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A B S T R A C T

Word spotting can be defined as the pattern recognition tasked aimed at
locating and retrieving a specific keyword within a document image collec-
tion without explicitly transcribing the whole corpus. Its use is particularly
interesting when applied in scenarios where Optical Character Recognition
performs poorly or can not be used at all. This thesis focuses on such a
scenario, word spotting on historical handwritten documents that have been
written by a single author or by multiple authors with a similar calligraphy.
This problem requires a visual signature that is robust to image artifacts,
flexible to accommodate script variations and efficient to retrieve informa-
tion in a rapid manner. For this, we have developed a set of word spotting
methods that on their foundation use the well known Bag-of-Visual-Words
(BoVW) representation. This representation has gained popularity among
the document image analysis community to characterize handwritten words
in unsupervised manner. However, most approaches on this field rely on
a basic BoVW configuration and disregard complex encoding and spatial
representations. We determine which BoVW configurations provide the best
performance boost to the spotting system.

Then, we extend the segmentation-based word spotting, where word candi-
dates are given a priori, to segmentation-free spotting. The proposed approach
seeds the document images with overlapping word location candidates and
characterizes them with a BoVW signature. Retrieval is achieved comparing
the query and candidate signatures and returning the locations that provide
a higher consensus. This is a simple but powerful approach that requires
a more compact signature than in a segmentation-based scenario. We first
project the BoVW signature into a reduced semantic topics space and then
compress it further using Product Quantizers. The resulting signature only
requires a few dozen bytes, allowing us to index thousands of pages on
a common desktop computer. The final system still yields a performance
comparable to the state-of-the-art despite all the information loss during the
compression phases.

We also study how to combine different modalities of information in
order to create a query-by-X spotting system where, words are indexed
using an information modality and queries are retrieved using another. We
consider three different information modalities: visual, textual and audio.
Our proposal is to create a latent feature space where features which are
semantically related are projected onto the same topics. Creating thus a new
feature space where information from different modalities can be compared.

The codebooks used to encode the BoVW signatures are usually created
using an unsupervised clustering algorithm and, they require to test multiple
parameters to determine which configuration is best for a certain document
collection. We propose a semantic clustering algorithm which allows to
estimate the best parameter from data. Since gather annotated data is costly,
we use synthetically generated word images. The resulting codebook is
database agnostic, i. e.a codebook that yields a good performance on document
collections that use the same script. We also propose the use of an additional
codebook to approximate descriptors and reduce the descriptor encoding
complexity to sub-linear.
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Finally, we focus on the problem of signatures dimensionality. We propose
a new symbol probability signature where each bin represents the probability
that a certain symbol is present a certain location of the word image. This
signature is extremely compact and combined with compression techniques
can represent word images with just a few bytes per signature.
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R E S U M

La localització de paraules en el camp de anàlisis de documents es pot
definir com el reconeixement de patrons encarregat de localitzar i recuperar
una paraula específica dins d’una col·lecció d’imatges sense transcriure
explícitament el corpus sencer. El seu ús és particularment interessant quan
s’aplica a escenaris on el reconeixement òptic de caràcters funciona malament
o no es pot utilitzar en absolut. Aquesta tesi se centra en un escenari d’aquest
tipus, detectar paraules en documents manuscrits històrics que han estat
escrits per un sol autor o per diversos autors amb una cal·ligrafia similar.
Aquest problema requereix d’una signatura visual que sigui robusta contra
artefactes de les imatges, flexible per adaptar-se a les variacions del traç i que
sigui eficient per recuperar la informació de manera ràpida. Per a això, hem
desenvolupat un conjunt de mètodes de localització de paraules que, en la
seva base, utilitzen la coneguda representació Bag-of-Visual-Words (BoVW).
Aquesta representació ha guanyat popularitat entre la comunitat d’anàlisi
d’imatges de documents per caracteritzar paraules manuscrites en tasques no
supervisades. Tanmateix, la majoria d’enfocaments en aquest camp es basen
en una configuració bàsica de BoVW i ignoren les codificacions complexes i
les representacions espacials. Determinem quines configuracions de BoVW
proporcionen el millor increment de rendiment.

A continuació, estenem la localització de paraules de sistemes on aque-
stes estan pre-segmentades a un on no utilitzem cap tipus de segmentació.
L’enfocament proposat selecciona regions sobreposades del document com
a candidates i les caracteritza amb una signatura BoVW. La localització
s’aconsegueix comparant la imatge de consulta amb les signatures dels can-
didats i retornant les ubicacions que tenen un consens més alt. Aquest és
un enfocament senzill però potent que requereix una signatura compacta.
Primer projectem la signatura BoVW en un espai de temes semàntics i de-
sprés la comprimim encara més mitjançant un producte de quantificadors.
La signatura resultant requereix només unes dotzenes de bytes, cosa que ens
permet indexar milers de pàgines en un ordinador de sobretaula estàndard.

També estudiem com combinar diferents modalitats d’informació per tal
de crear un sistema on les paraules s’indexa mitjançant una modalitat d’in-
formació i les consultes mitjançant una altra. Considerem tres modalitats
d’informació diferents: visual, textual i àudio. La nostra proposta és crear un
espai de característiques latents on les característiques relacionades semàn-
ticament es projectin sobre els mateixos temes latents. Creant així un nou
espai on la informació de diferents modalitats es pugui comparar.

Els diccionaris que s’utilitzen per codificar les signatures BoVW es creen
generalment mitjançant un algorisme de no supervisat i requereixen provar
diversos paràmetres per determinar quina configuració és la millor per a una
col·lecció de documents determinada. Proposem un algorisme d’agrupament
semàntic que permet estimar els paràmetres a partir de dades. Atès que la
recopilació de dades anotades és costosa, fem servir imatges de paraules gen-
erades sintèticament. El diccionari resultant proporciona un bon rendiment
a les col·leccions de documents que utilitzen el mateix estil de text. També
proposem l’ús d’un diccionari addicional per aproximar els descriptors i
reduir la complexitat de codificació del descriptor a sub-lineal.

ix



Finalment, ens centrem en el problema de la dimensionalitat de les signa-
tures. Proposem una nova signatura on cada element representa la probabili-
tat que un determinat símbol tingui una determinada ubicació dins la imatge
de la paraula. Aquesta signatura és extremadament compacta i combinada
amb tècniques de compressió, pot representar la imatge d’una paraula amb
només uns quants bytes.
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1I N T R O D U C T I O N

A large amount of information is available about past events is stored and
available on archives all over the world. Traditionally this data was only avail-
able though physical access, limiting thus its availability. However, during
the last decade, we have seen an effort to digitalize them and make them
available through Internet, both by public and private institutions [1]. This
information does not consist only off published books but also reports and
registers from all sorts of institutions. From birth, marriage [2, 3] and death
certificates, to traded good or weather reports. The analysis of these docu-
ments leads to a better understanding of our past [4] but also to model our
future, by for example, studying the propagation of pathogens in medieval
Europe [5] or incorporating nineteenth century NOAA weather reports into
the historical data to the weather prediction models [6].

Document digitalization allows to researchers and the general public to eas-
ily access these reports. However, the sheer amount of archived information
makes it virtually inaccessible without automatic data mining systems that
are able to search for the desired information. In order to enable users to ac-
cess these information, the Document Image Analysis research field focuses
on problems like, document digitally restoration and enhancement[7, 8],
layout document analysis [9, 10], character/word recognition [11, 12, 13],
semantic annotation [14, 15] or word/symbol spotting [16, 17, 18], to easily
process, locate and extract information from document images.

1.1 the word spotting task

Word or symbol spotting is the task of localing and retrieving a keyword of
interest within a document image collection without explicitly recognizing
or transcribing the whole corpus. The methods employed to solve this task
vary depending on the documents they are designed to processes.

Typewritten documents are printed by a machine so, multiple instances of
the same symbol are going to have the same shape. In contrast, the shape
of the same symbol can greatly vary in handwritten documents, even in
documents written by the same author. We can see in Fig. 1.1 a sample of the
same book copied at different dates. The first three versions are handwritten
and we can appreciate that the style and shape of letters varies quite a bit.
The last version is already typewritten and its shape is completely regular.
Besides the different shapes of the script symbols, these documents also show
differences in the type of content. For example, the use of abbreviations and
symbols was common in the older versions of 1314 and 1380. Additionally,
the words used in the older document not always are spelled the same.
For example, the city of Zaragoza is can be written as Saragossa, Çaragoça or
Saragoça in the same paragraph. Therefore, we may need that the spotting
system is flexible enough to detect the three variants of this word as the
same.

The age of the document is an important factor. Modern documents usually
have a clean background so they can be text can be easily segmented by means
of a binarization algorithm [20]. On the other hand, historical documents
are likely to contain artifacts due to paper degradation, wrinkles, stains
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or ink artifacts like faded ink and ink bleed though. In these scenarios
the spotting system needs to be more robust to noise. Alternatively, an
additional pre-processing step is needed to attempt to clean the document
image [21, 22, 19]. For example, Giacometti et al. address the document
restoration problem in [19] in a multispectral image setting. They attempt to
combine the information extracted at different light frequencies to remove or
lessen the effects of 25 of the most common document degradations found
in historical documents. In Fig. 1.2, we can see an example of the degraded
images and the original images they attempt to recover.

A different source of noise is the support itself as it can also introduce
artifacts in the document image. For example, papyrus documents have a
background pattern and parchment documents are more likely to contain
wrinkles.

Another important aspect is the language used in the document. Different
languages use different writing direction conventions and different scripts.
A spotting system only needs to be aware of the writing direction as words
written left to right, right to left or top to bottom does not substantially
change the difficulty of the spotting task. The script type however has a
great impact the difficulty of word retrieval as the script type determines the
amount of different symbols possible. The language scripts can be basically
divided into a alphabet, a syllabary or a logographic system (see Fig. 1.4
for an example of each script type). An alphabet is a standardized set of
symbols or graphemes that represent phonemes, a syllabary the symbols rep-
resents syllables and a logographic system the symbols represent a word or
a morpheme. Alphabets only contain dozens of unique symbols, a syllabary
can grow up to hundred symbols while a logographic system can contain
thousands of different symbols. Therefore, features extracted by a spotting
system specifically designed to characterize words in Latin script may not be
representative enough to properly distinguish Chinese symbols.

Summarizing, the difficulty of the word spotting task greatly varies de-
pending on the properties of the documents it has to index. Documents
being handwritten or typewritten, the number of writers, document degra-
dations, or language script define the challenges that a spotting system has
to handle [23].

1314 1380

1619 1873

Figure 1.1: Different version of the Llibre dels fets. The first three versions are hand
written while the last version of 1873 is already typewritten.
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Desiccant Heat

Original Degraded Original Degraded
Scrapping Tea stain

Original Degraded Original Degraded

Figure 1.2: Four samples of dataset [19] showing the effects of desiccant, tea stains,
scrapping and heat document degradations.

1.2 challenges and objectives

The objective of these thesis is to develop a word spotting system that is able
to handle historical handwritten documents. Specifically, documents written
by a single author or by multiple authors that have a similar calligraphy.
Therefore, we expect that multiple instances of the same symbol are not going
to look exactly the same and, the method used to characterize them needs to
be flexible enough to account for these variances. We could use ad-hoc feature
for this task, i.e. features that are designed to tackle a specific document
type [16, 24]. This approach however limits the usefulness of the system as it
is tailored for an exceedingly concrete problem and, we would like a system
that does not impose pre-requisites on the type of documents it can process.
For example, we are going to mostly process handwritten documents using
Latin script. However, we do not want to constrain ourselves to only these
kind of documents. For us, a more appealing approach is a system that relies
on generic techniques that allows to work out of the box with any sort of
script or graphical symbols.

Paper Papyrus Parchment Stone

Figure 1.3: Portions of documents that use different supports. Paper belongs to the
“Genealogia regum Navarrae et Aragoniae et comitum Barchinonae”, papyrus
belongs to the “Rhind Mathematical Papyrus, the parchment is a part of the
“Isaiah Scroll” and the stone is a portion of the “Stone cuneiform tablet with
inscription of Ashurnasirpal II”.
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Greek Cherokee Simplified Chinese

Figure 1.4: Examples of three different types of script: a Greek alphabet, a Cherokee
syllabary and a simplified Chinese logogram.

The features extracted from the image need to be robustness to noise
introduced by document artifacts. They also need to be flexible as in hand-
written documents there is a high variability in writing style. An image
pre-processing step can be used to reduce these effects, e.g. an algorithm to re-
move document degradation artifacts [21, 22], or to normalize the document
words by correcting their slope and slant [25]. Although these techniques are
useful to improve the quality of the indexed word snippets, they will also
introduce limitations on the scope of our algorithm. Therefore, we believe
that a system that is robust and flexible on its own is preferable.

Finally, the system scalability is another aspect that needs our attention.
The datasets commonly used to evaluate the performance of a word spotting
system are composed of only a few dozen pages which contain several
thousands of words. However, document collections in real world scenarios
may be composed of thousands of pages and contain millions of words.
Therefore, the visual representation of the word snippets needs to be compact
and easy to compare in this kind of scenario. A vectorial representation which
can be compared with a standard distance measure is suitable as standard
machine learning techniques can be used to compress its size and to search
for likely matches in sub-linear time.

1.3 contributions

The following is the list of contributions that we have made throughout this
thesis:

1.3.1 Study of Bag-of-Visual-Words

In Chapter 2, we explore the use of the Bag of Visual Words (BoVW) framework
to characterize the visual information of the word snippets. This framework
has gained popularity among the document image analysis community,
specifically as a representation of handwritten words for recognition or
spotting purposes. Although in the computer vision field the BoVW method
has evolved incorporating many enhancements in its representation, most
of the approaches in the document image analysis domain still rely on a
basic implementation of the BoVW method. In this thesis, we review different
BoVW configurations and its applications to the keyword spotting task. We
determine which are the best BoVW configurations and what parameters
provide the largest retrieval gain. We demonstrate that a careful design of the
BoVW visual signature has a drastic impact on the performance of the spotting
system, making it comparable to more complex approaches. We are compare
the proposed method against state-of-the-art keyword spotting methods on
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the well-known George Washington dataset and the Handwritten Keyword
Spotting Competition 2014.

1.3.2 Segmentation-free Word Spotting

In Chapter 3, we present an efficient segmentation-free word spotting method
that follows the query-by-example paradigm applied in the context of his-
torical document collections. Taking into account the insights acquired in
Chapter 2, we propose a patch-based framework where local patches are
described by a BoVW model. The segmentation-free approach prevents us
to infer the putative location of words in the document, so we follow a
greedy approach where any possible location where a valid BoVW signature
is found is considered. This requires us to reduce the footprint of the visual
signature. First, by projecting the patch descriptors to a topic space with the
Latent Semantic Analysis (LSA) technique and afterwards, by compressing
the visual signature with Product Quantizer (PQ) methods. This allows us
to efficiently index the document information both in terms of memory and
time. The proposed method is evaluated using four different collections of
historical documents achieving good performances both on handwritten
and typewritten scenarios. The yielded performances outperform the recent
state-of-the-art keyword spotting approaches.

1.3.3 Multi-modal Word Spotting

In Chapter 4, we explore the usage of additional information to create a
query-by-X spotting system where word snippets are indexed and retrieved
using different information modalities. Besides the visual BoVW signature, we
consider two additional sources of information. A textual signature where
words are represented by a codebook of n-grams and an audio signature
where words are represented by a Bag-of-Audio-Words (BoAW) signature.
The main idea of our approach is to find a projection that transforms two
different signatures into a common feature space, so we can characterize
word snippets using either information modality. The goal is to create a
word snippet index using only visual information and then query them
only with textual or audio information, i.e. obtaining a query-by-string or
a query-by-audio word spotting system. Additionally, the process can be
used in reverse and retrieve the audio utterance from visual queries. The
proposed method generates a vectorial signature that can be used together
with state-of-the-art indexation structures can be used in large-scale scenarios.
The proposed method is evaluated using a collection of historical documents
outperforming state-of-the-art performances.

1.3.4 Supervised Codebook Generation

In Chapter 5, we focus on the codebook generation and descriptor encoding
steps. The BoVW codebooks used up until now are created in an unsupervised
manner. The main advantage of this approach is that no annotated data is
needed to generate the BoVW signature, which is preferable as annotating
enough information to train a codeword model is a costly process. On the
other hand, an unsupervised codebook also has its drawbacks. Without
feedback about how good are the codewords of the codebook in representing
the word images, we can only rely on retrieval performance measures to
determine which parameters are the best for a certain document. Also,
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unsupervised clustering algorithm does not offer any guarantee on the
quality of the clusters so, a codebook created from some document images
does not have properly represent a different set of images. This means that
we have to retrain our codebook each time we want to index a document
corpus. Therefore, in this chapter we propose the use of synthetic data to
generate a database agnostic codebook which remove the need to retrain the
codebook. The only constrain imposed by the codebook is that the symbols
used to generate the codebook match those contained by the document,
i.e. that the codebook and the document use the same script type. The use
of synthetic data also allows to easily incorporate semantic information in
the codebook generation. So, the proposed method is able to determine
which set of codewords have a semantic representation of the descriptor
feature space. This eliminates the need to generate multiple codebooks with
different parameters as the best parameter configuration can be determined
automatically.

In this chapter, we also address the computational cost of encoding a
descriptor into a visual word. In the methods presented up until now, the en-
coding process has a linear complexity with respect the amount of codewords
of the codebook. This dominates the complexity obtaining BoVW signatures.
Therefore, we propose a different approach where we use two codebooks.
We keep the traditional BoVW codebook which contains the codewords but,
we incorporate a new Hierarchical k-Means (HKM) codebook that is used
to approximate the descriptor feature space. This HKM codebook acts as
a look up table and its leaves represents an approximated version of the
original descriptor instead of codewords. Following this approach, we can
pre-compute the encoding of each approximated descriptor and then encode
word snippet descriptor in sub-linear time. Experimental results show that
the resulting codebook attains a state-of-the-art performance while having a
more compact representation.

1.3.5 Compact Character Probability Signatures

In this chapter, we focus on the creation of compact visual signature. The
BoVW signatures created so far have a high number of dimensions as signature
size depends on the codebook size and the number of Spatial Pyramid
Matching (SPM) spatial bins. In Chapter 5 we managed to obtain a more
compact codebook and in Chapter 3 we use less spatial bins to reduce the
signature dimensionality. Still, the dimensionality of the BoVW signature is
too big to work with large collection of word images. Therefore, we still need
to use data compression techniques like LSA or PQ codes to further reduce
the signature dimensionality to an acceptable level. However, following this
approach we are trading accuracy for memory.

In this chapter, we follow a different approach. Instead of using the BoVW

signature to directly characterize the word snippets, we use it to detect
the symbols present in a word image. We do not aim at a perfect symbol
recognition but to an approximation that will roughly determine which
symbols are present in each snippet. We believe that a rough detection is
enough for our purposes as we do not want to transcribe the images but to
characterize them. Therefore, classification errors are not going as important
for our task as we expect them to be consistent, i. e.the same words is going
to generate the same misclassification errors.

The word signature is formed by accumulating the probability of each
character at different spatial bins. The signature represents therefore the
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probability that a character is found at a certain part of the word. The
resulting signature is extremely compact signature. For example, it only
requires 26 dimensions per spatial bin in a Latin script document. Combined
with PQ quantizers, we are able to represent the entire George Washington
dataset using only 9 728 bytes while maintaining a performance similar to
the BoVW signatures of Chapter 2.

1.3.6 Document Structure Analysis

Finally, we present two document structural analysis algorithms that we have
developed during technological transfer projects in the two appendixes of
the thesis.

In Appendix A, we presents a learning-free segmentation algorithm that
examines the structure of the scale space to detect text lines in document
images. We take advantage that the second-order derivative gives a minimum
response when a dark element (i. e.text) over a bright background has the
same orientation as the filter. Since all Gaussian derivatives are steerable,
we can easily compute the strength and orientation of the second-order
derivative at each pixel of the image and at multiple scales. Line location
and scale then can be easily obtained by merging the strongest responses
which are near and have a coherent orientation. This approach gives us a
performance similar to the state of the art methods in publicly available
datasets.

In Appendix B, we present a method to automatically separate static
and variable content from administrative document images. We build a
probabilistic template by aligning examples of the same document kind and
estimating the likelihood that a pixel belongs to the static or variable category.
In the extraction phase, the template is aligned with the incoming document
and used to determine which zones belong to variable entries. We validate
our approach on the public NIST Structured Tax Forms Dataset.





2W O R D S P O T T I N G W I T H B A G O F V I S UA L W O R D S

The Bag of Visual Words (BoVW) framework has gained popular-
ity among the document image analysis community, specifically
as a representation of handwritten words for recognition or spot-
ting purposes. Although in the computer vision field the BoVW

method has been greatly improved, most of the approaches in the
document image analysis domain still rely on the basic implemen-
tation of the BoVW method disregarding such latest refinements.
In this chapter we present a review of those improvements and its
application to the keyword spotting task. We thoroughly evaluate
their impact against a baseline system in the well-known George
Washington dataset and compare the obtained results against nine
state-of-the-art keyword spotting methods. In addition, we also
compare both the baseline and improved systems with the meth-
ods presented at the Handwritten Keyword Spotting Competition
2014.

2.1 introduction

Keyword spotting can be defined as the pattern recognition task aimed
at locating and retrieving a particular keyword within a document image
collection without explicitly transcribing the whole corpus. Its use is par-
ticularly interesting when applied in scenarios where Optical Character
Recognition (OCR) performs poorly or can not be used at all, such as in
historical document collections, handwritten documents, etc. Being a mature
research problem [16], many different keyword spotting approaches have
been proposed thorough the years.

In the document image analysis literature, we can distinguish two different
families of keyword spotting methods depending on the representation of the
handwritten words [26]. On the one hand, sequential word representations [27]
describe handwritten words as a time series by using a sliding window in
the writing direction. On the other hand, holistic word representations [28]
extract a single feature vector of fixed dimensionality that characterizes the
word as a whole.

Sequential word representations exploit the sequential nature of handwrit-
ten words formed by the concatenation of individual characters. However,
since the size of the word’s descriptors will depend on the width of the
word, two different words cannot be directly compared by means of a dis-
tance between points, but some sort of alignment technique has to be used
instead. The seminal work by Kołcz et al. [29] achieved a breakthrough
in the handwritten keyword spotting domain by proposing the use of the
Dynamic Time Warping (DTW) method (often used in speech analysis) for
nonlinear sequence alignment. The use of DTW together with profile features
was popularized by the well-known works by Rath and Manmatha [30, 31]
and Rath et al. [32] and many flavors of DTW-based handwritten keyword
spotting methods appeared since those publications. Adamek et al. proposed
in [33] to use DTW to align convexity and concavity features extracted from
contours. Khurshid et al. presented in [34] a method that first aligned features
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at character level by DTW and then the resulting character prototypes are
aligned at word level. Papandreou et al. [35], proposed an adaptive zoning
description that can be matched by DTW. Besides direct matching strategies,
learning-based methods have also been proposed over the years. Hidden
Markov Models are the most widely used techniques to model the keywords’
sequential features [36, 37, 38, 17, 39], although other machine learning ap-
proaches such as Neural Networks [13] have also been used in the keyword
spotting domain.

Holistic word representations have also received some attention thorough
the years. Their main advantage is that by representing handwritten words
by feature vectors of fixed size, the alignment step (which usually is very
time consuming) is bypassed, and thus, two handwritten words can be
compared using standard distances, or any statistical pattern recognition
technique. We can find many different holistic word descriptions used in the
literature for keyword spotting tasks. For example, simplified versions of the
shape context descriptor, have been used in example-based keyword spotting
architectures by Lladós and Sánchez [40] or by Fernández et al. [41]. Zoning-
based characteristics have also been widely used to represent word images
holistically, e.g. [42, 43]. A combination of Histogram of Oriented Gradients
(HOG) and Local Binary Pattern (LBP) descriptors has been proposed by
Kovalchuk et al. in [44] in a segmentation-free keyword spotting scenario. A
set of biologically inspired features formed by a cascade of Gabor descriptors
was proposed by van der Zant and Schomaker in [45]. The combination
of gradient, structural and concavity features was proposed by Srihari and
Ball in [46]. All of these word representations present their strengths and
weaknesses and is hard to argue that a set of features is steadily better than
another. Although in the latest years a trend towards using gradient-based
features can be appreciated [47].

2.1.1 Keyword Spotting as an Object Recognition Task

Since the publication of the SIFT method [48], the computer vision task
of recognizing and finding objects in cluttered scenes has been driven by
methods extracting local descriptors that are further matched between the
query model and the scene images. Many authors from the document analysis
field, understanding keyword spotting as being a particular case of the object
recognition task, started to apply such keypoint matching techniques to the
problem of keyword spotting [49, 50, 51, 52]. Such matching techniques have
been either used to directly estimate similarities between word images, or
by searching the query model image within full pages in segmentation-free
scenarios. However, the keypoint matching framework presents the same
disadvantage than the sequential methods since an alignment between the
keypoint sets has to be computed.

In order to avoid exhaustively matching all the keypoints among them,
the classic bag-of-words paradigm from the information retrieval field was
reformulated as the Bag of Visual Words (BoVW) [53, 54]. Such paradigm
yield an holistic and fixed-length image representation while keeping the
discriminative power of local descriptors such as SIFT.

Soon enough, researchers from the document image analysis domain
adapted such BoVW representations to the keyword spotting problem [55, 56,
57, 58, 59, 39, 60, 61], obtaining very competitive results. However, we have
the feeling that although the computer vision community kept proposing
improvements on the BoVW framework in the last years, in the document
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analysis field, such improvements are still scarcely used. As an exception,
it is worth to cite the works from Shekhar and Jawahar [58], or our last
contribution [62], where more complex BoVW setups are used for the keyword
spotting task.

2.1.2 Contributions and Outline

In this chapter we are going to review different aspects of the BoVW frame-
work, namely sparse coding, spatial pyramids, and power normalization and
its application to the keyword spotting task. We will thoroughly evaluate
the impact of such improvements as well as the different parameters of the
BoVW method by comparing their performances against a baseline system.
We will finally compare the obtained results against nine state of the art
segmentation-based keyword spotting methods by using the well-known
George Washington dataset. In addition, we also compare both the base-
line and improved systems with the methods presented at the Handwritten
Keyword Spotting Competition 2014.

The chapter is structured as follows, in Section 2.2, the different parts of the
BoVW pipeline used to characterize the word images are presented. Then, the
effects that each BoVW enhancement have in the performance of a keyword
spotting system are evaluated in Section 2.3 and the results obtained by
the system are compared with the state of the art in Section 2.4. Finally, we
review the most important conclusions of the chapter in Section 2.5.
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Figure 2.1: Norm of the descriptors extracted from regions of 16, 24 and 32 pixels
width sampled at each pixel of the image. The bold contours encircle
the regions where descriptors which have a large enough norm and are
considered reliable.

2.2 bag-of-visual-words representations

In order to spot keywords in document images, we start by a layout analysis
step devoted to segment the document images into individual words. The
interested reader is referred to [10, 63]. Once the words are segmented, a
visual signature is computed for each of them. The keyword spotting will be
then performed by calculating the similarity between the description of the
query word and all the descriptors of the words in the corpus. These visual
signatures are created using a BoVW framework which has obtained good
performances in keyword spotting tasks [57, 58].

The BoVW framework has many variants in the literature, but all of them
can be roughly divided into four basic steps: sampling, description, encoding
and pooling. In order to increase the retrieval performance of the spotting
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system, we need to carefully select the methods used at each step. In this
chapter, we will mainly focus on the BoVW improvements that bring better
word representations for recognition or spotting tasks.

2.2.1 Sampling

The first step is to select the regions of the image which contain meaningful
information to describe the word snippets. Although covariant or salient
region detectors can be used, it has been proven that the performance of
BoVW representations is correlated with the number of sampled regions. For
instance, Nowak et al. demonstrate in [64] that the larger the number of
regions, the better the results. They show that the combination of several
region detectors usually improves the performance of the BoVW framework,
but this performance gain is related to the number of regions rather than
the kind of sampled regions. Therefore, for our baseline implementation we
decided to densely sample regions at different scales over the image instead
of using a keypoint detector.

Regions are densely sampled using a fixed step and at different scales.
The different scales are selected so that words are going to be modeled at
different levels of detail: small regions will model portions of characters
while large regions will model the relationships between characters.
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Figure 2.2: Codebook creation and descriptor encoding example: a) Descriptors are
randomly sampled from the indexed images, b) the k-means algorithm is
used to build the codebook and c) descriptors are encoded using sparse
coding with the cluster centroids.

2.2.2 Description

Once regions have been sampled, we need to characterize them with a
local descriptor. Although descriptors specifically tailored for document
analysis can be used, gradient based descriptors have recently shown better
performances in keyword spotting tasks [65, 57, 62].

We are going to use the HOG descriptor [66] to characterize the regions. This
descriptor is derived from the SIFT descriptor [48], but it is more suited for
dense sampling scenarios when rotation invariance is not needed. In our case,
it is safe to assume that the orientation of the word images has been corrected
by the word segmentation algorithm or intermediate slant correction steps.
The HOG algorithm takes advantage of the information redundancy between
overlapping regions, so that descriptors can be calculated at a much lower
computational cost [67, 68].

Although the dense sampling strategy will generate a large amount of
HOG descriptors, only reliable descriptors are eventually accepted. Since
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HOG descriptors are based on gradient information, descriptors are more
reliable when gradient vectors have a large module. Therefore, the norm
of the descriptor can be used as a reliability indicator. For instance, Fig. 2.1
shows the norm of the HOG descriptors calculated at each pixel of the image.
It can be appreciated that descriptors calculated near character locations have
a high norm while descriptors sampled over other image regions have a low
norm. Therefore, the BoVW signature can focus on the visual information from
characters by filtering the descriptors depending on the value of their norm.
The bold contours in the Fig. 2.1 encircle the zones where the descriptors
have a norm higher than the used threshold. Descriptors which have a value
lower than this threshold, i.e. descriptors outside the contours, are simply
disregarded.

2.2.3 Encoding

After calculating the descriptors, we have to encode them into visual words.
First, we need a codebook which quantizes the descriptor space into an
arbitrary set of m salient regions. This codebook is created by randomly
sampling descriptors from the indexed word snippets and using the k-Means
algorithm to calculate m clusters. Then, a descriptor di is encoded by a
vector Wi ∈ Rm which weights the contribution of each codeword (i.e.
cluster centroid). The most straightforward method to calculate Wi is to use
hard-assignment [53], i.e. the weight vector has a single non-zero element
corresponding to the nearest codeword to the descriptor.

This encoding approach has problems near the boundaries between code-
words. Small changes in the descriptor may lead to a completely differ-
ent visual words vector Wi. This problem can be alleviated by using soft-
assignment instead, i.e. encoding a descriptor using a weighted combination
of codewords. Besides, combining the information of several codewords also
reduces the information loss resulting of the descriptor quantization. There-
fore, we decided to encode descriptors using the sparse coding technique
proposed in [69], known as Locality-constrained Linear Coding (LLC). This
method generates a compact BoVW signature that have a higher discriminative
power than more complex representations [70].

Given a descriptor di, the LLC method tries to find the linear combination
of codewords which better approximates the original descriptor:

di ≈
m∑
j=1

wjCj, (1)

where Cj is the j-th codeword and wj its associated weight. Unlike other
sparse coding algorithms, LLC emphases locality over sparsity and it only
uses the t nearest codewords to encode a descriptor. This ensures that the
resulting encoding is locally smooth, so that similar descriptors are likely
to be encoded using the same codewords. Therefore, the LLC encoding is
more robust compared to other sparse coding solutions. Another advantage
is that the weights (w1,w2, . . . ,wm) can be derived analytically. Hence,
the computational cost is drastically reduced compared to other sparse
coding algorithms which require computationally demanding optimization
procedures to find a solution. Then, a descriptor di is encoded by searching
the t nearest codewords and using the LLC algorithm to calculate the weights
vector Wi = (w1,w2, . . . ,wm).

An example of the codebook creation and descriptor steps is summarized
in Fig. 2.2. The randomly sampled descriptors of Fig. 2.2.a) are clustered
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into eight clusters in Fig. 2.2.b). In Fig. 2.2.c), we can see that the closest
codewords to the descriptors di are C4, C5 and C7. Using hard-assignment,
the descriptor will be encoded as Wi = (0, 0, 0, 0, 0, 1, 0, 0) as its nearest
centroid is C5. On the other hand, the LLC algorithm will calculate the
weights w4, w5 and w7 so that di ≈ w4C4+w5C5+w7C7 and the resulting
encoding will be Wi = (0, 0, 0, 0,w4,w5, 0,w7). Notice that the encoded
descriptor is close to a boundary between codewords, so that a small variation
of the descriptor can shift the closest codeword from C5 to C7. This would
result in a completely different encoding when hard-assignment is used. In
contrast, the LLC algorithm will generate a similar weight vector Wi since it
still uses the same codewords and the weights w4, w5 and w7 are slightly
different.

2.2.4 Pooling

Once descriptors are encoded into visual words, the BoVW signature is ob-
tained by simply accumulating the weight vectors Wi:

s =

N∑
i=1

Wi, (2)

where N is the number of valid descriptors extracted from the word image.
In the following, we are going to see how to improve this representation.

2.2.4.1 Spatial information

In Eq. 2, visual words are accumulated without taking into account their
spatial location, so the signature lacks any spatial information. However,
spatial information is quite important in keyword spotting tasks since it helps
to reduce the perceptual aliasing problem. Different instances of the same
character are expected to be represented by similar visual words. Hence,
the obtained BoVW signatures mostly depends on the characters that form
the word, and it is possible that dissimilar words are represented by similar
signatures when spatial information is not taken into account. For instance,
anagrams will obtain a very similar visual signature in this scenario.

This problem can be addressed by using using the Spatial Pyramid Match-
ing (SPM) technique proposed by Lazebnik et al. in [71] in order to add some
spatial information into the unstructured BoVW model. This method roughly
takes into account the visual word distribution over the image by creating a
pyramid of spatial bins.

The spatial pyramid defines an initial set of horizontal P0x and vertical
P0y partitions which create P0x × P0y spatial bins. Then, these spatial bins are
further divided into Px horizontal and Py vertical partitions at each level of
the pyramid. Therefore, a spatial pyramid of L levels creates a collection of
overlapping Dsp spatial bins, where

Dsp = P0xP
0
y

L−1∑
l=0

(PxPy)
l. (3)

The final BoVW signature Wi is created by independently accumulating
the visual words for each spatial bin obtaining a DW = mDsp dimensions
descriptor. The amount of visual words assigned to each bin is lower at
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(a) (b)

(c) (d)

Figure 2.3: The bins corresponding to the visual words sampled over the motorbike ob-
jects increase their contribution linearly to the size of the object. Therefore,
the score of a motorbike linear classifier will also increase linearly from (a)
to (d). A better behavior would be that the score sharply increases from
(a) to (b) but keeps a similar score from (b) to (d).

higher levels of the pyramid, due to the fact that the spatial bins are smaller.
This is compensated by multiplying the contribution of each visual word to
each spatial bin by the factor sl = P0xP0y(PxPy)l.

2.2.4.2 Normalization

Once we have obtained Wi, we can normalize the contribution of each visual
word in order to obtain a better representation. First, we can reduce the
importance of overrepresented visual words by using the method proposed
by Perronnin et al. in [72] which applies the following normalization function
to each bin of the signature:

g(x) = sign(x)|x|α, (4)

where 0 < α < 1 is the power normalization factor. The power normalization
improves the BoVW model since it removes the assumption that visual words
come from an identically and independently distributed population [73].
The amount of visual words that represent an object depends on the size
of that object in the image. For example in Fig. 2.3, we can see that the
amount of visual words representing the motorbikes varies depending on how
close they are to the camera. This may cause that the object of interest is
underrepresented in the BoVW signature, resulting in retrieval or classification
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errors. These problems are less likely to happen in keyword spotting as the
scale of the words is similar. However, avoiding the i.i.d. assumption is
still important as the frequency of visual words is highly correlated to the
characters forming the word. For instance, the visual words modeling the
character e will be overrepresented in words like freeze or exceed and hence
their visual signature is going to be somehow similar. Therefore, by lessening
the contribution of the overrepresented visual words, we are highlighting the
other visual words and making both signatures more dissimilar.

Finally, the BoVW signature is `2-normalized to account that the amount of
visual words accumulated in Wi may change between two instances of the
same word due to scale difference or image noise.

2.3 bovw parameter evaluation

In order to evaluate the different parameters of the BoVW signature in a
keyword spotting framework, we use a straightforward method to index
and retrieve the word snippets from a database. The image signatures are
indexed using an inverted file structure taking advantage that the BoVW

representation is sparse, specially when SPM is used. The system is evaluated
by calculating the mean Average Precision (mAP) score from the ranked list
obtained by sorting in ascending order the Euclidean distances between the
query and the indexed signatures.

2.3.1 Experimental Setup

The keyword spotting system is evaluated in the George Washington dataset
described in [31]. This dataset consists of 20 handwritten pages with a total
of 4860 words written by several Washington’s secretaries. Although it was
written by several authors, the writing style is pretty uniform and shows less
variation than typical multi-writer collections. The database provides a set
of word bounding-boxes with their transcription. These bounding-boxes are
obtained using the segmentation algorithm proposed in [63] by Manmatha
and Rothfeder.

The baseline BoVW configuration densely samples the HOG descriptors at
every 5 pixels and at three different scales: 20, 30 and 45 pixel wide regions.
The codebook has m = 1024 codewords and the histogram is created without
using any improvement, i.e. descriptors are encoded using hard-assignment,
no spatial information is added and the power normalization is not used (i.e.
α = 1). At each step of the experimental evaluation, we are going to assess
the effects that a single improvement has on the spotting performance of the
system. These evaluations are conducted by calculating the mAP score using
two different setups:

• Setup A: Use as queries all words in the collection which appear at
least twice.

• Setup B: Use as queries only words which have at least ten occurrences
and with 3 or more characters.

The configuration Setup A is defined to use all possible word snippets as
queries while the configuration Setup B cast queries which are more likely
to be used in a real world scenario (e.g. avoiding short queries like “a” or
“to”).
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Figure 2.4: mAP score obtained using different number of neighbors with LLC.

In both setups, word snippets which have been discarded as queries are still
used as distractors in the database. Therefore, the system has a 100% recall
since it always returns a ranked list with all the 4859 elements, corresponding
to all indexed images except the query.

2.3.2 LLC Encoding

First, we evaluate the effects of using a different amount of nearest neighbors
t in the LLC encoding step. The mAP scores obtained while testing from 1 to
16 nearest neighbors are shown in Fig. 2.4. Note that using a single nearest
neighbor corresponds to hard-assignment encoding, since only the closest
codeword is used.

The results show that using LLC encoding slightly increases the perfor-
mance of the word spotting system. The best results are obtained when three
nearest neighbors are used to encode the descriptors: for Setup A the mAP

score improves from 22,13% to 25,15% while for Setup B the score raises
from 22,74% to a 26,04%. Although the selected number of neighbors may
seem small, this result is coherent with the results shown in the original
LLC paper [69] where using a small number of neighbors results in a better
performance than when a large number of neighbors is employed. In the
remaining experiments, we are going to use 3-nearest neighbors for the
encoding step with LLC.

2.3.3 Spatial Pyramids

After evaluating the encoding, we are going to evaluate the importance of
spatial information in the BoVW signature. In Table 2.1 we can see that the
addition of spatial information greatly increases the performance of the
system. In both setups, the mAP score increases two and a half times between
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the orderless representation and the best spatial pyramid configuration. From

Table 2.1: mAP score obtained using different spatial configurations.

P0x P0y Px Py L Dsp DW Setup A Setup B

1 1 1 1 1 1 1024 25,15% 26,04%

1 1 2 2 2 5 5120 40,96% 43,43%

1 1 2 2 3 21 21504 51,49% 54,03%

1 1 2 2 4 85 87040 57,65% 60,47%

1 1 3 2 2 7 7168 46,45% 48,79%

1 1 3 2 3 43 44032 58,09% 60,91%

1 1 3 2 4 259 265216 61,11% 64,26%

1 1 2 3 2 7 7168 42,45% 45,05%

1 1 2 3 3 43 44032 51,38% 53,91%

2 2 2 2 2 20 20480 55,46% 58,53%

3 2 2 2 2 30 30720 60,32% 63,56%

2 3 2 2 2 30 30720 55,71% 58,80%

2 2 3 3 2 40 40960 59,27% 62,43%

3 3 3 3 2 90 92160 62,01% 65,46%

3 1 2 2 2 15 15360 58,39% 61,43%

1 3 2 2 2 15 15360 43,37% 45,97%

3 1 2 1 2 9 9216 55,32% 58,50%

3 1 2 1 3 21 21504 58,98% 62,27%

3 1 3 2 2 21 21504 60,38% 63,66%

3 2 3 1 2 24 24576 61,33% 64,75%

First level Second level

Figure 2.5: Distribution of the spatial bins in the two levels of the spatial pyramid.

the obtained results, we can see that horizontal partitions are more important
than vertical partitions. This is to be expected as adding more horizontal
partitions helps to increase the representation of the word characters. For
instance, in Fig. 2.5 we can see an example of the spatial bins defined by
a two level spatial pyramid. In the first level, spatial bins roughly model
syllables while in the second level bins are smaller and they model individual
characters.

After evaluating the obtained results, we have selected a two level SPM

with 3× 2 spatial bins in the first level and 9× 2 in the second (row in bold in
Table 2.1) as the SPM configuration used in the following experiments. With
this configuration the retrieval performance grows from 22, 15% to 61, 33%
using Setup A and from 26, 04% to 64, 75% in Setup B. Although there is
another configuration which obtains better results, the selected configuration
offers a better compromise between performance and dimensionality growth.
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Additionally, we have re-checked the effects of LLC by disabling it and the
performance is slightly reduced to 60, 62% and 64, 16% respectively.

2.3.4 Power normalization

Concerning power normalization, the retrieval performance obtained using
different α power values can be found in Fig. 2.6. The results show that the
use of power normalization also obtains an important boost of performance of
the system. It attains the maximum performance of 68, 27% mAP at α = 0, 4 for
Setup A and of 72, 20% mAP at α = 0, 3 for Setup B. Since the performance
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Figure 2.6: Effect of the power norm to the performance of the word spotting system.

is pretty similar for α = 0, 3 and α = 0, 4, we are going to use a power
normalization of α = 0, 35 for both setups in the following experiments.

2.3.5 Codebook size

All the experiments until now have used a relatively small codebook of 1024
codewords. Since the performance usually increases as larger codebook are
used, we compare the effects of different codebook sizes in Fig. 2.7.

The performance of the system keeps improving until it saturates for
the m = 8192 codebook. For larger codebooks, the performance degrades,
because descriptor quantization errors start to be too frequent. Since the mAP

score increase is marginal between codebooks of m = 4096 and m = 8192,
we decided to use the 4096-codebook for the last experiment.

It is worth noting that the mAP score attained by the smallest codebook
(with m = 32 codewords) in Fig. 2.7 doubles the score obtained by the
baseline configuration: 45, 85% against 22, 13% for Setup A and 52, 07%
versus 22, 74% for setup B. Although the BoVW signature is more compact
and it has 768 dimensions compared to the 1024 dimensions of the baseline
configuration, the use of LLC, SPM and power normalization greatly increase
the spotting capabilities of the system.
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Figure 2.7: Evolution of the mAP score while increasing the size of the codebook.

2.3.6 Descriptor sampling

Subsequently, we evaluate in Table 2.2 the effects of using different the de-
scriptor sampling parameters. We have evaluated the use of larger regions
to check which information is more important to characterize word images.
The results show that it is more important that visual words model character
fragments rather than the relationships among them. We have also evalu-
ated the sampling density, observing that the performance increases as the
descriptors are sampled more densely. Since the performance gap between
the two configurations is quite important, it is safe to assume that works
that used larger regions (e.g. our previous segmentation-free keyword spot-
ting method [57]) will improve their performance by simply using smaller
regions.

Table 2.2: mAP scores obtained when modifying the descriptor sampling parameters

Region size Step Setup A Setup B

small medium large

10 39,94% 43,71%

8 43,37% 47,54%

40 60 90 5 47,24% 51,61%

4 47,75% 52,20%

3 47,90% 52,35%

10 54,23% 58,25%

8 62,94% 66,85%

20 30 45 5 71,31% 74,88%

4 72,35% 75,86%

3 72,98% 76,45%
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2.3.7 Summary of the Results

Table 2.3: Summary of the improvements over the baseline BoVW implementation
with the gains in performance

Setup A Setup B Cost

Baseline 22.13% 22.74%

LLC 25.15% (↑ 13.65%) 26.04% (↑ 14.51%) Computational

complexity

SPM 61.33% (↑ 177.14%) 64.75% (↑ 184.74%) Descriptor

size

Power 68.27% (↑ 208.50%) 72.20% (↑ 217.50%) None

normalization

Codebook 71.31% (↑ 222.23%) 74.97% (↑ 229.68%) Descriptor

size size

Descriptor 72.98% (↑ 229.78%) 76.45% (↑ 236.19%) Computational

sampling complexity

Finally, we present in Table 2.3 a summary of the results obtained by the
different improvements over the baseline BoVW implementation. Besides the
performance gains for each of the improvements, we also report the extra cost
that each of the different steps might have. Both using sparse coding through
LLC and tuning the descriptor sampling stage have a minimal cost in terms of
computational complexity. In the encoding step the weights of the LLC have
to be calculated instead of just using a hard-assignment strategy. When using
denser and smaller HOG descriptors, the amount of descriptors to process
per word image is increased, and thus the whole encoding and pooling
steps are more complex to compute. When using an SPM configuration, the
dimensionality of the word descriptors is exponentially increased, so one
has to find a good trade-off between discriminative power and efficiency of
the overall system in terms of speed and memory usages. The same goes
for the codebook size, although we have seen that in that case, the system’s
performance degrades when starting to use too large dictionaries. Finally,
the use of power normalization has no extra cost with regard to the baseline
BoVW implementation. After the final experiment, the performance of the
system has increased a 230% (from 22, 13% to 72, 98%) in Setup A and a
236% (from 22, 74% to 76, 45%) in setup B.

2.4 performance comparison with the state of the art

Now that we have shown that the performance of the BoVW model greatly
varies depending on the methods used to create the signature, we can
compare the baseline and enhanced BoVW implementations with the state
of the art. In order to demonstrate that the enhanced BoVW implementation
is competitive against most spotting methods, we are going to compare it
against method which used the popular George Washington dataset and the
H-KWS 2014 Competition benchmark [74] to assess their performance.
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2.4.1 George Washington Dataset

The George Washington dataset has become a de-facto standard to evaluate
handwritten recognition and keyword spotting methods. In order to conduct
this comparison, we will only focus on segmentation-based methods to focus
only on the performance of the word snippet descriptor. Segmentation-free
and line-based methods follow a more general approach that is likely to
obtain worse results due to processing a larger amount of information or
due to errors introduced while locating words in the document image.

Table 2.4: Comparison of the performance attained by the system using the baseline
and final BoVW configurations against the results reported by each work.
The methods in the first half are exemplar-based methods while second
half methods are learning-based.

Reference Experimental Setup Originally Baseline Enhanced Measure
Reported BoVW BoVW

Example-based
methods

Rath and Man-
matha [30]

10 good quality pages (2381 queries). 40.9% 28.1% 77.2% mAP

Rothfeder et al. [75] 10 good quality pages (2381 queries). 36.2% 28.1% 77.2% mAP

Kovalchuk et al. [44] Same configuration as Setup B 66.3% 22.7% 76.5% mAP

Wang et al. [52] Same configuration as Setup B 17.5% 22.7% 76.5% mAP

Howe [76]
4-folds: 3 train and 1 test folds. All
non-stop words used as queries.

93.4% 55.0% 91.8% Mean Precision

78.9% 19.0% 79.0% P@R=100%

Learning-based
methods

Howe et al. [77] 20-folds: 19 train and 1 test fold. 79.5% 38.5% 81.9% mAP

Rodríguez-Serrano
and Perronnin [38]

5-folds: 1 train, 1 validation and 3

test folds.
53.1% 23.6% 74.0% mAP

Liang et al. [78] 5-folds: 4 train and 1 test folds. 38

words are selected as queries.
67.0% 39.9% 84.5% mAP at rank 10

Almazán et al. [79] 5-folds: 1 train, 1 validation, 3 test
folds. Words in the test set are used
as queries.

85.7% 24.0% 74.3% mAP

Although the George Washington dataset is widely used, there is not
an standard experimental setup, and each work adapts it to the needs of
their proposed algorithm. For instance, learning based algorithm usually
use cross-validation to avoid evaluating the method on the same data used
to fit their model. This reduces the amount of queries since query words
must appear both in train and test folds. Also, the number of distractors is
reduced as the number of putative results is trimmed. These changes make
that a direct comparison between methods is not possible. Therefore, we
have recalculated the results obtained by the proposed method employing
the experimental setup used in each paper.

A brief summary of the experimental setup and the performance compar-
isons are shown in Table 2.4. We can see that all exemplar-based algorithms
but the method proposed by Howe [76] do not use cross-validation. In [76],
the author compares his method with the learning-based method proposed
by Frinken et al. in [13], hence the use of cross-validation. Also, most works
use mAP to asses their performance, only Liang et al. [78] and Howe [76] use
other measures. In [78] the mAP is calculated only using the ten best results
of each query. In [76], the author first calculates the mean of the precision
and recall curves for all the queries and then reports the area under this
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curve and the precision at full recall. Finally, learning-based methods use
the training set as queries, except the work by Almazán et al. [79]. In this
work, the authors use the test set as a completely new database so that both
query and indexed images have not been seen in the training phase of the
algorithm.

In the comparison table, we can see that the obtained results using the
baseline BoVW implementation are significantly worse than the compared
works. Only in Wang et al. [52] the baseline implementation obtains a better
result. On the other hand, the results attained by the system when using
the enhanced BoVW implementation are significantly better than most of the
compared works. The proposed BoVW signature is only outperformed by the
method proposed by Almazán et al. [79] while Howe [76] have comparable
results. It is worth to note, that the method from [79] use a Canonical Cor-
relation Analysis step over a BoVW signature, aimed at finding correlations
between visual words and word transcriptions. Obviously, the integration
of machine learning techniques over BoVW representations is expected to
produce better results than a simple distance among descriptors [62]. Con-
cerning the method by Howe [76], we have to consider the computational
complexity of the keyword spotting system. The vectorial nature of BoVW

allows to apply standard indexation techniques for an efficient retrieval. In
addition, [76] needs an alignment step to compute the similarity between the
query and the document’s words.

2.4.2 H-KWS 2014 Competition

The H-KWS 2014 [74] is a recently proposed benchmark dataset to compare
the advances in keyword spotting. It analyzes both segmentation-based and
segmentation-free algorithms using performance measures frequently found
in the literature. This benchmark is composed by the Bentham and Modern
datasets. The Bentham dataset is a collection of 50 images written by Jeremy
Bentham himself as well as his secretarial staff. This collection is similar to
the George Washington dataset in the sense that the calligraphic differences
between different instances of the same word are minimal. The Modern
dataset is a collection of 100 handwritten pages written by several writers.
The writers were asked to copy a text written in English, German, French
or Greek. Therefore, this dataset has a high calligraphic variety and it uses
different scripts.

The comparison between the results obtained by the proposed basic
and enhanced configurations and the methods which participated in the
segmentation-based track of the H-KWS 2014 competition are shown in Ta-
ble 2.5. The results of this table have been obtained using the evaluation tool
provided with the benchmark1. As we have seen in the George Washington
comparison, Kovalchuk et al. [44] and Howe [76] are exemplar-based while
Almazán et al. [79] is a learning-based algorithm. This algorithm is trained
using the annotations of George Washington dataset while creating the model
for the Bentham dataset and using the IAM dataset for the Modern dataset.

In Table 2.5, we can see that the baseline configuration obtains rather bad
results whereas the enhanced configuration is competitive when compared
with the other methods. Specifically, looking at the mAP indicator, the en-
hanced configuration only obtains slightly better results than Howe [76] in
the Bentham dataset while in the Modern dataset it is only surpassed by
Almazán et al. [79].

1 H-KWS 2014 competition homepage: http://vc.ee.duth.gr/h-kws2014/

http://vc.ee.duth.gr/h-kws2014/
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Table 2.5: Comparison of the performance attained by the system using the baseline
and enhanced BoVW configurations with the methods that participated in
the Handwritten Keyword Spotting Competition 2014 (H-KWS 2014) compe-
tition.

Bentham Dataset

Method P@5 MAP NDCG NDCG

(Binary)

G1 (Kovalchuk et al. [44]) 0.738 0.524 0.742 0.762

G2 (Almazán et al. [79]) 0.724 0.513 0.744 0.764

G3 (Howe [76]) 0.718 0.462 0.638 0.657

Baseline 0.491 0.292 0.565 0.578

Enhanced 0.629 0.465 0.707 0.723

Modern Dataset

Method P@5 MAP NDCG NDCG

(Binary)

G1 (Kovalchuk et al. [44]) 0.588 0.338 0.611 0.612

G2 (Almazán et al. [79]) 0.706 0.523 0.757 0.757

G3 (Howe [76]) 0.569 0.278 0.484 0.485

Baseline 0.231 0.091 0.349 0.350

Enhanced 0.619 0.389 0.680 0.681

The results obtained in both comparisons stress the fact that the use of
simple improvements of the BoVW signatures can lead to a great boost in
performance of keyword spotting systems and that it is possible to attain
better results than more complex solutions.

2.5 conclusions

In this chapter we have studied the effects of different BoVW representations
for a handwritten word spotting task. Although the use of BoVW has gained
attention during the course of this thesis as a way to represent segmented
handwritten words, most of the literature still uses a basic implementation
of the BoVW framework, neglecting the latest improvements of such method.

We have reviewed the improvements that we believe are more suitable for
word representation and, we have seen which of them can lead to a huge
boost on the spotting performance of the system. Some of these improve-
ments come at a negligible increase on the system’s cost, some do not have a
noticeable effect while others boost the retrieval performance at the cost of
increasing the memory needed to store a signature.

Overall, the most important increase in performance came from the use of
spatial pyramids, specifically when selecting a configuration that split the
handwritten words across the horizontal axis. We believe that such perfor-
mance boost comes from the fact that this SPM configuration led the descriptor
to encode sequential information of the word, i.e. which character comes
before another, mimicking the information that is encoded in sequential



2.5 conclusions 25

word representations, but while preserving the advantage of holistic word
representations. This performance boost comes however with a significant
increase of the signature’s memory footprint. In later chapters, we have to
take this factor into account when creating systems that handle document
collections with tens- or hundreds of thousands of word images.





3S E G M E N TAT I O N F R E E W O R D S P O T T I N G

In this chapter we present an efficient segmentation-free word
spotting method, applied in the context of historical document
collections, that follows the query-by-example paradigm. We use
a patch-based framework where local patches are described by
a bag-of-visual-words model powered by SIFT descriptors. By
projecting the patch descriptors to a topic space with the Latent Se-
mantic Analysis technique and compressing the descriptors with
the Product Quantization method, we are able to efficiently index
the document information both in terms of memory and time.
The proposed method is evaluated using four different collec-
tions of historical documents achieving good performances both
on handwritten and typewritten scenarios. The yielded perfor-
mances outperform the recent state-of-the-art keyword spotting
approaches.

3.1 introduction

Nowadays, in order to grant access to the contents of digital document collec-
tions, their texts are transcribed into electronic format so users can perform
textual searches. When dealing with large collections, automatic transcription
processes are used since a manual transcription is not a feasible solution. In
the context of digital collections of historical documents, handwriting recog-
nition strategies [27] are applied to achieve an automatic transcription since
most of those documents are manuscripts. However, handwriting recognition
often do not perform satisfactorily enough in the context of historical docu-
ments. Documents presenting severe degradations or using ancient glyphs
might difficult the task of recognizing individual characters, and the lexicon
definition and language modeling steps are not straightforwardly solved in
such context. Keyword spotting has become a crucial tool to provide acces-
sibility to historical collection’s contents. Keyword spotting can be defined
as the pattern recognition task aimed at locating and retrieving a particular
keyword from a document image collection without explicitly transcribing
the whole corpus.

Two different families of keyword spotting methods can be found in the
document image analysis literature. On the one hand, learning-based methods
such as [38, 17, 13], use supervised machine learning techniques to train
models of the words the user wants to spot. Those models are then used to
classify whether an incoming document image contains or not one of the
sought words. On the other hand, example-based methods such as [31, 80, 65],
receive as input an instance of the keyword the user wants to retrieve from a
previously indexed document image collection. Learning-based methods are
preferred for applications where the keywords to spot are a priori known
and fixed. If the training set is large enough they are usually able to deal with
multiple writers. However, the cost of having a useful amount of annotated
data available might be unbearable in most scenarios. In that sense methods
running with few or none training data are preferred. It is the case of example-
based methods, which are specially interesting when it is not feasible to

27
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obtain labeled data. They also present the advantage that the user is free
to cast whatever query keyword he wants and is not restricted to the set of
modeled words.

However, one of the main drawbacks of keyword spotting methods, ei-
ther learning or example-based, is that they usually need a layout analysis
step that segments the document images into words [77, 75, 30, 78] or text
lines [13, 80]. But this segmentation step is not always straightforward and
might be error prone. In fact, although word and text line segmentation
is a quite mature research topic, it is far from being a solved problem in
critical scenarios dealing with handwritten text and highly degraded docu-
ments [10, 81]. Any segmentation errors affect the subsequent word represen-
tations and matching steps. This dependence on a good word segmentation
motivated the researchers of the keyword spotting domain to recently move
towards complete segmentation-free methods [65, 82, 83, 39, 76]. The liter-
ature dealing with segmentation-free keyword spotting methods is rather
scarce since it is a relatively new and unexplored research topic. However,
we strongly believe that bypassing the segmentation step is a must in the
context of historical document collections where achieving a perfect word or
text line segmentation might be unfeasible. So, architectures that dismiss the
segmentation step present a clear asset in the context of historical documents.

In addition, quite often, keyword spotting methods rely on computing
expensive distances exhaustively between the query and the words in the col-
lection such as Dynamic Time Warping (DTW) [31] or learning and applying
complex models such as Hidden Markov Model (HMM) [38, 17, 39] or neural
networks [13]. In that sense, in large-scale scenarios, the complexity issue
should to be taken into account by proposing efficient and scalable methods
both in terms of memory usage and response time.

In this chapter we present an efficient segmentation-free keyword spotting
method based on a Bag of Visual Words (BoVW) model powered by SIFT
descriptors in a patch-based framework. Since an explicit word segmentation
is avoided, the proposed method can be applied in scenarios where word
segmentation might be problematic such as documents that do not follow a
classical Manhattan layout, or even be used to spot handwritten annotations
that do not follow a regular text line structure. Other preprocessing steps such
as binarization, slant correction, etc. are also avoided, directly processing
the raw image. The proposed architecture follows the query-by-example
paradigm and do not involve any supervised learning method, thus do not
rely on any previous content transcription. Our proposal adapts techniques
that have been successfully applied in other computer vision problems
to the historical documents context. By using such general representations
instead of relying on hand-crafted features, both handwritten and typewritten
documents are handled indifferently.

The proposed method includes an indexation scheme aimed to scale
the proposed method to handle large datasets. We also use a multi-length
patch representation, which increases the retrieval performance by taking
into account the different possible lengths of the query words. A thorough
analysis and evaluation of all involved parameters of the method is presented
in order to assess the configuration maximizing the retrieval performance.
Finally, a performance comparison with the recent state-of-the-art literature
in keyword spotting is also presented.

The remainder of this chapter is organized as follows. In Section 3.2, we
present how the document corpora are constructed and organized. We detail
the feature extraction from document pages and the encoding system used
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in order to efficiently query the collection. Section 3.3 details the retrieval
stage. We show how queries are treated and how regions of interest are
determined within document pages. Experimental results are presented in
Section 3.4. We study the influence of the method’s parameters and compare
our performance against a number of state-of-the-art keyword spotting
approaches. Finally, conclusions and further research lines are drawn in
Section 3.5.

3.2 off-line corpus representation

The word spotting problem is addressed by dividing the original document
images into a set of densely sampled local patches. These local patches are
the basic structure used to spot the words within the document: once a query
image is given, the local patches are used to determine the page locations
where the query keyword has a greater likelihood to appear. With such
a procedure having an explicit word segmentation is avoided as well as
any other word pre-processing steps (i.e. binarization, slant correction, etc.).
These local patches must roughly match the size of the text in the document.
More precisely, the height H of the local patches should roughly match the
height of the text in the document. This height parameter H can be either set
automatically, by for instance using a projection profile algorithm, or it can
by manually set by the user.

Then, for a given height H, four different widths W` are defined in order
to cope with queries of different lengths. Specifically, the geometry of the
patches has been set to H×H, 2H×H, 3H×H and 4H×H and are densely
sampled using a regular grid of H3 ×

H
3 pixels. The most convenient patch

width will be determined at query time. This setup guarantees that there is
enough overlapping between the local patches and the document words so
that each word in the document is covered by at least a patch. Although a
salient patch detection strategy will effectively reduce the amount of patches
to be processed [83], by densely sampling them no assumption has been
made on which portions of the documents are important to the final user.

3.2.1 Local Patch Descriptor

Local patches are described using the BoVW signature so that, first visual
words are extracted from the document images. The visual words are ob-
tained by densely sampling SIFT descriptors over the image by using the
method proposed by Fulkerson et al. in [68]. The SIFT descriptors are sam-
pled over a regular grid of 5× 5 pixels at three different scales: H2 , 3H4 and H.
This multi-scale representation is used to capture from fine to coarse charac-
teristics from the word characters. The finer scale characterizes sub-parts of
a character while the coarser scale characterizes whole characters and their
surroundings.

The performance of the BoVW model depends on the amount of visual
words extracted from the image. In the related literature it has been noted
that the larger is the amount of descriptors extracted from an image, the
better the performance is [64]. Therefore, a dense sampling strategy has a
clear advantage over approaches using interest points. However, a dense
sampling over the image results in some SIFT descriptors calculated in low
textured areas that are unreliable. In order to avoid this, descriptors having a
low gradient magnitude before normalization are directly discarded.
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Figure 3.1: Local patch descriptor signature: a) SIFT descriptors are extracted from
the document image. Note that the missing descriptors are filtered out
due to their low descriptor normal value. Then, b) SIFT descriptors are
encoded into visual words and c) the visual words which lie within the
local patch are accumulated in the local patch signature.

Once the SIFT descriptors are calculated, a codebook is used to quantize
them into visual words. The codebook is obtained by clustering the descriptor
feature space into K different clusters by using the k-means algorithm. Then,
visual words are obtained by simply assigning to each SIFT descriptor the
nearest codeword of the codebook, i.e. the one with the smaller Euclidean
distance.

After SIFT descriptors have been encoded into visual words, these visual
words are used to create the signatures of the local patches: a local patch

pj of the document is described by a histogram fj =
[
f1j , f2j , ..., fKj

]
which

accumulates the frequencies of each visual word within the local patch. This
K-dimensional descriptors do not take into account the spatial distribution
of the visual words within the local patch. This is a drawback of the BoVW

representation, since words with the same letters but resorted altogether
may have a very similar signature. For instance, anagrams are completely
indistinguishable using this representation. Therefore, the Spatial Pyramid
Matching (SPM) method proposed by Lazebnik et al. in [71] is used in order
to add spatial information to the unstructured BoVW model. This method
roughly takes into account the distribution of the visual words over the local
patches by creating a pyramid of spatial bins.
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Different spatial configurations have been evaluated and, a two level SPM

with a single vertical partition, differentiating the left and the right parts of
the patch, gives the best compromise between the retrieval performance and
the number of dimensions of the obtained descriptor. Since the amount of
visual words assigned to each bin is lower at higher levels of the pyramid,
due to the fact that the spatial bins are smaller, the visual words contribution
is weighted according to the spatial coverage. In our case, the visual words
assigned to the left and right spatial bins contribute twice to the final his-
togram. Finally, a local patch is described by a 3×K dimensions descriptor

fj =
[
fGj , fLj , fRj

]
, where fGj , fLj , fRj are the patch descriptor sub-vectors cor-

responding to the global, left and right spatial bins of the spatial pyramid.
Finally, all the patch descriptors from the corpus are re-weighted by applying
the tf-idf model [84] and normalized using the L2 norm. The different steps
used to obtain the signatures of the local patches are summarized in Fig. 3.1.
First, in Fig. 3.1.a) SIFT descriptors are calculated from the image. Note that
since descriptors with low norm are discarded, only descriptors nearby a
character are present. Then, SIFT descriptors are quantized into visual words
in Fig. 3.1.b) and these visual words are used to create the descriptor of the
local patch in Fig. 3.1.c).

3.2.2 Latent Semantic Analysis Transform

Ideally, two instances of the same character are always represented by the
same set of visual words. However, the clusters obtained using the k-means
algorithm might not be optimal, so that some salient structures in the de-
scriptor space might not be properly represented. Since the number of visual
words of the codebook is not inferred from the descriptor space, this space
may be under- or over-clustered. Besides, the shape of a character is likely to
change from word to word in the context of keyword spotting, specially in
handwritten documents. Therefore, the Latent Semantic Analysis (LSA) tech-
nique introduced by Deerwester et al. in [85] has been applied to represent
the local patch descriptors in a way which eludes unreliability, ambiguity
and redundancy of individual visual words.

The LSA technique assumes that exists some underlying semantic structure
in the descriptor space. This semantic structure is defined by a set of abstract
topics where each topic is a representative distribution of visual words.
The topics are estimated in an unsupervised way using the Singular Value
Decomposition (SVD) algorithm. Then, local patches are represented by a
mixture of topics instead of a histogram of visual words. The goal is to obtain
a transformed space where patches having similar topics but encoded by
different visual words will lie close. In the context of our problem where
a document is represented by millions of local patches, the LSA technique
has the advantage over similar alternatives that the SVD can be calculated
incrementally [86]. This allows to obtain the transformation space matrix
processing the whole corpus of local patches in a very efficient way.

In order to obtain the space transformation matrix, the document patches of
the global level descriptors fGj are arranged in a visual-word-by-patch matrix
A ∈ RK×M, where K is the codebook size and M is the number of patches
of the document. The LSA obtains the transformed space by decomposing
the visual-words-by-patch matrix in three matrices by a truncated SVD. In
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order to reduce the descriptor space to T topics, where T � K, we proceed
as follows:

A ' Â = UTST (VT )
> ,

where UT ∈ RK×T , ST ∈ RT×T and VT ∈ RM×T . Then, a patch descriptor fj
is projected into the transformed space vector f̂j by applying the transforma-
tion matrix XT = UT (ST )

−1 to each spatial sub-vector fGj , fLj , fRj separately
as follows:

f̂j =
[
fGj
>

XT , fLj
>

XT , fRj
>

XT
]

.

This setup has obtained better experimental results than applying the LSA

technique directly to the local patch descriptor fj. By separately transform-
ing each sub-vector, the spatial information encoded by the SPM scheme is
maintained.

3.2.3 Product Quantization Indexing

In order to efficiently store and retrieve the patch descriptors, an indexing
structure is needed. The Product Quantizer (PQ) indexation framework pro-
posed by Jégou et al. in [87] has been used. This method allows both to
reduce the amount of memory needed to store the local patch descriptors by
means of binary codes and to reduce the computational cost of searching the
nearest neighbors by using a sub-linear approximate distance computation.
The method is governed by two parameters m and c that will determine
the achieved compression rates. The product quantizers decompose the lo-
cal patch descriptor space into a Cartesian product of m local sub-vectors.
The original f̂j descriptors are mapped into the T∗ = 3T/m dimensional
sub-vectors as

f̂j = [f̂1j , ..., f̂T
∗
j︸ ︷︷ ︸

u1(f̂j)

, ..., f̂(m−1)T∗+1
j , ..., f̂3Tj︸ ︷︷ ︸

um(f̂j)

]

=
[
u1(f̂j), ...,um(f̂j)

]
.

Then, each sub-space is quantized separately using c sub-quantizers. Fi-
nally, the descriptors are represented by a short code composed of its sub-
space quantization indexes calculated as,

PQ(f̂j) =
[
κ1(u1(f̂j)), ...,κm(um(f̂j))

]
,

where κi(·) is the index of the sub-quantizer associated with the i-th sub-
vector. For instance, if in the LSA step, the number of topics is set to T =

512, then the dimensionality of the patch descriptor is 1536. Given a PQ

configuration which divides the original space into m = 128 sub-vectors of
12 dimensions and uses c = 256 sub-quantizers, the 1536-dimensional local
patch descriptor is effectively represented by a 128 bytes code.

3.3 word retrieval

To perform the retrieval, the query-by-example paradigm is followed, where
the user inputs the system a sample image of the sought word. In our
segmentation free approach, a set of putative patches which are visually
similar to the given query are first obtained. Then, a voting scheme aims at
finding the locations within the document pages with a high likelihood to
find the query word.
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Figure 3.2: Example of the voting procedure. a) Query, b) sample page, c) obtained
voting space.

3.3.1 Candidate Search

Given a query image which has been cropped by the user from the im-
ages in the collection, the proposed method first densely samples the SIFT
descriptors. Then, quantizes them into visual words using the codebook.
Afterwards, the patch descriptor is obtained by accumulating the visual
words into the different bins of the spatial pyramid histograms. Subsequently,
the obtained descriptor is normalized using the tf-idf model obtaining fq
which is projected into the transformed LSA space by

ˆfq =
[
fGq
>

XT , fLq
>

XT , fRq
>

XT
]

.

Finally, the cosine distance is computed between the query descriptor ˆfq
and the document patch descriptors f̂j as a similarity measure to select the
patches from the documents where the query keyword is more likely to
appear.

The cosine distance is calculated by using the asymmetric distance com-
putation [87] method from the PQ framework. First, the dot product is sep-
arately calculated for each m sub-vector between the query and all the c
sub-quantizers obtaining a distance matrix D ∈ Rm×c, where the i-th row
of the matrix is computed as

di =
[
〈ui(f̂q),ui(f̂1)〉, ..., 〈ui(f̂q),ui(f̂c)〉

]
,

where 〈·, ·〉 is the dot product between the two sub-vectors. Then, following
the multi-length scheme, the query width determines which local patches
agree in terms of word length. According to that, just the most similar width
W∗` to the query is taken into account. Finally, combining the PQ codes
[κ1, ...,κm] of the selected local patches and the matrix D, the approximated
cosine distances are obtained

δqj = 1−

m∑
i=1

Di,κi(ui(f̂j))
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between the query ˆfq and the patch descriptors f̂j that match the query
length.

3.3.2 Candidate Localization

Once the most similar local patches have been retrieved, the regions of the
document which gather most support have to found and selected as putative
retrieved locations.

For each document page image, a 2-D voting space is constructed in where
each retrieved local patch will cast its votes. In our implementation each
cell of the voting space has a geometry equal to the local patch sampling
step (H3 ×

H
3 pixels). Then, each selected local patch casts a vote to the cell

where its geometric center falls, weighted by the approximate distance δqj.
Afterwards, the contribution at each cell of the voting space is smoothed
by using an elliptic Gaussian filter g⊥(x,y;W∗` ,H). For instance, Fig. 3.2
shows an example of the smoothed voting space obtained for a given query.
Finally, the retrieved regions of W∗` ×H pixels are found by searching the
local maxima in the smoothed voting space. The resulting list of putative
document regions RD is obtained by resorting the selected candidates in
terms of its local maxima value.

3.4 experimental results

Let us first introduce the datasets and the evaluation measures used to assess
the performance of the proposed system and then analyze the obtained
results.

3.4.1 Dataset and Evaluation Measures

In order to perform the experiments, we have used three datasets of hand-
written documents and one dataset of typewritten documents. The first
image corpus (GW20 dataset) consists of a set of 20 pages from a collection
of letters by George Washington [31] dated 1755. Its ground-truth has a total
of 4 860 segmented words with 1 124 different transcriptions. In order to test
the scalability of the method, we have used a much larger set of images from
the George Washington letters1 composed of 1 500 pages (GW1500 dataset),
however, there is no ground-truth for this dataset. The third evaluation
corpus (BCN dataset) contains 50 pages from a collection of handwritten
marriage licenses written in 1 617 from the Barcelona Cathedral [88]. In that
collection just some words are transcribed. We have 6 735 segmented words
corresponding to 21 different transcriptions. Finally, although the main aim
of our method is to deal with handwritten documents, for the sake of gener-
ality, we also tested a typewritten corpus (LB dataset) consisting of a set of
20 pages from a 1 825 book on Lord Byron’s life [57]. In that case we have
4988 segmented words corresponding to 1569 different transcriptions. We
can see an example of the four datasets in Fig. 3.3. In terms of the document
degradation, the LB collection is the most well-preserved and, since it is
typewritten, it is expected to be the less challenging dataset. Between the
GW20 and the BCN collections, the handwriting style in the GW20 images is
less variable and the image quality is quite good, whereas the BCN collection

1 Library of Congress http://memory.loc.gov/ammem/gwhtml/

http://memory.loc.gov/ammem/gwhtml/
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is the most challenging one since the images present severe degradations
and the variability in handwriting style is highly noticeable.

a) b) c)

Figure 3.3: Example of pages from the a) George Washington, b) Barcelona Cathedral
and c) Lord Byron’s collections.

In order to evaluate the performance of the spotting method we have
chosen to report the mean average precision mean Average Precision (mAP)
and recall measures. In our case, a returned region from the documents will
be considered as relevant when it overlaps at least a 50% of the sought word
in the ground-truth.

Table 3.1: Local patch and feature geometries parameters used at each database.

GW20 BCN LB

Line Height 80 70 60

Small 40 36 32

Feature Size Medium 60 56 48

Large 80 72 60

Patch Grid 27× 27 24× 24 20× 20

Tiny 80× 80 70× 70 60× 60
Patch Geometry Small 160× 80 140× 70 120× 60

Medium 240× 80 210× 70 180× 60
Large 320× 80 280× 70 240× 60

For each database, we need to calculate the line height parameter H in
order to define the geometry parameters of the local features and local
patches. Table 3.1 summarizes the line height and the inferred feature and
patch geometries that we have used in the following experiments. Such line
height H has been automatically estimated by means of a projection profile
analysis [10] over a subset of pages of the document collection. The text line
height is obtained by calculating the median separation between peaks of
the projection profile. This allows to obtain an accurate H parameter despite
the possible errors of the line detection algorithm.
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3.4.2 Results

In this section, we analyze the performance of the proposed system. We
organize the different carried experiments as follows. First, we will present
some qualitative results to assess the effectiveness of the method to retrieve
visually similar words. Then, we provide an exhaustive study of the effect of
the different parameter configurations of the proposed method. Subsequently,
we analyze the system’s behavior in a large-scale scenario. We finally compare
the obtained results with other state-of-the-art methods.

3.4.2.1 Qualitative Results

Query Results George Washington 20 pages

Barcelona Cathedral

Lord Byron

George Washington 1.500 pages

Figure 3.4: 9 top-most retrieved images for some queries in the four evaluated collec-
tions.

We present in Fig. 3.4 some qualitative results for the four databases with
an SPM-BoVW patch descriptor with a codebook of 215 visual words. In a
word spotting application, the chosen word descriptor should agree with the
human perception when considering that two words are similar. We report
here some queries where the system yields some false positive words in the
first ten results. These results show that gradient-based descriptors fulfill
the visual requirements in both typewritten and handwritten scenarios since
the false positives (framed in red) are visually similar to the queried word.
In addition, it is worth to note that even if the method does not entail any
segmentation step, the retrieved regions are usually well centered over the
text lines.

3.4.2.2 Baseline

We can see in Table 3.2 the evolution of the mean average precision and recall
indicators for codebook sizes from 28 to 215 visual words and amount of
topics from 26 to 29 for the three collections. The system tends to perform
better with large codebooks both in terms of ranking and recall abilities.
However, we can appreciate that the gain decreases as the codebook grows
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larger until it might result in a decrease of the system’s performance. This
fact is emphasized in the BCN collection, which presents more noise. Here,
when using medium-sized codebooks, the system generalizes better and is
able to absorb the noise whereas when we increase the vocabulary size the
patch descriptor becomes more noisy and the recall is affected.

As expected, when using the LSA encoding, the greater the number of topics
is, the better the system performs. Looking at the GW20 and LB experiments,
the dimensionality reduction produces a small drop-off in terms of mean
average precision for small codebooks that is counteracted as we increase the
codebook size. However, if we look at the experiments carried with the BCN
collection, an interesting phenomenon can be observed. Here, the drastic
dimensionality reduction not only does not hinder the performance but
provokes a significant improvement in recall against the raw descriptors.
This recall increase can be attributed to the original idea of the LSA algorithm,
which not only reduces the dimensionality of the descriptors but also finds
relationships between different visual words corresponding to the same
keyword. In noisy environments the use of LSA results in a more compact
representation that in addition generalizes better and thus ameliorates the
final performance.

The results of our baseline system with K = 215, T = 512 and using the
SPM scheme are summarized in the first row of the Table 3.4. The obtained
results clearly outperform our previous approach presented in [57] in both
the GW20 and LB collections, mainly due to the increase in the codebook
size and the amount of topics in the LSA encoding.

3.4.2.3 Compressing with Product Quantization

Each patch from the documents in the baseline system is described by a
1 536-dimensional double-valued feature vector, thus occupying 12 288 bytes
in memory. Each page having in average more than 10 000 patches, we need
approximately 120MB to store each page from the collection in memory.
Since managing such amount of data makes the system not scalable, we have
compressed the patch descriptors with the PQ method. We can see in Table 3.3
the details in terms of memory usage per patch and the compression ratios
reached for different values of the c and m parameters. We have achieved a
lossy patch representation that reduces its size with respect to the baseline
by a factor that ranges from 96 to 2048 times. This means that in a Gb of
RAM memory, we can fit between 900 to 18 000 pages.

Table 3.3: Bytes and compression ratio per patch for each PQ setup.

c sub-quantizers m sub-vectors

8 16 32 64 128

64 6 (1:2048) 12 (1:1024) 24 (1:512) 48 (1:256) 96 (1:128)

128 7 (1:1755) 14 (1:877) 28 (1:438) 56 (1:219) 112 (1:109)

256 8 (1:1536) 16 (1:768) 32 (1:384) 64 (1:192) 128 (1:96)

In Fig. 3.5 we present the mAP and recall measures obtained after compress-
ing the patch descriptors with different values of the c and m parameters.
As we can appreciate, concerning the mAP, the increase of sub-vectors m
enhances the performance of the system whereas no significant improvement
is observed when increasing the amount of sub-quantizers c. Regarding the
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Figure 3.5: Mean average precision and recall for different c andm values when using
PQ for the a) and b) George Washington, c) and d) Barcelona Cathedral
and e) and f) Lord Byron’s collections.

recall indicator, we appreciate the same phenomenon, but in that case the
recall values even slightly outperform the baseline system.

These results can be attributed to the quantization step when local patch
descriptors are converted to PQ codes. This quantization reduces the discrim-
inative power of the local patch descriptors, resulting in a reduction of the
mAP. However, it also reduces the effects of noise, leading to the observed
moderate increase of the recall in all databases.

3.4.2.4 Using Mutli-length Patch Indexation

So far in the presented experiments the size of the query word has not been
taken into account. In our previous work [57], we found that short queries
performed worse than larger ones when using a fixed size of the patch.
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Table 3.4: Performance of the proposed baseline method with PQ, multi-length con-
figuration.

GW20 mAP(%) Recall(%)

Baseline (K = 215,T = 512) 57.51 91.22

With PQ (c = 256, m = 128) 54.68 91.88

With PQ and Multi-length 61.35 95.43

BCN mAP(%) Recall(%)

Baseline (K = 215,T = 512) 90.17 74.64

With PQ (c = 256, m = 128) 88.07 77.07

With PQ and Multi-length 88.93 83.21

LB mAP(%) Recall(%)

Baseline (K = 215,T = 512) 85.16 96.48

With PQ (c = 256, m = 128) 80.61 96.71

With PQ and Multi-length 90.38 97.34

Therefore, we have used a multi-length patch representation in order to fix
this shortcoming despite the increase in memory requirements. We can see in
the third row of Table 3.4 the important gain in both mAP and recall when the
patch indexation is adapted to the query width. By looking at the individual
performances attained at each patch geometry, we have observed that only
the tiny patch configuration performs slightly worse than the fixed length
approach. All other scales outperform the fixed approach. For instance in the
GW20 dataset we obtained a 48.94%, 54.55%, 67.03% and 79.17% mAP for the
tiny, small, medium and large patch configurations respectively. While the
fixed approach reach a 54.68% mAP. A similar phenomenon is observed for
the recall value. The increase in performance as the patch geometry grows
can be explained due to the perceptual aliasing. Short queries are more likely
to obtain false positives since matching to a sub-strings is not penalized in
our method. Even though this behavior penalizes the performance of the
method, this is not an undesired conduct in the query-by-example setup.

3.4.2.5 Large scale evaluation

The vectorial representation of our spotting method allows to efficiently
index large collection of pages. Unfortunately, publicly available databases
only have tens of annotated pages since creating the ground-truth for large
collections is a tedious tasks. Therefore, in our large scale experiments using
the GW1500 dataset, we had to calculate the retrieval score manually. Query
images were generated by randomly selecting 50 word images and the
retrieval score was obtained by manually annotating the correct matches for
the 50 top-most results. We have used up to 1 500 document images which
required up to 60 million patches to represent the whole collection. Therefore,
when using the multi-length representation, the whole document collection
needed about 7.5 Gb of memory with the best PQ configuration.

The mAP and time needed to process a single page for different sized
collections is shown in Table 3.5. As expected, the mAP score of the system
slowly decreases as more pages are indexed because of the amount of dis-
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Table 3.5: Performance of the system in the GW1500 scenario.

Num. of pages mAP (%) time (ms.)

100 57.73 3.01

500 56.83 2.85

1000 55.98 2.84

1500 55.69 2.87

tractors and false positive visually similar words also increases. Regarding
the computational cost, the time required to process a page remains constant
as more pages are added. The PQ framework allows to retrieve approximate
nearest neighbors sub-linearly so that the candidate search time actually
decreases when adding more pages to the collection. However, the more
pages we add to the collection, the more the voting scheme from the candi-
date localization step increases its computational cost. Leading to a nearly
constant time as more pages are added since both steps compensate each
other. In addition, these results do not take into account that pages can
be processed independently. Therefore, an straightforward modification to
speed up retrieval speed is to process document pages concurrently.

3.4.2.6 Comparison with related literature

The George Washington collection has been used in many word spotting
works and has become a de-facto dataset used to benchmark different sys-
tems. However, the lack of a standard evaluation protocol and the different
taxonomies of word spotting methods provokes that achieving a direct com-
parison among methods is not straightforward. Not all the authors use the
same set of pages, query words and even evaluation measures. We present
in Table 3.6 a review of the achieved performances of several state-of-the-art
methods. Only Almazan et al. [65] used the same evaluation methodology
than us. For the sake of comparison, we have evaluated our method using
each of the different experimental setups and evaluation measures proposed
by the authors in the original papers. We can see that in equal conditions, the
proposed method outperforms all state-of-the-art but the method proposed
by Frinken et al. in [13]. It is also worth to mention that some segmentation-
based methods present their results by using a manual segmentation of the
images avoiding thus the problems derived from any erroneous segmentation
artifacts. Lets now discuss the different results obtained using the different
configurations.

In some methods we have to take into account the reported recall measure.
In Rath and Manmatha [30] and Rothfeder et al. [75], they use a pruning
step to remove unlikely correspondences and also to speed up the retrieval
process. Likewise, we revoked retrieved images with low score until a similar
recall value is attained. This pruning increases the mAP score as we can
observe in Table 3.6.

Other methods use a selected set of queries [78, 80, 82] avoiding stop words.
Since stop words have few characters and are difficult to distinguish visually,
by not considering them our method increased its mAP score. Similarly,
methods which use cross-validation only cast the query words appearing in
all fold sets. The configuration used by Rodriguez-Serrano and Perronnin
in [38] divides the database in 5 folds: a fold is used to create the queries,
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another fold is used for validation purposes and the last 3 folds are used
as test collection. Since the GW dietaries explain facts temporally, some
words just appearing in specific page ranges are not considered using this
configuration. However, stop words are kept as queries, resulting in a mAP

score decrease. However, the leave-one-out configuration used in [77], just
use a single page as test leading to drastic reduction both in the number of
queries and the possible retrieved results facilitating a steep increase of the
mAP.

Finally, Fischer et al. [17] and Frinken et al. [13] use cross-validation with
an evaluation framework performed at line level, i.e. a whole line is assessed
as relevant when it contains a single instance of the query word. In order
to compare their results with our method, we followed a procedure similar
to the one defined in both papers when comparing to DTW. The retrieved
images are first projected to the closest text line. The score of a whole text
line corresponds to the highest score of the projected words. By following
such evaluation procedure, we obtain 100 line results for a given query, since
each page contains about 20 lines and only 5 pages are indexed per fold.
Consequently, the results obtained using this evaluation procedure have to be
taken cautiously when compared with word-level evaluations. When using
this configuration the mAP tends to increase since the effect of false-positives
and lowly ranked true-positives is lessened.

Still, Frinken et al. [13] outperforms our method. This is not surprising
since their method is learning-based. Besides using statistical machine learn-
ing models that cope with the handwritten word variations, these methods
also integrate language models to further reduce the effects of visual am-
biguities. However, example-based system are more flexible as they can be
used to spot any kind of word or symbol present in the document image. For
instance, our system was also able to spot the graphical stamp of the Library
of the Congress as shown in the last row of Fig. 3.4.

Finally, another important aspect when evaluating spotting systems is
the computational cost. From all the methods reviewed in Table 3.6, just
Almazan et al. [65] present an efficient implementation that can be scalable
to large environments, requiring 15 ms. per indexed page. Approaches based
on sliding-windows [13, 80] are not scalable, since they have to process the
whole document corpus each time that a query is cast. Other holistic word
signatures like [30, 75] require a complex alignment processes which can not
be effectively indexed. By contrast, the vector representation used by our
method can naturally handle larger amount of data by efficiently storing
indexed information and obtaining results in sub-linear complexity.

3.5 conclusions

In this chapter we have presented an efficient keyword spotting method for
historical collections that does not involve any segmentation stage. Thus
the proposed method presents a clear advantage over segmentation-based
methods which are likely to fail in challenging scenarios. A patch-based
framework has been used where each patch is described by means of a bag-
of-visual-words model, where the visual words encode gradient information.
The proposed architecture follows a query-by-example paradigm and thus
do not need any supervised learning step. Our method has been tested
with three different collections of historical documents either handwritten
and typewritten. The proposed method yields a very compact, efficient and
discriminative representation thanks to the LSA technique and the PQ com-
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pression step. Such representation is able to efficiently index the document
information both in terms of memory and computational cost, resulting in
a suitable method for large-scale scenarios. By introducing a multi-length
patch representation, we have increased the retrieval performance when
querying small words. In addition, we have presented a thorough analysis
and evaluation of all the involved parameters of the method in order to
assess the configuration maximizing the retrieval performance.

Finally, we have presented an exhaustive comparison with state-of-the-art
word-spotting methods. We evaluated our method using the experimental
setup of each compared method, concluding that our method outperforms
all them but Frinken et al. [13]. However, our example-based method is more
flexible since it does not rely on any segmentation method nor any image
pre-processing step and it does not take advantage of a language model, so
that, it is not limited to search words in the document but it can retrieve any
kind of symbol present in the images. This is a feature which can be useful
for historical documents where symbols used to abbreviate common words
and illustrations commonly appear. Nonetheless, adding either a language
model or some statistical machine learning steps to the proposed architecture
is straightforward. For instance in [62], we added a model of the character
distribution over words in a query-by-string framework.
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In this chapter, we explore the introduction other information
modalities to create a query-by-X spotting system where word
snippets are indexed and retrieved using different information
modalities. Besides the visual information characterized with a
Bag of Visual Words (BoVW) signature, we consider two addi-
tional sources of information. A textual signature where words
are represented by a codebook of n-grams and an audio signature
where words are represented by a Bag-of-Audio-Words (BoAW)
signature. The main idea of our approach is to find a projection
that transforms two different signatures into a common feature
space, so word snippets can be instinctively characterized using
either information modality. The goal is to create a word snippet
index using only visual information and then query them using
only textual or audio information, i.e. obtaining a query-by-string
or a query-by-audio word spotting system. Additionally, the pro-
cess can be used in reverse and retrieve the audio utterance from
visual queries. The proposed method generates a vectorial sig-
nature that can be used together with state-of-the-art indexation
structures can be used in large-scale scenarios. The proposed
method is evaluated using a collection of historical documents
outperforming state-of-the-art performances.

4.1 introduction

Handwritten keyword spotting can be defined as the problem of locating
within a collection of documents, the zones of interest where a particular
queried word is likely to appear, without the explicit transcription of all the
contents of the collection. Being a mature enough research topic, many differ-
ent approaches have been presented in the literature aiming at the keyword
spotting problem. In particular, one of the most prominent approaches is to
follow a query-by-example paradigm. That is, the user provides a snippet
image of the sought handwritten word that serves as example and the system
retrieves a ranked list of words from the collection that are similar to the
query. The simplicity of such approaches is quite attractive since by only
using an adequate handwritten word description and similarity measure, the
system can already deliver good retrieval performances. In addition, such
spotting approaches can usually be pipelined to any indexing mechanism
yielding efficient response times in large-scale scenarios. However, such sim-
plicity hides an important usability flaw. In order to spot a word, the user
has to browse the collection looking for an instance of the sought word. But
forcing the user to manually extract a template word in large collections
might be a really tedious task. Such approaches are thus unusable in real
scenarios for plain users that might not be willing to make such an effort to
just cast a query.

To overcome such limitations, more complex learning-based techniques
have been proposed to bypass this burden. These techniques allow to query
the system by just typing the query string, which is known as the query-by-
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string paradigm. The first query-by-string proposed attempts such as [89, 90,
42, 50, 78] relied on the extraction of letter or glyph templates. Such character
extraction was manually done [42, 50] or by means of some clustering
scheme [90, 78]. When the user typed the query, such character templates
were put together in order to synthetically generate an example of the sought
word. Although such methods proved to be effective and user-friendly, they
can just be applied in scenarios where individual characters can be easily
segmented and put together again to generate the queries. In fact, they
were applied to either typewritten documents [90, 42] or documents having
writing styles without many typographic ligatures [89, 50].

In order to propose more generic solutions, some learning-based methods
aimed at working with the query-by-string paradigm have emerged. Instead
of learning a model for whole words, the main idea is to learn models for
individual characters and the relationships among them. Such models, how-
ever, are trained on the whole word or even on complete text lines without
needing an explicit character segmentation. Fischer et al. proposed in [17] to
use Hidden Markov Model (HMM) character models trained over complete
text lines whereas Frinken et al. proposed in [13] the use of bidirectional long
short-term memory neural networks to infer individual character presence.
An usual inconvenient of learning-based methods is that they often require
an important amount of annotated data in order to perform well. However,
Rodriguez-Serrano and Perronnin recently proved in [91] that the amount of
training data needed can be drastically reduced by combining handwritten
examples of the word to model together with synthetic samples generated
by different computer fonts. However, we believe that such approaches still
present an important drawback. Learning character models with either an
HMM [17] or a neural network [13] allows to on-the-fly generate a word model
from the query the user typed in the keyboard. But this on-line generated
model has to be used to process the whole collection at query time. When
dealing with larger and larger datasets, the computational cost quickly be-
comes excessive, making such approaches not scalable at all. In contrast,
example-based approaches are easily scalable to large collections since they
holistically represent handwritten words by numeric feature vectors, and
thus word spotting frameworks can be used together with state-of-the-art
indexation strategies. Therefore, recent query-by-string methods aimed at
representing words in a numerical n-dimensional space, which can be effi-
ciently indexed, have been proposed [62, 92]. Such approaches find a common
subspace between textual and visual descriptions of the words, allowing
the user to cast a textual query and retrieve words that were just described
visually.

In this chapter, we propose a query-by-string and a query-by-speech word
spotting methods where word images in the training set are represented both
by a textual and visual representations or by audio and visual representa-
tion. This allows the user to cast spoken or written queries. Such paradigm
provides several benefits. First, it produces a more user-friendly query ex-
perience than classical query-by-example methods. Second, since the final
representation is a numeric feature vector, the solution is scalable to large
collections, providing sub-linear query times when used in combination with
off-the-shelf indexing strategies. Finally, we believe that the query-by-speech
paradigm is even more ergonomic than query-by-string approaches, since
we get rid of the keyboard, making it more easily integrable in some specific
scenarios like museum exhibitions or keyword search engines integrated in
smart-phones.
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Figure 4.1: Example of the n-gram textual descriptor.

Additionally, the proposed framework presents the advantage that without
any additional cost, it can be used backwards. Once we have the trained
model, the same system can be used either to cast spoken queries to retrieve
handwritten words that were just represented visually, but also given an
image of the word, it can retrieve the most similar utterance that we have
indexed. Our proposed system can thus be seen either as a query-by-speech
handwritten keyword spotting, or as a basic handwritten Text-to-Speech (TTS)
system.

The remainder of the chapter is organized as follows. The different word
representations are described in Section 4.2. Subsequently, in Section 4.3 we
detail how to different representations can be combined together though
the use of latent semantic analysis. In Section 4.4, we overview the retrieval
step and how from a query represented with one modality we are able to
retrieve word instances that are only represented with the other modality.
The experimental results are presented in Section 4.5. We finally draw our
conclusion remarks in Section 4.6.

4.2 word representations

As previously stated, words are represented by three different cues, relying
on textual information, visual information or audio information. In this
chapter, we only focus on the word spotting problem assuming the words
are already segmented by a layout analysis step. Here, segmentation errors
are not considered and the word segmentation is manually generated. In this
section, we will present the work-flow used to generate the word snippet
representations.

4.2.1 Textual Representation

The basic block used to represent word transcriptions are n-grams of charac-
ters. The transcriptions are divided into a set of consecutive and overlapping
blocks of unigrams, bigrams and trigrams respectively. This simple represen-
tation allows to extract information from which characters compile a word
and encode some neighborhood information. An example of the n-gram
frequencies generated by a transcription is shown in Fig. 4.1.

The textual descriptor fti is obtained by simply accumulating the occur-
rences of each n-gram into a histogram and normalizing this histogram
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by its L2-norm. The number of different n-grams available is obtained by
generating a codebook which maps each n-gram into a dimension of the
textual descriptor. This codebook is generated from the training set where
the textual information is available. Then, in the retrieval phase, the n-grams
which do not appear in the codebook are simply ignored.

4.2.2 Audio Representation

Let us first detail how we create the audio signals of each document word
and how we describe these audio signals.

4.2.2.1 Synthetic Speech

In order to carry out our experiments, we need recordings of the words
appearing in a collection of handwritten documents. To produce a large
enough set of audio records both for the train and the test phases of the
algorithm, we decided to use synthetic voices rather than actually recording
audio clips. We have used three different TTS engines, namely the Festival
Speech Synthesis System [93], the Google TTS API1 and the AT&T’s Natural
Voices TM software2. The Google TTS engine yields an utterance with a single
voice for each word while Festival and AT&T TTS can create utterances with
five different voices for the same word. The Google and AT&T software
create audio records of a higher quality than Festival software obtaining in
general audio recordings closer to natural voices. Finally, the AT&T software
is only used to synthesize a selected set of words that we utilize as queries to
evaluate the algorithm’s robustness against unheard speakers in the training
phase.

4.2.2.2 Bag-of-Audio-Words

In order to extract a feature vector from audio signals, we have chosen
the Perceptual Linear Prediction (PLP) framework [94]. After applying an
overlapped hamming window to the speech signal, PLP features are extracted
on the short-term spectrum of speech. PLP uses several psychophysically
based transformations to extract a set of cepstral coefficients. A subsequent
filtering step named RASTA, proposed by Hermansky et al. in [95] is applied
in order to make PLP analysis more robust to spectral distortions.

However, the RASTA-PLP method still outputs a time signal that depends
on the length of the pronounced utterance. In order to have a fixed-length
feature vector, we have applied the BoAW framework over these time series
features. From a set of utterances represented by their RASTA-PLP cepstral
coefficients, we create a codebook by clustering the cepstral coefficients using
the k-means algorithm. In the experiments presented in is chapter, we use a
codebook of 8 192 audio words. A spoken word is then represented by an
histogram which accumulates the frequencies of each audio word. We can
see an example of a couple of utterances, their RASTA-PLP cepstral features
and a simplified BoAW representation (just 10 codewords) in Fig. 4.2. In order
to encode some sequential information, we divide the audio information into
different temporal bins and the histogram of audio words are independently
accumulated for each of them. These temporal bins are created using a
pyramid structure similar to the Spatial Pyramid Matching method [71]
typically used for visual information. We employ a two level pyramid which

1 http://www.translate.google.com/translate_tts?tl=en&q=Hello
2 http://www2.research.att.com/~ttsweb/tts/demo.php

http://www.translate.google.com/translate_tts?tl=en&q=Hello
http://www2.research.att.com/~ttsweb/tts/demo.php
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Figure 4.2: Example of utterances of the word companies, their RASTA-PLP cepstral
coefficients and their BoAW histograms for two different voices.

halves the temporal bins at each new level, resulting in seven different
temporal bins. These temporal bins are concatenated resulting in a 57 344-
dimensional audio descriptor which is L2-normalized to obtain the final
audio representation fa.

4.2.3 Visual Representation

Word image snippets are represented by a descriptor obtained using the
BoVW framework. This framework has obtained a good performance in
heterogeneous problems in the computer vision albeit its simplicity and
recently has shown to be a powerful tool to describe handwritten words in
a word spotting task [57]. Using the evaluation of the performance of the
different parameters of the BoVW model of Chapter 2 as reference, we have
carefully tuned the methods used at the different steps of the BoVW model
generation so that we obtain good performances when visually computing
similarities among words. Let us detail the followed steps.

4.2.3.1 Region sampling

In order to create a histogram of visual words, we first need to extract
local information from the image. We densely sample local regions over
the image at different scales. The sampled local regions consist in squared
regions having sizes of 20, 30 and 40 pixels which are sampled at a constant
step of 5 pixels. Since we do not expect to face rotation distortions of the
handwritten text, the dominant orientation of the local regions is ignored.
Then, the local regions are characterized by the Histogram of Gradients local
descriptor [67] using its standard configuration. Local regions having an
accumulated gradient module lower than a certain threshold are rejected.
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4.2.3.2 Encoding

Once descriptors have been sampled from the image, we need to convert them
into visual words by means of a codebook. To generate the codebook, we have
randomly sampled two million descriptors of the document images and used
the k-means algorithm to create a codebook with 4 096 codewords. Then, the
local descriptors are encoded into visual words using soft-assignment which
lessen the effects of encoding errors. For each descriptor, we select the three
nearest codewords and weight the contribution of the selected codewords by
means of the Locality-constrained Linear Coding (LLC) algorithm [69]. The
number of nearest neighbors has been validated empirically using different
parameters in the BoVW technique and, this value has consistently obtained
better retrieval performances. Although the number of neighbors can seem
small, this result is coherent with the results shown in the original paper [69]
where, when using a small number of neighbors, a better performance is
reached than when using a larger number neighbors.

4.2.3.3 Spatial Representation

The BoVW model discards all the spatial information of the local regions
where the descriptors have been sampled resulting in a orderless representa-
tion. However, spatial information can greatly increase the representativity
of the visual descriptor. During the creation of the visual descriptor, we
have experimented using different spatial configurations and concluded that
adding spatial information to the BoVW representation of handwritten words
always boosts the retrieval performance of the system.

Original image

First level Second level

Figure 4.3: Distribution of the spatial bins in the two levels of the spatial pyramid.

We have added spatial information by means of the spatial pyramid pro-
posed by Lazebnik et al. in [71]. Experimental results show that partitions
in the abscissa have a greater discriminative power than partitions in the
ordinate. Therefore, we created a two level pyramid, were the first level has
3 partitions in the X axis and 2 partitions in the Y axis and the second level
tripled the number of divisions in the X axis while keeping the same amount
of partitions in the Y axis. Fig. 4.3 shows an example of the prosed configura-
tion. Then, the histogram of visual words is generated by pooling the visual
words which fall at each spatial bin in a different histogram. The histograms
of visual words of each level of the pyramid are independently concatenated
and normalized using the L2-norm. This ensures that the histograms of
visual words of each level of the pyramid have the same contribution to the
final descriptor of visual words. Finally, the visual descriptor fvi is obtained
concatenating the histograms of visual words of each pyramid level. This
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configuration results in 24 different spatial bins which combined with the
4 096 codebook results in a 98 304-dimensional visual descriptor.

4.2.3.4 Normalization

We use the power normalization proposed by Perronnin et al. in [72]. This
method applies the following normalization function at each bin of the visual
words descriptor

g(x) = sign(x)|x|α,

where 0 < α < 1 is the power normalization factor. Finally, an L2-normalization
is applied to the whole descriptor in order to obtain the final visual represen-
tation.

4.3 multi-modal information fusion

Until now, word snippets are independently represented by three information
modalities: a textual descriptor, an audio descriptor extracted from different
utterances of the word and a visual representation generated from the visual
words extracted from the document images. Our proposal is to bring together
the textual and visual descriptors or the audio and visual descriptors into
a common representation space, so that we are able to use queries from
one modality to retrieve words described using the other modality. We
want to be able to use textual queries to retrieve word snippets which are
described solely by visual descriptors or following the opposite path, to
retrieve word utterances given an image of a handwritten word. This is
achieved by searching a transform which projects both the visual and audio
information into a common feature space, so that ideally the audio and visual
descriptors of the same word will be similar in the transformed space.

This transform is obtained by assuming that both visual and audio features
will co-occur for two different instances of the same word. Therefore, we
can find a set of abstract topics that represent distributions of different types
of features associated to some underlying semantics of the indexed words.
We calculate these abstract topics with the Latent Semantic Analysis (LSA)
algorithm [85] which uses the Singular Value Decomposition (SVD) step to
find a linear transform which projects both audio and visual information
into a set of abstract topics in an unsupervised way.

In order to calculate the linear projection matrix, we first arrange the
word descriptors of the training set in a descriptor-by-word matrix A =

[f1 . . . fi . . . fM], where M is the number of train samples and fi =
[
fai , fvi

]
is obtained by concatenating the audio fai and the visual fvi descriptors of
the i-th training sample. Since we can generate multiple utterances for each
word, the number of train samples M corresponds to the number of word
snippet images multiplied by the number of voices used to create the audio
descriptors. The LSA algorithm obtains the linear projection by decomposing
this descriptor-by-word matrix in three matrices using a truncated SVD:

A ' Â = UTST (VT )
> ,

where T is the number of abstract topics (i.e., the dimensionality of the
transformed space) and UT ∈ RD×T , ST ∈ RT×T and VT ∈ RM×T . Finally,
the transformation matrix XT is calculated as

XT = UT (ST )
−1 ,
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so that the descriptor of i-th word snippet fi is projected into the new feature
space by simply f̂i = f>i XT .

4.4 retrieval phase

The LSA model has been calculated from word descriptors where the visual
and one of the other two modalities (i.e. textual or audio) were available.
However, in the corpus indexing and the retrieval phases only a single source
of information is present. Only visual information is available when creating
the corpus index. In this phase, the visual descriptor of each image word
snipped fvi is calculated and projected into the transformed space by

f̂i =
[
0>x , fvi

>
]

XT ,

where 0x is a zeros vector with the same dimensionality than the codebook
of the other modality. The projected vectors f̂i are the descriptors that are
actually used to represent the word instances in the document.

4.4.1 Word snippet retrieval

In the query phase, an user inputs the non-visual query which is projected
into the transformed space by

f̂q =
[
fxi
>, 0>v

]
XT ,

where 0v is a zeros vector which has the same dimensionality as the visual
descriptor. Then, the cosine distance between the projected query f̂q and the
projected visual descriptors f̂i is used as a similarity measure and generate a
ranked list.

This procedure allows to retrieve word snippets that have been described
using only visual information using queries from another modality. This is
possible since the LSA algorithm has found relationships between the visual
words and the features of the other modality in the training phase. Then,
even if a source of information is not present in one of the descriptors, we
are still able to rank and find relevant instances in the indexed documents.

4.4.2 Audio Retrieval

In addition, without any additional cost, we can use the proposed method
backwards to reverse the retrieval task. That is to index audio information and
use handwritten word images as queries. Such audio retrieval can be seen as
a handwritten text-to-speech task which does not have an implicit recognition
step. Furthermore, we generate multiple ranked lists for a single visual query
by indexing the audios of the different available voices separately. These
output lists are re-ranked into a single result using the Borda count algorithm
to obtain a better retrieval performance. Finally, when only returning the
first element of the ranked list to the user, such audio retrieval method can
be seen as a handwritten text-to-speech system.

4.5 experimental results

The proposed query-by-X word spotting method has been evaluated in the
George Washington (GW) database [96, 31] consisting of 4 864 segmented



4.5 experimental results 53

In-vocabulary query and, having 28 relevant instances and attaining a 100% AP

In-vocabulary query your, having 13 relevant instances and attaining a 50.90% AP

Out-of-vocabulary query 28th, having 6 relevant instances and attaining a 80.0% AP

Out-of-vocabulary query thirty, having 3 relevant instances and attaining a 75.76% AP

Figure 4.4: Examples of the 20 most similar word images and their average precision
(AP) returned by the system for some queries.

Table 4.1: State-of-the-art queried-by-string word spotting results for the GW
database.

Method Segmentation Cross- Queries mAP

validation

Proposed Word-level 4 folds
All words 56.54%

In-vocabulary 76.2%

Liang et al. [78] Word-level 5 folds 38 queries 67% at rank 10

Fischer et al. [17] Line-level 4 folds In-vocabulary 62.08%

Frinken et al. [13] Line-level 4 folds In-vocabulary 71%

words. In order to train the LSA model that brings the visual information and
another modality together, we need a portion of the database to be annotated.
Therefore, the database is divided into four different folds. Then, the system
is trained using three of these folds and evaluated in the remaining one. At
query time, all the words in the test set can be used. However, not all the
words appearing in the test fold might be present in the train set. We will
therefore report in our experiments two different measures, the performances
reached when considering all 1 829 words as queries and the performances
reached when not considering out-of-vocabulary words, i.e. just casting the
queries that are present in both train and test sets, that is 1 090 queries.

4.5.1 Query-by-String results

First, we are going to discuss the retrieval performance of the system when
visual and textual information is merged by the LSA model.

4.5.1.1 Qualitative results

We present in Fig. 4.4 some qualitative results of the system. Framed in green
appear the words that are considered relevant in our ground-truth. Note that
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in our experiments we have not filtered stop-words nor removed words with
few appearances. We neither applied any stemming process, so for instance
when querying the word your, results as you or yours are accounted as
negatives. We can also appreciate the performance difference when querying
in and out vocabulary items.

4.5.1.2 Quantitative results

We report the obtained mean Average Precision (mAP) results of our system
in Fig. 4.5 depending on the amount of topics T .
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Figure 4.5: mAP attained by the system using different number of dimensions in the
topic space.

The resulting mAP shows that the larger the dimensionality of the topic
space, the better the retrieval performance of the system. For the largest topic
space size, we reached a 76.20% mAP when using only in-vocabulary queries.
When considering all the queries in the test set, the performance drops to a
56.54% mAP. This is due to the out-of-vocabulary words. In the worst-case
scenario in which just out-of-vocabulary terms are queried, the system yields
a 27.08% mAP.

It is worth noting that out-of-vocabulary words have a small number
of instances and therefore are often penalized when computing the mAP

measure if not ranked perfectly. Yet, the system still manages to retrieve them
within the upper part of the rank. Therefore, we decided to report the recall
at different ranks in Fig. 4.6. We can appreciate that even when just looking
at the 10 first returned elements, we already achieve a 48.84% recall in the
out-of-vocabulary scenario and a 68.5% recall in the in-vocabulary setup.

4.5.1.3 Comparison with the state of the art

Although it is not straightforward to provide a fair comparison between
different methods, we report in Table 4.1 some state-of-the-art performances



4.5 experimental results 55

10 15 20 25 30 40 50 60 70
Number of words returned

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Re
ca

ll

Recall at different number of selected elements

In-vocabulary queries
Out-of-vocabulary queries

Figure 4.6: Different recall values obtained while increasing the number of elements
returned by the system.

of query-by-string methods that also used the GW dataset. Both [17] and [13]
use a very similar experimental setup like ours although they evaluate the
average precisions at line level. In [78] Liang et al. used a selected set of
queries to obtain the mAP just considering the first 10 elements in return.
Using only these queries to evaluate the proposed method, our performance
increases to a 83.12% mAP. Note as well that none of the considered methods
can be easily extended to work in large-scale environments whereas the
retrieval in our vector representation can be performed sub-linearly using
standard indexing structures.

4.5.2 Query-by-Speech results

The proposed method attains a good performance in a query-by-string
scenario, now we are going to show it’s performance when audio information
is used instead of textual as an alternative query modality.

4.5.2.1 Query-by-speech Qualitative Results

We present in Fig. 4.7 some qualitative results of the system when casting
queries pronounced by either Google’s voice (used as well in training) or
an AT&T voice, which has not been heard by the system in the training
phase. Framed in green appear the words that are considered relevant in our
ground-truth. Note that in our experiments we have not filtered stop-words
nor removed words with few appearances. We neither applied any stemming
process, so for instance when querying the word orders, results as order are
accounted as negatives.

4.5.2.2 Query-by-speech Quantitative Results

We report the obtained mAP results of our system in Fig. 4.8 depending on
the amount of topics T when using Festival’s and Google’s voices as queries.
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In-vocabulary query instructions with Google’s voice

In-vocabulary query instructions with an unheard AT&T’s voice

In-vocabulary query orders with Google’s voice

In-vocabulary query orders with an unheard AT&T’s voice

Figure 4.7: Examples of the 20 most similar word images returned by the system for
different spoken queries.

The resulting mAP shows that the larger the dimensionality of the topic space
is, the better the retrieval performance of the system. For the largest topic
space size, we reached a 78.38% mAP when using only in-vocabulary queries.
When considering all the queries in the test set, the performance drops to a
51.24% mAP.

Figure 4.8: mAP attained by the system using different number of dimensions in the
topic space.

We report in Table 4.2 a performance comparison of the proposed query-
by-speech method against the previous query-by-string presented in sec-
tion 4.5.1.2 and the query-by-example set up presented in Chapter 2. All three
methods use exactly the same visual descriptors and both query-by-speech
and query-by-string evaluation protocols are exactly the same. Obviously,
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Table 4.2: Comparison with our previous work using the same visual description.

Method Evaluation Queries mAP

Query-by-speech (proposed) 4 folds All words 51.24%

Query-by-speech (proposed) 4 folds In-vocabulary words 78.38%

Query-by-string [62] 4 folds All words 56.54%

Query-by-string [62] 4 folds In-vocabulary words 76.2%

Query-by-example [18] 1 fold All words 72.98%

Table 4.3: Retrieval performance using unheard voices as queries.

Voice mAP all words mAP for in-vocabulary

from [78] words from [78]

AT&T’s voice Claire 15.46% 16.12%

AT&T’s voice Crystal 14.72% 15.27%

AT&T’s voice Lauren 10.69% 11.13%

AT&T’s voice Mike 15.98% 16.74%

AT&T’s voice Rich 13.01% 13.64%

Average 13.97% 14.58%

the query-by-example experiment do not require any fold partition and each
word snippet is used as query in a leave-one-out fashion. It is interesting
to see that even if the audio queries are noisy while our previous string
queries were not, the reached performances are quite comparable, even deliv-
ering better results in the in-vocabulary query setup. Obviously the reached
performances in the case of multi-modal representations do not reach the
performance levels of just using a visual descriptor in a query-by-example
fashion, but we have to take into account that both query-by-string and
query-by-speech do not require a manual search of the query template.

4.5.3 Query-by-speech with Unheard Voices

In the previous experiment, we used as queries word utterances pronounced
by the same voices that were using in the training phase. We report in
Table 4.3 the obtained results by the proposed system with T = 1024 when
the casted queries are pronounced by a different voice than the ones used
to train the LSA model. Here we have used the five different AT&T’s voices
to pronounce a small set of 38 queries, which are the ones used by Liang
et al. in [78]. Here we can observe an important performance drop when
compared with our previous experiment. However, such low mAP values
might still be acceptable for plain users in certain scenarios, since despite the
low mAP scores, usually some positive word instances are well ranked in the
top positions as we have seen in Fig. 4.7.
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Table 4.4: Accuracies for the Handwritten Text-to-speech.

Voice Accuracy all words Accuracy in-vocabulary words

Google voice 31.13% 37.86%

Festival voice 1 55.68% 67.71%

Festival voice 2 58.40% 71.06%

Festival voice 3 55.90% 67.75%

Festival voice 4 61.04% 74.18%

Festival voice 5 56.84% 68.91%

Borda Count 70.00% 85.24%

4.5.4 Handwritten Text-to-speech via Audio Retrieval

Finally, we account the recognition accuracies of the handwritten text-to-
speech task in Table 4.4. The table reports the percentage of queries in
which we retrieved the correct utterance at the first rank. As expected, we
obtain a significant improvement when just querying in-vocabulary words in
comparison to using the whole corpus. We also observe that the performance
reached among different voices is quite disperse. Since our approach is not
a TTS engine per se, but an audio retrieval system, given an image query
we can combine several retrieval outputs from different voices to overcome
such diversity and obtain better performances. In our case, the Borda count
combination of the ranks obtained with each voice leads to an important
improvement over the indexation of individual voices. The method yields
promising results despite its simplicity and the fact that it does not entail an
explicit recognition of the handwritten words.

4.6 conclusions

In this chapter, we have proposed a method that enables to fuse two different
types of information modalities into a single feature space in a simple and
efficient manner. The proposed method has been used both in a query-by-
string and in a query-by-speech spotting system for historical handwritten
document images. The system reaches state of the art word spotting perfor-
mance when using in-vocabulary queries, i.e. when the both modalities of
information are present in the training set. However, there is still room for
improvement in the case that the system faces out-of-vocabulary queries. Ad-
ditionally, we have demonstrated that the system is bi-directional and it can
be used to retrieve the other modality only from visual cues. We have shown
that the query-by-speech model can also be used as a simple handwritten
text-to-speech system. Instead of indexing visual signatures, we can index
the utterance signatures of words generated by multiple voices. Then, the
speech of a word image is generated by querying the image signature into
the index and selecting the utterance with the most consensus.
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Word-spotting methods based on the Bag-of-Visual-Words
framework have demonstrated a good retrieval performance even
when used in a completely unsupervised manner. Although unsu-
pervised approaches are suitable for large document collections
due to the cost of acquiring labeled data, these methods also
present some drawbacks. For instance, having to train a suit-
able “codebook” for a certain dataset has a high computational
cost. Therefore, in this chapter we present a database agnostic
codebook which is trained from synthetic data. The aim of the
proposed approach is to generate a codebook where the only in-
formation required is the type of script used in the document. The
use of synthetic data also allows to easily incorporate semantic in-
formation in the codebook generation. So, the proposed method
is able to determine which set of codewords have a semantic
representation of the descriptor feature space. Experimental re-
sults show that the resulting codebook attains a state-of-the-art
performance while having a more compact representation.

5.1 introduction

Handwritten keyword spotting is the document image retrieval task devoted
to obtain a ranked list of words that are relevant to a user’s cast query. In
its most simple formulation, document images are already pre-processed
and segmented into individual words. The user casts a query in form of an
example of the keyword he wants to retrieve, to then obtain a ranked list in
which desirably the words having the same transcription are ranked better
than the rest of the words. This paradigm is known as segmentation-based
query-by-example keyword spotting, which is the scenario in which we are
centered in this chapter.

Since the seminal papers of Manmatha et al. [97, 16] that introduced
the problematic of handwritten keyword spotting more than twenty years
ago, many advances have been proposed. Performances reached on public
datasets have been steadily increasing with the proposal of better feature
representations and retrieval strategies. In addition to the overall retrieval
accuracy, many other advances have been made as well. Segmentation-free
methods have been proposed [61, 98, 39, 44, 99], query-by-string techniques
have emerged [62, 100, 92, 101, 102], and different methods have incor-
porated techniques from the information retrieval field such as relevance
feedback [103], re-ranking [98] or query expansion [98].

Although systems which incorporate a learning step to improve the re-
trieval accuracy obtain a better performance than systems purely based on
visual information [39, 92, 104, 100], unsupervised methods are more desir-
able in certain scenarios. For example, in large document collection with
hundreds of pages and without any annotation, an unsupervised method
can be used directly without manually annotate a subset of pages. Also,
an unsupervised method can be used for instance to group similar looking
word snippets into clusters [31]. This word clusters then can be used to
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Cluster 09: descriptors

Cluster 09: centroid

Cluster 10: descriptors

Cluster 10: centroids

Figure 5.1: Two examples of the clusters generated by the codebook. Cluster 09

contains descriptors from symbols [0, 8, c, g, b, j, h, p, f, x, u], while
Cluster 10 is formed by descriptors from [h, b, 4, 6, t, k, u, o, f, d, j, l, p,
y, w, a, q, i, n]. Cluster 10 is represented by 5 centroids because it has at
least a nested cluster.

simply accelerate the retrieval system but also to propagate the annotations
provided by the user or to search consensus to the annotations given by a
text recognition system.

Unsupervised word spotting methods based on the Bag-of-Visual-Words
paradigm can attain a high retrieval performance when the methods used
at each step are selected carefully [18]. Besides its retrieval accuracy these
methods have the advantage that words are represented by a fixed-length
vector, so standard dimensionality reduction techniques have been used to
efficiently store and index large collections of documents [61, 105]. However,
these methods require the use of a codebook to encode locally extracted
descriptors into codewords. The performance of the system is dependent on
the quality of the codebook and the number of codewords which yields a
better trade-off between dimensionality (i.e. memory usage) and performance
has to be found. On small datasets, creating a codebook does not have a high
cost, but, in large collections, with hundreds of thousands of words written
by multiple writers the computational cost of generating the codebook might
be prohibitive. A straightforward solution is to randomly sample a subset
of word snippets to generate the codebook. However, this approach has the
drawback that certain characters and writing styles may be underrepresented
by the codebook. Therefore, we propose a codebook trained from synthetic
data which incorporates semantic information in the generation process to
determine the optimal size and cardinality of the codewords. The use of
synthetic data has several advantages (c.f. [106, 104, 91]): it ensures that
all characters are properly represented and it allows to simulate the script
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variability present in documents written by multiple writers. Since there are
many true-type fonts which replicate the human handwritten style it is easy
to incorporate many different versions of the same character. Additionally,
it also allows to incorporate semantic labels to the information used to
create the codebook. This extra information is used to obtain an actual
measure of the clustering accuracy of the codebook. Thus, the codebook
is able to automatically determine the amount of codewords needed to
properly represent the feature space. The main contributions of the chapter
are threefold. We present a method to generate a codebook from synthetic
data. A new procedure used to encode descriptors into visual words is
proposed. Finally, we provide the basis of a method to encode descriptors
efficiently.

The rest of the chapter is structured as follows: in Section 5.2 we present
the method used to to create the codebook from synthetic data. Then, in
Section 5.3, we show how descriptors are encoded into visual words. Finally,
in Section 5.4, we present the spotting performance attained by the proposed
codebook and, in Section 5.5, we discuss the main contributions of the
chapter.

5.2 synthetic codebook generation

The codebook is trained with Histogram of Oriented Gradients (HOG) descrip-
tors [67] extracted from characters generated by true-type fonts that replicate
the human handwriting style. Training samples are then pairs x = (d, c),
where d is the HOG descriptor and c ∈ C is the semantic label of the charac-
ter. Therefore, the training set is formed by the training samples extracted
from all the considered characters. Additionally, we also incorporate training
samples that cover multiple characters (i.e. bigrams). We use the statistical
data reported by Jones and Mewhort to select the bigrams most common
in the English language [107]. Therefore, the training set is generated from
62 different characters and 1874 character bigrams, and has 36 different
semantic labels as we do not differentiate between upper and lower case
characters.

We generate the codebook by fist grouping the training samples using
agglomerative clustering and then using the Shannon entropy to partition
these tree into multiple clusters.

5.2.1 Agglomerative Clustering

Agglomerative clustering is a bottom-up hierarchical clustering algorithm
that recursively groups the two closest clusters until all samples are grouped
together. This procedure generates a binary tree that later has to be parti-
tioned into clusters by using some criteria (e.g. fixed number of clusters,
cluster compactness [108], a contrario approach [109]). The distance between
clusters can be computed in many ways but the most common are the dis-
tance between the closest two elements (i.e. single-linkage), the distance
between the two further away elements (i.e. complete linkage) and the av-
erage distance between all elements of the cluster. The estimation of these
distances though limit the practical usage of the method as the complexity of
the standard algorithms have a O(N2) complexity both in terms of memory
and runtime. For average distances, Leibe et al. proposed the average-link
clustering with nearest neighbor chains [108] which reduces the memory
complexity to O(N). However, their algorithm can only be used when the
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dot-product or the Euclidean distance are used as similarity measure be-
tween clusters. Therefore, we decide to use the dot-product as similarity
measure as HOG descriptors are L2-normalized so in this case the dot-product
is equivalent to the Euclidean distance. Furthermore, the dot-product also
allow us to use other distance measures via explicit feature maps [110, 111].
Hence, we are also able to compare HOG descriptors using the Histogram
intersection and the χ2 similarity measures.

Finally, we need to reduce the number of samples used to create the
codebook. Although the memory complexity has been reduced to O(N)

the temporal complexity remains O(N2). In order to improve the algorithm
runtime, we reduce the number of samples extracted at each character.
Instead of using random sampling, we apply the agglomerative clustering
at each character independently and then we generate clusters by selecting
the sub-trees that have at least R samples. These clusters are then fed to the
general agglomerative tree to generate the final codebook.

5.2.2 Shannon Entropy

Once we have generated the binary tree, we need a method to partition
the nodes in order to obtain the clusters. We want that the partitions are
created automatically from data so the user does not need to tweak another
parameter. Since the samples have the character label besides the descriptor,
we can use this information to partition the tree into semantically meaningful
clusters. Therefore, we calculate at each node the Shannon entropy, as in [112]:

Sc(L, T) =
2Ic,t(L)

Hc(L) +Ht(L)

where Hc is the class entropy of the samples at the node, Ht is the en-
tropy of the samples division at the two children and Ic,t(L) is the mutual
information of the split:
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Here, L, Ll and Lr respectively denote the set of samples at the current
node, the left child and the right child and, n, nl, nr and nc denote the
cardinality of these sets with nc being the number of samples within category
c.

Using this measure, the higher the Shannon entropy the better are the
categories distributed between the two descending nodes. Then, we compute
this measure at each node and we partition the trees at the nodes where the
Shannon entropy attains a local maxima, i.e. the nodes where it is higher than
its direct ascendants and descendants. In order to avoid generating small
clusters, nodes which do not have at least 50 samples are not considered. By
following this procedure, we are able to generate clusters automatically and
these clusters have some semantic significance. In Fig. 5.1, we see an example
of the descriptors grouped in two different clusters. In this example, we can
see that clusters contain elements from multiple characters as the features
sampled from the image are too small and do not contain enough information
to perfectly discriminate between the different characters. Although a perfect



5.3 descriptor encoding 63

semantic separation is more desirable, it is not possible to achieve without a
more complex descriptor or kernels (e.g. χ2-Radial Basis Function kernel).
Finally, applying the measure locally results in clusters being nested. This
means that a cluster can be a sub-tree from another larger cluster so, we may
need multiple centroids to represent them properly. For example, the second
cluster in Fig. 5.1 has a nested cluster and thus it is represented by multiple
centroids.

5.3 descriptor encoding

Once we have created the codebook we need to define how descriptors are
going to be represented as visual words.

5.3.1 Codeword Encoding

We are going to represent descriptors using first derivative encoding [113,
114], i.e. descriptors are represented as the residual between the encoded
descriptor and a selected codeword. So we need to represent that codewords
can be represented by a centroid, but our agglomerative codebook can
generate nested codewords. Therefore, codewords are represented by as many
centroids as necessary to ensure that no overlapping exist. In Fig. 5.2, we can

A

C

B
D

C

B
D

A0
A1

Codewords Centroids

Figure 5.2: Schema of the agglomerative tree codewords and centroids.

see a simplified representation of an agglomerative tree where codeword B is
nested inside codeword A. Here, codeword A is represented by two centroids,
A0 and A1, instead of the centroid at the highest level of the sub-tree so there
is no overlapping with centroid B. In Fig. 5.1, we can see a real example of
the centroids representing two different clusters.

Then, the contribution of each centroid Ci of the codebook to encode a
given descriptor d is given by

wi =W(d, Ci) = exp

(
−
(1− sim(d, Ci))2

2σ2i

)
where sim(d, Ci) is the similarity measure between the descriptor and

centroid and, σi is the standard deviation of the similarity of the elements
within the centroid. In order to increase the sparseness of the encoding, we
set to zero the different weights wi that satisfy that wi/wmax < t where
wmax is the maximum weight and t ∈ [0, 1] is a threshold. When t = 0 we
use all centroids to encode a descriptor while when t = 1 we only use the
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most similar centroid. Finally, weights are normalized to ensure that the sum
of all weights is 1.

These weights multiplied by the residuals between the descriptor and the
centroids are the resulting encoding. Since a codeword may be represented
by several centroids, the contributions of all its centroids are accumulated
together. For instance, in the example at Fig. 5.2 the codebook only has 4

codewords thus the histogram of visual words has 4d dimensions where d is
the dimensionality of the descriptor. Then, the weighted residuals from A0

and A1 are both accumulated in the first d dimensions of the histogram.

5.3.2 Approximate Codebook

The encoding method previously described is computationally intensive
as it requires computing multiple exponential weights to encode a single
descriptor. In order to reduce the computational cost of the descriptor en-
coding step, we propose the use of an additional codebook which is used to
approximate the descriptors. We use a Hierarchical k-Means (HKM) similar
to the Vocabulary Tree [115] to approximate the descriptors. The codebook
has degree 10, we limit it at a maximum depth of 8 levels and one million
leafs. It is build using a priority queue that prioritize nodes which are more
populated. In this codebook, we use the Euclidean distance to compare the
descriptors regardless of the distance measure used by the agglomerative
codebook.

The main idea is to then use the leafs of this codebook as an approximation
of the encoded descriptors. Then, we pre-compute the encoding of the leaf
descriptors since we know them a priori. Thus, instead of computing the
weight of each centroid of the agglomerative tree for a given descriptor, we
only need to traverse the HKM tree and use the weights stored at the leaf.
Although we are adding quantization errors when following this procedure,
we are also greatly reducing the encoding computational cost which may be
a desirable trade-off when dealing with large collections.

5.4 results

We generate the codebook using ten different true type fonts which generate
between 4000 and 7000 descriptors per character. We group these descriptors
in clusters of at least ten descriptors (i.e. R = 10) reducing the contribution
of each character to 450-800 descriptors. Therefore, the algorithm only needs
to aggregate around 50000 descriptors in each evaluated configuration. In
all experiments, the Bag of Visual Words (BoVW) signature is generated by
densely sampling HOG descriptors each 4 pixels from squared regions of
16, 24, 32 and 40 pixels, a spatial pyramid with 5 horizontal partitions and
power factorization at 0.5. We have evaluated the codebooks obtained using
different descriptor dimensionality, filter ratio and similarity measures on
the George Washington dataset [96, 31]. The dataset consist of 20 pages with
4 860 segmented words. The performance of the retrieval system is evaluated
computing the mean Average Precision (mAP) score for any word snippet that
appears at least twice in the dataset and returning the overall performance of
the system as the mean of mAP scores. In Fig. 5.3, we plot the results obtained
by five different queries. All results have been obtained on a Linux box with
an Intel® Xeon® E5-1620 CPU running at 3.50GHz and 16 Gb of RAM.

In Table 5.1, we show the mAP score obtained when generating the code-
book with different configurations. The dimensionality column (Dim.) speci-
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mAP First 30 images.

100.00%

97.86%

79.88%

46.18%

35.58%

Figure 5.3: Some qualitative results obtained in the George Washington dataset.
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Simil. EUC HIS EUC HIS EUC HIS EUC HIS

3
2

CHI 61.6 61.6 68.7 65.1 68.5 65.0 68.2 64.4

EUC 40.1 41.9 52.3 55.8 52.7 54.4 54.6 56.6

HIS 50.1 52.3 67.3 65.9 68.2 66.5 68.2 66.0

1
2

8

CHI 47.7 50.6 69.7 67.4 70.9 68.0 71.0 68.1

EUC 40.5 42.2 54.1 58.2 57.7 62.1 59.8 63.3

HIS 43.0 45.3 68.1 66.3 70.5 67.7 70.7 67.5

Table 5.1: mAP scores at the Washington dataset.

fies the dimensionality of the HOG descriptors. In this experiment, we have
tested them using 2× 2 and 4× 4 spatial bins resulting in descriptors of 32

and 128 dimensions. The similarity column (Simil.) indicates which similarity
measure has been used to compare the descriptors when creating the agglom-
erative tree. The abbreviations CHI, EUC and HIS correspond to χ2, Euclidean
and Histogram intersection respectively. The mAP scores are divided into
the ratio used to filter weights wi/wmax > t where t ∈ {0%, 80%, 90%, 95%}.
When r > 0% we accept all weights while we filter all weights which are
smaller than 0.95 of the maximum weight in when r > 95%. The similarity
between the histograms of visual words is calculated using both Euclidean
distance and Histogram Intersection similarity measures. The obtained re-
sults show that creating a more sparse encoding by filtering out small weights
improves the performance of the algorithm. It also shows that using χ2 or
Histogram intersection to compare descriptors consistently gives a better
codebook while the Euclidean distance is better when comparing the his-
tograms of visual words. Comparing both descriptors, we see that the higher
dimensional descriptor provides a better accuracy. However, the performance
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Dim. 32 128

Sim. CHI EUC HIS CHI EUC HIS

823 741 788 852 787 849

Table 5.2: Sizes of the evaluated codebooks.

increase is modest so depending on the application a smaller descriptor may
be more suitable. Comparing these results with other word spotting methods,
we can observe that proposed algorithm outperforms most unsupervised
spotting methods [18]. We can also see that the proposed codebook shows a
similar performance to a carefully crafted BoVW. For example, we reach a
71.0% mAP score while standard BoVW reaches 72, 35% mAP. However, our
BoVW signature is more compact as we use less spatial bins (5 vs. 24 spatial
divisions) and the codebook is much smaller. The codebooks generated by
our method have between 750 and 850 codewords (see table5.2) while a
standard k-means codebook uses 4 096 codewords (i.e. the k-means codebook
is between 4,8 and 5,4 larger).

Finally, the codebooks using HOG-32 descriptors need on average 7 minutes
to be created while HOG-128 require around 40 minutes on average. The
encoding runtime for HOG-128 descriptors takes around 490 ms on average to
encode a word snippets. This runtime can be reduced by more than an order
of magnitude when the descriptors are approximated by a HKM codebook.
In this case, encoding takes around 9.2 ms an average per word snippet.
However, approximating the descriptors have the drawback that the mAP

score consistently drops a 3-5% in all configurations.

5.5 conclusions

In this chapter, we have proposed a method to automatically generate a
codebook from synthetic data. The main idea is to create a codebook which
is database agnostic, i.e. a codebook which has a good performance inde-
pendently from the data which is used to create it. This is important when
processing large collections of documents as creating a codebook can be ex-
tremely time consuming. Thus, our algorithm is able automatically determine
the amount and size of the clusters by incorporating semantic information
into the codebook generation process. Besides, we have proposed the use
of an additional codebook to approximate the descriptors and greatly re-
duce the descriptor encoding computational cost. The experimental results
show that the codebook attains a similar performance to other unsupervised
bag-of-visual-words spotting algorithms.
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The dimensionality of the Bag of Visual Words signatures de-
pends on the codebook size and number of spatial pyramid bins.
Traditional signatures tend to be memory heavy as they contain
from thousands to ten of thousands of elements. This can be
alleviated by the use of data compression techniques like Latent
Semantic Analysis and Product Quantizer codes. In Chapter 3,
we have reduced the number of spatial bins and used both tech-
niques to be able to compress the signature enough so it could be
used in a large scale indexing scenario. Although successful, we
are trading performance for memory using this approach.

In this chapter, we follow a different approach. Instead of char-
acterizing word snippets with a Bag of Visual Words signature,
we are going to create a signature where each bin represents the
probability that a script symbol is present in the word image. This
results in an extremely compact signature. For example, it only
requires 26 dimensions per spatial bin in Latin script documents.

We obtain the symbol probabilities using a classifier that char-
acterizes the image with a Bag of Visual Words signature. We
follow a simple sliding window approach, where a window scans
the image and at each contiguous location it extract the visual
signature and categorizes it with a linear classifier. Since this
approach is extremely computationally intensive, we develop a
series of refinements that allow us computing the symbols proba-
bility maps of the whole document image without a noticeable
increase in the computational cost of the spotting algorithm.

6.1 introduction

The Bag of Visual Words (BoVW) signatures that we have been using up until
now have a quite high number of dimensions. This is due to the fact that the
signature dimensionality depends on the codebook size and the number of
Spatial Pyramid Matching (SPM) bins. As we have seen from the parameter
evaluation of Chapter 2, the best results are obtained by codebooks with
thousands of codewords and SPM with tens of spatial bins. Thus, the resulting
signature has tens of thousands of dimensions. Although this works with
small collections of segmented words, we need to reduce the signature’s
dimensionality in a large scale scenario. For example, in Chapter 3 we
have reduced the number of spatial bins to just 2 and used Latent Semantic
Analysis (LSA) and Product Quantizer (PQ) codes to reduce the dimensionality
from 65 536 dimensions (i. e. 524 288 bytes in memory) to just 128 bytes per
patch. Following this approach however we are trading retrieval accuracy for
memory usage. The discrepancy between the original amount of dimensions
and the final dimensionality, means that there has to be some precision loss.
We want to prevent this by using a signature that is compact by design.

The images that we are indexing are word snippets which are actually
composed by a small set of symbols. Specifically, we are working with
documents that use an alphabet type script so, we can assume that the
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Figure 6.1: Method overview: We extract a BoVW histogram for each pixel of the
image and categorize it with a linear classifier. The probabilities of each
symbol category are then grouped to form the final descriptor.

script only contains a few dozens of different symbols. Moreover, some
of these symbols may have a different shape but share the same meaning
(e. g.upper- and lowercase characters). Therefore, a compact signature can
obtained by creating a vector where each bin represents the probability that
a certain meaningful symbol is present in the word image. This means that
in a document written using a Latin script, the signature only requires 26

dimensions per spatial bin.
The method we propose to compute the symbol probability signatures is

quite straightforward. First, we extract the codewords from the whole docu-
ment image. Then, we use a sliding window approach to accumulate them
into a local BoVW histogram. The BoVW histograms are next converted into
symbol probabilities by means of a linear classifier followed by Platt’s algo-
rithm [116]. Finally, the probability maps are pooled together for each word
image forming the symbol probability signatures. For example, in Fig. 6.1
we can see the probability of symbol “a” and the probabilities for the word
“about”.

The remainder of the chapter is organized as follows. The descriptor and
dictionary used to generate the codewords are shown in Section 6.2. Then,
we explore the problem of computing the probability that any pixel image
belongs to a certain symbol category using a sliding window approach
in Section 6.3. Next, we propose an efficient method to calculate the score of
a linear classier of a local BoVW histogram in Section 6.4 and the algorithms
needed to train them in Section 6.5. After that, we present the symbol
probability signature in Section 6.6. Finally, we display the attained results
in Section 6.7 and the conclusions in Section 6.10.

6.2 visual word generation

The codewords are generated following the same approach as in Chapter 5.
We use agglomerative clustering [108] to group the descriptors and Shannon
entropy [112] as the criteria to automatically split the tree into codewords.
Like in Chapter 5, we also a Hierarchical k-Means (HKM) [115] to approximate
the descriptors and, use it as a lookup table which stores the pre-computed
descriptors encodings.

In the previous chapters, we have mainly used the SIFT descriptor [48] or
its fast approximation, the Integral Histogram of Oriented Gradients (HOG)
descriptor [67]. In our current setting however these two descriptors are too
computationally expensive. Instead, we are going to use a modified version
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Figure 6.2: Sampling regions of the FREAK descriptor. The pattern follows the dis-
tribution of the retinal ganglion cells with their corresponding receptive
fields. Each circle represents a receptive field where the image is smoothed
with its corresponding Gaussian kernel.

of the lightweight Fast Retina Keypoint (FREAK) descriptor [117]. The FREAK

descriptor is a biologically inspired system. It uses the sampling pattern
shown in Fig. 6.2 to gather image information imitating the human retina.
Each circle represents a receptive field where the image is smoothed by
with its corresponding Gaussian kernel. The descriptor is then constructed
by thresholding the differences between pairs of receptive fields, i. e.the
descriptor is a binary string formed by a sequence of one-bit Difference
of Gaussians. In the standard configuration, the FREAK descriptor has 43

receptive fields, so the descriptor has 903 possible differences. The final
descriptor is created by the 128 difference pairs (i. e. 16 bytes) that exhibit a
higher variance on a image training set.

Instead of binarizing and truncating the descriptor, we prefer to use a
linear projection to reduce the FREAK descriptor dimensionality. Although
a non-binary descriptor has a higher dimensionality, it also keeps more
information about the local regions it describes. The linear projection matrix
is a P ∈ RM×N matrix, where M is the number of difference pairs and N is
the final number of projected dimensions. This matrix can be compressed
into a C ∈ RD×N matrix, where D is the number of receptive fields, by
applying Algorithm 1 on each column of P. Matrix C can be used then to

input :D, pt
output : ct

1 ct ← 0;
2 k← 0;
3 for i← 1 to D do
4 for j← (i+ 1) to D do
5 ci,t = ci,t + pk,t;
6 cj,t = cj,t − pk,t;
7 k← k+ 1;
8 end
9 end

Algorithm 1: Algorithm to collapse the projection vector so the dot prod-
uct with the difference pairs can be computed directly over the sampling
point values.
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compute the projection directly over the receptive fields values as d = C>s,
where s is the vector containing the receptive fields values. Likewise, the
`2-norm can also be computed without expanding the difference pairs as,

`22 = (D− 1)

D∑
i=1

s2i − 2

D∑
i=2

s(D−i)

i−1∑
j=1

s(D−j).

This greatly reduces the amount of operations needed to compute the de-
scriptor.

We consider two different algorithms to project the difference pairs: the
LSA algorithm and the Linear Discriminant Analysis (LDA) algorithm. The
LSA algorithm is unsupervised and to obtain a set of topics that properly
represent the word snippet information, we train it over the document images
that we want to index. The LDA algorithm on the other hand is a supervised
algorithm that attempts to increase the separability between classes while
reducing the dimensionality. Since we want descriptors that are easy to
group into semantic classes by the codebook, we train the LDA algorithm over
symbol synthetic images used to train the agglomerative tree (see Chapter 5).

6.3 sliding window classifier

Once we have extracted the visual words from the document image, we
first pool them locally and then use a classifier to determine which sym-
bol category, if any, the local region belongs to. We compute the symbols
probabilities at each pixel of the image so, the computational cost of these
two operations will depend on the strategy used to gather the local BoVW

signature: process each pixel independently or group them into natural co-
herent image regions (e. g.superpixels). When processed independently, each
local region is characterized by a BoVW histogram that models the pixel and
its neighborhood [68, 118]. Therefore, this is an intensive approach where
the pooling and classification steps have a relevant impact on the overall
computational cost of the algorithm. Alternatively, pixels are grouped into re-
gions that have similar color or texture using an unsupervised segmentation
algorithm [119, 120]. These regions can be further combined to obtain image
segments which are likely to belong to a certain category [121, 122]. In this
strategy, the pooling and classification algorithms are only applied on a few
hundreds of regions so their cost is irrelevant to the overall computational
cost of the algorithm.

Therefore, following a region-based strategy seems to be more advanta-
geous than a pixel-based when trying to reduce the runtime of the algorithm.
However, a region-based strategy requires the use of an unsupervised seg-
mentation algorithm which introduces a significant additional cost. On the
other hand, pixel-based strategies can reduce the runtime of both pooling and
classification steps to just few milliseconds when implemented carefully [68].
This leads to a solution which is faster than the efficient unsupervised seg-
mentation algorithms [123, 124] typically used in region-based strategies.
Therefore in this chapter, we propose an efficient histogram pooling, normal-
ization and classification algorithm that follows a pixel-based strategy.

6.3.1 Histogram pooling

In our segmentation approach, the pooling algorithm obtains the BoVW

histogram of a pixel by simply accumulating the contributions of the visual
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words which lie within a square region defined around that pixel. Therefore,
we need an efficient method to retrieve all the visual words within an
image region since most of the computational cost of the pooling algorithm
corresponds to this step.

A straightforward solution is to store the visual words into an image
structure where each pixel has a list with the visual words at that location,
and use an standard pooling algorithm to obtain the BoVW histogram. Then,
following a naive implementation which simply look for the visual words
within the region at the visual words image, the resulting algorithm has a
complexity of O

(
r2wh

)
, where r is the size of the square region, w is the

image width and h is the image height. This cost can be greatly reduced by
taking advantage of the overlap between the regions of adjacent pixels.

In the early work presented by Huang et al. in [125], they use a sliding-
window approach that updates the histogram as it traverses the image.
The algorithm uses the histogram of the previous pixel as base, and it
only updates the elements which lie outside the intersection between the
adjacent regions. This method reduces the pooling complexity to O (rwh). For
examples, the new histogram {(a : 5), (b : 2), (c : 2)} in Fig. 6.3a is obtained
by subtracting the left column {(a : 1), (c : 2)} and adding the right column
{(a : 2), (c : 1)} to the histogram of the previous pixel {(a : 4), (b : 2), (c : 3)}.
This only requires to access to the 6 elements of both columns instead the 9

elements within the whole region.
Perreault and Hebert proposed in [126] the Distributive pooling algorithm,

which Sizintsev et al. extended in [127], to improve the Huang’s algorithm.
The new algorithm calculates the intersection between windows more effi-
ciently by keeping a partial histogram of a 1× r window for each column of
the image. These column histograms are easily updated each time that the
sliding-window moves to the next row by simply subtracting the top element
and adding the bottom element (see Fig. 6.3b). This reduces the complex-
ity of the algorithm to O (wh) since updating the histograms only requires
adding and subtracting the pre-calculated column histograms. However, it
also increases the memory usage as it has to maintain an extra array of d×w
elements, where d is the dimensionality of the histogram, to keep the column
histograms.

A different approach is to accumulate histogram bins separately. For
instance, Porikli proposed the Integral Histogram algorithm [128] which uses
an integral image to independently accumulate each bin of the histogram.
This algorithm also has complexity of O (wh) but it is more flexible than the
Distributive algorithm. Since it does not exploit adjacency between regions
to calculate the histogram, the geometry of the regions can vary and regions
can be randomly sampled over the image. However, this flexibility comes at
the cost of increasing the memory usage since the algorithm has to maintain
an extra array of w× h elements to keep the integral image.

These methods focus on reducing the cost of obtaining the visual words but
ignore the dimensionality of the accumulated histograms. Originally, these
algorithms were designed for tasks where the histogram had a relatively
small dimensionality, e. g.to calculate the local median value or to calculate
Hue histograms in video tracking problems [127]. However, BoVW histograms
usually have between thousands to hundreds of thousands dimensions,
so the managing such highly dimensional histograms has an important
impact on the overall complexity of the pooling algorithm. In order to
overcome this problem, Wei and Tao proposed in [129] a variation of the
Distributive algorithm [126, 127] specifically tailored for BoVW histograms.
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Figure 6.3: The Huang algorithm [125] obtains the new histogram in 6.3a by sub-
tracting left column values {(a : 1), (c : 2)} and adding the right column
values {(a : 2), (c : 1)}. The distributive algorithm [126, 127] reduces the
computational cost by first calculating each column histogram 6.3b and
then following as in Huang but using the already calculated histograms.

The authors assumed that the sparsity of the column histograms will be high
since the number of visual words within the column window will be much
smaller than the dimensionality of the histogram. Therefore, they proposed
a new hashing table specifically designed for this problem which has a low
editing cost (i. e.the cost of adding and removing elements from the table)
while greatly reducing the amount of memory needed to store the column
histogram. However, the algorithm still depends on the number of elements
stored at each column so its computational cost will increase when complex
visual word encodings like first- or second-order encodings [113, 114, 130,
131] are used.

Another way to tackle the problem is to reduce the dimensionality of the
histogram. For instance, Fulkerson et al. [68] use the Agglomerative Informa-
tion Bottleneck algorithm [132] to reduce the number of visual words of the
codebook and then use the Integral Histogram algorithm [128] to accumu-
late the BoVW histograms. Although this methods solves the dimensionality
problem, it also reduces the discriminative power of the BoVW histograms.

6.3.2 Normalization and classification

After accumulating the BoVW histograms, we have to normalize them to
account that different amounts of visual words have contributed to the his-
tograms. For example, the length of the word images determines the amount
of visual words available to represent them. So, word snippets containing
the same element but different length will never match if not normalized.
The BoVW histograms are typically normalized using the Euclidean or the
Manhattan norms.

The histogram can be further normalized to account that visual words are
not independent and identically distributed on the image by means of the
power normalization g(x) = sign(x)‖x‖α, where 0 < α < 1, to each bin of
the histogram (see Chapter 2.2.4.2).

Once the BoVW histograms have been normalized, we use a classifier to
categorize them, followed by a normalization algorithm that converts the
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classification scores into probabilities [116, 133, 134, 135]. The classifier must
have a low computational cost because we have to we need to categorize as
many histograms as pixels the image has. Moreover, the learning algorithm
also needs to be efficient since in a pixel-based strategy even a fairly small
set of annotated images result in a training set of millions of samples. To deal
with this amounts of information, the learning algorithm has to be optimized
to greatly reduce the memory usage or we have to use a feature selection
algorithm to select a reduced subset of good training samples. Therefore,
linear classifiers appear as a good choice since they are both efficient in the
prediction as well as in the training phase [136, 137, 138]. Alternatively, we
can use a non-linear classifier with an additive kernel, e.g. the χ2 or the
intersection kernel, which obtain a better classification accuracy [139, 70] and
can be linearized by explicitly mapping the BoVW histograms to the kernel
feature space [110, 140, 111].

6.4 integral linear classifier

The main problem we are facing in our symbol classification approach is the
high dimensionality of the BoVW histograms. Therefore, it would be advisable
to have a method which is able to directly obtain the classification score
avoiding to explicitly accumulate the histograms. In this section, we are
review our Integral Linear Classifier (ILC) algorithm [141, 142] which fulfills
this condition. The algorithm has a O (wh) computational complexity which
is independent of the dimensionality of the BoVW histograms and the size of
the regions.

6.4.1 Algorithm overview

The core idea in our approach is to first calculate the individual contribution
of each visual word to the classification score and then aggregate these partial
contributions to obtain the scores of each pixel. This is easily accomplished
with a linear classifier since the classification score is calculated as the linear
combination between the BoVW histogram and the classifier weight vector.
Therefore, we first create a weights image by replacing the visual words by the
product between their weights and their associated classifier weight. Then,
the classification score of any pixel is calculated as the sum of the values of
the weights image within the pixel’s region. Following this simple procedure,
we avoid accumulating the BoVW histogram altogether.

The algorithm can be further optimized by using integral images [143, 144],
which is a data structure designed to calculate the sum of an image area in
constant time. An integral image is a lookup table that at the coordinates 〈x,y〉
contains the sum of all the values above and to the left of that coordinate,

Ix,y =
∑

i6x;j6y

ii,j,

where Im,n and im,n are respectively the values of the integral image and the
original image at the coordinates 〈m,n〉. The values of the integral image can
be efficiently calculated with a single pass over the original image as,

Ii,j = ii,j+ Ii−1,j+ Ii,j−1− Ii−1,j−1 .
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Figure 6.4: The weights image b) is created by replacing visual words from image a) by
their corresponding classifier weights. In this example, the classifier values
are c = [3, 5,−5,−4, 1,−1, 1, 4]. Then, we can create the integral image c)
from the weights image b), so that the classification score of the window
can be calculated as s = 21+ 5− 3− 9 = 14.

Then, given the region R = [x0,y0, x1,y1] where 〈x0,y0〉 and 〈x1,y1〉 are the
top-left and bottom-right corner coordinates of the region, the sum of the
values within the region is calculated as

I(R) = Ix0−1,y0−1+ Ix1,y1 − Ix1,y0−1− Ix0−1,y1 .

By following this procedure, we avoid using a sliding-window technique
to obtain the symbol classification scores and use instead simple pixel-
based image operations. The main advantage of this procedure is that the
complexity of the resulting algorithm is independent of the region size and
the dimensionality of the BoVW histograms. Moreover, it reduces the pooling
and classification steps to just a product for each visual word to create the
weight image, 4 additions per pixel to create the integral image and 4 additions
more to calculate the classification score of each region. This computational
cost is generally lower than the cost of calculating the dot product between
the classifier and the BoVW histograms. For example, given a w× h image
where we have extracted N visual words, the algorithm requires N products
and w× h× 8 additions to calculate the classification score of the whole
image. Whereas, to calculate the dot product between the linear classifier
and the BoVW histogram of each pixel, we require w× h× s products and
w× h× (s− 1) additions, where s is the average number of non-zero bins in
the BoVW histogram. Therefore, unless the BoVW histograms are supported
on average by an extremely low number of visual words, i. e. with s 6 8 on
average, the computational cost of just calculating the dot product is going
to be higher than the cost of the whole proposed algorithm.

Fig. 6.4 illustrates the steps followed by the proposed method when catego-
rizing the highlighted area with the linear classifier c = [3, 5,−5,−4, 1,−1, 1, 4].
First, the visual words are used to obtain the weights image of Fig. 6.4b. In this
case, the visual words from Fig. 6.4a results from encoding descriptors using
a single codeword with hard-assignment. Consequently, the weight image is
obtained by simply replacing the visual words by their associated weight
in the linear classifier. Then, the weights image is used to create the integral
image Fig. 6.4c. Finally, the classification score of the region is calculated as
score = 21+ 5− 3− 9 = 14.
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Table 6.1: Example of the result of applying the two strategies used to deal with
the negative weights. In this example, the methods are applied on the
following list of (weight, identifier) tuples representing the visual words:
[(−3.12, 0), (1.27, 1), (−0.59, 1), (0.79, 2)]

Method Visual words Histogram

Absolute [(3.12, 0), (1.27, 1), (0.59, 1), (0.79, 2)] habs = [3.12, 1.86, 0.79]

Separate [(3.12, 1), (1.27, 2), (0.59, 3), (0.79, 4)] hsep = [0, 3.12, 1.27, 0.59, 0.79, 0]

6.4.2 Classification score

The classification score is calculated as the dot product between the classifier
weight vector and the normalized BoVW histogram. However, the method de-
scribed previously does not take into account the normalization of histogram.
Thus, the actual classification score is calculated as,

score = 〈h, c〉 =
D∑
i=0

hici =

D∑
i=0

ĥi
|h|
ci =

1

|h|

D∑
i=0

ĥici =
〈ĥ, c〉
|h|

where ĥ is the unnormalized histogram and |h| is the norm of ĥ. We also
need an efficient method to calculate the norm |h|. This method should be
similar to the method used to calculate the dot product, so the classification
score of a region R can be calculated as score(R) = Idot(R)/Inorm(R). This
requires the norm operator to be linear, thus our only choice is the L1-norm.
Although Lp-norms are nonlinear, L1-norm can be linearized when the bins
of the BoVW histograms are all positive since |hi| = hi so that |ĥ|1 =

∑D
i=0 hi.

However, we cannot ensure that the bins of the BoVW histogram are always
going to be positive, since visual words may have negative weights depend-
ing on the method used to represent them. Methods like hard-assignment
which give a unit weight to all visual words or soft-encoding methods which
weights the visual words according to a Gaussian function [145], gener-
ate histograms with only positive bins. On the other hand, methods like
Locality-constrained Linear Coding (LLC) [69] or first-order encoding [114]
may give negative weights to some visual words. Therefore, we use two
simple strategies to deal with these negative contributions: accumulate the
absolute value of the weights and differentiate between positive and nega-
tive contributions. The second strategy doubles the number of bins of the
BoVW histogram since a visual word with a positive weight contributes to a
different bin than the same visual word with a negative weight. A simple
example of the modifications done by the two strategies to the visual words
is shown in Table 6.1. Alternatively, we can also set |ĥ| as the number of valid
visual words within the region, so that each valid visual word will simply
contribute 1 to the norm. These strategies give to each visual word a norm
weight which corresponds to the partial contribution of the visual word to
the BoVW histogram. Then, the norm of the BoVW histogram of each image
pixel is calculated similar to the dot product but creating the weight image
by simply replacing the visual words by their associated norm weight.

Finally, the classification runtime is further reduced by quantizing the
weights of visual words and the linear classifier, so that the weight images
and their corresponding integral images are calculated using an integer data
type. This reduces the runtime of the algorithm while keeping a similar
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classification accuracy. In our experiments, the quantization step is only
applied while testing the symbol classification algorithm.

6.4.3 Advantages and limitations

The main advantage of the ILC algorithm is its reduced computational cost.
The complexity of the algorithm only depends on the number of visual words
and the size of the image, and it reduces the runtime by at least an order of
magnitude when compared to other methods. However, not accumulating
BoVW histogram also reduces the number of methods which can be applied
to improve its discriminative power. For instance, our algorithm is only able
to use the L1-norm while other normalization techniques must be discarded,
e.g. max-pooling [69] or the Log-Euclidean Tangent Space Mapping [122].

A normalization step that we have been consistently using is the power
normalization step [72] (see Chapter 2.2.4.2). However, in this formulation
it cannot be used as it cannot be linearized. This normalization has always
increased the retrieval performance of the spotting systems that we have
presented so far. However, we believe that in our current formulation the
positive effects would be more limited. The ILC classifiers are applied over a
local region of the image so the visual words accumulated are going to mostly
belong to the symbol of interest and maybe its neighbors. So the effects of
having a large amount of background visual words (i. e.visual words that are
not from the same symbol category as the classifier) that confuse the classifier
is going lower than in the previous word spotting settings. The difference of
size between symbols is however something that power normalization would
help to lessen.

As we have seen in Chapter 2.2.4.1, another successful enhancement to
the BoVW representation is the addition of spatial information. The methods
used to add spatial information [71, 146, 147, 148] typically divide the region
into a set of overlapping subregion, accumulate the BoVW histogram for each
subregion independently and then concatenate the each subregion histogram
to obtain the final representation. In our case, the ILC algorithm can be easily
adapted to use this methods by calculating the partial dot-product and norm
for each subregion, i. e.calculating a different weight and norm image for each
subregion, and then merging the results to obtain the final score. Although
spatial information has consistently improved the retrieval performance
of the spotting systems up until now, results on semantic segmentation
problems which are more related to the current symbol classification problem
that word spotting tasks show that the classification enhancement provided
by SPM are quited limited [142]. Since this step just provides little classification
gain while increase the computational complexity of the algorithm, we
decided to not use it in our current formulation.

6.5 learning algorithms

In the previous section, we focused our attention on the testing phase of the
classifier, i. e.using the classifier to obtain the classification scores of each
local region of the image. Now, we are going to focus on the training phase
of the classifier where the main problem is the large amount of training
samples available. In our symbol classification approach each pixel of the
image is represented by a BoVW histogram, thus even a fairly small set of
annotated images generates millions of training samples. We can tackle
this problem by selecting a good subset of samples to train the classifier.
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However, this approach introduces an additional step which has a direct
impact on the performance of the classifier, as the obtained classification
accuracy will depend on how well the selected samples represent each
category. Alternatively, we can calculate the BoVW histograms of the samples
when needed, or have them pre-calculated and stored on disk, but this
approaches have a significant impact on the algorithm’s runtime.

A different approach is to adapt the learning algorithm to the current
problem and exploit the properties of the BoVW to reduce its computational
complexity. Using an approach similar to the ILC algorithm, we adapt some
learning algorithms to update the classifier model directly from the visual
word without explicitly accumulating the BoVW histograms. Consequently,
the resulting algorithm greatly reduces the amount of memory needed to
store the training information. Additionally, the adapted algorithms have a
smaller runtime as the number of operations is reduced by exploiting the
redundancies between neighboring BoVW histograms. Although the adapted
algorithm modify the way that training information is processed, both the
original and adapted versions of an algorithm are equivalent and both obtain
exactly the same classifier given the same set of training samples. The only
constrains of the adapted algorithms is that all the samples of an image must
be processed together. Therefore, the learning algorithm has to be able to
process batches of samples to update the classifier model, and algorithms
which update the model using a training sample at a time [149, 150] cannot
be used.

We have adapted two batch and three online learning algorithms. The batch
algorithms are the logistic- and l2-regularized variants of the trust region
newton solvers [151, 138], while the online algorithms are the Pegasos [136],
the First-Order Stochastic Gradient Descent (SGD) and Quasi-Newton SGD

algorithms [137, 152]. Since all five algorithms are modified in a similar
way, we only present the First-Order SGD algorithm. This algorithm has a
lower complexity than the other methods, allowing us to better illustrate the
proposed modifications.

6.5.1 Mini-batch First Order Stochastic Gradient Descent

The First-Order SGD algorithm was proposed together with the Quasi-Newton
SGD algorithm in [137, 152] as online linear classifiers specifically designed for
large-scale problems, aiming to obtain an algorithm with a low computational
cost and fast convergence rates. Both algorithms are binary (i.e. samples have
the form z = (x,y) ∈ Rd × {−1,+1}) and minimize the following primal cost
function,

min
w
f(w) ≡ λ

2
w>w +

1

n

n∑
i=1

`(yiw>xi)

where w is the classifier weight vector, the parameter λ > 0 controls the
strength of the regularization term and `(s) is the loss function which is
convex and twice differentiable with continuous derivatives. At each iteration,
the algorithms randomly draws a training example (xt, yt) and updates the
classifier weight vector w by

wt+1 = wt −
1

t+ t0
Bλwt︸ ︷︷ ︸

regularization update

+
1

t+ t0
B` ′(ytwt

>xi)ytxt︸ ︷︷ ︸
pattern update

(5)
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where the matrix B is positive semidefinite and t0 is an heuristically
chosen positive constant used to ensure that the updates at the first steps
does not have an implausibly large norm. The algorithms apply the pattern
update at each iteration but the regularization update is only applied every
few iterations. This reduces the computational cost of the algorithm while it
keeps a similar classification accuracy.

input : λ, t0, skip, S, k, T
output : w

1 w = 0;
2 for t← 0 to T do
3 Choose At ⊆ S, where |At| = k, uniformly at random;
4 ∆w =

∑
i∈At `

′(yiw>t xi)yixi;
5 wt+1 = wt − 1

kλ(t+t0)
∆w;

6 if (t+ 1) mod skip = 0 then
7 wt+1 =

(
1−

skip
(t+t0)

)
wt+1;

8 end
9 end

Algorithm 2: Mini-batch version of the First-Orders Stochastic Gradient
Descent algorithm.

The First Order SGD algorithm is obtained by setting B = λ−1I in Eq. 5.
The pseudo-code in Algorithm 2 show mini-batch version of the algorithm
where the parameter k selects the number of sample used to calculate the
pattern update at each iteration. When k = 1, we have the original stochastic
sub-gradient algorithm form [137], while when k = n, where n is the total
number of training samples, we obtain a deterministic sub-gradient descent
method [153]. The parameter skip is an heuristically chosen positive constant
used to selected the frequency of the regularization updates.

6.5.2 FOSGD Semantic Segmentation Learner

In order to adapt this algorithm to the symbol classification problem, we
only have to modify the two steps where training samples are used: the
random selection step at line 3 and the weight vector update step at line 4.
In the random selection step, we are going to work at image level instead
of sample level. Therefore k is the number of randomly selected images, n
is the number of training images and At is the subset of images used to
update the classifier. Consequently the weight vector update step at line 4 is
rewritten as

∆w =
∑
i∈At

∑
j∈Si

` ′(yjw>t xj)yjxj, (6)

where Si are the samples of the i-th training image. Now, we are going to
reformulate this equation to obtain which is the update equation for each
dimension of the vector. The samples x in our problem are BoVW histograms
so the k-th bin of the j-th sample is

xjk = |xj|
−1

∑
m∈xjk

vm,
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where |xj| is the norm of the sample and the vm’s are the weights of the
visual words accumulated at the bin xjk. Then, the k-th bin of the update
vector ∆w is calculated as

∆wk =
∑
i∈At

∑
j∈Si

` ′(yjw>t xj)yjxjk

=
∑
i∈At

∑
j∈Si

` ′(yjw>t xj)yj
1

|xj|

∑
m∈xjk

vm

=
∑
i∈At

∑
j∈Si

∑
m∈xjk

` ′(yjw>t xj)yj
|xj|

vm.

Finally, grouping the terms which have the same visual word weight vm, we
can rearrange the previous equation into

∆wk =
∑
i∈At

∑
m∈Vi

vm
∑

j∈R(vm)

` ′(yjw>t xj)yj
|xj|

(7)

where Vi are the visual words extracted from the i-th image and R(vm)

are the samples which have the visual word vm accumulated in their BoVW

histogram. The last sum of Eq. 7 can be calculated using pixel-wise image
operators so we can calculate the update vector ∆w directly from the vi-
sual words information without having to explicitly accumulate the BoVW

histograms.

input : λ, t0, skip, S, k, T
output : w

1 w = 0;
2 for t← 0 to T do
3 Choose At ⊆ S, where |At| = k, uniformly at random;
4 ∆w = 0;
5 for i ∈ At do
6 κi, ρi = ILC(i);
7 ψi = `

′(yi � κi)� yi ÷ ρi;
8 Ψi = IntegralImage(ψi);
9 for vm ∈ i do
10 ∆widx(vm) = ∆widx(vm) + vmΨi(R(vm));
11 end
12 end
13 wt+1 = wt − 1

kλ(t+t0)
∆w;

14 if (t+ 1) mod skip = 0 then
15 wt+1 =

(
1−

skip
(t+t0)

)
wt+1;

16 end
17 end

Algorithm 3: Mini-batch version of the First-Orders Stochastic Gradient
Descent algorithm adapted to the semantic segmentation problem.

The modification necessary to adapt the algorithm to our semantic seg-
mentation problem are shown in Algorithm 3. The main differences with
the original algorithm are the steps added to replace Eq. 6 with Eq. 7 when
calculating the update vector ∆w.

For each selected image i in At, we first use the ILC algorithm to obtain the
images κi and ρi with the prediction scores and histogram norms of each
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Original image Groundtruth

Scores κi image Loss ` ′(yi � κi) image

Iter=1

Iter=2

...
...

...

Iter=99

Figure 6.5: Evolution of the classifier score and loss estimation images at each iteration
of the First-Order SGD algorithm.

pixel, respectively. Then, we create the image ψi with the contributions of
each sample to the update vector ∆w, i.e. the term in the last sum of Eq. 7.
The operations to calculate ψi at line 7 are pixel-wise, so the value at pixel
(u, v) is calculated as

ψi(u, v) = ` ′(yi(u, v)κi(u, v))yi(u, v)/ρi(u, v).

Finally, we update the ∆w vector with the contributions of the visual words
extracted from the image. Each visual word contributes its weight vm multi-
plied by the sum of the ψi within the region of the pixels that have accumu-
lated the visual word into their histogram. Since a BoVW histogram of a pixel
accumulates all the visual words which lie within a square region defined
around it, a visual word contributes to all the BoVW histograms of the pixels
which lie within the same square region defined around the visual word.
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Therefore, the sum of the values within the region R(wm) can be efficiently
calculated creating the integral image Ψi from the weights image ψi. Then,
the bin idx(vm) of the ∆w vector is updated simply as vmΨi(R(vm)).

The adapted algorithm is able to calculate the new weight vector wt+1
only using pixel-wise operations and the visual words. For instance, Fig. 6.5
shows the evolution at each iteration of some of these image operations. The
images on the left column show the scores images κi while the right column
images correspond to the derivative of the loss function resulting of applying
` ′(yi(u, v)κi(u, v)) to each pixel of κi. These operations does not require
the use of BoVW histograms, so the algorithm only needs the visual words
and the image annotations to training the classifier. Therefore, the memory
needed by the adapted algorithms is much lower than its original counterpart
since storing the visual words require far less memory than storing the BoVW

histograms.

6.6 symbol probability signature

In the previous sections, we have defined how to generate a classification
score map for the whole document image. Now, we are going to briefly review
how do we build the symbol probability signature. First, we have to convert
those scores into probabilities by means of a regression [116, 133, 134, 135].
We have experimented several regression functions and the best results where
obtained by fitting a sigmoid function with Platt’s method [116] and by using
isotonic regression with Niculescu-Mizil and Caruana’s method [134]. In
order to reduce the computational cost of computing the probabilities, we
approximate the regression functions with a lookup table.

Probabilities

Histogram

Figure 6.6: Probabilities of the classifiers with the strongest response overlapping the
word image

Word images are then characterized by accumulating the symbol probabil-
ities into a histogram. For example, we can see in Fig. 6.6 the probabilities
of the classifiers for the symbols “a”, “b”, “o”, “t” and “u” overlapping the
word image and the histogram associated to them. In order to increase the
discriminative power of the signature, we add spatial information using SPM

(see Chapter 2.2.4.1). Finally, we follow a normalization similar to the BoVW

signatures (see Chapter 2.2.4.2): normalize the descriptor with Euclidean
or Manhattan norm, apply power factor normalization, and re-normalize
with the norm. The use of power normalization is also quite important on
this signature, not only because all symbols are detected with the same
strength (e. g.“a” and “t” get a stronger response than the other symbols



82 compact symbol probability signatures

in Fig. 6.6), but also because the size of the probability blob of each image
symbol depends on the size of the symbol and symbols display substantials
size differences (e. g.uppercase vs lowercase characters).

The resulting symbol probability signature is a compact vectorial signa-
ture. On documents written using Latin script, it only requires 26 bins per
spatial bin, so a typical signature may have a dimensionality of few hundred
bins. Since the signature is vectorial, we can apply the same dimensionality
reduction techniques that we have been using on the BoVW signature, LSA

projections and specially PQ codes, to further reduce the dimensionality so
the signature ends up only using a few bytes of memory.

6.7 experimental results

In this section, we want to experimentally to determine how dependent is
the probability symbol signature on the quality of the ILC symbol classifier,
what is the retrieval performance of the signature and how this results
vary on different datasets. Let us first introduce the datasets used to test
the symbol probability signature. Then, we are going to show the symbol
classification accuracy on the George Washington dataset and compare the
retrieval performance of the signature using different parameters. Finally,
we report the results of applying the same ILC classifiers on two different
datasets and determine how adaptable the algorithm is.

George Washington Botany Konzilsprotokolle

Figure 6.7: Example pages of the George Washington, Botany and Konzilsprotokolle
datasets.

6.7.1 Datasets

Like in the previous chapters, we primarily test the different parameters
of the signature on the George Washington dataset. Additionally, we test
the retrieval capabilities of best signature obtained in George Washington
on the Botany and Konzilsprotokolle collections. These two datasets were
introduced in the 2016 Handwritten Keyword Spotting Competition [154].
The test set of the Botany dataset contains 3 230 word images with 150 query
word images while, Konzilsprotokolle contains 3 533 word images with 200
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query word images. Examples of the document images of the three tested
databases can be seen in Fig. 6.7.

6.7.2 System parameters

The ILC classifiers have been trained using true type fonts that resemble the
writing of the George Washington dataset. In Fig. 6.8, we can see an example
of an original text line image from the dataset, the same text line generated
by a TrueType (TTF) font and its associated symbol level annotation. The local
regions used to extract the descriptors are 40 pixels wide square regions.
The HOG descriptors have only two spatial partitions and eight orientation
bins, resulting in a 32 dimensional descriptor. The FREAK descriptor projects
the 903 dimensional descriptor into 32 dimensions both for LSA and LDA

variants, so it has the same dimensionality as the HOG descriptors. For
the LDA projection, we first perform an initial projection using LSA and then
compute the LDA projection. We do it this way to avoid numerical instabilities
of the LDA algorithm [155]. The agglomerative codebook is trained using
the intersection distance and it generates a codebook slightly above 4 000

codewords. Finally, the local regions categorized by the ILC classifier are 80

pixels wide square regions.

Original Image

Synthetic Image

Annotation Image

Figure 6.8: Example of original text line from the George Washington dataset, the
same text line created with a TTF font and its associated annotation.

6.7.3 Symbol classification

First we want to measure how good is the ILC classifier to determine the
actual probability of the symbols on the image. Therefore, we have manually
annotated the symbol location in the George Washington dataset so we are
able to compute the classifier accuracy for the ILC classifiers of each symbol
category.

Figure 6.9: Example of the manual annotation on the George Washington dataset.

The classifier has been trained on a synthetic dataset consisting of 50

training and 10 validation pages with random text generated with multiple
TTF fonts. First, we have tested the five solvers considered in Section 6.5
on a small subset of train images to determine which solver has the best
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Table 6.2: Classification results of the ILC classifier for each symbol category. The
AGM column corresponds to the geometric mean between the positive and
negative accuracies.

Symbol Frequency Positive Negative AGM

a 1510 72,56% 99,05% 84,78%

b 301 56,85% 99,71% 75,29%

c 551 50,09% 99,79% 70,70%

d 728 85,29% 99,46% 92,10%

e 2708 51,81% 98,31% 71,37%

f 397 78,27% 99,61% 88,30%

g 363 67,38% 99,44% 81,85%

h 1069 81,32% 98,30% 89,41%

i 1279 37,46% 99,10% 60,93%

j 17 52,06% 99,33% 71,91%

k 78 88,24% 99,74% 93,81%

l 667 84,35% 99,98% 91,83%

m 581 75,39% 99,46% 86,59%

n 1361 62,87% 98,62% 78,74%

o 1660 57,54% 98,94% 75,45%

p 394 89,72% 99,70% 94,58%

q 16 87,62% 99,89% 93,55%

r 1544 41,92% 99,18% 64,48%

s 1066 65,11% 99,50% 80,49%

t 1943 73,77% 98,24% 85,13%

u 646 48,72% 99,42% 69,59%

v 215 51,85% 99,91% 71,97%

w 319 48,11% 99,89% 69,33%

x 45 89,92% 99,78% 94,72%

y 450 68,61% 99,42% 82,59%

z 13 89,30% 99,93% 94,47%

19921 67,54% 99,37% 81,93%

properties. All of them showed a similar classification accuracy but the
logistic-regularized trust region newton solver [151, 138] showed a faster
convergence rate. This is the solver we used to train the ILC symbol classifiers.
We have selected the regularization factor of the classifier from a range
between 107 to 1014 using cross-validation. The runtime of the solver is
about a 70 minutes per symbol category on a desktop computer using 4

cores.
The classification results obtained by the ILC classifier using the FREAK

descriptor with LDA projection are shown in Table 6.2. As we can see the
classifiers have a mixed performance depending on the symbol category.
The negative accuracy is always very high but the positive accuracy ranges
between 50% and 90%. Although these results may look disheartening, we
need to remember that, as long as the classification errors are consistent,
their effect on the spotting task are going to be limited.
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6.8 spotting results on the george washington dataset

We have evaluate the performance of the symbol probability signature com-
bining the Euclidean and Manhattan distances and norms. The best results
are obtained when using the Euclidean distance with the Manhattan nor-
malization. We have also evaluated its performance when using different
number of horizontal spatial partitions and power factor ratio. In Fig. 6.10

we can see the evolution of both parameters.
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Figure 6.10: Evolution of the best mAP score attained for different number of spatial
bins and different normalization power factor.

The usage of spatial bins increases the retrieval performance of the system,
like in standard BoVW signatures. The mean Average Precision (mAP) score
grows fast up to three spatial bins and after that it still keeps growing
but very slowly. The best power factor is 0.3 for all three descriptors. We
believe that this value is so low because the size difference between symbols
also affects the size of their corresponding probability blobs. A low power
factor value reduces the difference between probabilities that are far a part.
Therefore, this helps to reduce the effects of symbol size differences.

Table 6.3: mAP score obtained by the best configuration for each descriptor.

Descriptor Compression mAP (%)

Simulated 80.01%

HOG 67.75%

LSA 68.36%

LDA 70.95%

LDA p = 8 70.11%

LDA p = 4 68.83%

LDA p = 2 67.36%

Finally, we report in Table 6.3 the mAP scores obtained with different
descriptors and compression factors. The simulated descriptor corresponds to
using the manual annotation to directly generate the probability maps. We
wanted to know the mAP score when the best possible symbol probability
maps are used. As we can see, the signature has an upper limit around 80%
mAP. Comparing the three descriptors, we can see that FREAK descriptors
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performs slightly better than the HOG descriptor. We can also notice that
the LDA projection provides a slight advantage over the LSA. We think that
is because LDA helps the semantic codebook find better clusters. The result
of the best configuration using the LDA-FREAK descriptor is only 9 points
bellow the result obtained with the groundtruth. This demonstrates that
although the symbol classification accuracies shown in Table 6.2 where low,
the resulting signature still performs well.

The last three results report the mAP score when the signature is com-
pressed using PQ codes. Since the signatures in Table 6.3 use 8 spatial bins,
they have 288 dimensions. The PQ codes use 256 quantizers, so each partition
needs to be represented by a byte, and divide the signature in 8, 4 and 2

partitions resulting in compressed signatures that require 8, 4 and 2 bytes of
memory to represent a single word image.

6.9 results on botany and konzilsprotokolle

We compare the mAP attained by our signature with some of the last methods
to report on the Botany and Konzilsprotokolle datasets in Table 6.4.

Table 6.4: mAP precision scores obtained by different methods on the Botany and
Konzilsprotokolle datasets

.

Method Botany Konzils. Notes

Ours 45.72% 57.13%

Almazan et al. [92] 75.77% 77.91%

Sudholt & Fink [100] 89.69% 96.05%

Wilkinson & Brun [156] 54.95% 82.15%

Sudholt & Fink [102] 91.23% 97.70%

Sudholt & Fink [157] 96.05% 98.11%

Krishnan & Jawahar [104] 84.16% 79.13%

Krishnan & Jawahar [158] 95.26% 94.27%

Silberpfennig et al.[159, 44] 50.64% 71.11%

Retsinas et al. [160] 46.7% 56.5%

Sfikas et al. [161] 46.5% 59.9%

Retsinas et al. [162] 53.2% 64.2% Holistic-mPOG+Eucl

57.0% 71.1% PSeq-mPOG+SM

58.3% 76.2% PSeq-mPOG+MIST

Stauffer et al. [163, 164] 51.69% 79.72%

Stauffer et al. [165] 68.88% 84.77% Ensemble

45.06% 77.24% Keypoint

49.57% 76.02% Projection

Riba et al. [166] 41.52% 64.42% Keypoint

42.83% 65.04% Projection

The most successful methods are the learning based method. Almazan et
al. [92] encode visual information with Fisher codes [72], combine them with
Pyramidal Histogram Of Characters (PHOC) binary labels and learn a SVM-
based attribute model which create a common feature space where visual
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and textual information can be combined. Sudholt and Fink use a Convolu-
tional Neural Network (CovNet) that predict the PHOC binary labels [100]
or a real-valued labels [102, 157] of a given word image. Wilkinson and
Brun [156] use a CovNet to create image features following a triple network
approach [167] that uses the relationship between word images (i. e.which are
related and unrelated) to determine which are the best features to represent
them. Krishnan and Jawahar [104, 158] propose another CovNet to learn
features from word images and they show that incorporating synthetically
word images to train the model improves its retrieval performance.

Unsupervised spotting methods show more modest results as visual in-
formation alone is not enough overcome the variability of written text. The
method proposed by Silberpfennig et al. [159, 44] builds word signature by
extracting HOG and LBP descriptors, concatenating them and using maximum
pooling over random groups to generate a compact vectorial representation
of the image. Retsinas et al. propose in [160] an unsupervised descriptor
where first the image is preprocessed to remove skew and normalize the
word height. Then, it is described with the Projection of Oriented Gradient
(POG) descriptor [168]. Sfikas et al. propose in [161] to divide the word image
into zones, then use a pre-trained CovNet to detect characters or bi-grams
in these zones and concatenate the classification results of all zones to form
image descriptor. In [162], Retinas et al. use the same zones approach but
replacing the CovNet with a modified version of their POG descriptor and
a sequence matching algorithm. Finally, a different group of unsupervised
spotting methods is the graph-based spotting. These methods represent the
word in the image as a graph and use a graph matching algorithm to mea-
sure the similarity between word snippets. Some of them use a specific edit
distance to compare the graphs [163, 164], other combine multiple graphs to
obtain a robuster similarity estimation [165] or use deep learning to learn a
graph matching metric [166].

Comparing the results obtained by these methods with the results of our
signature, we can see that our signature is not performing as good in this
datasets as in the George Washington dataset. This is due to the symbol
classification accuracy of the ILC algorithm. Although we cannot obtain a
quantitative measure of the classification error rate, a visual inspection of
the probability maps shows that the strength of the detections is fainter and
there are symbols that are not detected at all. We believe that the problem is
due to the visual dissimilarity between the images script and the TTF fonts
used to train both the codebook and the ILC classifiers.

6.10 conclusions

In this chapter, we have presented a signature based on accumulating the
probabilities of the symbols appearing on the word image. This results in
a compact signature on document images using alphabet type script as,
alphabets only contain several dozens of different symbols.

The probabilities are computed by following a very simple procedure
where we accumulate BoVW histograms locally and use a linear classifier to
obtain the probability of each symbol category. The BoVW codewords are
obtained using the semantic codebook presented in Chapter 5 but replacing
the HOG descriptor with a modified version of the FREAK descriptors. In our
proposal, we use a linear projection to reduce the dimensionality instead of
returning the binarized response of the dimensions that display the higher
level of variance. Although this modification increases the computational cost



88 compact symbol probability signatures

with respect to the original implementation, it also increases the discrimina-
tive power of the descriptor and it is still faster than HOG descriptors. We have
tested two different projections algorithms: LSA and LDA. The unsupervised
LSA projection generates descriptors with a discriminative power similar to
HOG, while LDA increases the discriminative power of the signature.

The probability maps are the computed by applying the proposed ILC

algorithm followed by a regression algorithm that converts the classification
scores to probabilities. The ILC algorithm is a simple procedure that combines
the accumulation and classification steps. This allows to compute the classi-
fication scores on an image rectangular region only using 16 additions. We
also proposed a modification to the linear classifier learning algorithms so,
they can train the classifier without having to explicitly accumulate the BoVW

histograms. The resulting learning algorithm is over an order of magnitude
faster than the standard implementation and it uses up to four orders of
magnitude less of memory.

We evaluate the different parameters of the proposed signature on the
George Washington dataset. The results show that the proposed signature
is able to obtain a performance similar to the standard BoVW presented
in Chapter 2 but only using 2 bytes of information to represent each word
snippet. We have compared the proposed spotting signature against other
unsupervised word spotting methods (i. e.methods without a language model
incorporated) on the Botany and Konzilsprotokolle datasets. Results show
that the signature is comparable to other methods but with a much lower
memory footprint.



7C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we have contributed several methods to the state of the art
of word spotting. Our contributions are mainly on handwritten historical
documents in documents written by a single writer or multiple writers with
a similar calligraphy.

In Chapter 2, we have evaluated the use of the Bag of Visual Words (BoVW)
representation for the word spotting task in historical handwritten docu-
ments. During the course of this thesis, the BoVW framework has gained
attention as a way to represent handwritten words, however there is a great
performance discrepancy depending on the parameters used to generate the
signature. We study which are the parameters that have the largest impact
on the retrieval performance of the system and which have a negligible effect
on word spotting systems. For example, the most important increase in per-
formance came from using a Spatial Pyramid Matching (SPM) to divided the
visual words contributions into multiple horizontal bins. We believe that such
performance boost comes from the fact that this spatial configuration allows
the signature to encode the sequential information of the word, i. e.which
character comes before another, mimicking the information that is encoded
in sequential word representations, but while preserving the advantage of
holistic word representations. However, the retrieval performance increase
comes also with a substantial increase of the word’s signature dimensional-
ity. Therefore, we have to be careful when designing systems that have to
index tens- or hundreds of thousands of word images. Fortunately, BoVW

signatures have a vectorial representation that allows the usage of standard
machine learning techniques for dimensionality reduction and dimensional-
ity compression that have helped us on later chapters. The comparison with
other word spotting methods shows us that BoVW signatures provide the best
retrieval performance for completely unsupervised systems.

In Chapter 3, we have presented an efficient keyword spotting method that
does not involve any segmentation stage. The proposed approach confers
a clear advantage over segmentation-based methods as it does not depend
on the quality of the putative word locations provided by a segmentation
algorithm. We propose a simple patch-based framework where a set of over-
lapping patches covering the whole document image is used to describe all
the possible words locations. Then, a query image is located by comparing
its signature with the signatures of these document patches and, returning
the locations with the higher number of hits. The patches are described using
BoVW signatures that are designed to have low dimensionality so that a docu-
ment image collection can be indexed by a reasonable amount of memory.
Combining these BoVW signatures with the Latent Semantic Analysis (LSA)
technique and Product Quantizer (PQ) compression codes, the proposed
method yields a very compact, efficient and discriminative representation.
The proposed representation is able to efficiently index the document in-
formation both in terms of memory and computational cost, resulting in a
method suitable for large-scale scenarios. We have also introduced a multi-
length patch representation that increases the retrieval performance when
querying small words. Finally, we have tested the proposed method on

89
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three different collections of historical documents and we have presented an
exhaustive comparison with state-of-the-art word-spotting method.

In Chapter 4, we explore the fusion of multiple information modalities
into a single feature space so, we can index word images using one modality
and cast queries using another. The proposed method has been used both
in a query-by-string and in a query-by-speech setting, using both text and
audio to retrieve word images from a handwritten historical documents.
The proposed approaches reaches state of the art spotting performance for
in-vocabulary queries, i. e.queries where both modalities are present while
creating the model. However, performance drops for queries that were not
present during the training phase. Additionally, we have used the system in
reverse, i. e.to index words represented by a different modality (utterances
in our experiments) while casting queries using visual information. We
demonstrated this property by showing a straightforward query-by-speech
system that is able, given a query image, generate its audio without actually
transcribing its contents. This is accomplished by creating an index of the
word audio signatures generated using multiple voices. Then, the audio
associated to a word image is created by querying the word visual signature
into the index and selecting the audio utterance with the highest consensus.

In Chapter 5, we have proposed a method to automatically generate a
codebook from synthetic data. The main idea is to take advantage of the
currently existing large corpus of true type fonts emulating human script to
generate a codebook that is database agnostic, i. e.a codebook that displays
a good performance on any document collection using the same script
as the synthetic fonts used to generate the codebook. This allows us to
avoid creating a codebook for each document collection that we want to
index. Additionally, it also allow us to easily obtain annotated data that
can be useful to generate the codebook. As we have seen on Chapter 2, the
spotting system performance depends on the number of codewords of the
codebook. This number cannot be known a priori and it can only be obtained
experimentally. Although a rough estimation of the codebook size can be
guessed by looking at collections that have similar properties (e. g.script type
and writing style), a more convenient approach is to use annotated data
to select which is the best set of codewords for a given set of descriptors.
Taking advantage that in our setting (i. e.handwritten historical documents
using Latin script) words are formed by a relatively small set of different
symbols, we wanted to ensure that our codewords will be used to represent
a single symbol. Therefore, we propose a supervised codebook that uses
Shannon entropy to search partitions on an agglomerative tree so the selected
codewords maximize the separability between symbol classes. We train this
codebook on synthetic symbol images and test it on handwritten historical
document images. Results show that the codebook attains a performance
similar to the best configuration of an unsupervised codebooks but with
a smaller codebook size. Additionally, we also have proposed the use of
an additional Hierarchical k-Means (HKM) codebook to approximate the
descriptors instead of encoding them. This codebook is used as a quantization
codebook where an input descriptor is approximated by the descriptor of
its associated leaf (i. e.the one reached after traversing the tree). Since all
descriptors are going to be represented by a leaf descriptor, we can pre-
compute the leaf descriptor’s encoding and use these pre-computed values
as an approximation of the actual encoding. This allows us not only to avoid
computing the k-Nearest Neighbors when encoding a descriptor but also
avoid other steps, like computing its Locality-constrained Linear Coding (LLC)
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weights, as all these information is already available at its associated tree
leaf. The use of the HKM to encode the descriptors reduce the encoding
complexity to sub-linear while the spotting system shows a similar retrieval
performance.

In Chapter 6, we expand on the idea of using synthetic data to improve
our model and use it to create a very compact visual signature. One of the
main drawbacks of the BoVW signatures is their high dimensionality. This
limits or prevents the usage of certain enhancements like large codebooks,
spatial pyramid or complex encoding (e. g.the Vector of Locally Aggregated
Descriptors (VLAD) representation). Additionally, compression techniques
like LSA projections and PQ codes are still needed to further reduce the sig-
nature’s dimensionality. This sharp dimensionality reduction results on a
signature that has less characterization power than its initial counterpart.
In this chapter, we follow a different approach and we attempt to create a
signature that is compact since the beginning. The main idea is that instead
of representing visual words, signature bins represent the probability that
a certain symbol is present at a certain location of the word image. Such a
signature will only have 26 dimensions per spatial bin when used on the doc-
ument types typically processed on this thesis (i. e.documents that use Latin
script). Therefore, in this chapter we use the BoVW framework to compute the
symbol probabilities instead of using it to represent word images. We achieve
this by following a fairly straightforward approach where a sliding window
traverses the image and computes at each pixel the probability that it belongs
to a certain category. Such a brute force approach requires certain refinements
to the BoVW pipeline so, images can be processed efficiently. Namely, we pro-
pose a modified version of the Fast Retina Keypoint (FREAK) descriptor which
helps the codebook to increase the separability between classes while at the
same time it reduces the computational cost when compared to Histogram
of Oriented Gradients (HOG) descriptors. We also propose the Integral Linear
Classifier (ILC) algorithm which merges the pooling and classification steps
and allows to compute the classification score of any rectangular image re-
gion at constant and low computational cost. Finally, we modify the training
algorithm of the linear classifier so it does not need to explicitly accumulate
BoVW histograms. This reduces its computational complexity by at least an
order of magnitude and its spatial complexity by several magnitudes. The
resulting signature shows a performance comparable to the best BoVW sig-
nature but only using about a hundred dimensions. Combining the new
signature with PQ codes we are able to index the Washington dataset using
only two bytes of information per word image.

future work

Improve the codeword semantic representation: The semantic codebook
from Chapter 5 attains the same retrieval performance than a k-means code-
book with the optimal k value. This is an important feature from an practical
point of view as we do not need to empirically test multiple codebook
sizes to determine which is better for a certain document image collection.
However, the codewords obtained do not represent a single codeword but a
group of them, introducing non-linearities to the BoVW signature that have
to be solved at latter stages. This can be partially alleviated by making our
descriptor aware of the problem. In chapter Chapter 6, we have used an
Linear Discriminant Analysis (LDA) projection to increase the separation
between symbol categories. Although LDA slightly increases the classifica-
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tion score, codewords still represent multiple symbols. We can attempt to
solve this problem by testing other techniques that offer better properties,
e. g.the demixed Principal Component Analysis [169] separates classes while
keeping the geometry of the original descriptor space. Or, by exploring com-
pletely different approaches to the problem, e. g.compute the projection as
the minimum ensemble of linear classifiers needed to categorize the symbols
directly using the descriptor [170] However, these approaches can only help
the codebook but not solve the problem by themselves as symbols categories
are not linearly separable at the descriptor level. We believe that a better ap-
proach is to reduce the number of descriptors used to train the agglomerative
codebook. Instead of training it using descriptors extracted from all possible
locations, use only “representative” descriptors defined at meaningful symbol
locations. The resulting codewords are more likely to belong to a single sym-
bol category as descriptor symbol variability per category will be reduced
and descriptors belonging to multiple categories (i. e.descriptors sampled
over bi-grams) will not be used. Although the descriptors surrounding the
“representatives” are not represented by the agglomerative codebook, we can
define their relationship directly on the approximate HKM codebook by using
the spatial relationship between them.

Generate synthetic Symbol Probability Signatures: The symbol proba-
bility signatures presented in Chapter 6 attain a similar performance to BoVW

signatures but having a much lower dimensionality. We want to test them on
other scenarios like the segmentation-free approach presented in Chapter 3 or
in the query-by-X approach proposed in Chapter 3. An additional advantage
of this signature compared to a BoVW is its simplicity: the signature it can
be easily modeled with the font parameters and the word text. We can use
this to analyze the modifications introduced to the signature when different
fonts or images distortions are used and use this information to generate a
model that will increase the robustness of the signature against them.
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In this appendix, we explore the use of second-order derivatives
to detect text lines on handwritten document images. Taking
advantage that the second derivative gives a minimum response
when a dark linear element over a bright background has the
same orientation as the filter, we use this operator to create a
map with the local orientation and strength of putative text lines
in the document. Then, we detect line segments by selecting
and merging the filter responses that have a similar orientation
and scale. Finally, text lines are found by merging the segments
that are within the same text region. The proposed segmentation
algorithm, is learning-free while showing a performance similar
to the state of the art methods in publicly available datasets.

a.1 introduction

The history of our ancestors is locked in libraries and archives within the
vast volumes of preserved historic manuscripts. The accessibility and dis-
semination of such cultural assets will provide an important impact to our
society. However, manually inspecting such huge collections for extracting
relevant data is unfeasible and that is why automatic tools for processing
such historic data have a paramount importance. But before applying any
content extraction method, there is usually a pre-processing step of layout
analysis of document images that is needed.

Within the different layout analysis tasks, text line segmentation is one
of the pillar stages. Subsequent recognition methods depend on a proper
text-line segmentation step. Although text line extraction is somehow an
easy step for modern typewritten documents, where a simple algorithm
do already perform perfectly, it is not the case for historic handwritten
documents. Document degradation, the lack of layout regularity, variability
in handwriting styles, text skew and text elements, ascenders and descenders,
touching other text lines makes the problem much more difficult.

A proper segmentation of the different text lines that appear within his-
toric manuscripts is a critical point for many document image recognition
applications, either because the subsequent algorithms work at line level,
or because they can benefit from information extracted from such process
such as baseline position, text height, ascenders and descenders localization,
etc. Such applications range from document deskewing [171], handwriting
recognition[172, 17, 13], or keyword spotting [18].

In the literature, there are many text line segmentation algorithms. The two
classical approaches are either projection profile-based or rely on the Hough
transform. The projection profile approach [173, 174] is based on projecting
the document pixels which are relevant (detected through binarization for
example) into the Y-axis of the image. Then, the location of the text lines
corresponds to the local maxima of the projection histogram. This method
requires some pre-processing to ensure that the text lines are aligned with
the Y-axis of the image, otherwise the detection is not possible. On the other
hand, a different classical approach is to base the text line detection on
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the use of the Hough transform [175]. These approaches use the Hough
transform to find the parameters of the visual linear structures produced
by the text in the document. Unlike projection-profile approaches, these
approaches can detect text lines which have a different orientation than the
dominant one of the text. Both of those approaches process the image in a
holistic fashion which might be problematic when the document layout does
not follow a classic Manhattan structure, such as when the text is distributed
into different columns or does contain tabular structures. Therefore, other
approaches try to obtain line information at local level. Some methods
group the pixels belonging to the same character into regions and then
try to group them into lines. For instance, Cruz and Ramos-Terrades use
in [176] the regions detected via connected components analysis to use
an expectation-maximization algorithm to detect the text lines. However,
connected component-based methods are not particularly interesting when
nearby text lines touch each other because of ascender and descender artifacts.
Other methods, create an energy map which corresponds to the distribution
of the elements over the image and the try segment the lines over this
energy map [177, 178] with seam carving-like approaches. Recently, some
authors use a learning based methods to detect image regions where text
lines are likely to appear [179, 180]. This approach is more robust to image
transformations and noise than binarization or filter based methods. However,
it has the drawback that a large amount of information is needed to properly
train the classifiers. For a detailed explanation of the different approaches
used for text line segmentation, we refer the reader to the survey [181].

In this appendix, we use the second-order Gaussian derivatives to find an
estimation of the dominant orientation at each pixel. By filtering the image
at different scales, we are able to locate also the characteristic scale of the
text line, as the second-order Gaussian derivatives give a stronger response
at the scale where the blurred text lines is closer to the σ of the Gaussian.
Then, these local estimations are accumulated into a histogram to determine
which are the most common orientation and scale of the elements present
in the image. The pixels belonging to these distributions are processed
independently and grouped first into text regions and later text lines. Finally,
we use the binarized components within the text region to determine the line
segmentation. The main contributions of this appendix are twofold: First, we
show that the second-order Gaussian filter can be used as a local operator to
determine the orientation and scale of the text lines. Second, we propose a
method to group the Gaussian filter estimates into text lines. Although the
proposed method is quite straightforward, the obtained results are promising.

a.2 second order derivative analysis

We analyze the output of the second-order Gaussian derivatives of the
image to extract which is the orientation and characteristic scale of the
text lines present at each pixel of the image. First, we are going to review
how we compute the second-order Gaussian derivatives and extract the line
orientation efficiently at a given scale. Then, we are going to show how this
approach is used at multiple scales to retrieve also the characteristic scales of
the text elements in the document.

In order to achieve a certain degree of invariance to illumination and
degradation conditions of the document, we first binarize the images with
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Binary Blurred.

Figure A.1: Blurring the binary document with a large enough Gaussian generates
an image where text lines appear as blobs.
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Figure A.2: Bases used to compute the second order Gaussian derivative at any
orientation.

the Sauvola and Pietikäinen algorithm [20]. Therefore, from now on, all
document images are supposed to be binary images.

a.2.1 Second Order Derivative

In order to locally estimate the orientation of the text line, we want a filter
that yields strong responses at the locations where a text line is present.
Therefore, the oriented second-derivative Gaussian function is a good choice,
since this operator has strong responses over lines. Since text lines resemble
a line when blurred by a Gaussian with a large enough σ, we expect that this
operator will have a strong response when the appropriate σ is used. For
example, in Fig. A.1 the text lines appear as blobs when they are filtered with
a Gaussian filter with σ = 12. Although we can expect that other operators
like Gabor or anisotropic Gaussian filters would give a better response than
the second-order derivative, this filter has the advantage that it is steerable,
i.e. the response of the filter at any given orientation can be calculated as the
combination of base filters. This is a well known property for the first-order
Gaussian derivatives, where

G ′(i, θ) = cos(θ)
∂

∂x
G(i) + sin(θ)

∂

∂y
G(i).

For higher-order derivatives, Freeman and Adelson present in [182] a method
to select the minimum set of bases that better represent the given Gaussian
filter. For the second-order Gaussian derivative, they show that it can be
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computed as a function of C1(i) = 0.921 ∂/∂x2G(i), C2(i) = 1.843 ∂/∂x∂yG(i)

and C3(i) = 0.921 ∂/∂y2G(i) (see Fig. A.2):

G ′′(i, θ) = cos2(θ)C1(i) − cos(θ) sin(θ)C2(i)

+ sin2(θ)C3(i). (8)

Then, by setting the derivative of Eq. 8 to zero and solving for θ, we find the
angles where the filter attains a maximum or minimum value for

θa(i) =
1

2
arctan

(
2C2(i)

C3(i) − C1(i)

)
,

and θb(i) = θa(i) + π/2. We choose the angle θa(i) or θb(i) using Eq. 8 and
looking at the orientation which gives the strongest response.

Scale Orientation Value

Figure A.3: Example of the selected pixels over the original document image. The
magnitude of the values is shown using a hue color map. In the orienta-
tion images, green pixels correspond to horizontal orientations while red
and blue pixels correspond to vertical orientations (orientation is circular).
In the first row we show all local maxima, while in the second row we
see the local maxima after applying the non-maxima suppression filter.

a.2.2 Scale Selection

The Gaussian filter has a strong response over the text lines when the σ of
the Gaussian is similar to the height of the text line. When this happens, the
details of the text line characters’ have been blurred enough so the line ap-
pears as a blob (see Fig. A.1). Therefore, selecting the appropriate σ value for
each text line is important to detect line elements independently of the size
of the text. The best σ value for each pixel can be automatically calculated by
selecting the σ that its second-order Gaussian derivative scaled by

√
σ gives

the strongest response. We use the scale factor
√
σ to increase the response

at larger scales. Otherwise, we would only consider the smaller scales as
document details dilute as we increase the σ of the Gaussian filter. Once we
have processed all the scales, we have an image with the line orientation,
scale and strength for each pixel. Although this is a computationally expen-
sive approach, it allows to obtain the scale parameter automatically and is
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efficiently computed by employing a spatial pyramid and recursive Gaussian
filters [183] that present a computational cost that is independent of the size
of the Gaussian.

Finally, we only consider the pixels that have the strongest response within
their line. Therefore, we discard all the pixels that do not have a local
maximum when compared to the two neighbors at the perpendicular of
the selected orientation. By comparing the neighbors, we assume that two
neighboring pixels may belong to the same line when they have a small
difference between their orientations and scales. This is similar to extract the
ridges of the Gaussian filter response. As a further filtering step, we apply a
non-maxima suppression approach where any selected ridge is removed if
it falls within the area influence of another local maxima that has a higher
filter response. In Fig. A.3, we show the selected orientation, value and scale
of the selected pixels for the image in Fig. A.1. In the scale image, we see
that the ascenders and descenders have a low value (shown in blue) as they
are detected by filters with a smaller σ value. The pixels with a mid-low
value (marked as cyan) correspond to the center of the text lines and the
pixels marked as red correspond to filters with a large σ. In this example,
most red pixels are at the margins of the image and they correspond to the
margins of the text paragraph. In the orientation image, we can see that
pixels corresponding to horizontal structures all have a similar color (they
are green) while elements corresponding to vertical elements (e.g. ascenders
and descenders) are marked as red and blue. In this example, we can also
see that the non-maxima suppression filters most of the undesired responses.

Figure A.4: Text region and line detection on the same image under different trans-
forms.

a.3 line segmentation

Once we have obtained the image with the local orientation, scale and value
of the filter, we aggregate them to select the most common orientation and
scale of the text lines, detect the text regions, the text lines and finally, obtain
the text line segmentation.

a.3.1 Orientation and Scale Selection

The first step we take is to obtain which are the most common orientation and
scale of the detected line segments. To do so, we accumulate all orientation
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and scale values of the selected pixels into a histogram. The contribution
of each pixel is weighted by the strength of the response of the Gaussian
filter. In Fig. A.5, we present an example of the different orientation-scale

Original image 15 degrees rotation

30 degrees rotation Affine transform

Figure A.5: Histograms obtained for the original image, the image transformed by
a rotation and an affine transform. In this histogram images, the x-axis
corresponds to the orientation while the y-axis corresponds to the σ of
filter.

histogram changes obtained when the image from Fig. A.1 is wrapped by a
rotation or an affine transform (c.f. Fig. A.4). Comparing histograms of the
original and rotated images, we see that the histogram are simply shifted
in the x-axis depending on the rotation applied to the image. The peak at
the affine histogram does not move but the values around the peak show
a higher dispersion as the scale and orientation is slightly different at the
margins of the paragraph.

The histograms of Fig. A.5 show that selecting only the pixels which have
the same orientation and scale as the histogram’s local maxima position is
going to filter out too many filter responses. Also, selecting the values which
lay within a small window defined around the local maxima is likewise too
restrictive (e.g. the window in the affine case has to be larger than in the
rigid transform images). Therefore, we apply a watershed algorithm [184] on
the histogram in order to assign each histogram value to the local maximum
that we will reach while following the gradient direction. Following this
procedure, a set of orientation and scale pairs are associated to each local
extrema of the histogram. Finally, we discard values which are lower than
a ratio of the global maximum value of the histogram. In Fig. A.5, these
regions are delimited by the black and white border defined around each
local extrema.
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Figure A.6: Final segmentation under different image transforms.

a.3.2 Text Region and Line Detection

Once we have selected a scale and an orientation, we use the responses of
the Gaussian filter at these parameters to detect the text regions and lines.
First, we group the ridges into line segments using connected components.
Then, we compute the median separation between consecutive overlapping
segments to have an estimation of the separation between text lines Ls. This
measure is used to set the maximum distance between neighboring segments.
So, by grouping all segments that are within this maximum distance, we
obtain regions of the image where text lines are likely to appear. Regions
which are too small (a 10% of the largest region) are filtered out. In Fig. A.4,
the contour around the text show the two text regions detected following
this procedure.

The text regions are processed independently to search for text lines. These
lines are formed by successively merging the closest segments within the
region until their distance exceeds

√
LsLs or only a single segment is left. We

compute the distance between two segments as the smallest distance between
its end points. In order to avoid merging segments which are in two different
lines, we give a higher weight to the height difference than to the separation
between lines. So, the distance between the end-points pa = [pxa,pya] and
pb = [pxb,pyb] is computed as

d(pa, pb) = |pxa − pxb|+ min(|pya − pyb|,Ls/3)+

max(0, |pya − pyb|− Ls/3)
2.

This measure only gives a quadratic weight to the height differences greater
than Ls/3, so it greatly penalizes segments which are at a different text line
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but allows small height differences between consecutive segments. Thus,
it gives a certain flexibility to adapt to text line curvature. In Fig. A.4, we
show detected lines in document images under different transforms. The
coordinates of the end-points are rotated according to the text line orientation,
so the x-axis represents the separation between segments and y-axis the
separation between the text lines.

a.3.3 Text Segmentation

The algorithm so far has only detected the center of the lines, a text line
height given by the Gaussian filter and the separation between lines. This
parameters can be used to obtain a coarse segmentation of the text lines, but
to obtain a finer segmentation we employ a segmentation schema similar to
the one proposed by Vo and Lee in [185]. We assign the binary connected
components to the closest text line. Components which can be assigned
to multiple text lines are decomposed into smaller components using line
adjacency graphs [186]. Components which are still assigned to multiple lines
are assigned to the line closer to the most of its pixels. The final segmentation
is obtained by assigning any pixel within Ls pixels distance to the line of its
closest component. Fig. A.6 shows the segmentation obtained in the original
and deformed document images.

a.4 experimental results

We have evaluated the segmentation algorithm on the IAM database [193], the
GRPOLY-DB dataset [188] and the Saintgall and Parzival datasets [194]. The
performance of the algorithm is evaluated following the ICDAR 2009 [195]
competition, i.e. assigning each predicted line to the groundtruth line with
the highest intersection over union score of its binarized pixels and only
considering the matches that have more than 90% overlap. Then, the perfor-
mance is simply reported with the attained precision and recall. Addition-
ally, we have tested the line detection algorithm on the simple documents
track of the cBAD dataset [192]. In this dataset, results are also given in
precision-recall score but instead of evaluating the segmentation they eval-
uate the baseline detection accuracy. Therefore, we return as baselines the
lines detected by the algorithm displaced σs/2 down where σs is the σ
of the selected Gaussian filter. For all datasets we use the same parame-
ters. The size of the images is reduced by half, the Gaussian scale-space
is computed at σ ∈ {2, 4, 6, 8, 10, 14, 18, 22, 26, 30}, the maximum distance be-
tween line segments is set to 1.2Ls and the Sauvola-Pietikäinen binarization
window is set to 50 pixels. The only exception is the cBAD dataset where
we do not down-scale the images so the Gaussian filters are larger with
σ ∈ {5, 10, 14, 18, 22, 26, 30, 38, 46}. The results obtained in all datasets are
shown in Table A.1. These results show that the proposed algorithm is com-
parable to the state of the art algorithm despite not relying on any supervised
learning stage to robustly detect the text lines. The algorithm is also fast as
it processes an image from the Parzival dataset in around 1.5 seconds only
relying on the CPU. Since the most computationally expensive step of the
algorithm is the computation of the Gaussian filter derivatives, this runtime
can be greatly reduced by the use of GPU acceleration.
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Dataset Method Precision Recall f-Measure

Parzival

CNN [179] 98.9% 98.7% 98.8%

RLSA [179] 70.2% 50.0% 58.5%

Ours 93.3% 92.7% 93.0%

Ours test only 95.0% 95.2% 95.1%

Saintgall

CNN [179] 96.5% 96.4% 96.5%

RLSA [179] 92.6% 89.6% 91.1%

Ours 97.8% 97.7% 97.8%

Ours test only 98.5% 98.5% 98.5%

GRPOLY-DB
Shredding [187, 188] 80.6% 92.4% 86.1%

Hough [189, 188] 94.2% 96.7% 95.4%

Ours 90.2% 93.1% 91.6%

IAM

Projection [190] – – 37.7%

Rectangle [191, 190] – – 96.7%

Hough [189, 190] – – 92.6%

Shredding [187, 190] – – 36.0%

Ours 99.8% 99.7% 99.7%

cBAD Track-A

DMRZ [192] 97.3% 97.0% 97.1%

UPVLC [192] 93.7% 85.5% 89.4%

BYU [192] 87.8% 90.7% 89.2%

IRISA [192] 88.3% 87.7% 88.0%

LITIS [192] 78.0% 83.6% 80.7%

Ours 74.7% 92.6% 82.7%

Table A.1: Text line segmentation results

a.5 conclusions and future work

In this appendix, we show that the second order derivatives can be used to
detect the orientation and scale at pixel level. The main advantage of this
operator, when compared to anisotropic Gaussian filters or Gabor filters,
is that it is steerable and can be computed very efficiently with a space
pyramid and recursive Gaussian filters. Then, we use the output of this
operator to select the dominant orientation and scale of the lines present at
the image and obtain the detected text regions and lines by simply merging
the detected line segments. Finally, the line detection is easily extended to line
segmentation by assigning the binary components to the closest detected line
and assigning all pixels to the nearest component. Although the algorithm is
simple it attains a performance similar to more complex approaches which
rely on supervised machine learning strategies.

Future work

The scale space generated by the second order derivatives displays three
distinct peaks: a first faint one at the scale of the text line strokes, then a
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stronger one at the line level and finally another at a later scale. This last
response correspond to larger document structures like text columns or para-
graphs. We believe it is possible to exploit this information to automatically
detect and segment the document into these larger structures. This will allow
us to detect text lines written in different orientations or small text anno-
tations more reliably. Additionally, by analysing the variation of the lower
scale orientation (i. e.the orientation of text line strokes), we can determine
when a line is structural line or is a text line and extract attributes that will
allow us to differentiate between different types of scripts (e. g.typewritten
vs handwritten).



BL I N E S E G M E N TAT I O N

In this appendix, we present an automatic method for separating static
and variable content from administrative document images. An alignment
approach is able to unsupervisedly build probabilistic templates from a set
of examples of the same document kind. Such templates define which is
the likelihood of every pixel of being either static or variable content. In the
extraction step, the same alignment technique is used to match an incoming
image with the template and to locate the positions where variable fields
appear. We validate our approach on the public NIST Structured Tax Forms
Dataset.

b.1 introduction

Many efforts have been made by companies and institutions in the digital age
to get rid of processing information stored in physical paper by shifting their
workflows towards electronic information. A paperless working environment
present several advantages such as important economic and storage savings,
remote accessibility to information, security and environmental progress.
However, the fact is that nowadays most of entities still need to process
an important portion of their incoming data in paper, image or in the best
case scenario, in electronic document formats. In most of the cases, such
information comes in an unstructured way, so that an interpretation step
is still needed in order to extract in a structured way such data. Manually
processing the bulk of incoming documents is a really costly task and the
industry and the market needs have led an important amount of research
and development in the context of automatic processing such administrative
documents.

In the field of Document Image Analysis, many tasks that fall within the
digital mailroom paradigm have been addressed, from document classifica-
tion [196, 197, 198], document flow segmentation [199], routing [200], and
information extraction [201, 202, 203, 204]. In particular, the information
extraction step, is often based on the definition of templates that help to
point out the locations in which an OCR engine has to read the particular
fields to extract. Such templates are usually based on the detection of anchor
elements that can be easily and steadily extracted from different instances of
the same document kind, i.e. they are based on the detection of static content
that always appear within the documents under study and that can help to
locate the position of variable information. Prior work such as the methods
proposed by Ishitani [202, 203], Peanho et al. [201], Rusiñol et al. [204], Schus-
ter et al. [205] or Santosh et al. [206] often involve a manual intervention of
an expert user that assist the system in building such templates.

In this appendix, we focus in a particular step of the broader information
extraction problem which is the task of segmenting which portions of a
document image might contain relevant content since they are the ones that
change from instance to instance of the same document type. We propose
an unsupervised and fully automated process that given several examples
of the same document kind is able to produce a probabilistic template that
will indicate the likelihood of every pixel of being either static or variable
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content. In order to do so, we rely on an image alignment algorithm [207, 208]
that is able to cope with the deformations that we can find across different
document instances. Once this probabilistic template is build, new incoming
document images are processed in order to detect the variable zones of those
unseen documents. The main advantage of the system is obviously its ability
of producing those templates in an automatic fashion, thus eliminating the
need of manual intervention. This specially useful in historical collections
where the template of the form is usually not available and therefore has to
be generated.

Such approach is mainly interesting when dealing with highly structured
documents that have a predefined static layout that is later filled by the users
with the relevant information. We carried our tests using the public NIST
Structured Tax Forms Dataset (SPDB2) [209], but such method could also
be applied to other document kinds that also present this particularity of
mixing static and variable content such as invoices, contracts, identification
documents, and so on...

Figure B.1: System Overview

b.2 overview

We show in Fig. B.1 a schematic overview of the proposed system. Two
different stages are considered. In an offline step, several instances of the
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same document kind have to be provided to the system. A pairwise alignment
step is applied in order to cope with distortions that might appear in the
digitization process so that all the images are registered together. Once
aligned, pixels that are steadily activated as foreground are considered as
most probable to be static content whereas pixels that are foreground in some
images but not in the others are considered more likely to be variable content.
From this “voting” step, a probabilistic template image is automatically
produced.

When a new incoming image arrives, it is then aligned with the prob-
abilistic template which is also used in order to weight the foreground
pixels. A simple post-processing step is then used in order to end up either
with a binary image that only contains variable content or with a set of
bounding-boxes in the original image that locate such variable fields.

Let us continue with the details on how the alignment step is performed.

b.3 document alignment

In order to align two document images I and T, we use the algorithm
proposed by Lucas and Kanade [207] to compute the optical flow of the
image. This method however has been extensively used in image registration
problems, specifically on face registration [210]. The aim of the algorithm is
to find the parameters p that wrap the image I so it minimizes the differences
with the image T,

arg min
p

∑
x
‖I (W(x, p)) − T(x)‖2, (9)

where W(x, p) is the wrap function that converts the coordinates x from the
template to the original image reference frame. The complexity of transform
p depends on the model used to relate both images. For example, for face
registration problems a non-rigid model like Active Appearance Models [210]
is used. However, in our case document images are related at most by
an affine transform so p = [tx, ty, sx, sy, sk,α], where tx and ty are the
translation parameters, sx and sy are the scale parameters, sk is the skew
parameter and α is the rotation parameter. Then, the wrap function {x ′,y ′} =
W({x,y}, p) becomes,

x ′ = sx cos(α) x+ (sk cos(α) + sy sin(α)) y+ tx
y ′ = −sx sin(α) x+ (−sk sin(α) + sy cos(α)) y+ ty.

The algorithm finds the solution to Eq. 9 by iteratively computing the param-
eters increments ∆p that solve

arg min
p

∑
x
‖I (W(x, p +∆p)) − T(x)‖2, (10)

and updating the parameter p = p + ∆p until the parameters estimate p
converges. The non-linear expression I(W(x, p +∆p)) on Eq. 10 is linearized
with its first order Taylor expansion,

arg min
p

∑
x
‖I (W(x, p)) +∇I

∂W

∂p
∆p − T(x)‖2, (11)
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where ∇I = (∂I/∂x,∂I/∂y) is the gradient of I evaluated at W(x, p) and the
term ∂W/∂p is the Jacobian of the wrap function which in our case is

W

∂p
=

1 0 −xcα −ysα −ycα (y sk + x sx)sα − ysycα

0 1 xsα −ycα ysα (y sk + x sx)cα + ysysα

 ,

where sα = sin(α) and cα = cos(α). Then, Eq. 11 is solved by computing its
partial derivatives and solving the resulting equation, that gives

∆p = H−1
∑

x

[
∇I
∂W

∂p

]>
[T(x) − I(W(x, p))] , (12)

where H is the Gaussian-Newton approximation to the Hessian matrix

H =
∑

x

[
∇I
∂W

∂p

]> [
∇I
∂W

∂p

]
. (13)

Summarizing, the algorithm starts with an initial estimation of the pa-
rameters, in our case p = [0, 0, 1, 1, 0, 0] and it keeps updating the parameter
estimation p with Eq. 12 until it converges, i.e. until |∆p| < ε, where ε is a
small value.

This algorithm is sensible to local minima, so several authors replaced the
sum of squared errors in Eq. 9 by a more robust estimate of the registration
error between the two images like the enhanced correlation coefficient [211],
Gabor filters computed in the Fourier domain [212], image gradient [213] or
feature-based methods [214]. In our case, we use the original algorithm but
we take several pre-processing steps before aligning the document images,
so the registration algorithm attains a certain degree of robustness. First, the
images are binarized using the adaptive binarization algorithm proposed
by Sauvola and Pietikäinen [20]. The advantages of working with binarized
images are twofold: it lessens the effects of illumination and degradation
problems in the document images, and it allows to accelerate the registration
algorithm by reducing the amount of points that we need to wrap while
estimating ∆p. Then, a connected component analysis step is used to remove
regions which are too small to be relevant and large regions which are
touching the image margins and are likely to be marginal artifacts. Finally,
the module of the gradient is computed over the image in order to reduce the
effects of large foreground regions. These regions provide a large contribution
to the estimation of ∆p in Eq. 12 and they can lead to a misalignment
between the images when they belong to a dynamic document structure
(e.g. a text written with a larger font or a stamp graphic). Using the module
of the gradient, we only keep the contour of the foreground elements so the
influence of large structures on the ∆p is reduced. The obtained image is
re-binarized with the Otsu algorithm [215].

As we pointed out before, by using binarized images we only have to
take into account the foreground pixels while wrapping the original image.
Therefore, we can reduce the computational cost of the algorithm by only
wrapping those pixels. Moreover, the algorithm can be further speeded up
by selecting an small random sub-set of the foreground pixels. In our case,
images are correctly registered using only a 5% of the foreground pixels.

The algorithm is sensible to local minima, so when images are related
by a large transform it is very likely that the registration algorithm gets



B.4 system description 107

stuck at a local minima before obtaining the actual registration parameters.
Therefore, we follow a multiscale approach where the parameters p are
initially computed using a large sigma at ∇I (e.g. with σ = 20). Then,
the parameters p are recomputed using a smaller sigma using the previous
estimation as a warm start until we reach σ = 1. Although this should increase
the computationally cost of the algorithm, the algorithm has the same runtime
as we use spatial pyramids and recursive Gaussian derivatives [183] to obtain
the ∇I at each scale, the algorithm converges faster at coarser scales as there
are less details and the warm initialization greatly reduces the number of
iterations of finer scales.

b.4 system description

We use the image registration algorithm from Section B.3 both to align the
document images while creating the model template and also to register the
model template with a document image when filtering the static parts to
obtain the dynamic content of the document.

b.4.1 Document Static Model Generation

We have a set of document images which have the same layout as the sample
shown in Fig. B.2 and we want to obtain an image which contains only
the document structures which are common in all documents, i.e. the static
elements of the document collection. An example of an obtained model
template is shown in Fig. B.3.

In order to obtain such a model, we first have to align all the documents
of the collection using the algorithm described in Section B.3. We can obtain
the model by computing all possible image pairs, however following this
approach the number of image pairs to be aligned is quadratic respect the
number of image of the set. For example, the collection of Fig. B.2 has 24

images which means that we have to compute 300 relationships to obtain all
the image relationships. Instead, we can randomly select N images which
in turn are randomly aligned only with M images of the collection. The
resulting model is generated only computing N×M image pair alignments
and although it uses less images, the obtained model does not greatly differ
from the obtained using the whole collection. For instance, the model in
Fig. B.3 has been generated with N = M = 7 so only 49 image pairs are
aligned.

The document static model M for the collection of document images C

is generated with two steps: first we generate as set of N partial models
P = {Pk ∈ C|k ∈ {1, ..,N}} and then we group them into the final document
static model M. A partial mode Pk is created by randomly selecting a base
image Xk ∈ C which is then intersected with M randomly selected images
Yk = {Yki ∈ C|i ∈ {1, ..,M}}. Like in the previous section, we use the Sauvola
and Pietikäinen algorithm [20] to remove illumination and degradation
artifacts from the images, so Xk and Yk images are binary. The intersection
image Iki between Xk and Yki is computed as

Iki = Gσ(Xk) ·Gσ(W(Yki, pki)), (14)

where W(I, p) applies the affine transform p to the image I, pki are the
parameters of the transform that align Yki to Xk, and Gσ=1 is a Gaussian
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Figure B.2: Sample training documents for a particular class
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Figure B.3: Probabilistic model template obtained from the document set shown in
Fig. B.2.

filter used to smooth the binary images in order to account for small bina-
rization and misalignment errors. Then, we compute the average between
the intersection images as

P̃k =
1

M

M∑
i

Iki

and obtain the partial model Pk by applying a pixel-wise sigmoid function
over P̃k to increase its contrast. Instead of just accumulating all the inter-
section among images to generate the model, we apply a sigmoid function
which is a non-linear transform that removes low probability contributions
that appear in regions where dynamic structures are commonly present.
Therefore, these dynamic structures won’t receive enough support in the
final static model M.

Finally, the static document model is obtained by accumulating all the
partial models P by

M̃ =
1

N

N∑
k

W (Pk, pk) , (15)

where pk are the parameters that align the k-th partial model to P1. The
selection of P1 as reference frame is arbitrary and we can select any other
partial model as reference. Alternatively, we could also estimate the location
of the reference frame by averaging the transforms that relate all partial
models. However, the main goal is just to accumulate all partial models into
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Table B.1: Contingency matrix

True condition

Positive Negative Total

Predicted
Positive 466 (TP) 12 (FP) 478

Negative 17 (FN) − 17

Total 483 −

the final model, so the reference frame used is not important. Like with
the partial models, the static document model M is obtained applying a
pixel-wide sigmoid function over M̃.

b.4.2 Dynamic Elements Detection

Once we have generated the static model M for the collection C, we can
remove the static parts of the image Q ∈ C by

S = Q ·D(W(M, p̃)), (16)

where D(·) is a dilation operator of 5× 5 used to widen the wrapped
model and p̃ are the parameters of the affine transform that aligns the model
M to the query image Q. The contrast of the resulting image is improved by
applying a pixel-wise sigmoid function over I.

In order to find the dynamic element regions, we binarize S by simply
applying a low threshold (e.g. activate the pixels that have a probability
above 0.25) and merging the detected regions by applying a morphological
opening with a rectangular structuring element. The regions which does not
have enough support, have unlikely shapes (e.g. are too thin) or have highly
intersect with another region are filtered out.

b.5 experimental results

In order to carry out our experiments we used the NIST Structured Tax
Forms Dataset (SPDB2) [209]. We have selected a subset of 15 document
classes, which are the ones that we have enough document image samples
of the same type. For each of those 15 classes, 24 images where selected to
build the probabilistic templates in the offline stages. A single example for
each class is then used as testing image to assess the quality of the content
extraction.

First, we present in Fig. B.4 some qualitative results. We show three differ-
ent test images along with the produced probability maps for the variable
field extraction. Here darker values indicate a higher pixel probability of be-
ing a variable field and brighter values indicate a higher probability of being
static content. Pixels belonging to the static part are almost imperceptible
here. We also show the final segmentations of variable content, and we can
appreciate that some false alarms appear either due to binarization noise
(which in some sense is a variable element) and to highly textured zones.

In order to quantitatively evaluate our system, we manually groundtruthed
all the variable fields in the 15 test images to see at which extend the
proposed methodology is able to locate such fields and at which extend it
also delivers false alarms. In total the ground-truth is composed of 483 fields
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a) b) c)

Figure B.4: Detection results. a) Test images, b) Probability maps of the variable
elements after aligning the test documents wih their respective templates,
c) Final bounding-box extractions.
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to extract. We can see the results in form of a contingency matrix in Table B.1.
Here, the true positive condition are all the variable fields, whereas the
true negative condition is not quantized since it is the rest of the document
(static content). When we run our method, we end up correctly retrieving
466 of the variable fields (true positives) while missing 17 of them (false
negatives) and providing 12 erroneous segmentations in zones where there
are no variable elements (false positives). In summary, the proposed method
yielded a precision of 97.49% and a recall of 96.48% in the task of retrieving
variable fields.

b.6 conclusions

In this appendix, we have presented an automatic method for separating
static and dynamic content that appear in administrative document images.
Such method allows to define probabilistic templates aimed at locating lo-
cations of relevant fields without the need of an expert user intervention.
We have validated our approach on the public NIST Structured Tax Forms
Dataset, and we plan to make further tests on other administrative documen-
tation such as invoices, contracts, id cards, etc.

Future work

Any iterative alignment algorithm is subject to local minima. By adding
attributes to the document images (e. g.pixels belonging to an structural
element, to a typewritten text, to a handwritten text, . . . ), we can increase the
robustness of the alignment algorithm. With attributes, we can ensure that
pixels will only be attracted to pixels of a compatible attribute (i. e.lines with
lines, text with text). They also help us define the likelihood that an element
is will keep the same position between multiple documents (e. g.handwritten
elements are likely to move).
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