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A B S T R A C T

Micromagnetic simulations are an essential tool in the theoretical study of magnetic skyrmions. When confined
into nanometric samples, these structures can serve as bits of information among other possible applications.
Accurate simulations are one of the major sources of theoretical results. In the case of confined skyrmions, it
is known that the boundaries play a critical role in their stabilization. However, most of the micromagnetic
simulations are done using a finite-difference method with quadrilateral meshes, that do not exactly fit the
boundaries. The use of this mesh can introduce a significant numerical error that can completely change
the results of the simulations. We present here two different finite-difference meshes to study skyrmions in
confined disks, taking advantage of the symmetry of that geometry. A two-dimensional cylindrical mesh for
non-symmetric scenarios but geometrically symmetric (boundary conditions) that reduces the propagation of
the numerical error, and the particular case of a one dimensional mesh for axisymmetric scenarios where the
computation time is hugely reduced.
,

1. Introduction

Ferromagnetic materials are at the core of a large and diverse
number of devices. Besides their description at macroscopic scales, at
the submicrometer scale, the magnetization dynamics of these materials
is usually modeled using micromagnetics. This model accounts for
the dynamics of the local magnetization function, that represents the
average of atomic interacting magnetic moments [1–4].

The micromagnetic model has been (and is currently being) used
to simulate systems ranging from nanomagnetic data storage [5–7],
spintronic logic devices [8,9], or sensors [10,11]. Devices based on
skyrmions and other skyrmionic structures are not an exception. Many
important advances in their study have been done after micromag-
netic calculations (for example, [12–15]). In the case of skyrmions
in thin films, they are usually stabilized thanks to the interfacial
Dzyaloshinskii–Moriya interaction (iDMI) appearing at the contact sur-
face with a heavy-metal substrate [16]. iDMI is added to the exchange,
the anisotropy, the dipolar interaction and, eventually, to the interac-
tion with external fields (or, in general, to other external agents). More-
over, if the skyrmion is confined, the presence of the iDMI, imposes
extra restrictions to the equilibrium magnetization distribution [17].
The use of skyrmions in confined geometries has been proposed as
elements for magnetic memories in bit patterned recording media or
for artificial neural network computation [18,19], among others.
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E-mail address: carles.navau@uab.cat (C. Navau).

Within the micromagnetic model, the ferromagnet is described by
a continuous magnetization field, 𝐌(𝐫, 𝑡) (𝐫 is the position and 𝑡 the
time). This magnetization varies in time due to an effective magnetic
field, 𝐇eff (𝐫, 𝑡), which is not only produced by external sources but
also by internal interactions and, thus, depends on the magnetiza-
tion function itself. The magnetization dynamics is described by the
Landau–Lifshitz–Gilbert (LLG) equation [20],

(1 + 𝛼2)d𝐌d𝑡 = −𝛾𝐌 ×𝐇eff −
𝛼𝛾
𝑀𝑠

𝐌 ×𝐌 ×𝐇eff , (1)

where 𝛼 is the Gilbert damping parameter, 𝛾 is the gyromagnetic ratio,
and |𝐌| = 𝑀𝑠 is the saturation magnetization, which is assumed to be
independent of position and time.

We shall show that in a circular disk and starting from a cylindri-
cally symmetric equilibrium magnetization distribution, like a skyrmion
the time dependent 𝐌(𝐫, 𝑡) evolving according to the LLG equation
should preserve this symmetry (if the external field has also that same
symmetry). However, when solving numerically the LLG equation with
quadrilateral meshes (QM) but having rounded boundaries results in
inevitable numerical errors. These errors, usually larger at the bound-
aries, can affect the whole sample. Refining the meshes to retain the
symmetry for short enough calculation times is a valid strategy but at
the price of increasing the calculation time.
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Here we propose the use of cylindrical meshes (CM) in skyrmionic
micromagnetic simulations in two-dimensional disks in order to reduce
the numerical errors triggered by the usual use of rectangular dis-
cretizations, without compromising (even increasing) the performance
of the calculation in terms of computation time and accuracy. In the
case of skyrmions confined in disks, the boundary conditions are deter-
mined by the iDMI, which is also the interaction responsible of their
stabilization [17,18]. In that case, larger numerical errors at borders
could be critical for the validity of the simulation.

We shall proceed as follows. In Section 2, we present the general
geometry, boundaries and effective fields used in the calculations and
in the problem definition. After some general comments on the error
propagation due to quadrilateral meshes with cylindrical boundary
conditions (Section 3), we introduce (Section 4) the two-dimensional
CM for the cases where the boundaries are axisymmetric but 𝐌(𝐫, 𝑡) is
ot. The use of this mesh reduces the numerical error and, more im-
ortantly, avoids the appearance of erroneously computed metastable
agnetic structures due to the 𝜋∕4-symmetry of a QM in a circular

oundary, as we will show in Section 5. Next, in Section 6, we adapt the
tudy to the case of rings with a central hole, where the roundness of
he boundaries have more influence. As a particularly interesting case,
e shall also introduce, in Section 7 a variation of the CM to a one-
imensional mesh with cylindrical symmetry for the cases where both,

and the boundaries are axisymmetric. We finish with the conclusions
Section 8).

. Geometry, effective fields, and boundaries

We consider a planar ferromagnetic disk of radius 𝑅 and thickness
𝐹𝑀 . We assume that 𝑡𝐹𝑀 ≪ 𝑅 so that the magnetization and any
ther magnetic quantity are uniform across the thickness. The problem
s thus reduced to a two-dimensional problem. The disk is located on
he 𝑥𝑦-plane with the center at the origin of coordinates. To fix the
otation, we will use both standard Cartesian coordinates (𝑥, 𝑦, 𝑧) and
ylindrical coordinates (𝜌, 𝜑, 𝑧), with the components of the vectors in
hese coordinate systems indicated by the corresponding subscript.

We consider here that the effective fields acting on the ferromagnet
re the exchange field 𝐇𝐴, the anisotropy field 𝐇𝐾 , the iDMI field 𝐇𝐷,

and an externally applied field 𝐇ext . Physically, we consider that the
erromagnet is on top of a heavy metal that produces iDMI which not
nly affects the effective field but also the boundary conditions. We also
onsider uniaxial anisotropy with the easy axis perpendicular to the
isk plane (in the 𝑧-direction). Since we consider ultra-thin disks, the
emagnetization field is included into the anisotropy field by renormal-
zing the anisotropy constant [21]. This assumption is valid as long as
he sample is an ultrathin film, since in this case the 𝑧 component of the
emagnetizing field is approximately proportional to the 𝑧 component
f the local magnetization, justifying the renormalization. Although the
umerical treatment we present would be also valid for other sets of
ffective fields that could appear considering bulk materials or non-
niaxial anisotropies, we focus on this particular case because it is the
sual way for studying skyrmionic structures in thin films. Extensions
onsidering other types of effective fields would be straightforward.

Indeed, the total effective field is expressed as

eff = 𝐇𝐴 +𝐇𝐾 +𝐇𝐷 +𝐇ext =

= 2𝐴
𝜇0𝑀2

𝑠
∇2𝐌 + 2𝐾

𝜇0𝑀2
𝑠
𝑀𝑧𝐳̂ +

2𝐷
𝜇0𝑀2

𝑠

[

(∇ ⋅𝐌)𝐳̂ − ∇𝑀𝑧
]

+𝐇ext , (2)

where the terms in the second line are expressed in the same order
as in the first one. 𝐴 is the exchange constant, 𝐾 the effective uni-
axial anisotropy constant, 𝐷 the iDM constant, and 𝜇0 the vacuum
permeability.

In order to work with non-dimensional magnitudes, we normalize
the magnetization and all the fields with respect to 𝑀 , the length
2

𝑠

dimensions with respect to the exchange length, 𝑙ex =
√

2𝐴∕𝜇0𝑀2
𝑠 , and

the time with respect to (𝛾𝑀𝑠)−1. Thus, we define

𝛽 =
𝐇𝛽

𝑀𝑠
, (3)

𝐦 = 𝐌
𝑀𝑠

, (4)

𝜏 = 𝑡
(𝛾𝑀𝑠)

, (5)

𝜅 = 2𝐾
𝜇0𝑀2

𝑠
, (6)

𝜉 =
𝑙ex𝐷
𝐴

, (7)

where 𝛽 stands for ext, 𝐴, 𝐷, 𝐾, or eff . The normalized effective field
is rewritten as (note that the ∇ operator is now also a normalized
operator, which means that the derivatives are done with respect to
normalized magnitudes)

𝐡eff = ∇2𝐦 + 𝜅𝑚𝑧𝐳̂ + 𝜉
[

(∇ ⋅𝐦)𝐳̂ − ∇𝑚𝑧
]

+ 𝐡ext , (8)

and the normalized LLG equation becomes

(1 + 𝛼2)d𝐦d𝜏 = −𝐦 × 𝐡eff − 𝛼𝐦 ×𝐦 × 𝐡eff . (9)

When considering a circular dot geometry (with radius 𝑅) and iDMI,
we solve Eq. (9) with boundary condition [17]
𝜕𝐦
𝜕𝜌′

|

|

|

|𝑅′
=

𝜉
2
(𝐳̂ × 𝝆̂) ×𝐦, (10)

where 𝜌′ = 𝜌∕𝑙ex and 𝑅′ = 𝑅∕𝑙ex. For all the examples in this work we
have used the following parameters: 𝑙𝑒𝑥 = 8.42 nm, (𝛾𝑀𝑠)−1 = 7.84 ps,
= 1.85, 𝜅 = 0.3, and 𝛼 = 0.3, which are in the range of the common
icromagnetic parameters for skyrmionic systems [12,22]. From now,

nd for the rest of the paper, although we will not explicitly write it,
ll the magnitudes are considered as normalized magnitudes, including
oordinates. To simplify notation, we will skip the primes in 𝜌′ and 𝑅′.

. General considerations on the symmetry of the solutions

Given Eqs. (8), (9), and (10) in a circular dot, one sees that if
oth the initial magnetization distribution and the external field are
xisymmetric, 𝐦(𝐫, 𝜏 = 0) = 𝐦(𝜌, 𝜏 = 0), and 𝐡ext (𝐫, 𝜏 = 0) = 𝐡ext (𝜌, 𝜏 =
), then the initial effective field also shares the same symmetry:
eff (𝐫, 𝜏 = 0) = 𝐡eff (𝜌, 𝜏 = 0). If both initial 𝐦 and 𝐡eff are axisymmetric,
t follows that 𝐦×𝐡eff and 𝐦× (𝐦×𝐡eff ) are also axisymmetric. Hence,
ccording to Eq. (9), the initial variation over time of the magnetization
hould also be axisymmetric: 𝑑𝐦

𝑑𝜏 (𝐫, 𝜏 = 0) = 𝑑𝐦
𝑑𝜏 (𝜌, 𝜏 = 0). Finally, if both

the magnetization and its time derivative have radial symmetry, then
this symmetry should be conserved over time: 𝐦(𝐫, 𝜏) = 𝐦(𝜌, 𝜏).

In summary, in a ferromagnetic ultra-thin dot, if we initially have
n axisymmetric magnetic structure and we apply an axisymmetric
xternal field, the structure can evolve in time, but it must conserve
he symmetry all the time.

However, when solving the LLG using finite differences in a QM we
hall show that, even though initially both the initial magnetization and
he applied field are axially symmetric, one could obtain structures that
o not conserve the axial symmetry. As an example, consider a ferro-
agnetic dot of radius 𝑅, with an initial magnetization distribution as

ollows:

𝑚𝜌 = sin
(

𝜉𝜌
2

)

, (11)

𝑚𝜑 = 0, (12)

𝑚𝑧 = cos
(

𝜉𝜌
2

)

. (13)

This initial magnetization satisfies the boundary conditions, Eq. (10).
We can compute the effective fields (𝐡ext = 0), obtaining

ℎeff ,𝜌 =
(

𝜉2
− 1

)

sin
(

𝜉𝜌
)

+
𝜉
cos

(

𝜉𝜌
)

, (14)

4 𝜌2 2 2 2
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Fig. 1. Difference between the effective field components multiplied by 103 [(a):
radial, (b): angular, and (c): axial] when calculated numerically using a QM (square-
shaped cells of side 𝑅∕100) and when evaluated with the analytical expressions of
Eqs. (14)–(16).

ℎeff ,𝜑 = 0, (15)

ℎeff ,𝑧 =
𝜉
2𝜌

sin
(

𝜉𝜌
2

)

+
𝜉2

4
cos

(

𝜉𝜌
2

)

. (16)

In Fig. 1 we show the difference between the numerically calculated
effective field using a QM and the effective field analytically obtained
from Eqs. (14)–(16), considering the same magnetization distributions
given in Eqs. (11)–(13). It is clear that there is a slight difference
between both but the interesting part is that the symmetry of that
numerical difference is not cylindrical but it has a 𝜋∕4-rotation symme-
try. That slight difference will produce, following the numerical time
integration of Eq. (9), a (numerically) non-symmetric magnetization
distribution. At each time step this numerical error propagates with the
possible appearance of magnetic structures with a rotation symmetry of
𝜋∕4 or 𝜋∕2, the same symmetries than the error distribution and the QM
have.

The numerical error produced by the QM is higher at the bound-
aries, due to the fact that the boundary cannot be exactly fitted. This
error is specially relevant when iDM interaction is present since it
affects not only to the effective field but also directly to the boundary
conditions. In materials with larger 𝜉 (large iDM constant) we have
steeper space derivatives at the boundaries [Eq. (10)] and thus, since
the numerical error using finite differences is proportional to the spatial
derivatives, larger numerical errors with the QM mesh.

4. The cylindrical mesh, CM

In order to precisely simulate skyrmionic structures confined in dots,
we propose a new type of mesh which, without being fully axially
symmetric, takes advantage of the cylindrical symmetry.

It is important to note that, while the introduced CM is axisymmet-
ric, neither the applied field nor the magnetization distribution need to
be cylindrically symmetric.

The effective fields, expressed in standard cylindrical coordinates
(𝜌, 𝜑, 𝑧), can be expressed as:

𝐡𝐴 =

(

𝜕2𝑚𝜌

𝜕𝜌2
+ 1

𝜌
𝜕𝑚𝜌

𝜕𝜌
−

𝑚𝜌

𝜌2
+ 1

𝜌2
𝜕2𝑚𝜌

𝜕𝜑2
− 2

𝜌2
𝜕𝑚𝜑

𝜕𝜑

)

𝝆̂ +

+

(

𝜕2𝑚𝜑

𝜕𝜌2
+ 1

𝜌
𝜕𝑚𝜑

𝜕𝜌
−

𝑚𝜑

𝜌2
+ 1

𝜌2
𝜕2𝑚𝜑

𝜕𝜑2
− 2

𝜌2
𝜕𝑚𝜌

𝜕𝜑

)

𝝋̂ +

+
(

𝜕2𝑚𝑧

𝜕𝜌2
+ 1

𝜌
𝜕𝑚𝑧
𝜕𝜌

+ 1
𝜌2

𝜕2𝑚𝑧

𝜕𝜑2

)

𝐳̂, (17)

𝐡𝐷 = 𝜉
[

−
𝜕𝑚𝑧
𝜕𝜌

𝝆̂ + 1
𝜌
𝜕𝑚𝜑

𝜕𝜑
𝝋̂ + 1

𝜌

(

𝑚𝜌 + 𝜌
𝜕𝑚𝜌

𝜕𝜌
+

𝜕𝑚𝜑

𝜕𝜑

)

𝐳̂
]

, (18)

𝐡𝐾 = 𝜅𝑚𝑧𝐳̂, (19)
𝐡ext = ℎext 𝐳̂. (20)

The proposed mesh is sketched in Fig. 2, compared with the stan-
dard QM. Note that the CM has uniform radial discretization step
but adaptative angular discretization step (depending on the radial
distance). The mesh is constructed using the following algorithm. Given
a disk of radius 𝑅:
3

Fig. 2. Sketch of the proposed cylindrical mesh (right) and comparison with the
quadrilateral mesh. The main advantage is that the boundary conditions can be much
more accurately established in the cylindrical mesh for rounded geometries. However,
the magnitudes do not need to be axisymmetric since angular finite differences are
allowed within numerical precision. The small green dots are the grid points of our
system.

1. Set the number of radial crowns, 𝑁 + 1.
2. Define 𝛥𝜌 = 𝑅

𝑁+1∕2 . This will determine the radial step. The
radial crowns where we evaluate the functions are indicated by
subscript 𝑖 = 0, 1,… , 𝑁 . The radial positions are 𝜌𝑖 = (𝑖+1∕2)𝛥𝜌.
At the extremes, 𝜌0 =

1
2𝛥𝜌, and 𝜌𝑁 = 𝑅.

3. The angular step, 𝛥𝜑𝑖, depends on 𝑖, which means that the num-
ber of points that form each radial crown is different. Set 𝛥𝜑0 =
𝜋
2 , which is the maximum angle that satisfies the inequality in
the next point

4. Compute 𝛥𝜑𝑖, for 0 < 𝑖 ≤ 𝑁 , according to

• If 𝛿𝛥𝜌 > 𝜌𝑖𝛥𝜑𝑖−1, then 𝛥𝜑𝑖 = 𝛥𝜑𝑖−1.
• If 𝛿𝛥𝜌 ≤ 𝜌𝑖𝛥𝜑𝑖−1, then 𝛥𝜑𝑖 =

1
2𝛥𝜑𝑖−1.

Where we set 𝛿 = 3
2 , so that the error in the radial derivative is

of the same order as the error in the angular derivative. The 𝑖th
radial crown will have 𝐿𝑖 angular points uniformly distributed
along the crown: 𝐿𝑖 = 2𝜋∕𝛥𝜑𝑖.

Consider an arbitrary function evaluated at a given point, 𝑓 (𝜌, 𝜑).
Its value at the considered mesh points (𝜌𝑖, 𝜑𝑗 ) = ((𝑖 + 1∕2)𝛥𝜌, 𝑗𝛥𝜑𝑖),
for 𝑖 = 0, 1,… , 𝑁 and 𝑗 = 0, 1,… , 𝐿𝑖 − 1, would be 𝑓𝑖,𝑗 . Notice that
when 𝑖 = 0, 𝜌 ≠ 0. This is done to avoid the cylindrical coordinates
indeterminacy at 𝜌 = 0. To evaluate the effective fields [Eqs. (17)–(20)]
using the presented mesh, one also needs the discrete derivatives of
the (components of) magnetization function. In Fig. 3 one can see the
stencils used for evaluating the radial derivatives. The detailed expres-
sions for these discrete radial and angular derivatives are presented in
Appendix A.

5. Comparative results between quadrilateral and cylindrical
meshes

We have performed the same micromagnetic simulation using two
different meshes: one with the QM and the other with the presented
CM. The physical process followed is the following: we set 𝐦(𝜏 = 0) = 𝐳̂,
and ℎext (𝜏 = 0) = 0.4. Then we let the system evolve as the external field
varies from 0.4 to −0.4 following a lineal decay with time, ℎext (𝜏) =
0.4

(

1 − 2 𝜏
𝑇

)

, setting 𝑇=6400, the total simulation time. We choose a
radius 𝑅 = 7.5 and 𝑁 = 100, so that 𝛥𝜌 = 𝛥 = 𝑅∕100.5, being 𝛥 the side
of the squared cell in the QM. The time step is set to 𝛥𝜏 = 5 ⋅ 10−4. The
total number of cells are very similar in the QM and in the CM (about
10000 cells, more details in Section 7 and Fig. 7).

We show in Fig. 4 some results for the magnetization obtained
during a total simulation time equivalent to 50 ns, comparing the two
meshes at different times.
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Fig. 3. Sketch for the finite difference of the radial derivatives of a function using the cylindrical mesh. Blue points are where the finite difference is being evaluated, red points
are the ones used in the stencil and purple points are the ones where we apply the boundary conditions. In (a) All the possible stencils are sketched, and the relation between the
𝑗 index of different radial crowns is shown. In (b), (c), and (d) we show the different stencils we can find for 0 < 𝑖 ≤ 𝑁 . In (e) we show the points used to apply the boundary
conditions.
Fig. 4. 𝑧-component of the magnetization distribution for an ultra-thin ferromagnetic
disk calculated using the cylindrical mesh (I: top-half) and the quadrilateral mesh (II:
bottom-half). In each half, each plot corresponds to the different times (a): 0 ns (b):
18.75 ns (c): 25 ns (d): 37.5 ns (e): 46.25 ns, and (f): 50 ns. The central bar is the
colorbar for the 𝑚𝑧 values.
4

As seen, using the QM we can find magnetic structures with 𝜋∕2
or 𝜋∕4 symmetry, while with the CM the axial symmetry is preserved,
as should be. It is worth to note that in the QM the 𝜋∕2 or 𝜋∕4
symmetry appears from the beginning of the calculation. As time goes
by, this numerical error becomes more prominent and propagates to
the whole sample, triggering the nucleation of a magnetic structure
of 𝜋∕4 symmetry. Our conclusion is that the cylindrical mesh is more
convenient since it offers coherent physical results. Moreover, the
computational complexity of the algorithm is similar for both methods
(there is approximately the same amount of cells in both methods
for the same numerical precision). Although with a finer mesh the
numerical error with the QM could be reduced, the computation time
needed to have similar numerical error than with the CM would be
excessive for a typical simulation.

When reducing the number of cells, reducing the dot size, or/and
when there is a relatively large iDMI (affecting considerably the bound-
ary conditions), the use of the presented cylindrical mesh becomes
more efficient in terms of accuracy/time.

6. Cylindrical mesh for ferromagnetic rings

Another important advantage of the CM is that it allows to simulate
dots with small circular holes, of radius 𝑅0, at their center. If one
uses a QM, a cell size much smaller than 𝑅0 is required, yielding
prohibitive computational time. With the CM one can simulate these
ferromagnetic rings without increasing the computational time since
the inner boundary is perfectly fitted regardless the cell size.

Since the 𝜌 = 0 point is not in the sample, now the algorithm to
generate the mesh, Fig. 5, can be optimized varying slightly the general
algorithm presented for non-holed dots. Given a ring with internal and
external radii 𝑅0 and 𝑅, respectively:

1. Fix the number of radial crowns, 𝑁 + 1.
2. Define 𝛥𝜌 = 𝑅−𝑅0

𝑁 . This will determine the radial step. The radial
crowns are indicated with subscript 𝑖. 𝑖 = 0, 1,… , 𝑁 . The radial
position of the crowns where the magnitudes are evaluated are
𝜌 = 𝑅 + 𝑖𝛥𝜌. We have 𝜌 = 𝑅 and 𝜌 = 𝑅.
𝑖 0 0 0 𝑁
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Fig. 5. Sketch of the proposed cylindrical mesh (right) and comparison with the
quadrilateral mesh (left), in the case of a ring.

3. The angular step, 𝛥𝜑𝑖 will depend on 𝑖, which means that the
number of cells that form each crown will be different. Set
𝛥𝜑0 = 2𝜋

2𝑆 , being 𝑆 is the minimum integer that would satisfy
the inequality 3

2𝛥𝜌 ≥ 𝜌0𝛥𝜑0.
4. Compute 𝛥𝜑𝑖 for 𝑖 > 0 using the following relation also with

𝛿 = 3
2

• If 𝛿𝛥𝜌 ≥ 𝜌𝑖𝛥𝜑𝑖−1, then 𝛥𝜑𝑖 = 𝛥𝜑𝑖−1.
• If 𝛿𝛥𝜌 < 𝜌𝑖𝛥𝜑𝑖−1, then 𝛥𝜑𝑖 =

1
2𝛥𝜑𝑖−1.

The 𝑖th radial crown has 𝐿𝑖 angular points: 𝐿𝑖 = 2𝜋∕𝛥𝜑𝑖

The discrete version of the radial and angular derivatives in this case
is detailed in Appendix B.

We repeat the simulation of the previous section but using a ferro-
magnetic ring with 𝑅 = 6 and 𝑅0 = 1. The physical process simulated
and the numerical details are exactly the same as in Section 5. The
results of the simulations are shown in Fig. 6. Again the differences
using the QM and the CM are critical. In particular, we observe that
the presence of the hole affects substantially the magnetic structure. In
this case the numerical errors in the QM appearing at the central hole
are even larger than those at the external border.

7. A particular case: radial mesh

From the previous simulations one may wonder why we have
computed the angular derivatives if we are sure that the axial symmetry
must be conserved. Actually, if the initial magnetization distribution
and the applied field are both cylindrically symmetric, angular deriva-
tives are zero. In this case, the system is actually one dimensional (only
𝜌 dependence) and we could set 𝐦 = 0 in the cylindrical mesh, resulting
in only radial divisions. We call it radial mesh (RM).

In this case 𝜕𝐦
𝜕𝜑 = 0, 𝜕2𝐦

𝜕2𝜑
= 0, and the effective fields are

𝐡𝐴 =

[(

𝜕2𝑚𝜌

𝜕𝜌2
−

𝑚𝜌

𝜌2

)

𝝆̂ +

(

𝜕2𝑚𝜑

𝜕𝜌2
−

𝑚𝜑

𝜌2

)

𝝋̂ +
𝜕2𝑚𝑧

𝜕𝜌2
𝐳̂
]

, (21)

𝐡𝐷 = 𝜉
[

1
𝜌
𝜕(𝜌𝑚𝜌)
𝜕𝜌

𝐳̂ −
𝜕𝑚𝑧
𝜕𝜌

𝝆̂
]

, (22)

𝐡𝐾 = 𝜅 𝑚𝑧𝐳̂, (23)

The involved functions only depend on 𝜌. There is no angular
dependence, nor angular variations. Thus, the evaluation points would
be defined by a single radial index. We use finite differences as we did
for the CM, the exact expressions are presented in Appendix C.

For the boundaries, 𝑖 = 0, 𝑁 ; we use the boundary condition,
Eq. (10), except for the dot at 𝑖 = 0 where we use 𝜕𝐦

𝜕𝜌
|

|

|𝜌=0
= 0, which

must be satisfied if 𝐦 is axisymmetric.
Naturally, with this mesh we recover the results obtained in the

simulation of the previous section done with the CM, with a substan-
tially less computation time. In Fig. 7, we compare the amount of
5

Fig. 6. 𝑧-component of the magnetization distribution for a magnetic disk calculated
using the cylindrical mesh (I: top-half) and the quadrilateral mesh (II: bottom-half). In
each half, each plot correspond to the different times (a): 0 ns (b): 21.25 ns (c): 25 ns
(d): 26.25 ns (e): 28.75 ns, and (f): 50 ns . The central bar is the colorbar for the 𝑚𝑧
values.

cells that each method (QM, CM and RM) needs to simulate a given
ferromagnetic dot. To compare, we plot the total number of cells 𝑁𝑡
as a function of the number of radial divisions 𝑁𝜌, using 𝛥 = 𝛥𝜌 for
the QM. For a fixed 𝛥𝜌 the horizontal axis is proportional to the radius
of the dot. We observe that the amount of cells is always comparable
between QM and CM while in the RM the cells used are much less,
specially as the radius of the dot increases (with 𝛥𝜌 fixed). Actually,
for the RM 𝑁𝑡 ∼ 𝑅 while for the QM and the CM 𝑁𝑡 ∼ 𝑅2. As
for the computation times, the number of operations needed for each
cylindrical is, in average, only slightly larger to those needed for a
quadrilateral cell. Actually, in all the simulations the running times for
a simulation using the CM is less that 5% larger than that for the QM,
with similar number of cells. Note that the RM and the CM do not allow
for Fast Fourier Transform algorithms (which are used sometimes to
compute demagnetizing fields) since they are not regular meshes.

8. Conclusions

We have presented some studies on magnetic skyrmionic structures,
when confined in circular dots or rings. The specially designed CM takes
advantage of the axisymmetric boundaries, even though the whole
system may not necessarily be axisymmetric. We have seen, by imple-
menting the CM in a typical skyrmionic problem in thin disks, that the
use of standard QM can yield numerical error propagation that could
invalidate the obtained results. The presented mesh drastically reduces
this error, without compromising the computational performance.

A real sample would never be perfectly circular, and one would
expect that the real magnetization distribution was not perfectly sym-
metric. Nevertheless, in simulations, if the symmetry is broken not by
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do
Fig. 7. Number of computational cells as a function of the number of radial divisions
for the different meshes used in this work:QM (blue), CM (red), and RM (violet).

controlled notches or defects but as the result of numerical error, this
leads to misleading results. We have shown here that these errors can
be greatly avoided.
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Appendix A. Discrete derivatives for the CM mesh

In the case of a circular dot, using the CM mesh, the radial deriva-
tives, when 0 < 𝑖 < 𝑁 , are evaluated as (see the sketches in Fig. 3),

𝜕𝑓𝑖,𝑗
𝜕𝜌

≃
𝑓+
𝑖,𝑗 − 𝑓−

𝑖,𝑗

2𝛥𝜌
, (24)

𝜕2𝑓𝑖,𝑗
𝜕𝜌2

≃
𝑓+
𝑖,𝑗 − 2𝑓𝑖,𝑗 + 𝑓−

𝑖,𝑗

(𝛥𝜌)2
, (25)

where the value of 𝑓+
𝑖,𝑗 and 𝑓−

𝑖,𝑗 depends on the number of angular
divisions of the crowns 𝑖 + 1 and 𝑖 − 1, respectively, according to (in
the following 𝑗∕2 is the integer division of 𝑗):

• If 𝛥𝜑𝑖+1 = 𝛥𝜑𝑖, then

𝑓+
𝑖,𝑗 = 𝑓𝑖+1,𝑗 , (26)

• If 𝛥𝜑𝑖 = 𝛥𝜑𝑖−1, then

𝑓−
𝑖,𝑗 = 𝑓𝑖−1,𝑗 . (27)

• If 2𝛥𝜑𝑖+1 = 𝛥𝜑𝑖, then

𝑓+
𝑖,𝑗 = 𝑓𝑖+1,2𝑗 . (28)

• If 2𝛥𝜑𝑖 = 𝛥𝜑𝑖−1 and 𝑗 is even, (Fig. 3-b), then

𝑓−
𝑖,𝑗 = 𝑓𝑖−1,𝑗∕2. (29)

• If 2𝛥𝜑𝑖 = 𝛥𝜑𝑖−1 and 𝑗 is odd, (Fig. 3-c), then

𝑓− = 1 (𝑓 + 𝑓 ). (30)
6

𝑖,𝑗 2 𝑖−1,𝑗∕2 𝑖−1,𝑗∕2+1
When 𝑖 = 0, the points 𝑓𝑖−1,𝑗 do not exist, so we use forward finite
differences, (Fig. 3-d),
𝜕𝑓0,𝑗
𝜕𝜌

≃
𝑓2,𝑗 − 𝑓0,𝑗

2𝛥𝜌
, (31)

𝜕2𝑓0,𝑗
𝜕𝜌2

≃
𝑓2,𝑗 − 2𝑓1,𝑗 + 𝑓0,𝑗

(𝛥𝜌)2
. (32)

When 𝑖 = 𝑁 , the boundary condition of the system, Eq. (10),
represented by the purple stencil in (Fig. 3-e), will be used to directly
compute the different components of the magnetization, according to:
𝑚𝜌,𝑁,𝑗 − 𝑚𝜌,𝑁−1,𝑗

𝛥𝜌
=

𝜉
2
𝑚𝑧,𝑁,𝑗 , (33)

𝑚𝜑,𝑁,𝑗 − 𝑚𝜑,𝑁−1,𝑗

𝛥𝜌
= 0, (34)

𝑚𝑧,𝑁,𝑗 − 𝑚𝑧,𝑁−1,𝑗

𝛥𝜌
= −

𝜉
2
𝑚𝜌,𝑁,𝑗 . (35)

The angular derivatives are evaluated taking into account that 𝑗 is
a periodic index, which means that 𝑓𝑖,𝐿𝑖

= 𝑓𝑖,0 and 𝑓𝑖,−1 = 𝑓𝑖,𝐿𝑖−1. Then,

𝜕𝑓𝑖,𝑗
𝜕𝜑

≃
𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗−1

2𝜌𝑖𝛥𝜑𝑖
, (36)

𝜕2𝑓𝑖,𝑗
𝜕𝜑2

≃
𝑓𝑖,𝑗+1 − 2𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1

(𝜌𝑖𝛥𝜑𝑖)2
. (37)

Appendix B. Discrete derivatives for the CM mesh in rings

In the case of a ring with the CM mesh, the numerical radial
and angular derivatives for 0 < 𝑖 < 𝑁 are the same Eqs. (31)–(32)
(Appendix A). At the boundaries (𝑖 = 0 and 𝑖 = 𝑁) we use the boundary
conditions Eq. (10). For 𝑖 = 𝑁 we use Eq. (33)–(35) (Appendix A), for
𝑖 = 0 the magnetization is given by
𝑚𝜌,1,𝑗 − 𝑚𝜌,0,𝑗

𝛥𝜌
= −

𝜉
2
𝑚𝑧,0,𝑗 , (38)

𝑚𝜑,1,𝑗 − 𝑚𝜑,0,𝑗

𝛥𝜌
= 0, (39)

𝑚𝑧,1,𝑗 − 𝑚𝑧,0,𝑗

𝛥𝜌
=

𝜉
2
𝑚𝜌,0,𝑗 . (40)

Appendix C. Discrete derivatives for the RM

Using the same notation as in the CM, the expression used for the
first and second radial derivatives are,
𝜕𝑓𝑖
𝜕𝜌

≃
𝑓𝑖+1 − 𝑓𝑖−1

2𝛥𝜌
(41)

𝜕2𝑓𝑖
𝜕𝜌2

≃
𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

(𝛥𝜌)2
(42)
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