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Abstract
To avoid the computational burden of many-body quantum simulation, the interaction of an electron with a photon (phonon) 
is typically accounted for by disregarding the explicit simulation of the photon (phonon) degree of freedom and just modeling 
its effect on the electron dynamics. For quantum models developed from the (reduced) density matrix or its Wigner–Weyl 
transformation, the modeling of collisions may violate complete positivity (precluding the typical probabilistic interpreta-
tion). In this paper, we show that such quantum transport models can also strongly violate the energy conservation in the 
electron–photon (electron–phonon) interactions. After comparing collisions models to exact results for an electron interact-
ing with a photon, we conclude that there is no fundamental restriction that prevents a collision model developed within 
the (reduced) density matrix or Wigner formalisms to satisfy simultaneously complete positivity and energy conservation. 
However, at the practical level, the development of such satisfactory collision model seems very complicated. Collision 
models with an explicit knowledge of the microscopic state ascribed to each electron seems recommendable (Bohmian 
conditional wavefunction), since they allow to model collisions of each electron individually in a controlled way satisfying 
both complete positivity and energy conservation.

Keywords  Matter–light interaction · Wigner Function · Complete positivity · Energy conservation · Bohmian conditional 
wavefunction
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1  Introduction

Electron devices are quantum systems outside of thermo-
dynamic equilibrium with many interacting particles (elec-
trons, atoms, photons, etc). In addition, one is not only 
interested on the time-independent or steady state (DC) 
simulation of such devices, but also on their time-depend-
ent (AC, transients) performance, and even on their noise 
properties. As a result, from a computational point of view, 
an electron devices is one of the most difficult quantum sys-
tems to be simulated. Any attempt to directly get the device 

performance from the simulation of all particles, in a type of 
solution of the many-body Schrödinger equation, is directly 
impossible. This difficulty finds its origin in the so-called 
many body problem [1]. The typical strategy to reduce 
such inaccessible computational burden is introducing an 
artificial division between the simulated particles, usually 
named the open system, and the rest of non-simulated par-
ticles, which are usually referred as the environment [1, 2]. 
Such division, in turn, requires reintroducing the effect of 
the non-simulated (environment) particles onto the simu-
lated ones through some new term in the equations of motion 
of simulated particles. This new element in the equation of 
motion is what is usually called the collision term. Typical 
examples found in the literature following this strategy are 
Green function [3–5], the density matrix [6, 7], Wigner dis-
tribution function [8–14], the master equation [15, 16], Kubo 
formalism [17], conditional wave functions [20–22], etc.

There are two main difficulties in these quantum transport 
approaches dealing with collisions. The first difficulty is that 
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open quantum systems cannot be described by an (orthodox) 
pure state, but by a density matrix (or some transformation 
of it). Thus, we cannot assign a pure state to an electron 
and we have difficulties to identify which are the proper-
ties of each electron that are modified by collisions. The 
second difficulty appears because the collisions are, at best, 
a reasonable approximation of the real interaction between 
the simulated and non-simulated degrees of freedom (but 
never an exact result). Both difficulties make the evaluation 
of the physical soundness of a collision model for quantum 
transport a difficult task. A useful criteria for evaluating col-
lisions models is checking about their complete positivity. 
The complete positivity means that the (reduced) density 
matrix will not provide negative values of the probability 
presence along the device. The presence of such negative 
values is unphysical because then the typical probabilistic 
interpretation would be precluded [1, 2]. The Wigner dis-
tribution function, as a Wigner–Weyl transformation of the 
density matrix [8, 23], does also suffer from such lack of 
complete positivity. We clarify that we are not referring here 
to the fact that the Wigner function is a quasi-probability in 
the phase space [24], but to the creation of negative prob-
ability of finding electrons at some positions in the physical 
space. For example, it is well-known that the typical use of a 
Boltzmann-like superoperator in the description of the colli-
sion term in the Wigner formalism can produce such regions 
of negative probability presence [6, 7, 25].

In this work, we will focus on an additional criteria to 
verify the physical soundness of collision models. It is very 
reasonable to assume that most collisions between particles 
induce a well-defined change of the energy of the electron. 
The physical justification of such assumption is that an 
hypothetical exact solution of the interaction of the particles 
involved in a collision, through a many-body Schrödinger 
equation, would show that the total energy (the ensemble 
value of the Hamiltonian) is a constant of motion. However, 
in the density matrix (or some transformation of it), it is 
not always possible to access to the energy of each parti-
cle. Without such information, it is not clear if a collision 
model satisfies or not the mentioned energy conservation 
requirements. A clear example of such difficulties appears 
in the formulation of quantum transport through the Wigner 
distribution function. In the Wigner function, the informa-
tion of the quantum system is given by one position and 
one momentum degree of freedom. No information of the 
energy of each individual particle is given by the Wigner 
formalism. One can assume that the kinetic energy of par-
ticles can be obtained from the value of their momentum. 
However, in many practical scenarios, there is no one-to-one 
relation between energy and momentum (the energy eigen-
states are not momentum eigenstates, and viceversa). Then, a 
reasonable change in the momentum in the Wigner function 
after a collision event can be translated into an unexpected/

uncontrolled change in the total energy, making the final 
result of the collision process unphysical. Similar issues 
have been underlined in the use of a Boltzmann superopera-
tor [26, 27].

After this introduction, in Sect. 2, we will define the two 
conditions, complete positivity and energy conservation, 
for modeling collisions in a general density matrix formula-
tion of a quantum system. In Sect. 3, we will show an exact 
solution for the electron–photon interaction emphasizing 
the importance of energy conservation during this kind of 
interaction. Then, we will perform a comparison between 
approximate collision models that modify the energy of the 
electron and approximate collision models that modify the 
momentum of the electron, respectively. In Sect. 4, we will 
show the Wigner–Weyl representation of such energy and 
momentum collisions models for several cases showing the 
non-physical results originated by the collisions models that 
exchange momentum in scenarios where energy and momen-
tum do not commute. In Sect. 5, we define the two practical 
requirements that are mandatory in a collision model imple-
mented in the phase-space (Wigner) description to satisfy 
complete positivity and energy conservation. In Sect. 5, we 
also add a subsection about time reversibility and how it is 
influenced by collisions. We conclude in Sect. 6 indicating 
that alternative collision models with an explicit knowledge 
of the state ascribed to each electron seems strongly recom-
mendable to avoid the previous two problems.

2 � Problems in modeling collisions

The density matrix deals with mixed states which arise in 
quantum mechanics when the preparation of the system is 
not fully known, or when one wants to describe an open 
system which is entangled to an environment [1]. Since 
both conditions are typically observed in electron devices, 
the density operator seems an adequate tool to study quan-
tum transport. The typical equation of motion for the den-
sity operator 𝜌̂(t) is given by the Liouville–Von Neumann 
equation

The first term in the right hand side of (1) provide the uni-
tary evolution of the systems with H0 a single-particle Ham-
iltonian, while the collisions are introduced by the new term 
given by the superoperator Ĉ acting on the density matrix 
operator.

Due to a collision at time ts , the new density matrix 
𝜌̂s(ts + 𝛥t) from (1) will be equal to the unitary den-
sity matrix with a free evolution until time ts given by 

(1)
d𝜌̂(t)

dt
=

1

i�
[Ĥ, 𝜌̂(t)] =

1

i�
[Ĥ0, 𝜌̂(t)] + Ĉ[𝜌̂(t)] .
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𝜌̂0(ts) = 𝜌̂(ts) +
𝛥t

i�
[Ĥ0, 𝜌̂(ts)] , plus some perturbation due to 

the collisions given by 𝛥𝜌̂(ts) = 𝛥t Ĉ[𝜌̂(ts)]:

Hereafter, when needed, we will use the superindex s to 
indicate elements that refer to the system after the scattering 
event has taken place. Under the assumption that changes in 
the state of the system need some time to occur (an example 
of such time delay will be provided in the exact solution 
of the electron–photon in Sect. 3.1), a reasonable condition 
for the application of the model in (2) is a finite value of the 
scattering time �t [26–28].

In most computational algorithms, it is not possible to 
know which are the individual (pure) states that build the 
density matrix. However, such (microscopic) knowledge 
can be obtained within the computational technique known 
as stochastic Schrödinger equation (for Markovian systems) 
or with the Bohmian theory (for either Markovian or non-
Markovian systems) [29–31]. Within such techniques, we 
can assume that the exact single-particle wave function 
�j(x, t) = ⟨x��j(t)⟩ is known for each j-th electron, to build 
the density operator 𝜌̂(t) as:

where Mj is the number of states ��j(t)⟩ that are present in 
the system with M =

∑N

j=1
Mj and N the maximum number 

of possible types of states (to be able to deal with anni-
hilation and creation of electronic states, Mj can be incre-
mented or decremented by one at the scattering time, ts , but 
we do not write its time dependence explicitly to simplify 
the notation).

To better understand the problems of complete positivity 
and energy conservation, in the next two subsections, we 
will discuss the change of the density matrix due to a col-
lision in (2) by distinguishing between the algorithms that 
have access to the additional knowledge given by (3) and the 
ones that do not. The computation of collisions without such 
knowledge corresponds to most of the algorithms presented 
in the literature dealing with quantum transport. We will see 
that without the additional knowledge of (3) the collisions 
process implemented in (2) can lead to violations of the 
complete positivity and energy conservation. Such violations 
can easily be avoided using computational algorithms that 
have access to the additional information provided by (3).

(2)
𝜌̂s(ts + 𝛥t) = 𝜌̂(ts) +

𝛥t

i�
[Ĥ0, 𝜌̂(ts)] + 𝛥t Ĉ[𝜌̂(ts)]

= 𝜌̂0(ts) + 𝛥𝜌̂(ts) .

(3)𝜌̂(t) =
1

M

N�

j=1

Mj�𝜓j(t)⟩⟨𝜓j(t)� ,

2.1 � The problem of complete positivity

For algorithms [29–31] that have access to the additional 
information in (3), the interaction of one electron with a 
photon at time ts , can be understood as an electron changing 
from its initial state ��2(ts)⟩ to its final state �� s

2
(ts)⟩ . Thus, 

the new scattered density matrix after the scattering is:

The last two terms in the above expression correspond to 
annihilating the old (description of the) electron ��2(t)⟩ and 
creating a new (description of the) electron �� s

2
(t)⟩ . Such 

collision corresponds to the new collision term in (2) as:

The probability presence (also known as the charge den-
sity) of the density matrix in (4) at any time t > ts can be 
computed as:

Notice that ��2⟩ and �� s
2
⟩ are totally different states because 

the collision can change momentum, energy, spatial distri-
bution of the probability, etc. The problem with collisions 
for those algorithms that have no access to the information 
in (3) is that the implementation of 𝛥𝜌̂(t) can correspond 
to subtracting a state that is not present in the initial den-
sity matrix 𝜌̂(ts) . Then, the term - 1

M
|�2(x, t)|2 can provide 

negative probability presence ⟨Q(x, t)⟩ < 0 in some spatial 
regions or times, which is clearly unphysical. Certainly, the 
computational algorithms with the additional knowledge of 
(3) could avoid such unphysical result by just not perform-
ing the scattering process from ��2(t)⟩ to �� s

2
(t)⟩ in (2) when 

there is no such initial state ��2(t)⟩ . The problem is that most 
of the computational algorithms dealing with quantum trans-
port do not have access to such microscopic information 
from (3) and they have to blindly apply a change on the den-
sity matrix given by 𝛥𝜌̂(t)  in (2), without knowing which are 
the implications of such change in terms of states. In other 
words, the study of quantum transport in terms of the (mac-
roscopic) matrix 𝜌(x, x�) = ⟨x��𝜌̂(t)�x⟩ has the great computa-
tional advantage of not needing the (microscopic) knowledge 
of the states building such matrix, but it has the drawback 
of losing control on the physical meaning of a change of 
density matrix by an amount equal to 𝛥𝜌(x, x�) = ⟨x��𝛥𝜌̂(t)�x⟩ 
after a collision. It is also well-known that the Boltzmann-
like collision operator applied to the Wigner distribution 
function can violate such complete positivity [6, 7, 25].

(4)𝜌̂s(t) = 𝜌̂0(t) −
1

M
�𝜓2(t)⟩⟨𝜓2(t)� +

1

M
�𝜓 s

2
(t)⟩⟨𝜓 s

2
(t)� .

(5)𝛥𝜌̂(t) = −
1

M
�𝜓2(t)⟩⟨𝜓2(t)� +

1

M
�𝜓 s

2
(t)⟩⟨𝜓 s

2
(t)� .

(6)
⟨Q(x, t)⟩ = ⟨x�𝜌̂(t)�x⟩ =

N�

j=1

Mj

M
�𝜓j(x, t)�2

−
1

M
�𝜓2(x, t)�2 +

1

M
�𝜓 s

2
(x, t)�2 .
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2.2 � The problem of energy conservation

We discuss now an additional problem, not related with 
the probability presence, but with the conservation of 
energy. For those algorithms [29–31] that have access 
to the information in (3), the electron–photon colli-
sion means that an electron with (ensemble) energy 
⟨E2(ts)⟩ = ⟨𝜓2(ts)�Ĥ0�𝜓2(ts)⟩ at time ts changes its energy, 
due to interaction with a photon of energy E� , to the new 
value ⟨Es

2
(ts)⟩ = ⟨𝜓 s

2
(ts)�Ĥ0�𝜓 s

2
(ts)⟩ . The requirement of 

conservation of energy with such algorithms that have 
access to the microscopic states, ⟨Es

2
(ts)⟩ = ⟨E2(ts)⟩ + E� , 

is trivially satisfied.
The energy of the electron system at any time t > ts can 

be computed as:

where ⟨Ej(t)⟩ = ⟨𝜓j(t)�Ĥ0�𝜓j(t)⟩ . Again, for algorithms that 
are not allowed to deal with the microscopic information 
of the state of each electron, before and after the collision, 
the change of energy due to the collision done in (2) has to 
satisfy:

with 𝛥𝜌̂(t) defined in (2). The problem is that it is not trivial 
to ensure that expression (8) is satisfied, only by using the 
macroscopic information that we have 𝜌(x, x�) = ⟨x��𝜌̂(t)�x⟩ , 
and without knowing the information of the states involved 
in such collision.

In summary, as we will see along the paper, the compu-
tational advantage of the density operator of encapsulat-
ing all the physical information into the density matrix 
𝜌(x, x�) = ⟨x��𝜌̂(t)�x⟩ , avoiding to treat the heavy micro-
scopic description of the state of each electron, also pre-
sents some drawbacks when dealing with collisions. The 
representation of the density matrix in coordinate space 
can be changed into the so-called Wigner distribution 
function fW (x, k, t) through the Wigner–Weyl transforma-
tion [8, 23]:

Again, in general, the Wigner distribution function has no 
information at all about the microscopic states. Then, the 
collision operator can provoke unphysical violations of the 
conservation of energy, as we will see in following sections.

(7)
⟨Es(t)⟩⟩ = Tr

�
𝜌̂s(t)H0

�
=

N�

j=1

Mj

M
⟨Ej(t)⟩

−
1

M
⟨E2(t)⟩ +

1

M
⟨Es

2
(t)⟩ ,

(8)E𝛾 =⟨Es
2
(t)⟩ − ⟨E2(t)⟩ = Tr

�
𝛥𝜌̂(t)H0

�
,

(9)fW (x, k, t) =
1

2𝜋 ∫ dx� ⟨x + x�

2
�𝜌̂(t)�x − x�

2
)⟩ e−ikx� .

3 � Exact and approximate models 
for matter‑light interaction

We develop here an example of the role of the energy conser-
vation in the collision of an electron with a photon. First, we 
explain and exact electron–photon Schrödinger equation, and 
then we present two approximate collision models. The first 
approximate model for collisions will be based on changing 
the energy of the electron during the scattering process, while 
the second one is based on changing the value of momentum.

3.1 � Exact electron–photon interaction

The electromagnetic field in our quantum description is 
assumed to be a monochromatic field inside a optical cavity of 
length L� with the shape E(x, t) ∝ q cos(k�x − �t) with � the 
angular frequency of the field and k� the wave vector giving a 
speed of light c = �∕k� . The dependence of E(x, t) on x can be 
removed by assuming Lx << L𝛾 =

2𝜋

𝜔
 , where Lx is the length 

of the active region of the device, where electrons are simu-
lated. The quantization of the electromagnetic field appears 
because the amplitude q is not a fixed value, but a variable 
degree of freedom. Then, the Hamiltonian of the electromag-
netic field in the q-representation H� can be written as [32]:

Inside the optical cavity, the vacuum state related to the 
absence of photons is �0⟩ , corresponding to the ground state 
of an harmonic oscillator �0(q) = ⟨q�0⟩ in (10). Identically, 
the first state of the harmonic oscillator in (10) corresponds 
to the presence of one photon inside the optical cavity, is 
described by �1(q) = ⟨q�1⟩ . For more details, see [22].

The electron part of the system follows the well-known 
electron Hamiltonian, in the x-representation:

where V(x) includes both internal and external scalar poten-
tial and m is the electron effective mass. The Hamiltonian 
H0 is written assuming a 1D electron system.

Finally, the electron–photon wavefunction � (x, q, t) will be 
guided by the following Schrödinger-like equation of motion:

(10)Ĥ𝛾 = −
�2

2

𝜕2

𝜕q2
+

𝜔2

2
q2 .

(11)H0 = −
ℏ2

2m

�2

�x2
+ V(x) ,

(12)

iℏ
�� (x, q, t)

�t
= −

ℏ2

2m

�2� (x, q, t)

�x2
+ V(x)� (x, q, t)

−
ℏ2

2

�2� (x, q, t)

�q2
+

�2

2
q2 � (x, q, t)

+��xq� (x, q, t) ,
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where the last term in (12) is the interaction term between 
the photon and electron in the typical dipole approximation 
[32]. The parameter �′ indicates the interaction strength.

Since we are only interested in a dynamic process involv-
ing only two possible photons states, �0(q) for zero photons 
and �1(q) for one photon, the whole wave function � (x, q, t) 
can be decomposed as:

with

The wave functions �A(x, t) and �B(x, t) describe how 
the total wave function is projected in �0(q) and �1(q) , 
respectively.

The equation of motion of �A(x, t) and �B(x, t) can be 
obtained by introducing the definition (13) into (12) and 
using the orthogonality of �0(q) and �1(q) as follows

and

where we have defined � = ��∫ �0(q) q�1(q) dq and we have 
used ∫ �0(q) q�0(q) dq = ∫ �1(q) q�1(q) dq = 0.

In this way the closed electron–photon system is now 
described with an exact model acting only on two coupled 
electron wavefunctions. The present model can be extended 
to an open system through the use of the so-called Bohmian 
conditional wavefunction for electron wavefunctions �A(x, t) 
and �B(x, t) . For an overview on Bohmian mechanics, we 
recall [18, 19], and for a definition and properties of the 
Bohmian conditional wavefunction see [20–22].

3.2 � Modeling electron–photon collisions as energy 
exchange

We consider now an electron defined by a single-particle 
state �(x, t) . As indicated above, for an open system like an 
electron device, such state can be understood as a Bohmian 
conditional wavefunction [20–22] where only the degree of 
freedom of the electron is considered �(x, t) ≡ �(x, q(t), t) 
while the degree of freedom of the photon q is fixed to some 
particular (Bohmian) value q(t). See [22] for more details.

(13)� (x, q, t) = �A(x, t)�0(q) + �B(x, t)�1(q) ,

(14)�A∕B(x, t) = ∫ dq�∗
0∕1

(q)� (x, q, t) .

(15)
iℏ
��A(x, t)

�t
= −

ℏ2

2m

�2�A(x, t)

�x2

+
(
V(x) +

1

2
ℏ�

)
�A(x, t) + �x�B(x, t)

(16)
iℏ
��B(x, t)

�t
= −

ℏ2

2m

�2�B(x, t)

�x2

+
(
V(x) +

3

2
ℏ�

)
�B(x, t) + �x�A(x, t) ,

At time ts the electron undergoes a collision with a pho-
ton. It is worth mentioning that the use of a finite time for the 
implementation of the scattering event is key to maintain con-
tinuity of the (conditional) wave function in space and time, 
but to simplify the discussion we will assume an instantaneous 
scattering process here. Later, in the numerical results, we will 
explicitly consider the finite duration of the scattering process.

The process of collision �(x, ts) → � s(x, ts) can be 
understood as a transition between the initial and final 
states �(x, ts) and � s(x, ts) , respectively, which satisfy 
⟨Es(ts)⟩ = ⟨E(ts)⟩ + E� , with E� the energy of a photon. Within 
the energy representation, the wave packet can be decomposed 
into a superposition of Hamiltonian eigenstates �E(x) of the 
electron with Hamiltonian Ĥ0 in (11) as:

with a(E, ts) = ∫ dx �(x, ts) �
∗
E
(x) . The ensemble energy 

⟨Es(ts)⟩ after the scattering has to increase of an amount E� , 
so the new state after the collision can be written as:

where we have defined as(E, ts) = a(E − E� , ts) . This 
transition corresponds to absorption of energy by the 
electron. Emission can be identically modeled by using 
⟨Es(ts)⟩ = ⟨E(ts)⟩ − E� . In few words, the collision model 
performs a change in the wave packet ensemble energy of 
an amount ±E�.

3.3 � Modeling electron–photon collisions 
as momentum exchange

It is straightforward to see that the process �(x, ts) → � s(x, ts) 
satisfying a controlled change of the momentum can be done 
using � s(x, ts) = eip�x∕ℏ �(x, ts) , which ensures that the state 
� s(x, ts) has a increase of momentum by an amount p� with 
respect to �(x, ts) . In fact, it can be easily demonstrated that 
such change on the momentum of � s(x, t) can be produced 
from the Schrödinger equation of the form:

 where �ts
 is a function equal to zero for t < ts and 1 for 

t > ts . Notice that the probability presence of the scattered 
wave packet satisfies |� s(x, ts)|2 = |�(x, ts)|2 because only a 
global phase eip�x∕ℏ is added. For a deeper explanation of the 
derivation of (19) we recall [33].

(17)�(x, ts) = ∫ dE a(E, ts) �E(x) ,

(18)
� s(x, ts) =∫ dE a(E − E� , ts) �E(x)

=∫ dE as(E, ts) �E(x) ,

(19)
iℏ
��(x, t)

�t
=

1

2m

(
−iℏ

�

�x
+ p��ts

)2

�(x, t)

+ V(x)�(x, t) ,
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In an analogous way as the previous section, before the 
scattering, the state can be written as a superposition of 
momentum eigenstates �p(x) (which is also a basis of the 
electron in the x space) as:

with b(p, t) = ∫ dx �(x, t) �∗
p
(x) . The ensemble momentum 

⟨p(t)⟩ is increased of an amount p� , so in the momentum 
representation the state after the collision is:

where we have defined bs(p, t) = b(p − p� , t) . Notice that:

Unfortunately, as it will be demonstrated in the following 
numerical results, a general model of scattering valid for 
scenarios with the presence of potential barriers requires 
dealing with the energy conservation, and not with momen-
tum conservation.

For the sake of clarity, the relationship of the approxi-
mated models in Sects. 3.2 and 3.3 with the exact model of 
Sect. 3.1 is here described. In the exact model, for each elec-
tron, both wavefunctions �A(x, t) and �B(x, t) are computed 
through (15) and (16). This ensures the possibility of a con-
tinuous transition from �A(x, t) (linked with the zero photon) 
to �B(x, t) (one photon), and viceversa. In the approximate 
models, we just simulate one wave function �(x, t) for each 
electron that takes into account the perturbation of the state 
due to scattering. In particular, in the case of a emission of 
a photon, the initial state is �(x, 0) = �B(x, 0) (one photon), 
and we wanted the final state at time ts provided by approxi-
mate model to be as similar as possible to � s(x, ts) ≈ �A(x, ts) 
(zero photon). For photon absorption, we have as the initial 
state �(x, 0) = �A(x, 0) (zero photon), and the final state 
� s(x, ts) ≈ �B(x, ts) (one photon).

4 � Numerical results

In this section, we will compare the exact collision approach 
developed in the previous section, with the two collisions 
models mentioned there. Apart from plotting the evolution 
of the involved states before and after the collisions, we 

(20)�(x, t) = ∫ dp b(p, t) �p(x) ,

(21)

� s(x, ts) =∫ dp b(p − p� , ts) �p(x)

= ∫ dp bs(p, ts) �p(x)

= eip�x∕ℏ �(x, ts) ,

(22)
b(p − p� , t) =∫ dx �(x, t) �∗

p−p�
(x)

=eip�x∕ℏ ∫ dx �(x, t) �∗
p
(x) .

will also plot the Wigner distribution through the Wigner-
Weyl transform defined from Eq. (9). In particular, we will 
consider scenarios where electrons are suffering emission 
and absorption of photons, while travelling in free space or 
impinging on a resonant tunneling diode. Such structure is 
composed by two barriers with thickness 2nm, height 0.3 
eV and a distance between the two barriers of 16 nm. The 
electron has effective mass m = 0.041m0, where m0 is the 
mass of the electron at rest. The resonant energies of the 
double barrier structure are 0.023 eV for first resonant state 
and 0.096 eV for the second resonant state.

4.1 � Exact evolution of the Wigner function

In this subsection we will show electron wave functions as 
defined in (13). In particular, we start by considering �A(x, 0) 
as a Gaussian wave packet in the left contact outside the 
barrier with an energy equal to the second resonant energy, 
while �B(x, 0) = 0 , meaning that initially there is no photon 
in the structure. Since both electron wavefunctions have a 
coupled evolution in (15) and (16), step by step, the wave 
function �B(x, t) grows and �A(x, t) decreases indicating 
that a photon is being created. The Wigner function of the 
whole process is computed as the sum of the Wigner func-
tion linked to �A(x, t) (with (9)) plus the Wigner function 
linked to �B(x, t) (again with (9)). Notice that, from (13), we 
get ∫ dq |� (x, q, t)|2 = |�A(x, t)|2 + |�B(x, t)|2 because �0(q) 
and �1(q) are orthogonal. The Wigner function is plotted in 
Fig. 1 from a to c in three different times corresponding to 
the electron impinging upon a double barrier structure with 
an (initial) energy equal to the second resonant level of the 
double barrier. Inside the well the electron is interacting with 
the electromagnetic field and Rabi oscillations of the elec-
tron between first and second resonant levels are observed. 
This can be seen from the wavefunction that, showing one 
maximum in the probability distribution inside the quantum 
well, is occupying the first level in Fig. 1b and e. On the 
other hand, from Fig. 1c to f, two maxima appear inside 
the well, so that the second level of the double barrier is 
occupied.

4.2 � Approximate evolution of the Wigner function 
in free space

In this subsection we show the evolution of the Wigner func-
tion defined from a single electron evolving in free space and 
undergoing scattering through the (approximate) collision 
models explained in the Sects. 3.2 and 3.3. The goal of this 
section is to prove the equivalence of two previous collisions 
models (energy exchange and momentum exchange) in the 
case of an electron system in free space. In free space, the 
momentum of a photon is much smaller than the momentum 
of an electron and the conservation of momentum (not only 
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of energy) has to be satisfied. Thus, in this Sect. 4.2, from 
a physical point of view, we consider the interaction of an 
electron with a phonon (instead of a photon).

In (2), is has been shown [26–28] that the time of scat-
tering �t has to be finite. In the present work, the transition 
shown in (18) for a scattering of energy Es , is divided into 
40 steps of energy change �Es = Es∕40 . Between each step, 
the system is evolved for a time of around 6 fs. As a result, 
the total scattering time for the approximate model will be 
240 fs. An analogous implementation is done for (21). In 
Fig. 2, the electron is injected with an ensemble energy 
equal to the first resonant level, ⟨E(t)⟩ = 0.023 eV, meaning 

a momentum of ⟨p(t)⟩ = 1.573 ⋅ 108 m −1 . The final wave 
packet given by the collision models in Sects. 3.2 or 3.3 
has ensemble value of the energy ⟨Es(t)⟩ = 0.096 eV, cor-
responding to a momentum of ⟨ps(t)⟩ = 3.214 ⋅ 108 m −1 . This 
process �(x, ts) → � s(x, ts) mimics, for example, an electron 
absorbing a phonon. The Wigner function is computed from 
(9) for the states �(x, ts) → � s(x, ts).

In Fig. 3, the electron is injected with initial ensemble 
energy ⟨E(t)⟩ = 0.096 eV, or momentum ⟨p(t)⟩ = 3.214 ⋅ 108 
m −1 . This electron also undergoes scattering in a finite time 
of approximately 0.1 ps and emits a phonon reaching an 

Fig. 1   Wigner function of the total electron wavefunction interact-
ing with a double barrier structure (green lines), at different times of 
its evolution: a at the beginning of the evolution, b when first enter-
ing inside the double barrier structure with ⟨E(t)⟩ = 0.096 eV  , c after 

emitting a photon, so that the electron energy is ⟨E(t)⟩ = 0.023 eV  . In 
d–f are shown projections along the energy (top), momentum (mid-
dle) and position (bottom) axis of the Wigner transform, respectively, 
of (a), (b), and (c)

Fig. 2   Wigner function for photon absorption in free space: a before 
scattering b scattered with the energy exchange and the momentum 
exchange model, which is equivalent to the former in free space 

conditions. In c and d are shown projections along the energy (top), 
momentum (middle) and position (bottom) axis of the Wigner func-
tions, respectively, of (a) and (b)
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ensemble energy of the wave packet equal to ⟨Es(t)⟩ = 0.023 
eV, corresponding to a momentum of ⟨ps(t)⟩ = 1.573 ⋅ 108 
m −1 . This process corresponds to an emission of phonon 
and the transition �(x, ts) → � s(x, ts) is computed from the 
collision models in Sects. 3.2 or 3.3 and the Wigner function 
linked to such states from (9).

We conclude that the evolution of the Wigner function 
of an electrons scattered in free space behaves equivalently 
with both models, the one of Sect. 3.2 with energy conser-
vation and the one of Sect. 3.3 with momentum conserva-
tion. The physical reason of such agreement is because, in 
free space, there is a one-to-one correspondence between 
the eigenvalues of momentum and energy operators (since 
they commute).

4.3 � Approximate evolution of the Wigner function 
with potential barriers

In this subsection, we show a comparison between the 
energy exchange and momentum exchange scattering mod-
els, respectively, explained in Sects. 3.2 and 3.3, for an elec-
tron wavefunction interacting with the double barrier struc-
ture described at the beginning of Sect. 4. The momentum of 
an electron inside a quantum well tends to be very small (the 
wave function tends to become real) and the conservation of 
momentum is not a requirement because of the translation 
symmetry is broken by the barriers. Thus, in this Sect. 4.3, 
we do consider the interaction of a photon with an electron 
also impinging on a double barrier structure.

In Fig. 4, the electron is first injected at the first reso-
nant level of the double barrier structure and undergoes a 
photon absorption, thus occupying, after the scattering, the 
second level of the double barrier structure. Energetically 
the initial an final energy values are the same as in Fig. 2. 
This transition is clear in Fig. 4b and e, where the energy 
exchange model is used. In fact, while in Fig. 4d there is 
a single maximum of the probability presence in the bot-
tom image, there are two maxima in Fig. 4e. This is a proof 
of a transition from the first to the second resonant state 

of the well. However this is not observed in Fig. 4c and f, 
where a momentum exchange model is used. Now, inside 
the well, the maximum of probability after the scattering 
belongs still to the first resonant level (only one maximum 
is observed). This is an unphysical result whose reason is 
that there is no one-to-one correspondence between energy 
and momentum. Thus, despite having control on the change 
of the momentum, we do not have control on the change of 
the energy. In the case of photon emission, shown in Fig. 5, 
the same physical transition is observed from Fig. 5a to b 
(and on their respective projections in Fig. 5d and e, where 
the two maxima of probability inside the quantum well are 
transformed into just one maxima later), while the transition 
between levels is not observed from Fig. 5a to c (where the 
number of maxima remains equal to two). This is another 
proof of the difficulties to use a momentum exchange model 
in case of an arbitrary potential. In other words, in typi-
cal device scenarios for nanoscale devices, the energy and 
momentum operators do not commute so that the eigenstates 
of the momentum are not eigenstates of the energy and vice-
versa. Then, the change in momentum can have an arbitrary 
translation into change of energy. The dramatic consequence 
is that the conservation of energy during the electron–pho-
ton collision is not guaranteed by ensuring conservation of 
momentum.

5 � Does Wigner function satisfy complete 
positivity and energy conservation?

The typical way of reducing the computational burden 
by including the role of photons and phonons in quantum 
transport is through a collision model. Such collision model 
introduces some new term in the equation of motion of the 
simulated degrees of freedom. For example, in the Wigner 
distribution formalism, we can visualize the effect of the col-
lision as a change from the initial (before collision) Wigner 
function fW (x, k, t) to the final (after collision) Wigner 

Fig. 3   Wigner function for photon emission in free space: a before 
scattering b scattered with the energy exchange and the momentum 
exchange models, which is equivalent to the former in free space 

conditions. In c and d are shown projections along the energy (top), 
momentum (middle) and position (bottom) axis of the Wigner func-
tions, respectively, of (a) and (b)



2240	 Journal of Computational Electronics (2021) 20:2232–2244

1 3

Fig. 4   Comparison of Wigner functions undergoing photon absorp-
tion in a double barrier structure (green lines), at different times: a 
before scattering b scattered with the energy exchange model and c 
with the momentum exchange model. In d—f are shown projections 
along the energy (top image), momentum (middle) and position (bot-

tom) axis of the Wigner transform, respectively, of (a), (b), and (c). 
Notice the change for the transition from the first resonant level to the 
second from (d) to (e), while such transition is not present from (d) 
to (f)

Fig. 5   Comparison of Wigner functions undergoing photon emission 
in a double barrier structure (green lines), at different times: a before 
scattering b scattered with the energy exchange model and c with the 
momentum exchange model. In d–f are shown projections along the 

energy (top), momentum (middle) and position (bottom) axis of the 
Wigner transform, respectively, of (a–c). Notice the change for the 
transition from the second resonant level to the first from (d) to (e), 
while such transition is not present from (d) to (f)
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function f s
W
(x, k, t) . But, is there any mandatory requirement 

that such change of the Wigner function has to satisfy? Or is 
any possible change physically acceptable?

By construction, the Wigner function without (external) 
collisions do satisfy complete positivity in the sense that 
∫ dk fW (x, k, ts) > 0 for all positions x. The Wigner function, 
after being modified by the collision operator, does also have 
to satisfy the same complete positivity condition:

Notice that for a discrete Wigner function (used in the com-
putational algorithms), for a grid with Nx position points and 
Nk wave vector points, the condition (23) imposes Nx equa-
tions, each equation involving Nk elements of the estimated 
discrete f s

W
(x, k, ts).

On the other hand, during the collision we can assume a 
controlled change of the energy of the system. To verify such 
energy conservation, the expectation value of the electron 
energy within the Wigner approach is defined as follows:

where h0(x, k) = ∫ dx�⟨x + x�

2
�Ĥ0�x −

x�

2
⟩e−ikx� with Ĥ0 the 

Hamiltonian without collisions defined in (11).
The initial energy of the Wigner function is 

⟨E(ts)⟩ = ∫∫ dk dx fW (x, k, ts)h0(x, k) , then after the absorp-
tion (or emission) of a photon with energy E� , the final 
Wigner function has to satisfy:

The condition (25) implies one additional equation involv-
ing Nx × Nk elements of the new Wigner function. Together, 
conditions (23) and (25) do only define Nx + 1 elements of 
the total Nx × Nk elements of the Wigner function after the 
scattering f s

W
(x, k, ts) . Notice that the Wigner distribution 

function has Nx × Nk elements so that these two conditions 
do not totally determine which is the new Wigner function 
after scattering. In other words, there are many possible 
Wigner functions that can satisfy (23) and (25), but there 
are also many Wigner function that are invalid because they 
do not satisfy (23) and (25).

We want to emphasize again that there is no fundamental 
limitation for developing a successful collisions model from 
the Wigner function formalism. In other words, it is possible 
to find fW (x, k, ts) and f s

W
(x, k, ts) , before and after the scatter-

ing respectively, that satisfy complete positivity and energy 
conservation. To underline this point, we explain an algo-
rithm that uses the collision model developed in Sect. 3.2 for 

(23)Tr(𝜌̂(ts)�x⟩⟨x�) = ∫ dk f s
W
(x, k, ts) > 0 ∀ x .

(24)⟨E(t)⟩ = Tr(𝜌̂Ĥ0) = ∫ ∫ dk dx fW (x, k, t) h0(x, k) ,

(25)
⟨Es(ts)⟩ =⟨E(ts)⟩ ± E𝛾 = Tr(𝜌̂sĤ)

=∫ ∫ dk dx f s
W
(x, k, ts)h0(x, k) .

wavefunctions. The algorithm explained below will not be 
easily implementable in a general Wigner transport formal-
ism, but it will clearly confirm that it is possible to develop 
a successful transition fW (x, k, ts) → f s

W
(x, k, ts) due to the 

collision of an electron with a photon (phonon), while satis-
fying conditions (23) and (25). The algorithm deals with a 
single electron (as everywhere else in this paper), and it has 
the following three steps:

•	 First step The Wigner function before the scattering 
fW (x, k, t) is translated into a wave function �(x, ts) in 
the following way: 

where we have used that �(x, 0) = �∗(0, t)�(x, t) for a 
pure state, and y = (x + x�)∕2 and y� = (x − x�)∕2 . The 
complex number �∗(0, ts) is irrelevant here since it can 
be understood as a normalization constant [34].

•	 Second step Once we have � (x, ts) we can apply the col-
lision algorithm explained in Sect. 3.2 to get the transi-
tion � (x, ts) → � s(x, ts) that we know satisfy complete 
positivity and energy conservation.

•	 Third step Once we get the pure state after the collision 
� s(x, ts) , we use expression (9) to compute the Wigner 
distribution function after the collision: f s

W
(x, k, ts).

Indeed, an example of such Wigner functions, from 
fW (x, k, ts) before collision to f s

W
(x, k, ts) after collision, is 

already plotted from Fig. 4a to b, respectively, for photon 
absorption. Identically, another example is provided from 
Fig. 5a to b for photon emission. In Fig. 6 it is shown how 
such algorithm (based on the electron–photon collision 
model of Sect. 3.2) reproduce the exact electron–phonon 
interaction computed from Sect. 3.1. The evolution of the 
ensemble value of the energy for simulations in Fig. 1 
(black dashed line in Fig. 6), Fig. 4a and 4b (blue line  in 
Fig. 6), Fig. 5a and 5b (red line in Fig. 6). The ensemble 
value ⟨E(t)⟩ is computed using expression (24) at different 
times. To better approximate the exact result the change of 
energy E� is not done in a single time step of the simulation, 
but in a time interval identical to the time it takes the exact 
solution to produce such energy transition (which is related 
to the frequency of the Rabi oscillations [32]).

The excellent agreement in Fig. 6 was possible because 
the evolution of such system is treated on the level of the 
Bohmian conditional wavefunction. Without such knowl-
edge, the task of satisfying conditions (23) and (25) 

(26)

�(x, ts) =�(x, 0, ts)
1

�∗(0, ts)

=
1

2��∗(0, ts) ∫ ∫ dk dx� �
(
y, y�, ts

)
eik(x−x

�)

=
1

�∗(0, ts) ∫ dk fW

(
x

2
, k, ts

)
eikx ,
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becomes very complicated. In a real electron device, more 
than one electron have to be simultaneously simulated and 
then expression (26) cannot be applied because the density 
matrix, and its Wigner transform, will hide the knowledge 
about every single-particle state. We conclude that without 
the knowledge of the state it seems quite complicated to 
model a reasonable collision model that satisfies energy con-
servation. For example, there is no guarantee at all that the 
direct implementation of the Boltzmann collision operator 
in the Wigner distribution can satisfy the above conditions.

5.1 � Are collisions a source of time irreversibility ?

At this point, although not directly related with the goal of 
this paper, it is interesting to discuss if collisions in electron 
devices are a source of time irreversibility or not. While 
typical microscopic laws are time reversible, an arrow of 
time appears in macroscopic phenomena. For example, we 
know that electrons lose energy, in average, when traversing 
the device (Joule effect). Therefore, we can know if we are 
looking forward or backward in time by looking at the mac-
roscopic heating or cooling of the device. But, why micro-
scopic time-reversible laws become time irreversible at the 
macroscopic level? What is the role of collisions?

We have shown in Sect. 4.1 that electron–photon interac-
tion can be studied in an exact way as a solution of the many-
body Schrödinger equation in a closed system including the 
degrees of freedom of one electron and one photon. Thus, 
we can conclude that interaction of a single electron with a 
single photon are a time-reversible phenomena, either for 

emission or absorption, when described by (12) because it is 
perfectly possible to go back in time in this exact model, and 
the process of emission and absorption are time reversible at 
the microscopic level.

In the approximations done in Sects. 3.2 and 3.3, we elim-
inate the explicit simulation of the photon degree of freedom 
and introduce the effect of the photon into the electron as a 
collision. The electron alone, without the photon, is an open 
(non-Markovian) system. But, if we know exactly when the 
collision with the electron takes place, then we can still con-
sider that approximations done in Sects. 3.2 and 3.3 as time 
reversible (as it was Eq. (12) itself) because it is possible to 
know how to go back in time, and the process of emission 
and absorption are time reversible at the microscopic level.

The conclusions above for time reversibility of the equa-
tion of motion of one electron interacting with one pho-
ton can be straightforwardly generalized to the equation of 
motion of thousands of electrons interacting with thousands 
of photons, as far as we only look at the microscopic infor-
mation. However, for such many-body system, if instead 
of looking at the microscopic degrees of freedom, we are 
interested in a macroscopic equation of motion for the aver-
age energy translated from the electrons to the photons and 
viceversa, the conclusion can be different. If we are able 
to simulate a many-particle Schrödinger equation of such 
system, including the electron device and the surroundings 
in a scenario outside of thermodynamic equilibrium, we will 
realize that a photon emitted from the electron device will 
hardly be able to return to the electron device again because 
the surroundings have larger extension, in space, than the 
electron device. Thus, inside the electron device there will 
be more emissions than absorption, in average. In fact, the 
expected net dissipation of electron energy (Joule effect) 
will take place. We conclude that the equation of motion 
for the macroscopic average energy in the electrons inside 
the device is time irreversible. Notice that the time irrevers-
ibility of the (macroscopic) equation of motion of the aver-
age energy of electrons inside the device is fully compatible 
with the time reversibility of the (microscopic) equation of 
motion of electrons and photons everywhere.

In conclusion, are collisions a source of time irrevers-
ibility? Not in a microscopic description, but yes in a macro-
scopic one. Microscopically, the collisions provide an equa-
tion of motion for the dynamics of electrons and photons that 
is time reversible. Macroscopically, the collisions inside the 
device ensure that the dissipation of the average energy of 
the electrons is time irreversible and satisfy the Joule effect.

We have learned a practical lesson to implement a col-
lision model here. Since the exact solution of thousands of 
electrons interacting with thousands of photons is not pos-
sible, the practical implementation of the scattering model 
with the approximations done in Sect. 4.2 has to satisfy the 
microscopic time reversibility of the equation of motion and, 

Fig. 6   Comparison between the expectation value of energy of the 
system undergoing collision modeled from the exact model (black 
dashed line) and with the energy exchange algorithm, for photon 
emission (red line) or photon absorption (blue line). These models are 
implemented from the Wigner distribution function of a pure state
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simultaneously, the time irreversibility of the macroscopic 
average energy. This is typically achieved by randomly 
selecting the scattering rates with a distributions that sat-
isfies the macroscopic requirement: higher emission than 
absorption rates.

6 � Conclusions

In this paper we have shown that a physically reasonable 
collision model, within the Wigner description, has to 
satisfy the following two mandatory requirements: Com-
plete positivity and energy conservation. After presenting 
the two conditions and studying its implementation for an 
electron inside a double barrier interacting with a photon, 
we compare exact results to a collision model based on 
energy exchange in Sect. 3.2 and to a collision model based 
on momentum exchange in Sect. 3.3. We conclude that, 
unfortunately, it is very complicated to develop a practical 
collision model in the Wigner formalism that satisfies both 
conditions.

The good conclusion is that there is no fundamental 
reason that disqualifies, a priori, the possibility of imple-
menting collisions in the Wigner distribution framework. 
The practical requirement in (23) and in (25) provides less 
restrictions than the degrees of freedom (number of ele-
ments) of a (discretized) Wigner distribution function. In 
fact, for a pure state, we have shown an algorithm that mod-
els electron–phonon collisions in the Wigner function for-
malism with an exact approach. The problem for its gener-
alization to realistic quantum transport is that the mentioned 
algorithm needs the wave function information of each elec-
tron inside the device, however such additional information 
is not available in the typical Wigner function algorithms.

Finally, we want to mention that most of the difficulties 
of the Wigner distribution function to satisfy energy conser-
vation in collisions, are inherited form the difficulties of its 
father description, the density matrix, to tackle the properties 
of individual particles. At the end of the day, these prob-
lems are just a manifestation of the orthodox statements that 
negates any microscopic properties for particles, unless such 
microscopic properties are being measured explicitly [20]. 
However, a collision is not a measurement, so that the ortho-
dox theory forbids to access to the microscopic information 
on what has happened to each electron during the collision. 
For these reasons, we argue that collision models based on 
the (Bohmian) conditional wave function are very promising 
because they have the ability to describe the microscopic 
properties of individual particles and satisfy conditions (23) 
and (25) in a very natural way [20–22, 35–38].
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