100〉 (pink)
generated using DXA [59]. Interstitials (red) and vacancies (blue)
generated from Wigner-Seitz cell occupation [48]. Rendered using
Ovito [60].

Ref. [18]. Calculations suggest the thermal diffusivity mea-
sured is dominated by a surface thickness ∼λTGS/π [63],
which in this case is 1 μm and so the measurement reported
here is due to the thermal diffusivity changes in the implanted
layer.

V. RESULTS

In Fig. 7, we show the athermal atom count for the relaxed,
high-dose microstructure simulations as a histogram binned
by potential energy. We can clearly see peaks at ∼0.3 eV
corresponding to vacancies, and over 0.5 eV for interstitials.

TABLE III. Fluence and flux of the ion beam used to irradiate
the samples. A damage level is computed using SRIM. Note that the
flux is increased in steps to achieve higher fluences in a reasonable
experimental time.

Incident Damage level
Fluence Flux (SRIM)
(ions/cm2) (ions/cm2/s) dpa

2.7 ×1010 6.24×108 1.0×10−4

8.13×1010 ” 3.2×10−4

2.42×1011 3.1-5.0×108 0.0010
8.03×1011 ” 0.0032
2.55×1012 ” 0.010
4.61×1012 ” 0.018
8.20×1012 ” 0.032
1.42×1013 ” 0.056
2.54×1013 ” 0.10
8.11×1013 ” 0.32
2.53×1014 ” 1.0
8.10×1014 1.12×1011 3.2
2.53×1015 ” 10.0
8.10×1015 ” 32
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FIG. 7. A histogram of potential energies of high-dose simulated
microstructures. The solid line shows the expected fraction of atoms
in each bin, normalized so the area under the curve equals one. The
symbols show the predicted fraction of nonthermal atoms [Eq. (9),
for a range of doses].

The total athermal atom count for these simulations is plotted
in Fig. 8. Note that this is a count of all the atoms which have
high energy and not a count of point defects. The interstitial
and total vacancy count in this figure were computed using a
Wigner-Seitz analysis of the occupation of lattice sites, and
the vacancy total separated into vacancy clusters and vacancy
loops using the method of Ref. [48]. We see a saturation of
athermal atoms above 0.1 cdpa at about 8% of the total atom
count, while the vacancy concentration saturates at 0.3%. This
illustrates how a defect in this model is treated as a spatially
diffuse scattering region, and not as the individual point de-
fects.

In Fig. 9, we show the computed thermal diffusivity for
the relaxed high-dose microstructure simulations, computed
using a single snapshot atomic position file and scattering
rates using Eq. (13) parameterized with σ MD

1 , σ MD
2 . A sepa-

rate Green-Kubo calculation for the phonon contribution was

FIG. 8. Computed atomic fraction of athermal atoms and de-
fect types for high-dose CRA+MD simulations. Interstitials appear
mostly as loops, vacancies appear as loops, and a homogeneous
dispersion of monovacancies and small vacancy clusters.

FIG. 9. Computed thermal diffusivity of MD simulated mi-
crostructures at a range of doses. Also shown, experimentally
measured diffusivity using transient grating spectroscopy (TGS) and
an estimate by Reza et al. [18] of thermal diffusivity due to TEM-
visible dislocation loops.

performed. We first thermalized the atoms for 100 ps, then
sampled the velocity twenty times over 25 ps windows. This
was repeated for 25 independent runs, making a total MD
sampling time 12.5 ns per data point. We found that the cor-
rection was within the size of the data points in Fig. 9 (order
3–5%) was made if κel and κph were computed separately
in this way. The values are listed in Table II. We therefore
recommend computing thermal conductivity in tungsten us-
ing Eq. (13) only, using the values for the scattering rates
σ MD

1 , σ MD
2 and not using an expensive separate phonon con-

ductivity calculation.
In Fig. 9, we also include the computed thermal diffusivity

for CRA-only simulations, with no MD cascade relaxation.
We see that the unrelaxed CRA-only simulations show the
correct general trend seen in the experiment, namely, that the
thermal diffusivity is significantly reduced as dose increases
but saturates over 0.1 dpa. But it is clear that the effect is
overestimated. This is an expected consequence of the over-
estimation of the number of defects generated by the CRA
method alone.

Finally, in Fig. 9, we show an estimate for the thermal
diffusivity made by Reza et al. [18] due to TEM visible
dislocation loops (>1.5 nm diameter). This model uses the
area observed in loops in TEM images [66] to find a number
of interstitial point defects. It is then assumed that each in-
terstitial is paired with a vacancy, and the scattering rate per
Frenkel pair is used to turn the observed point defect count
into a maximum thermal diffusivity. As each interstitial is
treated as a strong scattering source, even though it may be
in the center of a large dislocation loop and so locally appears
as (strained) perfect crystal, this model must overestimate the
scattering due to observed defects. However, this estimate
clearly still underestimates the true drop in diffusivity, indicat-
ing that visible damage is only a small contributor to the true
change in thermal conductivity. In Ref. [18], the authors find
a better model for the absolute change in thermal diffusivity
by assuming defects too small to see follow a power-law dis-
tribution [58,67], though cannot track the shape of the curve
well.
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In contrast to these two estimates, the relaxed CRA+MD
cascade simulations show a rate of thermal diffusivity reduc-
tion which is a good match to the experiment at doses <0.1
dpa, and the saturation level of a 50% reduction in thermal
diffusivity for doses >0.1 dpa is also a match. This suggests
the level of damage in the relaxed CRA+MD simulations is a
good match to experiment at low fluence end where the defect
clusters are small, through dislocation network formation at
0.01–0.1 dpa and through to the saturation dose of larger
dislocation loop defects seen in Fig. 6 above 1 dpa.

VI. CONCLUSION

In this paper, we have used a simple and empirical model
for the scattering rate due to a defected atom—stating that
the rate should be proportional to the local excess energy
difference alone. This local energy is easy to compute and
unambiguous in an MD simulation of a single component sys-
tem, though we acknowledge that it is not simply accessible
to a density functional theory calculation. However, after this
first assumption, we have made no further approximations or
experiment-specific parametrizations. We developed a sim-
ple analytic form for the expected distribution of potential
energies, and from this used a statistical method to find the
expected number of athermal atoms. This model can easily be
used to postanalyze the output of any single-component MD
simulations.

Though we expect the phonon contribution to thermal con-
ductivity to be small for good conductors, we showed how
to incorporate this correction. Both electron and phonon con-
tributions to the conductivity scale with the mean-free path
of the carriers, a scale set by the defect spacing, so both
contributions are reduced as the lattice defects increase. For
tungsten, we found the correction due to explicitly separat-
ing phonon and electron conductivity to be negligible. We
therefore suggest it may be preferable to ignore the phonon
contribution entirely for conducting metals, and compute a
single scattering rate using Eq. (13) only, with parameters
which reproduce observed properties of the thermalized but
undefected crystal.

As electronic thermal transport properties are not accessi-
ble to classical empirical potentials, we needed to parametrize
the absolute level of the thermal conductivity using es-
tablished known single-crystal experimental data, and we

parameterized the scattering rate for the Frenkel pair defect
using established electrical resisitivity data. At high dose, the
microstructure is one of network dislocations and dislocation
loops with a homogeneous background of monovacancies and
small vacancy clusters, and the simulated thermal diffusivity
we report is derived from all the athermal atoms.

A natural extension to this model is to include substi-
tutional impurity atoms as point sources of scattering. This
was considered in Ref. [38], with rhenium atoms in tungsten
taken as point sources of impurity scattering. As this approach
showed an excellent agreement with experiments, we suggest
it should be possible to include impurity atoms in the dilute
limit in the present model in a similar way.

We conclude that our simple model is able to discriminate
in a robust manner between undamaged (but strained) crystal,
which has only a small contribution to conductivity loss, and
highly distorted local environments near dislocation cores and
vacancy cages where the scattering should be high. As it is
fitted to the average scattering rate for a range of atomic
environments near Frenkel pairs, correlates with weakly and
strongly scattering regions, and correctly deduces the vol-
ume fraction of such atomic environments, it is a therefore
a good estimator of the average change in thermal diffusivity
in highly irradiated simulated microstructures.

Data and analysis codes are available online [68].
To obtain further details, please contact PublicationsMan-
ager@ukaea.uk.
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