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In this study, we use transient thermal gratings—a non-contact, laser-based ther-

mal metrology technique with intrinsically high accuracy—to investigate room-

temperature phonon-mediated thermal transport in two nanoporous holey silicon

membranes with limiting dimensions of 120 nm and 250 nm respectively. We com-

pare the experimental results with ab initio calculations of phonon-mediated thermal

transport according to the phonon Boltzmann transport equation (BTE) using two

different computational techniques. We find that the calculations conducted within

the Casimir framework, i.e. based on the BTE with the bulk phonon dispersion and

diffuse scattering from surfaces, are in quantitative agreement with the experimental

data, and thus conclude that this framework is adequate for describing phonon-

mediated thermal transport in silicon nanostructures with feature sizes on the order

of 100 nm.

a)raduncan@mit.edu
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I. INTRODUCTION

Nanoscale thermal transport has become a topic of much recent interest due to the novel

transport phenomena that emerge at the micro- and nanoscale1,2 and their relevance to tech-

nological fields such as microelectronics and thermoelectrics3,4. In semiconductor systems

with feature sizes comparable to the phonon mean free path (MFP), size effects can lead to

strong reductions in thermal conductivity—making thermal management in microelectronic

devices a significant engineering challenge5. In the field of thermoelectrics, nanostructur-

ing has emerged as a key strategy for enhancing the thermoelectric figure of merit ZT by

reducing the thermal conductivity without significantly affecting the electronic properties

of the material4,6. Traditionally overlooked for thermoelectric applications, silicon has gen-

erated recent interest as a material for thermoelectric devices due to the strongly reduced

thermal conductivity achievable through nanostructuring7. Experimental results on silicon

nanowires have shown thermal conductivity values two orders of magnitude lower than the

bulk value and ZT values approaching unity8–10. Two-dimensional “holey silicon” nanos-

tructures—suspended silicon membranes with a periodic array of nanopores—have exhibited

thermal conductivity reductions comparable to nanowires11–16 while retaining superior rela-

tive mechanical strength. Such nanostructures hold great promise for thermoelectric applica-

tions due to the wide variety of well-established and scalable fabrication and manufacturing

techniques available for silicon.

Thermal transport at the nanoscale differs significantly from macroscopic, diffusive ther-

mal transport. In structures with feature sizes comparable to the MFP of heat-carrying

phonons, thermal transport no longer obeys the heat diffusion equation1. One of the earliest

attempts to account for non-Fourier phonon-mediated thermal transport in nanostructures

was by Casimir17, whose model featured particle-like phonon transport with diffuse scatter-

ing at boundaries. Although Casimir’s original model was concerned with thermal transport

in rods, the broader formalism of semiclassical particle-like phonon transport with diffuse

boundary scattering is expected to be valid for any nanostructure for which λth ≪ ℓ and

λth/2π . R , where R is the surface roughness, λth is the representative wavelength of

heat-carrying phonons, and ℓ is the limiting dimension of the nanostructure. Heat-carrying

phonons at room temperature in silicon have single-digit nanometer wavelengths18, which is

on the order of lithographically-realistic surface roughnesses19,20. Thus, silicon nanostruc-
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tures with feature sizes ℓ > 10 nm should be well described by the Casimir formulation of

thermal transport—that is, particle-like phonon transport according to the phonon Boltz-

mann transport equation (BTE) with diffuse scattering from surfaces. Studies comparing

experimental results with ab initio theory based on the BTE have shown that the Casimir

formulation is indeed valid for nanoscale silicon membranes21 and silicon nanobeams22. How-

ever, there have been highly conflicting reports regarding the validity of the Casimir for-

mulation for thermal transport in nanoporous holey silicon membranes23. Several studies

have reported room-temperature effective thermal conductivities reduced by up to an order

of magnitude relative to Casimir formulation predictions for such structures12,13,24, while

others have found good agreement between the Casimir formulation and experiment25–27. In

some cases, measurements showing deviations from the Casimir formulation predictions for

holey silicon nanostructures have been invoked as evidence of “coherent” thermal transport

effects at room temperature11,13,28. This notion, however, has been challenged by recent ex-

perimental and theoretical works29–31, in which no effect of nanopore lattice disorder on the

room-temperature thermal transport was found. It should be noted that reports of “below

Casimir” thermal conductivity rely on the measurements of the absolute values of thermal

conductivity, which are challenging even for bulk samples32. If far-reaching conclusions are

to be drawn from the absolute value of thermal conductivity, then a technique with high

absolute accuracy is desirable.

Transient thermal gratings (TTG) is a non-contact optical technique that measures the

time evolution of an impulsively generated sinusoidal temperature profile33,34. The experi-

mental observable is the amplitude of this sinusoidal temperature profile, which decays as

heat spreads from the peaks to the nulls of the grating. For a one-dimensional TTG, the

amplitude of the thermal profile and therefore the intensity of the heterodyned TTG signal

is given by

I(t) ∝ e−t/τ (1)

where τ ≡ 1/αq2, α is the thermal diffusivity, q ≡ 2π/L is the transient grating wavevec-

tor, and L is the transient grating period. The only parameter other than α that affects the

decay rate is L, which can be measured with high accuracy. Thus the thermal diffusivity

can be determined to high accuracy from the decay rate of the TTG signal. Furthermore,

TTG’s non-contact nature reduces additional sources of error due to the absence of any
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400 nm(a) (b) 400 nm

120 nm 250 nm

FIG. 1. Scanning electron micrographs of the patterned holey silicon regions—(a) region A (400 nm

pitch, 280 nm nanopore diameter), and (b) region B (500 nm pitch, 250 nm nanopore diameter).

interfaces with metrological structures.

In this paper, two 250 nm-thick holey silicon membrane nanostructures are investigated

with the TTG technique. The experimental results from TTG measurements are compared

to the results of two ab initio numerical Boltzmann transport techniques: the OpenBTE

computational framework developed by Romano et al.35 and the energy-based deviational

Monte Carlo BTE simulation technique developed by Peraud and Hadjiconstantinou36,37.

Quantitative agreement between numerical calculations and experiment is found for both

the unpatterned silicon membrane and holey silicon structures, confirming the validity of

the Casimir formulation for room temperature heat transport in silicon nanostructures with

feature sizes on the order of 100 nm.

II. EXPERIMENTAL

A. Sample Fabrication

The holey silicon structures were fabricated using electron beam lithography (EBL) and

reactive ion etching (RIE) of a 250 nm-thick freestanding silicon membrane 3.2 × 3.2 µm

window area, obtained from Norcada Inc.)38. Each of the two structures was a 100 µm-

diameter region of the freestanding membrane patterned with a square lattice of nanopores.

SEM micrographs of the regions are shown in Fig. 1. “Region A” had a pitch size (nanopore

periodicity) of 400 nm and a nanopore diameter of 280 nm, and “region B” had a pitch size

of 500 nm and a nanopore diameter of 250 nm.

5

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/1.

51
41

80
4



B. Transient thermal grating (TTG) measurements

As shown in Fig. 2(a), two “pump” laser pulses are crossed at the sample, where optical

interference and subsequent absorption lead to the establishment of a transient sinusoidal

temperature profile with spatial period L = λ/2 sin (θ/2), where λ is the pump wavelength

and θ is the crossing angle for the two pump beams. Through the temperature dependence of

the material’s complex index of refraction ñ ≡ n+ ik—where n is the real index of refraction

and k is the absorption coefficient—this sinusoidal temperature profile is accompanied by

a spatially sinusoidal modulation in ñ as well. A quasi-continuous “probe” beam then

impinges on the sample, diffracting from this transient optical grating. As the amplitude of

the temperature grating diminishes due to heat transport from the peaks to the troughs, the

amplitude of the grating in ñ—and thus the amplitude of the diffracted signal—diminishes

accordingly. In this way, the time dependence of the diffracted signal can be directly related

to the thermal diffusivity according to Eq. 1. TTG measures the thermal transport dynamics

over a length scale set by the period of the transient grating, which can be tuned by changing

the crossing angle of the pump beams. Further details regarding this technique can be found

in Ref.34.

The pump beams were derived from a 515 nm source with a 60 ps pulse duration and

1 kHz repetition rate, and the probe beam was derived from a continuous-wave 532 nm

source. A “reference” beam was derived from the same source as the probe beam, and the

relative phase between the two was controlled by tilting a highly parallel optical flat through

which the probe beam passes to achieve heterodyne detection39. At the sample the probe

beam diffracts from the transient grating and becomes superposed with the transmitted

reference beam, and the combined heterodyned signal is collected by a fast photodiode

detector and recorded on an oscilloscope. The 1/e2-intensity radius of the pump and probe

beams were 100 µm and 40 µm respectively. While the pump spot size is commensurate

with the patterned regions, the probe spot size is much smaller. Thus, although our pump

may be exciting a grating pattern that extends somewhat outside of the patterned region,

our experiment is only sensitive to the transport dynamics within the region bounded by

the much smaller probe spot. The pump pulse energies ranged from 170 - 340 nJ, and

the instantaneous power of the probe beam at the sample ranged from 0.8 - 1.6 mW. The

probe beam was shuttered by an electro-optic modulator with a duty cycle of 5% to prevent
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steady-state heating of the sample.

The thickness of the membrane was smaller than the optical penetration depth of silicon

for the wavelengths involved in the measurements, which permitted measurements in the

transmission geometry as shown in Fig. 2(a). The raw TTG data obtained from the two

holey regions and the unpatterned silicon membrane at a grating period of 4.25 µm are

shown in Fig. 2(b). Measurements were performed under medium vacuum at a pressure of

1 mbar. The maximum amplitude of the temperature grating was determined to have an

upper bound of 35 K. Upper bounds on the average heating of the sample due to the pump

and probe beams were determined to be 20 K each.

The TTG signal for a one-dimensional thermal grating exhibiting diffusive thermal trans-

port is given by Eq. 1. τ—or equivalently α—is the only free parameter required to model

the normalized TTG signal. In addition, the heterodyne detection scheme further yields a

gain in signal-to-noise by a factor of the reference field amplitude, which can be increased

arbitrarily up to the saturation threshold of the photodetector. The low-dimensionality of

the dynamical parameter space and the fact that neither precise knowledge of the magni-

tude of the temperature variation nor of the magnitude of the heat flux is required in the

analysis of the data allow for the determination of the thermal diffusivity with high ab-

solute accuracy. Further discussion regarding the accuracy of transmission-geometry TTG

experiments on nanomembranes can be found in Ref.34. The traces were truncated such

that fitting began 5 ns after pump incidence to ensure that the fitted region corresponds

only to thermal transport signal without any potential contribution from the fast electronic

response shown in the inset of Fig. 2(b). The acquired fits are plotted alongside the raw

TTG data in Fig. 2(b). Fig. 2(c) shows the measured thermal diffusivity values obtained

according to Eq. 1 as a function of TTG period for each of the three regions measured. Each

raw TTG trace consisted of 50,000 individual measurements. The statistical error of the

measurement was determined by partitioning the data into subsets of 10,000 measurements,

fitting each subset to Eq. 1, and taking the standard error of the mean of the resulting

distribution of τ values. In addition to the statistical error of the measurement, the sys-

tematic error due to laser heating effects was also considered. The effects of laser heating

were determined by performing each measurement three times—once at a baseline set of

pump and probe powers, and two additional times at which the pump and probe powers

respectively were doubled. Linearly extrapolating the measured values of τ to zero pump
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(b)

(c)

Pump

Pump
Probe

Reference

Ref. +
 Signal

Si Membrane

Patterned region

(a)

FIG. 2. (a) Schematic of the TTG measurement in the transmission geometry. (b) Time-domain

TTG traces at 4.25 µm transient grating period for the two holey silicon regions and an unpat-

terned region, as well as exponential fits to the data. Inset: full transient grating response for the

unpatterned membrane, including fast early-time electronic signal. (c) Effective thermal diffusivity

values obtained from the time-domain data according to Eq. 1. For the patterned regions the error

is smaller than the sizes of the symbols.
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and probe laser power allows us to determine the systematic error due to laser heating,

which was then added to the appropriate side of the errorbars for each point to account for

this systematic heating effect. We note that the upper bounds on laser heating reported

above are non-negligible relative to room temperature. However, since the effect of laser

heating is experimentally quantified in our error analysis, we can still compare our exper-

imental results with calculations that use room-temperature material properties. Despite

the somewhat high upper bounds on laser heating, we nevertheless note that the effect of

laser heating on the experimentally-determined values of α was generally found to be less

than 10%.

For grating periods from 4.25-7.5 µm we find that the experimental values of thermal dif-

fusivity are independent of L for both the unpatterned membrane and the holey membranes,

consistent with preliminary TTG results on holey silicon structures34. The exponential form

of the TTG data and the invariance of thermal diffusivity as a function of grating period

indicates that the transport kinetics are “effectively diffusive” over the TTG experimental

length scales, albeit with “effective” thermal diffusivity values αeff reduced relative to the

bulk because of the non-Fourier size effect due to nanostructuring.

It should be noted that occasionally an additional transient with a characteristic timescale

much longer than the acquisition timescale (i.e., approximately a constant offset from the

pre-pump baseline) was observed in some of the obtained TTG traces. However, we deter-

mined that the presence of this contribution to the signal (which is roughly on the timescale

that would correspond to thermal diffusion out of the pump spot) was not associated with

any change in the αeff value that was calculated from the time constant of the exponentially

decaying contribution to the signal observed on the 10s-100s ns timescale (which we took to

be the true TTG signal) that remained after subtracting out this approximately constant

offset. This issue is more thoroughly addressed in the Supplementary Material.

Experimental values of the effective thermal conductivity κeff were calculated from the

data in Fig. 2(c) according to

κeff = (1− φ)cSiαeff (2)

where φ is the void fraction of the holey silicon membrane and cSi is the bulk volumetric

specific heat of silicon. The resulting experimental values of κeff are shown in Fig. 3, where

the effective thermal conductivity values are plotted against the neck width ℓn (i.e., the
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A

B

FIG. 3. Effective thermal conductivity values experimentally measured and numerically computed

using the MC-BTE and OpenBTE methods for the holey silicon regions and the unpatterned

membrane. Also plotted are the κeff values obtained by using the Fourier law with the bulk

silicon thermal conductivity. ℓn is the neck width. The experimental error was determined to be

smaller than the size of the symbols.

difference between the pitch size and the nanopore diameter).

III. COMPARISON TO FIRST-PRINCIPLES NUMERICAL

CALCULATIONS

Numerical calculations of the thermal transport through the membranes were performed

according to the linearized isotropic phonon Boltzmann transport equation (BTE) under

the single-mode relaxation time approximation (RTA), which is given by

∂fkp
∂t

+ vkp · ∇fkp =
f0 − fkp

τkp
(3)

where fkp(r, t) is the occupation function for a mode traveling with wavevector k and

polarization p, vkp is the (isotropic) group velocity, f0
(

~ω, TL(r, t)
)

is the Bose-Einstein

distribution, TL(r, t) is the local temperature field defined such that energy is locally con-

served, ~ω is the phonon energy, and τkp is the (isotropic) single-mode relaxation time (where

k ≡ |k|).

The simulation domain is one pore-centered unit cell of the nanopore lattice with the

cylindrical axis of the pore chosen to be oriented along ẑ. Periodic boundary conditions are
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applied along both the x- and y-axes. The phonon group velocities and relaxation times

were determined respectively from the harmonic and anharmonic force constants, which

were obtained from density functional theory (DFT) calculations using the temperature

dependent effective potential (TDEP) method40. Naturally occurring isotope disorder was

taken into account. Details on the DFT calculations can be found in the Supplementary

Material.

The OpenBTE computational technique of Romano et al.35 and the energy-based devi-

ational Monte Carlo BTE (MC-BTE) technique of Peraud and Hadjiconstantinou36,37 were

both used for ab initio calculations of κeff for both the holey and unpatterned membranes.

For the OpenBTE case, Eq. 3 is transformed into the following form35:

Λŝ(Ω) · ∇T (r,Ω,Λ) + T (r,Ω,Λ) = TL(r),

TL =

[
∫

∞

0

K(Λ′)

Λ′2
dΛ′

]

−1 ∫ ∞

0

K(Λ′′)

Λ′′2
〈T (r,Ω,Λ′′)〉dΛ′′

(4)

where ŝ(Ω) is the unit vector for the propagation direction Ω, T (r,Ω,Λ) is the “effective

temperature” of phonons with MFP Λ traveling in direction Ω (i.e., the sum of their energy

densities divided by cSi), K(Λ) is the bulk MFP distribution (i.e., the derivative of the ther-

mal conductivity accumulation function with respect to Λ), and 〈x(Ω)〉 ≡ (1/4π)
∫

4π
xΩdΩ

is the angular average over all propagation directions. Eq. 4 is derived by imposing steady-

state conditions on Eq. 3, as well as assuming that δT (r) ≡ TL(r) − T0 (where T0 is the

reference temperature, which in this study was 300 K) is small such that f0[~ω, TL(r)] in

Eq. 3 can be expanded to first order in δT (r) and any temperature dependence of material

properties can be neglected. The advantage of this approach is that the only input required

to solve Eq. 4 is the MFP distribution K(Λ).

In OpenBTE, a difference of temperature ∆T is applied at the two opposing faces of

the unit-cell along the x-axis, and the first guess for TL was given by the standard diffu-

sive equation. Diffuse-scattering boundary conditions were imposed on all surfaces of the

computational domain. Diffuse scattering at boundaries was modeled in such a way that

phonons of a given value of Λ were diffusely emitted (i.e., such that the distribution of out-

going phonons next to the surface is isotropic) from the surface with a total energy equal to

the total energy of all incident particles with the same value of Λ. To overcome numerical

instability due to small-MFP phonons, OpenBTE switches to a modified Fourier’s law to
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compute the diffusive component to heat transport41 for such modes. Eq. 4 was solved by

the finite-volume method while a Delaunay mesh was generated for space discretization42,43.

The deviational energy-based MC-BTE technique36,37 was also used to calculate κeff for

the nanostructures investigated. This technique achieves low statistical variance compared

to other Monte Carlo techniques by only simulating the trajectories of “deviational” parti-

cles which describe the excess/deficit thermal energy in a given mode relative to equilibrium,

and achieves high computational efficiency by performing the calculation in an energy-based

BTE formulation that lends itself naturally to energy conservation. The diffuse boundary

scattering condition was modeled in the same fashion as in the OpenBTE method described

above—namely, deviational particles with a given MFP were diffusely emitted from the sur-

face with a total energy equal to the total energy of all incident particles with the same

MFP. Unlike the OpenBTE technique as described in Ref.35, the MC-BTE solver applies a

constant temperature gradient throughout the simulation domain. To assess the impact of

this discrepancy in the applied perturbation we compute κeff with OpenBTE using both

approaches on test aligned structures, finding negligible differences in effective thermal con-

ductivity values.

For both computational techniques, the conductance of one unit cell was calculated by

dividing the total heat flux through one end of the simulation domain by ∆T . The effective

thermal conductivity κeff was then obtained by dividing this conductance value by the

rectangular cross-sectional area of the unit cell normal to x̂ and by multiplying by the unit

cell length along x̂44. Our results for both computational techniques are shown in Fig. 3

for comparison to the experimental TTG results for both holey silicon structures and the

unpatterned membrane. A discussion of the uncertainties associated with the computational

methods is provided in the Supplementary Material.

In a previous paper34, preliminary TTG results investigating thermal transport in a sim-

ilar holey silicon membrane were compared to the values of κeff obtained from ab initio

MC-BTE simulations. Agreement between experiment and theory was found to within

∼ 20%. However the sample in that study was patterned over the entirety of the suspended

membrane, and as such comparison with an unpatterned region to ensure the intrinsic qual-

ity of the silicon membrane was not possible. There thus remained an ambiguity in the

previous study as to whether the discrepancy between theory and experiment was due to

deviations from the Casimir formulation, or due simply to material quality effects. Our
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computational results for κeff are shown alongside our experimental results in Fig. 3, as

well as the values of κeff for the structures calculated using the Fourier law with the bulk

silicon thermal conductivity value of 143 W/m.K. We see that the size effect associated

with the thickness of the unpatterned membrane alone reduces κeff by nearly a factor of

two relative to the value obtained from the Fourier law (which is simply the value for bulk

silicon in the case of the unpatterned membrane), in good agreement with previous measure-

ments on nanoscale silicon membranes21. A further reduction of κeff is observed due to the

nanopore superlattice patterning, resulting in a reduction of κeff by a factor of 3 relative to

the Fourier law prediction for region A and a near order of magnitude reduction in κeff for

region A relative to bulk silicon. We observe very good agreement between the experimental

and calculated results (with the two computational techniques being in excellent agreement

with each other), which indicates that the Casimir formulation is valid for nanostructures

of this kind.

IV. CONCLUSIONS

We have used the non-contact optical TTG method to investigate thermal transport in ho-

ley regions and an unpatterned region of the same silicon membrane. We observe effectively

diffusive transport at grating periods larger than 4 µm and a reduction in effective thermal

conductivity by nearly an order of magnitude relative to the bulk value. Two ab initio nu-

merical techniques simulating transport according to the semiclassical phonon Boltzmann

transport equation yielded excellent agreement with the measurements. Our results indicate

that the Casimir framework of semiclassical particle-like phonon-mediated thermal trans-

port with diffuse boundary scattering is adequate for describing thermal transport in holey

silicon structures with limiting dimensions of ∼100 nm.

SUPPLEMENTARY MATERIAL

See supplementary material for discussion regarding the long-time contribution to the

obtained TTG signals that appears in some of the measurements, details regarding the

density functional theory calculations, and discussion of computational uncertainties.
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