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Abstract: In this paper we introduce the notion of evolution rank and give a de-

composition of an evolution algebra into its annihilator and extending evolution sub-
spaces having evolution rank one. This decomposition can be used to prove that in

nondegenerate evolution algebras any family of natural and orthogonal vectors can be

extended to a natural basis. The central results are the characterization of those fam-
ilies of orthogonal linearly independent vectors which can be extended to a natural

basis.

We also consider ideals in perfect evolution algebras and prove that they coincide
with basic ideals.

Nilpotent elements of order three can be localized (in a perfect evolution algebra

over a field in which every element is a square) by merely looking at the structure
matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution

algebra over an arbitrary field has a nilpotent element of order three, then its structure

matrix has a vanishing principal minor.
We finish by considering the adjoint evolution algebra and relating its properties

to the corresponding ones in the initial evolution algebra.
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1. Introduction and preliminaries

The study of evolution algebras has its starting point in 2006 in the
paper [11], followed by the monograph [9]. A systematic study of (arbi-
trary-dimensional) evolution algebras was initiated in [3], where a char-
acterization of simple evolution algebras was accomplished. The problem
of the classification of finite-dimensional evolution algebras is a complex
one. As far as we know, there have been classified (up to isomorphisms)
the 2- and 3-dimensional evolution algebras and perfect nonsimple 4-di-
mensional algebras (with some mild restrictions); see [1, 2, 4, 6]. A
useful tool for classifying 4-dimensional evolution algebras has been the
notion, introduced in [2], of basic ideal: an ideal having a natural ba-
sis which can be extended to a natural basis of the whole algebra. An
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interesting matter related to basic ideals is when a vector in an evo-
lution algebra is a natural vector (i.e., it is part of a natural basis of
the evolution algebra). A natural follow-up is when a family of orthogo-
nal and independent vectors can be completed to a natural basis of the
algebra. These are the questions which initially motivated this paper.

We have divided this article into five sections. The first one contains
an introduction and preliminaries. Specifically, we see that the linear
span of a subset does not necessarily coincide with a subalgebra or ideal.
Homomorphisms are recalled and an example showing that in general au-
tomorphisms of evolution algebras do not coincide with automorphisms
of vector spaces. In fact, linear isomorphisms do not necessarily preserve
natural bases. Evolution homomorphisms, defined in [9], cannot coincide
with algebra homomorphisms: an example of an algebra homomorphism
such that the image does not have the extension property is given.

In Section 2 we consider natural families in evolution algebras. In the
study of the classification of evolution algebras, an important aspect is
when all the natural bases are essentially the same, i.e., all of them can
be obtained from one by simply changing the order of the elements or
multiplying each element by a scalar. We say in this paper that an evo-
lution algebra having this property “has a unique natural basis”. It was
proved in [7, Theorem 4.4] that when an evolution algebra A is perfect
(meaning A2 = A), then it has a unique natural basis. Corollary 2.7
finds a condition for an evolution algebra to have a unique natural ba-
sis: having property (2LI). This property is introduced in this paper for
arbitrary evolution algebras and means that the squares of two differ-
ent elements in any natural basis are linearly independent. When an
evolution algebra satisfies property (2LI), the dimension of A2 must be
at least 2. Obviously, any perfect evolution algebra having dimension
greater than or equal to 2 satisfies this condition. For any natural num-
ber n there exists an n-dimensional evolution algebra A such that A2 has
dimension 2.

One of the main results of the paper is Theorem 2.4, which charac-
terizes when a vector is part of a natural basis. We call such elements
“natural vectors”. These vectors can be discovered just by looking at
the ranges of the squares of the elements “in their support”. Another
important result in the paper is the decomposition of an evolution al-
gebra into extending evolution subspaces (Theorem 2.11); these are, on
the one hand, the annihilator of the evolution algebra, and on the other,
vector subspaces generated by vectors in the natural basis such that their
squares are all linearly dependent. This decomposition depends on the
natural basis, as Example 2.12 shows, but not completely, inasmuch as
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the annihilator and the number of direct summands are always fixed. As
a consequence, a block form for the change of basis matrices is obtained
(Corollary 2.13). We finish the section by providing a condition for a
family of linearly independent and orthogonal vectors in a certain evo-
lution subspace to have the extension property (Proposition 2.16). This
condition will be used to prove that any family of orthogonal natural
vectors can always be extended to a natural basis (Corollary 2.17).

Theorem 3.6 is the most important result in Section 3. It provides
a tool to discover when there exist three elements in an evolution al-
gebra whose product is zero. It happens precisely when the structure
matrix has certain principal minors which are zero. In particular, there
are nilpotent elements of order three if and only if there is a vanishing
principal minor (Corollary 3.8).

Section 4 is devoted to the study of basic ideals and the relationship
among the notions of simple, basic simple, and evolution simple alge-
bra, and proves that every ideal in a perfect evolution algebra is basic
(Proposition 4.2).

Finally, in Section 5 we compare an evolution algebra and the evolu-
tion algebra obtained by transposing the structure matrix of the algebra
(Proposition 5.8). This algebra will be called the adjoint evolution alge-
bra. We recover the decomposition of an evolution algebra given by Tian
when considering persistent and transient elements in a natural basis.
The connexion between this decomposition and the adjoint evolution
algebra is given in Proposition 5.12.

In this paper, K will denote an arbitrary field and the notation K×
will stand for K \ {0}. Also N× = N \ {0}.

An evolution algebra over a field K is a K-algebra A which has a
basis B = {ei}i∈Λ such that eiej = 0 for every i, j ∈ Λ with i 6= j.
Such a basis is called a natural basis. From now on, all the evolution
algebras we will consider will be finite-dimensional and Λ will denote
the set {1, . . . , n}.

Let A be an evolution algebra with a natural basis B = {ei}i∈Λ.
Denote by MB = (ωij)1≤i,j≤n the structure matrix of A relative to B,
then e2

i =
∑

j∈Λ ωjiej .

Let u, v be two elements of A. Write u =
∑

i∈Λ αiei, v =
∑

i∈Λ βiei,
where αi, βi ∈ K. Observe that

uv = MB

α1β1

...
αnβn

 = MB Du

β1

...
βn

 ,

where Du = diag(α1, . . . , αn).
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Definition 1.1. Let A be an evolution algebra, B = {ei}i∈Λ a natural
basis, and u =

∑
i∈Λ αiei an element of A. The support of u relative to B,

denoted by suppB(u), is defined as the set suppB(u) = {i ∈ Λ | αi 6= 0}.
If X ⊆ A, we put suppB(X) = ∪x∈X suppB(x).

Notation 1.2. Let A be an evolution K-algebra. For a subset X ⊆ A we
will use X2 to denote the set {xy | x, y ∈ X} while span(X) will stand
for the K-linear span of X, alg(X) for the subalgebra of A generated
by X, and 〈X〉 for the ideal of A generated by X.

Definition 1.3. The rank of a subset X of an evolution algebra A,
denoted by rk(X), is defined as the dimension (as a vector space)
of span(X).

Example 1.4. The ideal generated by a subset X does not necessarily
coincide with the linear span of X. For an example, let A be a 4-di-
mensional evolution algebra having a natural basis B = {e1, . . . , e4} and
product given by the structure matrix

1 1 0 0
0 0 0 0
0 1 0 1
0 0 1 0

 .

Then span({e1, e2, e3}) 6= 〈{e1, e2, e3}〉 = span{e1, e2, e3, e3
2} = A.

Let A and A′ be algebras over a field K. A K-homomorphism (or
simply homomorphism) will be a K-linear map f : A→ A′. A K-algebra
homomorphism is a homomorphism f : A → A′ which satisfies f(ab) =
f(a)f(b) for every a, b ∈ A. We will denote by HomK(A,A′) and by
Hom(A,A′) the sets of homomorphisms and algebra homomorphisms
respectively from A to A′. When A′ = A, we will talk of endomor-
phisms and algebra endomorphisms respectively, and the corresponding
sets will be denoted by EndK(A) and End(A). Note that HomK(A,A′)
and Hom(A,A′) are K-vector spaces while EndK(A) and End(A) are as-
sociative K-algebras. The subalgebras of EndK(A) and End(A) consisting
of those bijective maps are denoted by AutK(A) and Aut(A).

Note that EndK(A) ⊇ End(A). The following example shows that a
strict containment AutK(A) ⊇ Aut(A) is possible.

Example 1.5. Let A be an evolution algebra having a natural ba-
sis {e1, e2} and product given by e2

1 = e1 + e2 and e2
2 = e2. Then the

linear map ϕ : A → A given by ϕ(ei) = ej for {i, j} = {1, 2} is an au-
tomorphism of vector spaces but it is not an algebra automorphism, as
ϕ(e2

1) = ϕ(e1 + e2) = ϕ(e1) + ϕ(e2) = e2 + e1 6= e2 = ϕ(e1)2.
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Homomorphisms that will be very useful are those preserving natural
bases between the algebra and the image (i.e., those sending any natural
basis to a natural basis of the image), and those preserving the extension
property (i.e., sending any extending natural family to an extending nat-
ural family of the image; see definition below). Not every homomorphism
is so nice.

The following is an example of a linear endomorphism sending a nat-
ural basis into a natural basis but which does not act in the same way
when applied to any natural basis.

Example 1.6. Consider the evolution algebra A with natural basis B =
{e1, e2, e3} and product given by e2

1 = e2
2 = e1 and e2

3 = 0. Let ϕ : A→ A
be the linear map such that ϕ(e1) = e1+e3, ϕ(e2) = 2e2+e3, ϕ(e3) = e3.
Then {ϕ(e1), ϕ(e2), ϕ(e3)} is a natural basis.

Take B′ = {e1 +e2, e1−e2, e3}, which is a natural basis. Then {ϕ(e1 +
e2), ϕ(e1 − e2), ϕ(e3)} = {e1 + 2e2 + 2e3, e1 − 2e2, e3} is not a natural
basis.

In his book [9], Tian talks about evolution homomorphisms between
evolution algebras A and A′ as K-algebra homomorphisms f satisfying
that Im(f) (which turns out to be an evolution algebra) has the extension
property (an evolution subalgebra A′ of an evolution algebra A is said
to have the extension property if there exists a natural basis of A′ which
can be extended to a natural basis of A; this definition was introduced
in [3]). Note that when dealing with K-algebra homomorphisms, the
image of every natural basis is a natural basis of the image. However, not
every algebra homomorphism between evolution algebras is an evolution
homomorphism, as the following example shows.

Example 1.7. Consider the evolution K-algebra A with natural ba-
sis {e1, e2} and product given by: e2

1 = −e2
2 = e1 + e2. Let ϕ : A → A

be the linear map defined by ϕ(e1) = −ϕ(e2) = e1 + e2. Then, it is
easy to see that ϕ is an algebra homomorphism. Moreover, Im(ϕ) =
span({e1 + e2}), which does not have the extension property (see [1,
table on p. 75]).

2. Natural families in an evolution algebra

Let A be an evolution algebra with natural basis B and structure
matrix M . Any automorphism of A maps a natural basis onto a gen-
erator set. The automorphism group of an evolution algebra has been
considered in [5, 7, 9], and also in [6], where the authors determine
the automorphism group of any 2-dimensional evolution algebra over an
arbitrary field.
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Clearly, if we multiply each element of a natural basis B by a nonzero
scalar and reorder the elements, we obtain another natural basis B′ of A.
The corresponding subgroup of the automorphisms group, Sn o (K×)n,
was described in [4] in the case of 3-dimensional evolution algebras and
in [2] for an arbitrary dimension n. Thus, the following definition arises:

Definition 2.1. Let A be an evolution algebra. We say that A has
a unique natural basis if the subgroup of AutK(A) consisting of those
elements that map natural bases into natural bases is Sn o (K×)n.

By [7, Theorem 4.4] every perfect evolution algebra (an algebra A is
said to be perfect if A2 = A) has a unique natural basis.

In this section we characterize when an evolution algebra has a unique
natural basis. For that purpose we have to introduce the definition of the
extending natural family and the natural vector.

Definitions 2.2. Let A be an evolution algebra. Two elements u and v
of an evolution algebra will be called orthogonal if uv = 0. A family of
vectors C is said to be an orthogonal family if uv = 0 for any u, v ∈ C,
with u 6= v.

A family of pairwise orthogonal and linearly independent vectors
{u1, . . . , ur} of A which can be extended to a natural basis of A will
be called an extending natural family. If {u} is an extending natural
family for some u ∈ A, we will say that u is a natural vector.

Remark 2.3. Orthogonality does not imply linear independency, even if
the evolution algebra is nondegenerate. For a simple example, consider a
nonzero element e of an evolution algebra A that satisfies e2 = 0. Then
for every scalar λ, e and λe are orthogonal. For instance, consider an
evolution algebra A with a natural basis {e1, e2} and product given by
e2

1 = e1 +e2 and e2
2 = −e1−e2. Then e1 +e2 and −e1−e2 are orthogonal

and linearly dependent.

The theorem that follows characterizes natural vectors in terms of
their supports.

Theorem 2.4. Let A be an evolution K-algebra with natural basis B =
{ei}i∈Λ and let u ∈ A. Set supp(u) = {i1, . . . , ir}. Then

(i) If u2 6=0, then u is a natural vector if and only if rk({e2
i1
, . . . , e2

ir
})=

1.
(ii) If u2 = 0, then u is a natural vector if and only if e2

i1
= · · · = e2

ir
=

0.
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Proof: Write u =
∑

i αiei, where αi ∈ K.

(i) Since u2 6= 0, dim(ker(MBDu)) ≤ n − 1. Thus u is a natural vector
if and only if dim ker(MBDu) = n− 1. Since supp(u) = {i1, . . . , ir}, we
get

rk(MBDu) = rk({e2
i1 , . . . , e

2
ir}) = 1,

as desired.

(ii) Since u ∈ ker(MBDu), u is a natural vector if and only if MBDu = 0,
that is, e2

i1
= · · · = e2

ir
= 0.

For an evolution algebra A, we recall that the annihilator of A, de-
noted by ann(A), is the ideal of A defined as

ann(A) := {x ∈ A | xa = 0 for any a ∈ A}.

Remark 2.5. In an evolution algebra A a vector u such that u2 = 0 is not
necessarily an element in the annihilator of A. For an example, consider
the evolution algebra having natural basis {e1, e2} and product given
by e2

1 = e1, e2
2 = −e1. Then u = e1 + e2 has zero square but it is not in

the annihilator of the algebra, which is zero.

The equivalences of the three conditions in Definition 2.6 can be ob-
tained from [3, Definition 2.16], [3, Proposition 2.18], and [3, Corol-
lary 2.19].

Definition 2.6. An evolution algebra A is said to be nondegenerate if
it satisfies the following equivalent conditions:

(i) There exists a natural basis B of A such that b2 6= 0 for any b ∈ B.
(ii) Any natural basis B of A satisfies b2 6= 0 for any b ∈ B.
(iii) ann(A) = {0}.

As a corollary of Theorem 2.4, we have a characterization of having
a unique natural basis.

Corollary 2.7. Let A be a nondegenerate evolution algebra over K.
Then the following assertions are equivalent:

(i) A has a unique natural basis.
(ii) There exists a natural basis B such that for any two different vec-

tors u and v of B, u2 and v2 are linearly independent.

Proof: Suppose that (i) holds true and let u, v be two different vectors
of the natural basis B of A. Assume that rk{u2, v2} = 1. Since A is
nondegenerate, we have u2 6= 0; write v2 = βu2 for some nonzero β ∈ K;
since K has strictly more than three elements, we can find α ∈ K such
that α is not a root of the polynomial x2 + 1/β, i.e., 1 + α2β 6= 0.
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Then the element w = u + αv satisfies w2 = (1 + α2β)u2 6= 0 and, by
Theorem 2.4, w is a natural vector. This contradicts the uniqueness of B.
The converse (ii) ⇒ (i) follows immediately from Theorem 2.4.

The definition that follows is a generalization of the notion of prop-
erty (2LI) given in [4, Definition 3.4] for 3-dimensional evolution alge-
bras.

Definition 2.8. Let A be an evolution algebra of dimension n. We say
that A has property (2LI) if for any different vectors ei, ej of a natural
basis the set {e2

i , e
2
j} is linearly independent.

This definition is consistent because it does not depend on the selected
natural basis, as follows from Corollary 2.7.

Example 2.9. For every natural number n there exists an n-dimensional
evolution algebra having property (2LI) such that dimA2 = 2. Let K
be an infinite field and let A be the evolution K-algebra having ba-
sis {e1, . . . , en}, for n > 2, and product given by e2

1 = e1, e2
2 = e2,

e2
i = e1 + ie2, where i ∈ {3, . . . , n}. Then A has property (2LI).

Definitions 2.10. Let A be an evolution algebra. Any (linear) sub-
space E of A generated by an extending natural family will be called
an extending evolution subspace of A. Such a family will be called an
extending natural basis of E. The evolution rank of E is defined by

erk(E) = dim(span{u2
1, . . . , u

2
r}),

where {u1, . . . , ur} is an extending natural basis of E. Note that erk(E)=
dim(E2).

Clearly, erk(E) does not depend on the choice of the extending natural
basis of E.

In [3, Theorem 5.27], natural bases of evolution algebras that admit
a decomposition into a direct sum of ideals were described; in particu-
lar, when the evolution algebra is nondegenerate, this decomposition is
unique.

The theorem that follows gives different information about the evolu-
tion algebra. While in [3] the decomposition is given in terms of ideals,
this one is finer, insofar as it provides more internal information. For ex-
ample, if we consider the 3-dimensional evolution algebra A with natural
basis {u1, u2, u3} and product given by u2

1 = u1 + u2, u2
2 = −u1 − u2,

u2
3 = u1 +u2 +u3, then A is irreducible, while the new decomposition is

as follows:

A = span{u1, u2} ⊕ span{u3}.
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In this case, span{u1, u2} is an evolution ideal of A, while span{u3} is
merely a subspace.

Theorem 2.11. Let A be an evolution algebra. Then

A = ann(A)⊕ E1 ⊕ · · · ⊕ Er,

where E1, . . . , Er are extending evolution subspaces of A satisfying
erk(Ei)=1 for all i and if i 6= j, EiEj = 0, dim(E2

i +E2
j ) = 2. Moreover,

if A is nondegenerate, the decomposition is unique.

Proof: Let B be a natural basis of A. Taking into account that the
annihilator of A is the subalgebra of A generated, as a vector space,
by those elements in any natural basis whose square is zero (see [3,
Proposition 2.18(i)]), we can write B as B = B0 ∪ B1 ∪ · · · ∪ Br, where
B0 is a basis of ann(A),

dim(span{e2 | e ∈ Bi}) = 1, for all i ≥ 1

and

dim(span{u2, v2}) = 2 if u ∈ Bi, v ∈ Bj

for all i 6= j with 1 ≤ i, j ≤ r. Now let Ei be the vector subspace
generated by Bi, which is an extending evolution subspace, and then we
get the desired decomposition.

Next suppose that A is nondegenerate and let us show that the above
decomposition is unique. Write

A = E′1 ⊕ · · · ⊕ E′s,

where E′1, . . . , E
′
s are extending evolution subspaces of A satisfying

erk(E′i) = 1; E′i E
′
j = 0 and dim((E′i)

2 + (E′j)
2) = 2, for all i, j be-

ing i 6= j. Fix t ∈ {1, . . . , s} and let B′ be an extending natural basis
of E′t. Let u ∈ B′ with supp(u) = {i1, . . . , ik}. Since u2 6= 0, by Theo-
rem 2.4, dim(span{e2

i1
, . . . , e2

ik
}) = 1. By the above construction, there

exists jt such that {ei1 , . . . , eik} ⊆ Ejt . Since erk(E′t) = 1, and A is non-
degenerate, we must have B′ ⊆ Ejt . This implies that E′t ⊆ Ejt . Since
dim((E′t)

2 + (E′k)2) = 2 for t 6= k, we infer that jt 6= jk. A classical
argument shows that r = s and E′t = Ejt for all t.

The following example shows that the above decomposition depends
on the natural basis.

Example 2.12. Let A be the evolution algebra with natural basis
{e1, e2, e3} and product defined by

e2
1 = 0, e2

2 = e2, and e2
3 = e3.
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Then {e1, e1 + e2, e3} is a natural basis and the two bases generate dif-
ferent decompositions for A in the sense of Theorem 2.11:

A = Ke1 ⊕Ke2 ⊕Ke3 = Ke1 ⊕K(e1 + e2)⊕Ke3.

Corollary 2.13. Let A be an evolution algebra and let B = B0 ∪ B1 ∪
· · · ∪ Br and B′ = B′0 ∪ B′1 ∪ · · · ∪ B′r be two natural bases of A given
by two decompositions as in Theorem 2.11, where B0 and B′0 are bases
of ann(A). Then, we can reorder the elements of B and B′ so that the
change of basis matrix has the following block form:

∗ ∗ ∗ . . . ∗
0 ∗ 0 . . . 0
0 0 ∗ . . . 0
...

...
...

. . . 0
0 0 0 . . . ∗

 .

Remark 2.14. The block form above means that the change of basis
matrix sends the elements of B0 to the linear span of the elements of B′0
and, in general, the elements of Bi are sent to the linear span of the
elements of B′0 ∪B′i.

Remark 2.15. The block form in Corollary 2.13 appears in [8, Corol-
lary 3.6] for nilpotent evolution algebras.

Proposition 2.16. Let A be an evolution algebra and let E be an ex-
tending evolution subspace of A with evolution rank one and such that
E ∩ ann(A) = {0}. Let C be a linearly independent orthogonal family
of E. Then C can be extended to a natural basis of E, which can be
extended to a natural basis of A, if and only if u2 6= 0 for all u ∈ C.

Proof: Let B = {e1, . . . , er} be an extending natural basis of E and let
B′ ⊆ A be such thatBtB′ is a natural basis ofA. For every i ∈ {1, . . . , r}
there exists λi ∈ K× such that e2

i = λie
2
1. The reason for λi 6= 0 is that

E ∩ ann(A) = {0} and [3, Proposition 2.18(i)]. Consider the bilinear
form b defined in E by

b

( r∑
i=1

αiei,

r∑
i=1

βiei

)
=

r∑
i=1

λiαiβi, αi, βi ∈ K.

Note that b is symmetric, nondegenerate, and uv=b(u, v)e2
1 for all u, v ∈

E. Suppose that u2 6= 0 for all u ∈ C. Set V = span(C) and b′ = b|V .
We are going to prove that b′ is nondegenerate. Suppose that b′(v, .) = 0
for some v ∈ V . Then vu = 0 for all u ∈ C. Write v =

∑s
i=1 αiui, where

ui ∈ C; then αiu
2
i = 0 for all i. This implies that v = 0. Whence b′ is
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nondegenerate and we have V ⊕ V ⊥ = E. Therefore C can be extended
to an orthogonal basis C ′ of E. Note that C ′tB′ is a natural basis of A
and C ′ is a natural basis of E. The converse is obvious.

A consequence of Proposition 2.16 follows.

Corollary 2.17. Let A be a nondegenerate evolution algebra and let
B′ = {u1, . . . , ur} be a family of orthogonal vectors such that ui is a
natural vector of A for every i. Then B′ can be extended to a natural
basis of A.

Proof: By Theorem 2.11 we get a (unique) decomposition A = A1⊕· · ·⊕
As. Take u ∈ B′. Observe that u2 6= 0 since u is a natural vector and
A is nondegenerate. By Theorem 2.4(i), there exists i ∈ {1, . . . , s} such
that u ∈ Ai. This provides a decomposition B′ = ∪ti=1Bi, with Bi ⊆ Ai.
Since B′ is linearly independent (because u2 6= 0 for each u ∈ B′ and
the elements of B′ are orthogonal), each Bi is a linearly independent
orthogonal family of Ai. By Proposition 2.16, Bi can be extended to a
natural basis of Ai. Therefore, B′ = ∪ti=1Bi can be extended to a natural
basis of A, as required.

3. Orthogonal elements and nil elements in an evolution
algebra

Let A be an evolution algebra over K. For every natural number k
and a ∈ A, we write a1 = a and ak = aak−1. Moreover, we denote

A1 = A〈1〉 = A, Ak+1 =
∑k

i=1A
iAk+1−i, and A〈k+1〉 = A〈k〉A. The

algebra A is said to be nilpotent if Ak = 0 for some k and it is said to
be right nilpotent if A〈k〉 = 0 for some k. An element a of A is said to
be nil if there exists k ∈ N× such that ak = 0 and the algebra A will be
called nil if every element is nil.

Remark 3.1. Let A be an evolution algebra.

(i) Then A is nilpotent if and only if A is right nilpotent if and only
if A is nil, if and only if there exists a basis B in A such that MB

is strictly upper triangular. To see this, use that a commutative
algebra is nilpotent if and only if it is right nilpotent (this was
shown in [12]). On the other hand, the equivalence among the
other three conditions is proved in [5, Theorem 2.7].

(ii) Assume A nilpotent with dimension n. Then, MB being strictly
upper triangular (for some natural basis B) implies A〈n+1〉 = 0.

(iii) The evolution algebra A is right nilpotent of order k, i.e., A〈k〉 = 0,
if and only if every natural basis B can be reordered in such a way
that MB is strictly upper triangular, and the row i is equal to zero
for every i ≥ k − 1. The case k = 3 yields a nice characterization.
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Lemma 3.2. Let A be an n-dimensional evolution algebra and B a
natural basis. Then A3 = 0 if and only if for every i ∈ {1, . . . , n} either
the i-th row of the matrix MB is zero or the i-th column is zero. More
specifically, if the dimension of ann(A) = r, then we may reorder the
basis B so that every row from the (r + 1)-th to the last one in MB is
zero.

Proof: Note thatA3 = 0 impliesA2 ⊆ ann(A). Take this into account for
the rest of the proof. The first statement follows from (iii) in Remark 3.1.
To prove the second assertion, we reorder B in such a way that the first
r-elements in B are in the annihilator of A.

Let A be an evolution algebra. Put ann1(A) = ann(A) and for i ≥ 2,
denote by anni(A) the set

anni(A) = span{e ∈ B | e2 ∈ anni−1(A)}.
If A is nilpotent, then there exists an integer r such that A = annr(A).
Let r be the lowest natural number satisfying this equality. Put n1 =
dim(ann(A)) and

ni = dim
(
anni(A)/(anni−1(A))

)
= dim(anni(A))− dim(anni−1(A)).

The type of the nilpotent algebra A, given in [8], is the ordered se-
quence [n1, . . . , nr].

Observe that, if A is nilpotent of type [n1, . . . , nr], then the index of
right nilpotency is exactly r + 1. This follows taking into account the
chain of annihilators that follows, which is strict and stabilizes:

ann1(A) ⊆ · · · ⊆ annr(A) = A.

Thus, a nilpotent evolution algebra for which the right index of nilpo-
tency is the highest possible must have type [1, . . . , 1].

Remark 3.3. It is well known that a degenerate evolution algebra may
not have a unique natural basis. Indeed, one may easily construct differ-
ent natural bases by using elements of the annihilator (see for instance
Corollary 2.13).

Even if A〈n+1〉 = 0 we cannot assure that A/ ann(A) has a unique
basis. For an example, take A with natural basis {e1, e2, e3} such that
e2

1 = 0, e2
2 = e1, e2

3 = e1 + e2. Then A〈4〉 = 0; moreover, {e2, e3} and
{e2, e2 + e3} are natural bases of A/ ann(A), so this algebra does not
have a unique natural basis. Note that this algebra has type [1, . . . , 1].

There exist similar examples for different types: let A be a nilpotent
evolution algebra having type [1, n2, . . . , nr] with n2 ≥ 2; then A/ ann(A)
does not have a unique basis. Indeed, let B be a natural basis of A and
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let e, f be two elements of B ∩ ann2(A) such that e and f are linearly
independent elements of A/ ann(A). Then, e2, f2 lie in ann(A) and
are linearly dependent. By Theorem 2.4, the vector e+ f is natural
in A/ ann(A).

It is well known and easy to see that the index of nilpotency is in
general greater than the order of right nilpotency in an algebra. Indeed,
the index of nilpotency depends also on the index of solvability. Recall
that for an algebra A the solvable subalgebras are defined by A[1] =
A and A[k+1] = A[k]A[k]. Next we provide an example of a nilpotent
evolution algebra A such that A3 6= A[2].

Example 3.4. Let A be an evolution algebra of dimension 4 and natural
basis {e1, . . . , e4}. Define the product in A by the relations

e2
1 = −e2

2 = e4, e2
3 = e1 + e2, e2

4 = 0.

Then it is straightforward to check that A[2] = A2 = span{e1 + e2, e4},
A3 = span{e4}, and that A〈4〉 = {0}.

On the other hand, it was shown in [4] that the number of nonzero
entries of the structure matrix can characterize the evolution algebra
when it is perfect, equivalently, when the structure matrix is nonsingular.
Next we will investigate a possible generalization, the property of having
vanishing minors for the structure matrix.

Denote by MB the structure matrix of A relative to a natural basis B.
It is easy to see that MB is singular if and only if there exist nontrivial
orthogonal elements in A. This is also equivalent to the existence of
u, v ∈ A such that supp(u) = supp(v) and uv = 0. One can also check
that if K is algebraically closed, the structure matrix MB of A is singular
if and only if there exists u ∈ A such that u2 = 0 (see [5]). We will be
more precise in Theorem 3.6. First, we introduce the following notation.

Notation 3.5. Let A be an evolution algebra with natural basis B =
{ei}i∈Λ and structure matrix MB = (ωij). Take Γ,Ω ⊆ Λ.

(a) Assume |Γ| ≥ |Ω|; for any ∆ ⊆ Γ with |∆| = |Ω|, we denote by
M∆ = (wij), where i ∈ ∆ and j ∈ Ω.

(b) Assume |Γ| ≤ |Ω|; for any ∆ ⊆ Ω with |∆| = |Γ|, we denote by
M∆ = (wij), where i ∈ Γ and j ∈ ∆.

Theorem 3.6. Let A be a finite-dimensional perfect evolution alge-
bra over a field K having a natural basis B = {ei}i∈Λ, and denote
by MB = (ωij) the structure matrix of A relative to B. Then the follow-
ing assertions are equivalent:
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(i) There exist u, v, w ∈ A such that u(vw) = 0, where Γ := supp(u)
and Ω := supp(v) = supp(w).

(ii) There exist Γ,Ω ⊆ Λ such that |M∆| = 0 for every ∆, as in Nota-
tion 3.5.

Proof: Suppose that (i) holds. To prove (ii) set

u =
∑
i∈Γ

αiei, v =
∑
i∈Ω

βiei, w =
∑
i∈Ω

γiei.

Then
u(vw) =

∑
k∈Γ

∑
i∈Ω

αkβiγiwkie
2
k = 0.

But MB is nonsingular and αk 6= 0 for every k ∈ Γ. Hence, for all k ∈ Γ
we have

∑
i∈Ω βiγiwki = 0. Since βiγi 6= 0 for every i ∈ Ω, we have

|M∆| = 0 for every ∆ as in (a) or (b) in Notation 3.5.
Next, to prove that (ii) implies (i), suppose that there exist Γ,Ω ⊆ Λ,

with |Γ| ≥ |Ω| such that |M∆| = 0 for every ∆, as in the statement. Then
there exist scalars αj ∈ K \ {0} such that

∑
j∈Ω αjwkj = 0 for all k ∈ Γ

(if αj = 0 for some j, then we change the set Ω by eliminating ej).
Therefore, we infer that ∑

k∈Γ

∑
j∈Ω

αjwkje
2
k = 0.

This implies that ∑
t∈Γ

et

( n∑
k=1

∑
j∈Ω

αjwkjek

)
= 0,

that is, (∑
t∈Γ

et

)(∑
j∈Ω

αje
2
j

)
= 0.

The conclusion follows by considering u=
∑

t∈Γet, v=
∑

j∈Ωαjej , and

w =
∑

j∈Ω ej .

If |Γ| ≤ |Ω| we proceed in a similar way.

If A is not perfect, then the result is not true, as shown in the example
that follows.

Example 3.7. Consider a 2-dimensional evolution algebra A with a
basis B = {e1, e2} and product given by e2

i = e1 + e2 for i = 1, 2. Then
the elements u = e1 − e2, v = w = e1 satisfy that u(vw) = 0. Note
that in this case Γ = {1, 2}, Ω = {1}, and for every possible ∆ we have
M∆ = (1), which has nonzero determinant.
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Corollary 3.8. Let A be a perfect evolution algebra over a field K having
a natural basis B = {ei}i∈Λ and structure matrix MB = (ωij). Consider
the statements:

(i) There exists u ∈ A such that u3 = 0.
(ii) MB has a vanishing principal minor.

Then (i) implies (ii). If any element in K is a square, then (ii) im-
plies (i).

Proof: Take a nonzero u ∈ A and denote by Γ the support of u relative
to B. Write u =

∑
j∈Γ

αjej ; then u2 =
∑
j∈Γ

α2
je

2
j =

∑
k∈Λ

(∑
j∈Γ

α2
jωkj

)
ek and

u3 =
(∑
l∈Γ

αlel
)( ∑

k∈Λ

(∑
j∈Γ

α2
jωkj

)
ek
)

=
∑
k∈Γ

αk

(∑
j∈Γ

α2
jωkj

)
e2
k.

(i) ⇒ (ii). Assume u3 = 0. Then, taking into account the previous com-
putation and that {e2

i }i∈Λ is a linearly independent set (because the
algebra A is perfect) we have

∑
j∈Γ

α2
jωkj = 0 for each k∈Γ. If we inter-

preted (α2
j ) as the nontrivial solution of a linear system having matrix

of coefficients (ωkj)k,j∈Γ, then the determinant of this matrix has to be
zero. This proves (ii).

(ii) ⇒ (i). Now we suppose that every element in K is a square. Let
M∆ = (ωij), where i, j ∈ Γ ⊆ Λ, such that |M∆| = |(ωij)| = 0. This
determinant being zero implies that the vectors

{∑
k∈Γ ωkjek | j ∈ Γ

}
are linearly dependent, and therefore there exist {βj ∈ K | j ∈ Γ}, where
some βj is nonzero, such that

∑
j∈Γ βj

(∑
k∈Γ ωkjek

)
= 0. Since {ek |

k ∈ Γ} are linearly independent, then
∑

j∈Γ βjωkj = 0 for every k ∈ Γ.

Take αj ∈K such that α2
j =βj . For u =

∑
j∈Γ αjej , use the computa-

tions we did above to see that

u3 =
∑
k∈Γ

αk

(∑
j∈Γ

α2
jωkj

)
e2
k =

∑
k∈Γ

αk

(∑
j∈Γ

βjωkj

)
e2
k,

which is zero.

4. Ideals in perfect evolution algebras

Simple evolution algebras were thoroughly investigated in [2, 3], and
in [11]. In particular, it was shown in [3] that a finite-dimensional evolu-
tion algebra A is simple if and only if the structure matrix of A relative
to any basis B is nonsingular and B cannot be reordered in such a way
that the corresponding structure matrix has the following block form(

W U
0 Y

)
.
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Following [2, Definitions 2.1], we say that an ideal I of an evolution
algebra A with a natural basis B is a basic ideal relative to B if I has a
natural basis consisting of vectors from B. If A has no nonzero proper
basic ideals relative to any natural basis B, then we say that A is basic
simple. If this happens, then A does not contain a proper evolution
subalgebra having the extension property. When the algebra A is perfect,
then an ideal I is a basic ideal relative to a basis if and only if it is a
basic ideal relative to any natural basis of A (see [2, Lemma 2.3]). In
this case we simply say that I is a basic ideal.

Next we compare the notions of simplicity and basic simplicity. The
use of the support is fundamental to prove the results that follow.

Example 4.1. This is an example of an evolution algebra which is basic
simple but not simple. Let A be the 2-dimensional evolution algebra with
natural basis {e1, e2} and product given by e2

1 = −e2
2 = e1 + e2. Then,

the only proper ideal of A is the one generated by e1 + e2, which is not
a natural vector by Theorem 2.4(ii).

Proposition 4.2. Suppose that A is a perfect evolution algebra. Then
every nonzero ideal is a basic ideal.

Proof: Let B = {e1, . . . , en} be a natural basis of A. Let J be an
ideal of A and let u ∈ J . If i ∈ supp(u), then eiu ∈ J ; this implies
e2
i ∈ J . Now we prove that ei ∈ J . Let supp(J) = {i1, . . . , is} and

write e2
ij

=
∑s

k=1 akjeik . We claim that the determinant of the ma-

trix (akj) is different from zero because A2 = A implies that {e2
1, . . . , e

2
n}

is a linearly independent set; in particular, {e2
i1
, . . . , e2

is
} is linearly in-

dependent. Therefore eij ∈ span({e2
i1
, . . . , e2

is
}) ⊆ J . In other words,

J = span({ej | j ∈ supp(J)}), which means that it is a basic ideal.

Remark 4.3. The statement “A is simple if and only if A is basic simple”
(for A perfect) was proved in [2, Proposition 2.7] and also follows from
[3, Corollary 4.6].

Next we provide two examples which show that when the algebra A
is not perfect, the three kinds of simplicity (basic simple relative to a
natural basis, simple, and basic simple) are different.

Example 4.4. Let A be a 3-dimensional evolution algebra over a field K
and assume that the structure matrix of A relative to a natural basis B is

MB =

0 1 1
1 0 1
1 1 2

 .
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Then A is not perfect, as A2 has dimension 2. It can be proved, with
some computations, that A2 does not have a natural basis. On the other
hand, it is easy to check that A is basic simple relative to B. Since A
has a unique natural basis, A is basic simple. However, A is not simple
since MB is singular (has zero determinant). Moreover, if K has charac-
teristic 5, then it can be proved that A2 does not have a natural basis.
The reason is that A2 is an evolution algebra if and only if the polyno-
mial x2 + 3x+ 1 has two distinct roots in K, and this happens under the
assumption of having characteristic 5.

Example 4.5. Let A be the 3-dimensional evolution algebra with nat-
ural basis B = {e1, e2, e3} and assume that its structure matrix with
respect to B is

MB =

1 1 2
1 1 2
1 1 2

 .

It is easy to check that A is basic simple with respect to B. Now observe
that B′ = {e1 + e2, e1− e2, e3} is a natural basis of A; the corresponding
structure matrix is

MB′ =

2 2 2
0 0 0
2 2 2

 .

Moreover, the ideal 〈{e1 + e2, e3}〉 is basic relative to B′. In particular,
A is not basic simple.

5. Algebraically persistent elements

The notions of algebraically persistent generators and algebraically
transient generators of an evolution algebra were defined in [9, p. 42].
Here we shall deal with persistent and transient generators with respect
to a basis. Let B = {ei}i∈Λ be a natural basis. We say that ei is alge-
braically persistent relative to B if the evolution subalgebra it generates
is basic simple and has the extension property relative to B, i.e., it has
a natural basis consisting of vectors of B. Otherwise, ei is said to be
algebraically transient relative to B. These elements give rise to a de-
composition which may help in analyzing the dynamic behavior of the
evolution algebra, if we consider its hierarchical decomposition [9, 10].

We have to be careful with the concept of algebraic transiency and
persistency and the decomposition given in [9]. The examples that follow
clarify in which sense.
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Examples 5.1. A natural vector can generate a nonsimple evolution
subalgebra. Take the evolution algebra A with natural basis {e1, e2, e3}
and product given by e2

1 = e2
3 = e1 + e2; e2

2 = −e1 − e2. The subalgebra
generated by e1 is Ke1 + Ke2, which is not simple as e1 + e2 generates
the ideal K(e1 + e2).

A natural vector can generate a simple evolution subalgebra not hav-
ing the extension property. Consider A as the evolution algebra having a
natural basis {e1, e2, e3} and product given by e2

1 = e2 +e3; e2
2 = e2−e3;

e2
3 = e1−e2+e3. Then the subalgebra generated by e1 is Ke1⊕K(e2+e3),

which is an evolution subalgebra, simple as an algebra, and not having
the extension property.

Example 5.2. Consider the 4-dimensional evolution algebra A with
basis {e1, . . . , e4} such that

e2
1 = e2 + e3 + e4, e2

2 = e1, e2
3 = e2

4 = −1/2 e1.

Then the linear subspaces span{e1, e2, e3 + e4} and span{e1, e3, e2 + e4}
can both be seen as evolution subalgebras having the extension property,
containing e1, and having minimal dimension. Observe that they are
both basic simple.

Next we provide an example showing that the number of transient
elements in a natural basis depends on the natural basis itself.

Example 5.3. Let A be the evolution algebra with natural basis B =
{e1, e2, e3} and structure matrix with respect to B given by

MB =

1 1 1
1 1 1
1 1 0

 .

Then, it is easy to see that B′ = {e1 + e2, e1 − e2, e3} is also a natural
basis of A and the corresponding structure matrix is

MB′ =

2 2 1
0 0 0
2 2 0

 .

Observe that e1, e2, e3 are algebraically transient relative to B, while
e1−e2 is algebraically transient relative to B′, and e1+e2 and e3 are alge-
braically persistent relative to B′. Note that the number of algebraically
persistent/transient elements depends on the natural basis.

On the other hand, observe that, in the sense of [9], e1, e2, and
e1− e2 are algebraically transient, while e1 + e2 and e3 are algebraically
persistent. In particular, e1 + e2 is an element of the algebra generated
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by e3, hence if E is the linear space spanned by transient elements of B,
it intersects the algebra generated by the persistent element e3.

Remark 5.4. An evolution subalgebra/ideal of an evolution algebra A
can have the extension property relative to a natural basis of A but not
relative to any natural basis of A. For an example, consider the evolution
algebra A in Example 5.3 and the ideal I generated by e3. A natural basis
of I is C = {e3, e1 + e2}, which does not have the extension property
relative to B = {e1, e2, e3}, while C has the extension property relative
to B′ = {e1 + e2, e1 − e2, e3}.

Let A be an evolution algebra. Recall that an evolution subalgebra
is a subalgebra with a natural basis. An evolution algebra is said to be
irreducible if it cannot be written in the form A = A1⊕A2, where A1 and
A2 are two proper evolution subalgebras, equivalently evolution ideals,
equivalently ideals (see [3, Lemma 5.2]).

Now we recall the decomposition given by Tian in [9, Theorem 11].
Let A be an irreducible evolution algebra. The notation A′+̇E will be
used for the direct sum of a subalgebra A′ and a vector subspace E
of A. Assume that B = {ei}i∈Λ is a natural basis. Then we classify
elements in B as algebraically persistent and algebraically transient (rel-
ative to B). We have

(1) A = A1 ⊕ · · · ⊕An +̇ E,

where each Ai is a simple evolution subalgebra of A having the extension
property relative to B (i.e., Ai is generated by a persistent element of B),
and E is the subspace spanned by the algebraically transient generators
(relative to B). Since we are dealing with transiency and persistency
with respect to the basis B, it is clear in our case that E ∩ (A1 ⊕ · · · ⊕
An) = {0}. Note that the basis B is the union of suitable bases of E and
the Ai’s. The linear space E is called the 0th transient space of A. The
decomposition depends on the basis, so it is not in general unique (see
for instance Example 5.3). This provides a decomposition of A which
is called the 0th decomposition of A. By considering E as an evolution
algebra we may repeat the process and find the 0th decomposition of E.
The resulting decomposition is called the 1st decomposition of A. An
induction process associates a hierarchy with A (see [9, p. 46] and [10]).

Recall the following definitions from [3]. Let A be an evolution algebra
with natural basis {ei}i∈Λ. Put

D1(i) = supp(e2
i ); and for k ≥ 2, Dk(i) = supp({e2

j | ej ∈Dk−1(i)}).

The elements of Dk(i) are called the kth-generation descendants of i.
We will refer to D(i) = ∪k∈N×Dk(i) as the set of descendants of i.
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Remark 5.5. Suppose that A has a unique natural basis B and let E
be an evolution subalgebra of A having the extension property. Then
E = span({ei | i ∈ supp(E)}). In particular, the evolution subal-
gebra having the extension property generated by ej ∈ B is equal to
span({ei | i ∈ D(j) ∪ {j}}). Thus, if ej is algebraically persistent, then
ei is algebraically persistent for all i ∈ D(j). This result can be applied
to any of the subalgebras A0

i appearing in (1).
The hypothesis of having a unique natural basis cannot be ruled out.

For an example, consider Example 5.3. It happens that 1, 2 ∈ D(3) but
the subalgebra generated by e3 contains neither e1 nor e2.

Given an evolution algebra with natural basis B, we may define the as-
cendents of any element of B, in an analogous way. The transpose M t

B

of the structure matrix MB provides direct information about the as-
cendents of any element of B. The mathematical study of the structure
matrix and its transpose may shed new light on the classification of
finite-dimensional evolution algebras. In particular, it may help if we
compare different natural bases since properties of the first generation
of descendants or ascendents may depend on the natural basis (see for
instance Example 5.3).

Definition 5.6. Let A be an evolution algebra with natural basis B =
{ei}i∈Λ and let MB be its structure matrix. The adjoint algebra of A
relative to a basis B, denoted by A∗B , is the evolution algebra with
natural basis B and structure matrix M t

B , the transpose of MB . The
definition strongly depends on the basis.

Lemma 5.7. Let A be an evolution algebra with natural basis B, and let
B′ be a natural basis obtained by changing the order of elements of B.
Then A∗B and A∗B′ correspond to the same evolution algebra.

Proof: It follows from [2, p. 156] that there exists P ∈ Sn such that

MB′ = P−1MBP
(2) = P−1MBP.

Thus

M t
B′ = P tM t

B(P t)−1 = P tM t
B((P t)−1)(2).

By the change of basis formula for evolution algebras [9, p. 30], we deduce
the desired result.

By a careful observation of the structure matrix of an evolution alge-
bra and its transpose, we get the following.
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Proposition 5.8. Let A be an evolution algebra and let B be a natural
basis. Then

(i) If B′ ⊆ B and span(B′) is an evolution subalgebra of A, then
span(B \B′) is an evolution subalgebra of A∗B.

(ii) A is simple if and only if A∗B is simple.
(iii) A is basic simple if and only if A∗B is basic simple.
(iv) A is nilpotent if and only if A∗B is nilpotent.

Proof: It is straightforward if we apply the characterization of the struc-
ture matrix of the algebra in each case. Thus (i) and (iii) are immedi-
ate. For (ii), use [3, Corollary 4.6] and observe first that both A and
A∗B have nonsingular structure matrices. By Lemma 5.7, we get the
same adjoint if we change the order of the elements of B. Thus we may
reorganize B and write the structure matrix of A in the following form:(

W U
0 Y

)
.

Once again we reorganize the basis and obtain the desired form for A∗B .
For (iv) we argue analogously and apply [8, Corollary 3.6] and Lem-
ma 5.7.

Example 5.9. A having a unique natural basis is not equivalent to A∗B
having a unique natural basis. For an example, just take the following
structure matrix and its transpose:1 1 2

1 1 4
1 1 7

 .

Then A∗B has a unique natural basis since it satisfies property (2LI)
while A does not because the first and the second column are linearly
dependent, hence A does not satisfy property (2LI).

A natural question for an evolution algebra which does not have a
unique basis is: What is the best natural basis for revealing the structure
of the algebra? The property of the adjoint may help in the choice of
the best basis. It seems that degeneracy of the adjoint is one of the key
differences between different natural bases.

Next we focus on degenerate elements of the adjoint algebra.

Lemma 5.10. Let A be an evolution algebra with natural basis B. Then

ann(A∗B) = span({ei ∈ B | i 6∈ D(j) for all j}).
Moreover, A2 · ann(A∗B) = {0}, where · denotes the product in the alge-
bra A.
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Proof: If ei ∈ ann(A∗B), then the row i is equal to zero. Thus i cannot
be a descendant of any j. The converse is immediate.

Next put B = {e1, . . . , er, er+1, . . . , en} and suppose that ann(A∗B) =
span{e1, . . . , er}. Then A2 ⊆ span{er+1, . . . , en} and therefore A2ej =
{0} for every 1 ≤ j ≤ r. This implies that A2u = {0}, for every u ∈
ann(A∗B), as desired.

Remark 5.11. Let A be an evolution algebra satisfying A3 = {0}. Then
it follows from Lemma 3.2 that for every natural basis B of A, B =
ann(A) ∪ ann(A∗B).

Proposition 5.12. Let A be an irreducible evolution algebra. Suppose
that there is a natural basis B of A such that ann(A∗B) 6= {0}. Then
the linear space ann(A∗B) is generated by algebraically transient elements
of A. Moreover, there exists a 0th decomposition of A such that ann(A∗B)
is contained in the 0th-transient space of A.

Proof: LetB={u1, . . . , ur, ur+1, . . . , un}. SinceA is irreducible, ann(A)∩
ann(A∗B) = {0}. Suppose that ann(A∗B) = span{u1, . . . , ur}. Then the
structure matrix of A∗B has the following block form:(

0 ∗
0 ∗

)
.

Thus, the structure matrix of A with respect to B has the following
block form: (

0 0
∗ G

)
.

In particular, observe that A is not basic simple. Next let i ∈ {1, . . . , r}.
Then ui 6∈ alg(u2

i ), the subalgebra of A generated by u2
i . But u2

i 6= 0 and
alg(u2

i ) ⊆ span{ur+1, . . . , un}, hence ui must be algebraically transient.
Consider the evolution algebra A′ corresponding to the structure ma-
trix G. Then, by considering the 0th decomposition of all the irreducible
subalgebras of A′ having the extension property, we may write

A′ = A0
1 ⊕ · · · ⊕A0

s +̇ E′0,

where E′0 is a linear space spanned by transient elements of A′. Then
the 0th transient space of A is E0 = ann(A∗B) + E′0, and

A = A0
1 ⊕ · · · ⊕A0

s +̇ E′0 +̇ ann(A∗B).
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