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Abstract

Let � � Rn be a C 1 domain, or more generally, a Lipschitz domain with small
local Lipschitz constant. In this paper it is shown that if u is a function harmonic
in � and continuous in S�, which vanishes in a relatively open subset � � @�;
moreover, the normal derivative @�u vanishes in a subset of � with positive sur-
face measure; then u is identically zero. © 2021 The Authors. Communications
on Pure and Applied Mathematics published by Wiley Periodicals LLC.

1 Introduction
In Rn, with n � 3, there are examples of harmonic functions in the half-space

R
n
C, C 1 up to the boundary, such that the function and its normal derivative vanish

simultaneously on a set of positive measure of @RnC. This was shown by Bourgain
and Wolff in [5]. The same result was generalized later to arbitrary C 1;� domains
by Wang [19]. A related conjecture that is still open is the following:

Conjecture. Let � � R
n be a Lipschitz domain and let � � @� be relatively

open with respect to @�. Let u be a function harmonic in � and continuous in x�.
Suppose that u vanishes in� and the normal derivative @�u vanishes in a subset of
� with positive surface measure. Then u � 0 in x�.

Note that the assumption that u vanishes continuously in � implies that ru ex-
ists � -a.e. as a nontangential limit in�, and moreover ru D .@�u/ � 2 L

2
loc.� j�/.

Here � stands for the .n � 1/-dimensional surface measure and � is the outer unit
normal. See Appendix A for more details.

The preceding conjecture is an open problem that is already mentioned in Fang-
Hua Lin’s work [12]. It was later stated explicitly as a conjecture in the works
by Adolfsson, Escauriaza, and Kenig [1, 2]1. The conjecture is known to be true
in the plane, and also in higher dimensions if one assumes the function u to be
positive. In the first case, this can be deduced from the subharmonicity of log jruj,

1 For an accurate historical account, see the recent work [10].
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and in the second one it is possible to use standard techniques in connection with
harmonic measure and the comparison principle.

In this paper I show that the conjecture is true for Lipschitz domains with small
local Lipschitz constant. The precise result is the following:

THEOREM 1.1. Let � � R
n be a Lipschitz domain, let B be a ball centered in

@�, and suppose that � D B \ @� is a Lipschitz graph with slope at most �0,
where �0 is some positive small enough constant depending only on n. Let u be a
function harmonic in � and continuous in x�. Suppose that u vanishes in � and
the normal derivative @�u vanishes in a subset of � with positive surface measure.
Then u � 0 in x�.

As an immediate corollary, it follows that the above conjecture holds for C 1

domains.
Note that, up now, the result stated in Theorem 1.1 (and in the conjecture) was

only known in the case of Dini domains (i.e., Lipschitz domains whose outer nor-
mal is Dini continuous), by results of Adolfsson and Escauriaza [1] and Kukavica
and Nyström [11], and also in the case of convex Lipschitz domains, by Adolfsson,
Escauriaza, and Kenig [2]. Previously, the case of C 1;1 domains had been solved
by F.-H. Lin [12]. See also [16] for a recent contribution in the particular case of
convex domains where the recent geometric techniques introduced by Naber and
Valtorta [17] are applied to study the strata of the set where @�u vanishes.

The proof of Theorem 1.1 is based on the study of the doubling properties of
L2 averages of the harmonic function u by means of the so-called Almgren’s fre-
quency function, which is analogous to the works mentioned in the previous para-
graph. The strategy in this paper consists in studying the behavior of the frequency
function at points in � approaching the boundary. This strategy is closer to the
one of Kukavica and Nyström in [11] than to the one of Adolfsson and Escauri-
aza [1], which is based on the use of a clever change of variables that transforms
the Laplace equation into an elliptic PDE in divergence form with nonconstant
coefficients and improves the domain, in a sense.

The main novelty in the arguments to prove Theorem 1.1 is the application of
some combinatorial techniques developed by Logunov and Malinnikova in the
works [13–15] in connection with the nodal sets of harmonic functions and the
Nadirashvili and Yau conjectures. In particular, one of the main technical results
in this paper, the Key Lemma 3.1, uses some ideas inspired by [13] to bound the
set where the frequency function is large. With the Key Lemma 3.1 in hand, in the
last section of the paper a probabilistic argument is used to show that

lim inf
r!0

R
@B.x;12r/ u

2 d�R
@B.x;r/ u

2 d�
<1

for almost all points x 2 �. By a lemma due to Adolfsson and Escauriaza [1,
lemma 0.2], this suffices to show that @�u cannot vanish in a subset of � with
positive measure.
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In the case that � is a Dini domain, in [1, 11] it is also proven that if u is
harmonic in � and vanishes continuously in � (where � is as in Theorem 1.1),
then j@�uj is a localB2 weight in�with respect to surface measure (i.e., it satisfies
a local reverse Hölder inequality with exponent 2). This follows from the local
uniform bound of Almgren’s frequency function proven in [1, 11], which in turn
implies a local uniform doubling condition for L2 averages of the function u on
surface balls. Then, as shown in [2, theorem 1], this doubling condition ensures that
j@�uj is a local B2 weight. In the case of Lipschitz domains with small constant,
the proof of Theorem 1.1 in this paper does not ensure that the frequency function
is locally uniformly bounded (or even pointwise bounded!) in �, and thus one
cannot deduce that j@�uj is a local B2 weight.

In a similar vein, under the Dini assumption, in [1] it is shown that the dimension
of the set where @�u vanishes in � has dimension at most n � 2. This follows
by arguments developed previously in [12] in the case of C 1;1 domains, which
are based on the monotonicity of the frequency function in �. For C 1 domains
or Lipschitz domains with small constant, one cannot derive any bound on the
Hausdorff dimension smaller than n� 1 from the arguments in this paper, as far as
I know.

Finally, it is worth mentioning a corollary about harmonic measure that follows
easily from Theorem 1.1:

COROLLARY 1.2. Let � � Rn be a Lipschitz domain, let B be a ball centered in
@�, and suppose that � D B \ @� is a Lipschitz graph with small enough slope.
Let !p, !q be the harmonic measures for � with respective poles in p; q 2 �.
Suppose that there exists some subsetE � � with positive harmonic measure such
that

!pjE D !qjE

Then p D q:

Note that saying that !pjE D !qjE is the same as saying that

!p.F / D !q.F / for all Borel sets F � E.

The corollary follows by applying the theorem to

u D g. � ; p/ � g. � ; q/ in � n . xB.p; "/ [ xB.q; "//,

where g. � ; �/ is the Green function of � and " > 0 is small enough so that
B.p; 2"/ [ B.q; 2"/ � �. Observe that u is harmonic in the Lipschitz domain
�" WD � n . xB.p; "/ [ xB.q; "//, it is continuous in �", and it vanishes identically
in @� � @�". Further, by Dahlberg’s classical theorem [6], it follows that the har-
monic measures !p and !q are mutually absolutely continuous with the surface
measure � on @�, with

d!p

d�
D �@�g. � ; p/;

d!q

d�
D �@�g. � ; q/;
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so that @�u vanishes in the whole E. So �" and u satisfy the assumptions of
Theorem 1.1, and thus u � 0 in �". This implies that p D q. Otherwise, letting
"! 0 we infer that u.x/!1 as x ! p.

2 The Frequency Function
As usual in harmonic analysis, in the whole paper, the letters C; c are used to

denote positive constants that just depend on the dimension n and whose values
may change at different occurrences. On the other hand, constants with subscripts,
such as C0, retain their values in different occurrences. The notation A . B is
equivalent to A � C B , and A � B is equivalent to A . B . A.

In the whole paper, unless otherwise stated, we assume that � and � are as in
Theorem 1.1. We consider a function u harmonic in � and continuous in x� which
vanishes in �, and we assume that u is not constant in �. We extend u by 0 out of
x�, so that u is continuous across �. Without loss of generality we assume that �
is a Lipschitz graph with respect to the horizontal axes and that � \ B lies above
�\B . For 0 < " � 1

2
r.B/, we denote �" D �C "en and�" D �C " en, where

en D .0; : : : ; 0; 1/.
For x 2 Rn and r > 0, we denote

h.x; r/ D
1

�.@B.x; r//

Z
@B.x;r/

u2 d�:

For a ball B.x; r/ that intersects �, the Almgren frequency function (or just fre-
quency function) associated with u is defined by

F.x; r/ D r@r log h.x; r/:

LEMMA 2.1. Let x 2 Rn and let I � .0;1/ be a closed bounded interval. Sup-
pose that B.x; r/ \ � ¤ ¿ and B.x; r/ � 2B for all r 2 I (where B is as
Theorem 1.1). Then h.x; �/ is of class C 1 in I and

(2.1)

@rh.x; r/ D
2

�.@Br/

Z
@B.x;r/

u.y/ru.y/ �
y � x

r
d�.y/

D
2

�.@Br/

Z
@B.x;r/\�

u@�ud�

D
2

�.@Br/

Z
B.x;r/\�

jruj2 dy for a.e. r 2 I:

Further, the identity @rh.x; r/ D 2
�.@Br /

R
B.x;r/\� jruj

2 dy holds for all r 2 I .
Also,

(2.2) F.x; r/ D r
@rh.x; r/

h.x; r/
D
2r
R
B.x;r/ jruj

2 dyR
@B.x;r/ u

2 d�
for all r 2 I:
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Note that, for B.x; r/ as in the lemma, we haveZ
B.x;r/\�

jruj2 dy <1:

Indeed, write u D uC � u� and, for any " > 0, let uC" D max.uC; "/ � ",
u�" D max.u�; "/ � ", and v" D uC" � u�" . It is immediate to check that uC" and
u�" belong toW 1;2.B.x; r 0// for some r 0 > r , and moreover they are subharmonic
in B.x; r 0/. As a consequence, by Caccioppoli’s inequality,Z

B.x;r/

jru�" j
2 dy . C.r; r 0/

Z
B.x;r 0/

ju�" j
2 dy � C.r; r 0/

Z
B.x;r 0/

juj2 dy:

Letting "! 0, we deduce that Z
jruj2 dy <1:

Further, it follows easily that v" ! u inW 1;2.B.x; r//, and so u 2 W 1;2.B.x; r//

too.
An immediate corollary of the lemma and, in particular, of the third identity in

(2.1), is that @rh.x; r/ � 0 and thus h.x; r/ is nondecreasing with respect to r .

PROOF OF LEMMA 2.1. The calculations in the lemma are quite straightfor-
ward and well-known in the case when u is sufficiently smooth up to the boundary.
In the general case when we only assume u to be continuous up to the boundary,
we have to be a little more careful, and so we will show here all the details.

Notice first that the second identity in (2.1) is immediate. Concerning the third
one, for a.e. r 2 I we have

R
@B.x;r/ jruj

2 d� <1, and so

2

�.@Br/

Z
@B.x;r/\�

u @�ud� D lim
"!0

2

�.@Br/

Z
@.B.x;r/\�"/

u @�ud�

because

lim
"!0

2

�.@Br/

Z
B.x;r/\@�"

u @�ud� D 0:

This follows easily from the fact that u vanishes continuously in �, while

(2.3) lim
"!0

ru.x C "en/! ru.x/ in L2loc.� j�/

with ru D .@�u/� 2 L2loc.� j�/ defined as a nontangential limit, as shown in
Theorem A.1. Then, by Green’s theorem, using that u is C1 in a neighborhood of
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�" \ B.x; r/ for any " > 0 sufficiently small and for a.e. r 2 I , we obtain

2

Z
@.B.x;r/\�"/

u @�ud� D
1

�.@Br/

Z
@.B.x;r/\�"/

@�.u
2/d�

D
1

�.@Br/

Z
B.x;r/\�"

�.u2/dy

D
2

�.@Br/

Z
B.x;r/\�"

jruj2 dy:

So letting "! 0, taking into account that u 2 W 1;2
loc .B/, the third identity in (2.1)

follows.
To show the first identity in (2.1), observe that, for all �a; b� � I , writing

�.@Br/ D cn r
n�1, we have

Z b

a

2

�.@Br/

Z
@B.x;r/

u.y/ru.y/ �
y � x

r
d�.y/dr

D 2c�1n

Z b

a

Z
@B.x;r/

u.y/ru.y/ �
y � x

jy � xjn
d�.y/dr

D 2c�1n

Z
A.x;a;b/\�

u.y/ru.y/ �
y � x

jy � xjn
dy

D c�1n

Z
A.x;a;b/\�

divy

�
u.y/2

y � x

jy � xjn

�
dy;

where A.x; a; b/ stands for the open annulus centered at x with inner radius a
and outer radius b . Since u 2 W

1;2
loc .B/ and is smooth in a neighborhood of

B.x; b/ \�", by the divergence theorem, we have

c�1n

Z
A.x;a;b/\�

divy

�
u.y/2

y � x

jy � xjn

�
dy

D c�1n lim
"!0

Z
A.x;a;b/\�"

divy

�
u.y/2

y � x

jy � xjn

�
dy

D lim
"!0

�
1

�.@Bb/

Z
@B.x;b/\�"

u2 d� �
1

�.@Ba/

Z
@B.x;a/\�"

u2 d�

�

C lim
"!0

c�1n

Z
A.x;a;b/\@�"

u.y/2
�.y/ � .y � x/

jy � xjn
d�.y/:

Since u vanishes continuously up to the boundary�, the last limit on the right-hand
side above vanishes. Therefore,

(2.4)
Z b

a

2

�.@Br/

Z
@B.x;r/\�

u.y/ru.y/ �
y � x

r
d�.y/dr D h.x; b/�h.x; a/:
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On the other hand, we have already shown that, for a.e. r 2 I ,
2

�.@Br/

Z
@B.x;r/\�

u.y/ru.y/ �
y � x

r
d�.y/ D

2

�.@Br/

Z
B.x;r/\�"

jruj2 dy;

and so this term is continuous in r , as u 2 W
1;2

loc .B/. Then, the first identity in
(2.1) follows from (2.4) and the fundamental theorem of calculus.

The identity (2.2) is an immediate consequence of the definition of F.x; r/ and
(2.1). �

The following lemma is already known. It is essentially contained (but not stated
in this way) in [2]. For the reader’s convenience we include the detailed proof here.

LEMMA 2.2. Let x 2 Rn and let I � .0;1/ be a closed bounded interval. Sup-
pose that B.x; r/ \ � ¤ ¿ and B.x; r/ � 2B for all r 2 I , where B is as in
Theorem 1.1. Then F.x; �/ is absolutely continuous in I and, for a.e. r 2 I ,

(2.5)

@rF.x; r/

D
4r

H.x; r/2

�Z
@B.x;r/\�

juj2 d�

Z
@B.x;r/\�

��@�u��2 d�
�

�Z
@B.x;r/

u @�ud�

�2�

C
2

H.x; r/

Z
B.x;r/\@�

.y � x/ � �.y/
��@�u.y/��2 d�.y/;

where
H.x; r/ D �.@Br/ h.x; r/ D

Z
@B.x;r/

u2 d�:

In particular, if .y�x/ ��.y/ � 0 for � -a.e. y 2 B.x; r/\@�, then @rF.x; r/ � 0:

PROOF. Denote
I.x; r/ D

Z
B.x;r/

jruj2 dy:

Since

I.x; r/ D
Z r

0

Z
@B.x;r/

jruj2 d�.y/dt;

it follows that I.x; �/ is absolutely continuous with respect to r . As H.x; �/ is of
class C 1 and bounded away from 0 in I , we deduce that F.x; �/ is also absolutely
continuous in I .

By (2.1), we have

@rF.x; r/ D @r
2r I.x; r/
H.x; r/

D 2
.I.x; r/C r I 0.x; r//H.x; r/ � r I.x; r/H0.x; r/

H.x; r/2
;
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where the symbol 0 denotes the derivative with respect to r . Observe that, by (2.1),
for a.e. r 2 I ,

H0.x; r/ D @r�.@Br/ h.x; r/C �.@Br/ h
0.x; r/

D
.n � 1/�.@Br/

r
h.x; r/C 2 I.x; r/ D

.n � 1/

r
H.x; r/C 2 I.x; r/:

Therefore,

@rF.x; r/ D
2

H.x; r/2
�
r H.x; r/ I 0.x; r/

� .n � 2/H.x; r/ I.x; r/ � 2r I.x; r/2
�
:

(2.6)

To calculate I 0.x; r/ we take into account that

I 0.x; r/ D
Z
@B.x;r/

jruj2 d�

D

Z
@.B.x;r/\�/

y � x

r
� �.y/ jru.y/j2 d�.y/

�

Z
B.x;r/\@�

y � x

r
� �.y/jru.y/j2 d�.y/:

By the Rellich-Necas identity with vector field �.y/ D y � x, y 2 �, we have

div.� jruj2/ D 2 div..� � ru/ru/C .n � 2/ jruj2 in �:

Integrating in B.x; r/ \�" (with �" as in the proof of Lemma 2.1), applying the
divergence theorem in this domain, and then letting " ! 0, taking into account
(2.3), we deriveZ
@.B.x;r/\�/

.y � x/ � �.y/ jru.y/j2 d�.y/

D 2

Z
@.B.x;r/\�/

.y � x/ � ru.y/ @�u.y/d�.y/C .n � 2/ I.x; r/

D 2r

Z
@B.x;r/\�

j@�uj
2 d� C 2

Z
B.x;r/\@�

.y � x/ � �.y/ j@�u.y/j
2 d�.y/

C .n � 2/ I.x; r/:

Thus,

I 0.x; r/ D 2

Z
@B.x;r/\�

��@�u��2 d� C n � 2

r
I.x; r/

C
1

r

Z
B.x;r/\@�

.y � x/ � �.y/
��@�u.y/��2d�.y/:
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Plugging the last calculation for I 0.x; r/ into (2.6), we obtain

(2.7)

@rF.x; r/

D
4r

H.x; r/2

�
H.x; r/

Z
@B.x;r/\�

��@�u��2 d�
C

H.x; r/
2r

Z
B.x;r/\@�

.y � x/ � �.y/
��@�u.y/��2 d�.y/

� I.x; r/2
�
:

Observe now that I.x; r/ can be written in the following way:

I.x; r/ D
1

2

Z
B.x;r/\�

�.u2/dy D
1

2

Z
@.B.x;r/\�/

@�.u
2/d�

D

Z
@B.x;r/

u @�ud�:

Plugging the last identity into (2.7), we get (2.5).
The last assertion in the lemma follows from the fact that, by Cauchy-Schwarz,Z

@B.x;r/\�

juj2 d�

Z
@B.x;r/\�

��@�u��2 d� �
�Z

@B.x;r/

u @�ud�

�2
� 0;

and from the condition that .y � x/ � �.y/ � 0 for � -a.e. y 2 B.x; r/\ @�, which
implies that Z

B.x;r/\@�

.y � x/ � �.y/
��@�u.y/��2 d�.y/ � 0: �

It is immediate to check that saying that @rF.x; r/ � 0 a.e. in an interval is
equivalent to saying that the function

f .t/ D log h
�
x; et

�
is convex in t D log r for r in that interval, i.e., f 00.log r/ � 0 a.e. in the interval.

LEMMA 2.3. Given x 2 Rn, let I � .0;1/ be an interval such that h.x; r/ > 0

and @rF.x; r/ � 0 for a.e. r 2 I . Given a > 1, if both r; ar 2 I , then

(2.8) F.x; r/ � loga
h.x; ar/

h.x; r/
� F.x; ar/:

Another way of writing the preceding estimate is the following: for R D ar

(2.9) h.x; r/

�
R

r

�F.x;r/
� h.x;R/ � h.x; r/

�
R

r

�F.x;R/
:

PROOF. By the convexity of the function f defined above, we have

f 0.log r/ �
f .log ar/ � f .log r/

log ar � log r
� f 0.log ar/:

It is immediate to check that this is equivalent to (2.8). �
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From now on, we say that an interval I � .0;1/ is admissible for x 2 Rn if
h.x; r/ > 0 and @rF.x; r/ � 0 for a.e. r 2 I .

LEMMA 2.4. Let x; y 2 Rn and r > 0,  2 .0; 1=10/, such that jx � yj � r . Let
I be an open interval admissible for x and y such that both r; 2.1C 1=2/r 2 I .
Suppose that B.x; 5r/ \ @� � �. Then

(2.10) F.y; r/ � .1C C1=2/ F
�
x; 2.1C 1=2/r

�
C C1=2;

for some absolute constant C > 0.

PROOF. Let x; y; r;  be as above and let � 2 .0; 1/ to be chosen below. Since
h.y; �/ is nondecreasing, we deduce that

h.y; r/ D

«
@B.y;r/

u2 d� �

«
A.y;r;.1C�/r/

u2 dm:

Analogously,

h.y; r/ �

«
A.y;.1��/r;r/

u2 dm:

The same estimates are valid interchanging y with x and/or r with 2r . Then, by
(2.8), we have

F.y; r/ � log2
h.y; 2r/

h.y; r/
� log2

ª
A.y;2r;.2C�/r/ u

2 dmª
A.y;.1��/r;r/ u

2 dm
:

Observe now that

A2y WD A.y; 2r; .2C �/r/ � A.x; .2 � /r; .2C � C /r/ DW A2x;

and

A1y WD A.y; .1 � �/r; r/ � A.x; .1 � � C /r; .1 � /r/ DW A1x :

Thus,

F.y; r/ � log2

ª
A2y
u2 dmª

A1y
u2 dm

� log2

 ª
A2x
u2 dmª

A1x
u2 dm

�
m.A2x/m.A

1
y/

m.A1x/m.A
2
y/

!

� log2

ª
@B.x;.2C�C/r/ u

2 dmª
@B.x;.1��C/r/ u

2 dm
C C�; ;

where we denoted

C�; D log2
m.A2x/m.A

1
y/

m.A1x/m.A
2
y/
:
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We choose � D 1=2. Using just that  � �, we get

F.y; r/ � log2

ª
@B.x;.2C2�/r/ u

2 dmª
@B.x;.1��/r/ u

2 dm
C C�;

D
log 2C2�

1��

log 2
log 2C2�

1��

ª
@B.x;.2C2�/r/ u

2 dmª
@B.x;.1��/r/ u

2 dm
C C�; :

Since .2C 2�/r 2 I (by assumption), by Lemma 2.3 we have

log 2C2�
1��

ª
@B.x;.2C2�/r/ u

2 dmª
@B.x;.1��/r/ u

2 dm
� F.x; .2C 2�/r/:

It is also immediate to check that

log 2C2�
1��

log 2
� 1C C� D 1C C1=2:

Hence,

F.y; r/ � .1C C1=2/F.x; .2C 21=2/r/C C�; :

It only remains to show that C�; � C1=2. To this end, observe that

m.A2x/

m.A2y/
D
.2C � C /n � .2 � /n

.2C �/n � 2n

D
.2C �/n C n.2C �/n�1 CO.2/ � 2n C n2n�1 CO.2/

.2C �/n � 2n

D 1C
n.2C �/n�1 C n2n�1 CO.2/

n2n�1� CO.�2/
:

It follows that �����m
�
A2x
�

m.A2y
� � 1

����� � C � D C1=2:

Almost the same arguments show that�����m
�
A1y
�

m
�
A1x
� � 1

����� � C � D C1=2:

Therefore,

C�; D log2
m
�
A2x
�

m
�
A2y
� C log2

m
�
A1y
�

m
�
A1x
� . 1=2;

as wished. �
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3 The Key Lemma
To prove Theorem 1.1 we consider an arbitrary ball B0 centered in � such that

M 2B0 � B , where B is the ball in Theorem 1.1 and M � 1 will be fixed below.
We denote �0 D @� \ MB0. We will show that if u is a non-zero (i.e., not
identically zero) function harmonic in � and continuous in S� which vanishes in
�, then the normal derivative @�u cannot vanish in a subset of�0\B0 with positive
surface measure. Clearly, this suffices to prove Theorem 1.1.

Let H0 be the horizontal hyperplane through the origin. By the hypotheses in
the theorem, we can assume that @� \MB0 is a Lipschitz graph with respect to
the hyperplane H0 with slope at most �0 � 1, and that � \MB0 is above the
graph. We consider the following Whitney decomposition of �: we have a family
W of dyadic cubes in Rn with disjoint interiors such that[

Q2W

Q D �;

and moreover there are some constants � > 20 and D0 � 1 such the following
holds for every Q 2W:

(i) 10Q � �;
(ii) �Q \ @� ¤ ¿;

(iii) there are at most D0 cubes Q0 2W such that 10Q \ 10Q0 ¤ ¿. Further,
for such cubes Q0, we have 1

2
`.Q0/ � `.Q/ � 2`.Q0/.

Above, we denote by `.Q/ the side length of Q. From the properties (i) and (ii)
it is clear that dist.Q; @�/ � `.Q/. We assume that the Whitney cubes are small
enough so that

(3.1) diam.Q/ <
1

20
dist.Q; @�/:

The arguments to construct a Whitney decomposition satisfying the properties
above are standard but we include the detailed arguments in Lemma B.1 below
for the convenience of the reader.

Let � denote the orthogonal projection on H0. By translating the usual dyadic
lattice if necessary, we can assume that there exists some cube R0 2 W such that
�.B0/ � �.R0/ and `.R0/ � C r.B0/ and moreover R0 � M

2
B0, for M big

enough.
Next we need to define some “generations” of cubes in W . We let D0

W.R0/ D

fR0g. For k � 1 we define Dk
W.R0/ as follows. Let

(3.2) J.R0/ D f�.Q/ W Q 2W such that �.Q/ � �.R0/ and Q is below R0g:

Observe that J.R0/ is a family of .n � 1/-dimensional dyadic cubes in H0, all
of them contained in �.R0/. Let Jk.R0/ � J.R0/ be the subfamily of .n � 1/-
dimensional dyadic cubes in H0 with side length equal to 2�k`.R0/. To each
Q0 2 Jk.R0/ we assign some Q 2 W such that �.Q/ D Q0, �.Q/ � �.R0/,
and such that Q is below R0 (see Lemma B.2 for more details), and we write
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s.Q0/ D Q. Notice there may be more than one possible choice for Q. However,
the choice is irrelevant. Anyway, for definiteness we take the cubeQ that is closest
to R0 among all the possible choices. Then we define

Dk
W.R0/ D fs.Q0/ W Q0 2 Jk.R0/g:

Next we let

DW.R0/ D
[
k�0

Dk
W.R0/g:

Notice that, for each k, the family f�.Q/ W Q 2 Dk
W.R0/g is a partition of�.R0/.

Finally, for each R 2 Dk
W.R0/ and j � 1 we denote

Dj
W.R/ D fQ 2 DkCj

W .R0/ W �.Q/ � �.R/g:

By the properties of the Whitney cubes, it is easy to check that

Q 2 DW.R0/ ) dist.Q;�0/ D dist.Q; @�/ � `.Q/:

From now on, for any cube Q, we denote by xQ its center. Further, we denote by
mn�1 the .n � 1/-dimensional Lebesgue measure on the hyperplane H0.

KEY LEMMA 3.1. Under the assumptions of Theorem 1.1, let R0 be as above and
let N0 > 1 be big enough. There exists some absolute constant �0 > 0 such that
for all A� 1 big enough the following holds, assuming also �0 small enough and
M big enough. Let R 2 DW.R0/ satisfy F.xR; A `.R// � N0. There exists some
positive integer K D K.A/ big enough such that if we let

GK.R/ D
�
Q 2 DK

W.R/ W F.xQ; A`.Q// �
1
2
F.xR; A `.R//

	
;

then:

(a) mn�1

�S
Q2GK.R/�.Q/

�
� �0mn�1.�.R//.

(b) For all Q 2 DK
W.R/, it holds

F.xQ; A`.Q// � .1C CA�1=2/ F.xR; A`.R//:

A key point in the lemma is that �0 does not depend onA. On the other hand, �0,
M , and K depend on A. The constant N0 is also an absolute constant independent
of the other parameters.

The general strategy for the proof of the Key Lemma is similar to one of the
Hyperplane Lemma 4.1 from [13]. The main differences stem from the fact that in
the lemma above we wish to estimate the frequency function in points that are close
to @�, and then we have to be more careful and more precise with the monotonicity
properties of the frequency function.

A basic tool for the proof of the Key Lemma 3.1 is the following result on
quantitative Cauchy uniqueness:
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THEOREM 3.2. Let v be a function harmonic in the half ball BC1 D fx 2 Rn W

jxj < 1; xn > 0g and C 1 smooth up to the boundary. Let � the following subset of
@BC1 :

� D fx 2 Rn W jxj < 3=4; xn D 0g:

Suppose that Z
B
C

1

jvj2 dm � 1

and
sup
�

jvj C sup
�

jrvj � ";

for some " 2 .0; 1/. Then
sup

B.1=2;1=4/

jvj � C"�;

where C; � are positive absolute constants.

This result appears in [12, Lemma 4.3] and it is proven in much greater gener-
ality in [3, Theorem 1.7].

Remark 3.3. We claim that, for T > 0 and R 2 DW.R0/, if x 2 � satisfies

dist.x;R/ � T `.R/ and dist.x; @�/ � T �1 `.R/;

then the interval .0; A`.R// is admissible for x, assuming M � T;A and that �0
is small enough, depending on T and A. This property will be essential for the
proof of the Key Lemma.

To prove the claim it suffices to check that, in the situation above,

(3.3) .y � x/ � �.y/ � 0 � -a.e. y 2 B.x; r/ \ @�, 0 < r � A`.R/,

since then Lemma 2.2 ensures that @rF.x; r/ � 0 for 0 < r � A`.R/. To prove
(3.3), let x0 2 � be the point such that�.x/ D �.x0/, so that x � x0 is orthogonal
to H0. Denote by Hx0 the hyperplane parallel to H0 through x0. Given y as in
(3.3), let y0 be the orthogonal projection of y on Hx0 ; see Figure 3.1. So y0 � x0 is
orthogonal to x � x0. Moreover, since the slope of � is at most �0,

jy � y0j � �0 jy
0 � x0j � �0 jy � xj and j�.y/ � .�en/j � �0:

Then we write

.y � x/ � �.y/ D
�
.y � y0/C .y0 � x0/C .x0 � x/

�
�
�
� en C .en C �.y//

�
� jx � x0j � jx0 � xj jen C �.y/j � jy � y0j � jy0 � x0j jen C �.y/j

� jx0 � xj � �0 jx � x
0j � �0 jy � xj � �0 jy � xj

D .1 � �0/ jx
0 � xj � 2�0 jy � xj:

Using now that, for �0 � 1=2, we have jx0 � xj � dist.x; @�/, we get

.y � x/ � �.y/ � c dist.x; @�/ � 2�0 jy � xj � c T �1 `.R/ � 2 �0A`.R/ � 0;

assuming �0 � c
2
.AT /�1, which proves (3.3).



UNIQUE CONTINUATION AT THE BOUNDARY 15

Ω

Σ
Hx′

x

y

y′ x′
ν(y)

FIGURE 3.1. The domain � and the Lipschitz graph �. The points x; y
satisfy .y � x/ � �.y/ � 0.

Proof of the Key Lemma 3.1. For any Q 2 W , we consider its associated
cylinder:

C.Q/ D ��1.�.Q//:

Let R 2 DW.R0/ be as in the lemma and let A � 1. For some j � 1 to be
fixed below (independent of A), let L be a hyperplane parallel to H0 such that

dist.L;�0 \ C.R// D 2�j `.R/:

Notice that there are two possible choices for L. If �0 is small enough (and so �
flat enough) depending on j , then

(3.4) dist.x; @� \ C.10R// � 2�j `.R/ for all x 2 L \ C.10R/.

Then we choose L so that L \ C.10R/ � �.
Let J denote the family of cubes from W which intersect L \ C.1

2
R/. By the

properties of Whitney cubes and (3.4), it is clear that

`.Q/ � 2�j `.R/ and �.Q/ � �.R/ for all Q 2 J .

Let Adm.2�Q/ be the set of x 2 �\2�Q such that the interval .0; diam.25�Q//
is admissible for x. Recall that � is one of the constants in the definition of Whit-
ney cubes. We assume �0 small enough so that 3Q � Adm.2�Q/2. Then by
Lemma 2.4,

(3.5) sup
x2Adm.2�Q/

F.x; diam.5�Q// � C0 F.xQ; diam.20�Q//C C0;

where C0 is an absolute constant.

2 Notice that 2�Q 6� Adm.2�Q/ because 2�Q intersectsRn nS�. Instead, a big portion of 2�Q
is contained in Adm.2�Q/ if �0 is flat enough.



16 X. TOLSA

Claim. There exists some Q 2 J such that

(3.6) F.xQ; diam.20�Q// �
F.xR; A`.R//

4C0

if j is big enough and we assume that �0 is small enough depending on j , and also
that N0 is big enough.

Remark again that the choice of j will not depend on the constant A.
To prove the claim we intend to apply a rescaled version of Theorem 3.2 to a

suitable half ball BC centered at ´R, the orthogonal projection of xR on L. We
take

BC D
�
x 2 B.´R; `.R/=4/ W xn > .´R/n

	
;

so that BC � �, assuming that �0 \ C.R/ is below L. We also consider the point

źR D ´R C .0; : : : ; 0; `.R/=8/:

Notice that źR 2 BC (in fact, B.źR; `.R/=8/ � BC).
Aiming for a contradiction, suppose that F.xQ; diam.20�Q// > N

4C0
for all

Q 2 J , where N D F.xR; A`.R//. For each Q 2 J , by the subharmonicity of
juj and (2.9), we have

sup
2Q

juj .

«
@B.xQ;diam.3Q//

juj d� � h.xQ; diam.20�Q//1=2

� h.xQ; `.R//
1=2

�
diam.20�Q/

`.R/

�F.xQ;diam.20�Q//=2

:

Here we applied the property described in Remark 3.3, allowing the smallness of
the slope constant �0 to depend on j . Below we will make repeated use of this
property, often without further reference.

To estimate h.xQ; `.R// we take into account that

h.xQ; `.R// �

«
A.xQ;`.R/;2`.R//

juj2 dm .

«
B.źR;C1`.R//

juj2 dm � h.źR; C1`.R//;

since A.xQ; `.R/; 2`.R// � B.źR; C1`.R// for some fixed C1 > 1. Further, by
(2.9),

h.źR; C1`.R// � h.źR; `.R/=16/ .16C1/
F.źR;C1`.R//

. .16C1/
F.źR;C1`.R//

«
B.źR;`.R/=8/

juj2 dm

. .16C1/
F.źR;C1`.R//

«
BC

juj2 dm;

recalling that B.źR; `.R/=8/ � BC. Thus,
(3.7)

sup
2Q

juj2 . .16C1/
F.źR;C1`.R//

�
diam.20�Q/

`.R/

�F.xQ;diam.20�Q// «
BC

juj2 dm:
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Observe now that, by Lemma 2.4,

F.źR; C1`.R// � C F.xR; C `.R//C C;

for a suitable absolute constant C > 2C1. So for A and N0 big enough (both
independent of j , just larger than some absolute constant),

(3.8) F.źR; C1`.R// � C F.xR; A`.R//C C � C 0N:

Therefore, recalling also the assumption F.xQ; diam.20�Q// > N
4C0

, by (3.7) we
get

sup
2Q

juj2 . .16C1/
C 0N

�
diam.20�Q/

`.R/

�N=4C0 «
BC

juj2 dm

D 2�jcNCC
00N

«
BC

juj2 dm

(here we took into account that diam.20�Q/ � `.R/ for j larger than some abso-
lute constant). Also, by standard interior estimates for harmonic functions,

sup
3
2
Q

jruj2 .
1

`.Q/2
sup
2Q

juj2 .
22j

`.R/2
2�jcNCC

00N

«
BC

juj2 dm:

From the last two estimates we deduce that if j is big enough andN0 (and thusN )
also big enough, then there exists some c0 > 0 such that

sup
3
2
Q

�
juj2 C `.R/2 jruj2

�
. 2�jc

0N

«
BC

juj2 dm:

Since the cubes 3
2
Q with Q 2 J cover the flat part of the boundary of BC, which

we denote by � , it is clear that

sup
�

�
juj2 C `.R/2 jruj2

�
. 2�jc

0N

«
BC

juj2 dm:

Applying now a rescaled version of Theorem 3.2 to the half ball BC, we infer
that

sup
B.źP ;`.R/=16/

juj2 . 2�jc
0N�

«
BC

juj2 dm:

Consequently,

h.źR; `.R/=16/ . 2
�2jc0N�

«
B.źR;`.R//

juj2 dm . 2�2jc
0N� h.źR; `.R//;

for some fixed � > 0. By Lemma 2.3, this implies that

F.źR; `.R// � log16
h.źR; `.R//

h.źR; `.R/=16/
� c jN�;

for some fixed c > 0. However, for j big enough this contradicts the fact that
F.źR; `.R// . N , which follows from (3.8). So the proof of the claim is con-
cluded.
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Now we are ready to introduce the set GK.R/. FixQ0 2 J such that (3.6) holds
for Q0. Notice that, by (3.5),
(3.9)

sup
x2Adm.2�Q0/

F.x;�`.Q0// � C0 F.xQ0
; diam.20�Q0//CC0 �

N

4
CC0 �

N

2
;

since N � N0 and we assume N0 big enough. Now we just define

GK.R/ D fQ 2 DjCk
W .R/ W �.Q/ � �.Q0/g;

with k D dlog2Ae. So we have GK.R/ � DK
W.R/ with K D j C k and it holds

`.Q/ � 2�k`.Q0/ for every Q 2 GK.R/.
The property (a) in the lemma follows easily from (3.9). Indeed, if P 2 GK.R/,

then taking into account that xP 2 Adm.2�Q0/ for �0 small enough (depending
on A),

F.xP ; A`.P // � F.xP ; `.Q0// � F.xP ; �`.Q0// �
N

2
:

Notice also that

mn�1

� [
Q2GK.R/

�.Q/
�
D `.Q0/

n�1 � .2�j `.R//n�1;

and recall that j is independent of A. So (a) holds with �0 � 2�j.n�1/.
The property (b) is an easy consequence of Lemma 2.4. Indeed, for any P 2

DK
W.R/, since jxP � xRj . `.R/, taking  � A�1 in (2.10), we deduce

F.xP ; A`.P // � F.xP ; A`.R/=3/ � .1C CA�1=2/ F
�
xR; A`.R/

�
C CA�1=2

� .1C 2CA�1=2/N: �

4 Proof of Theorem 1.1
Our next objective is to prove the following result:

LEMMA 4.1. Under the assumptions of Theorem 1.1, let R0 2 W be as in Sec-
tion 3. Then,

lim inf
r!0

h.x; 12r/

h.x; r/
<1 for � -a.e. x 2 �0 \ C.R0/.

Recall that C.R0/ is the cylindernn

C.R0/ D ��1.�.R0//;

and it contains B0, by the assumption just after (3.1).
The proof of the preceding lemma will use the following version of the law of

large numbers, due to Etemadi [7]:

THEOREM 4.2. Let fXkgk�1 be a sequence of nonnegative random variables with
finite second moments such that:
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(a) supk�1EXk <1,
(b) E.Xj Xk/ � EXj EXk for j ¤ k, and
(c)

P
k�1

1
k2

VarXk <1.
Let Sm D X1 C � � � CXm. Then

lim
m!1

Sm � ESm

m
D 0 almost surely:

PROOF OF LEMMA 4.1. Let��0
W C.R0/! C.R0/\�0 denote the projection

on C.R0/ \ �0 in the direction orthogonal to the horizontal hyperplane H0. We
consider the measure

� D ��0
#.mn�1jC.R0/\H0

/:

This is the image measure (or push-forward measure) of the .n � 1/-dimensional
Lebesgue measure on C.R0/ \ H0 to C.R0/ \ �0. Obviously, � is mutually
absolutely continuous with the surface measure � on C.R0/ \�0.

Next we consider the families of cubes from W defined by

(4.1) T 0j D
�
Q 2 DjK

W .R0/ W F.xQ; A`.Q// � N0
	
; j � 0;

where the constants K, A, and N0 are given by the Key Lemma 3.1 (the precise
large value of A will be chosen below). We also denote

R�0
D ��0

.R0/

and consider the following subset of R�0
:

Tj D
[
Q2T 0

j

��0
.Q/; j � 0:

We will prove the following:

Claim. We have
�
�
R�0

n lim sup
j!1

Tj

�
D 0:

Let us see first that the lemma follows from this claim. Indeed, if x 2 Tj ,
then there exists some cube Q 2 T 0j such that x 2 ��0

.Q/. By construction,
F.xQ; A`.Q// � N0 and thus, by (2.9),

h.xQ; A`.Q// � 48
N0 h.xQ; A`.Q/=48/:

For A big enough, we have

B.x;A`.Q/=24/ � 3
2
B.xQ; A`.Q/=48/ and

3
2
B.x;A`.Q/=2/ � B.xQ; A`.Q//:

Then, by the subharmonicity of juj in a neighborhood of �0 and standard argu-
ments,

h.x;A`.Q/=24/ & h.xQ; A`.Q/=48/ and h.x;A`.Q/=2/ . h.xQ; A`.Q//:
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Hence, for each x 2 Tj ,

h.x;A`.Q/=2/

h.x; A`.Q/=24/
.

h.xQ; A`.Q//

h.xQ; A`.Q/=48/
� 48N0 ;

with `.Q/ � 2�jK`.R0/.
Consequently, if x 2 lim supj!1 Tj , then a sequence of radii rj ! 0 exists

such that
h.x; 12rj /

h.x; rj /
. 48N0 ;

which implies that

lim inf
r!0

h.x; 12r/

h.x; r/
<1;

and yields the lemma, assuming the claim.
To prove the claim above we need to introduce some additional notation. For

j � 0 and K as in the Key Lemma 3.1, we denote

zDj .R�0
/ D ��0

�
DjK

W .R0/
�
;

or more precisely,

zDj .R�0
/ D

�
��0

.Q0/ W Q0 2 DjK
W .R0/

	
:

We also set
zD.R�0

/ D
[
j�0

zDj .R�0
/:

For any R 2 zDj .R�0
/ such that R D ��0

.R0/ for some R0 2 DjK
W .R0/, in case

that F.xR0 ; A `.R0// � N0, we consider the good set

G.R/ D
[

Q02GK.R0/

��0
.Q0/;

with GK.R0/ as in the Key Lemma 3.1. In case that F.xR0 ; A `.R0// < N0, we let

G.R/ D ��0
.R0/ D R:

Finally, we write

Tj D
�
��0

.Q0/ W Q0 2 DjK
W .R0/; F .xQ0 ; A`.Q0// � N0

	
;

or in other words,
Tj D ��0

.T 0j /;
with T 0j defined in (4.1)

To prove the claim we have to show that
S
j�h Tj has full �-measure in R�0

for every h � 0. To this end, for any fixed h we define the following functions fj ,
j � h:

fj D
X

Q2 zDj .R�0 /

fQ;
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where fQ D 0 if Q is contained in some “cube” zQ 2
S
j�h Tj and, otherwise,

fQ D
�.Q/

�.G.Q//
�G.Q/ � �Q:

It is immediate to check that the functions fj have zero �-mean, and they are
orthogonal, i.e.,

R
fi fj d� D 0 if i ¤ j (taking into account that fj has zero

�-mean in eachQ 2 zDj .R�0
/ and is constant in each P 2 zDjC1.R�0

/). Observe
also that the functions fj are uniformly bounded, due to the fact that �.G.Q// �
�0 �.Q/ in the latter case by the Key Lemma. So their L2.�/ norms are uniformly
bounded too.

We consider the probability measure �jR�0=�.R�0
/ and the random variables

Xj D fj C 1, j � h. Notice that they are nonnegative and the assumptions in
Theorem 4.2 are satisfied. Indeed, (a) and (c) follow from the uniform boundedness
of the functions fj , and the zero mean of each fj and the mutual orthogonality of
the fj ’s imply that E.Xi Xj / D E.Xi /E.Xj / if i ¤ j . Applying the theorem
then we infer that

(4.2) lim
m!1

1

m

mX
jDhC1

fj .x/ D 0 for �-a.e. x 2 R�0
;

using the fact that EXj D 1 for all j .
We will show that

(4.3) x 2 R�0

� [
j�h

Tj ) lim
m!1

1

m

mX
jDhC1

fj .x/ ¤ 0:

Clearly, by (4.2), this implies that R�0
n
S
j�h Tj has null �-measure and finishes

the proof of the claim.
We prove (4.3) by contradiction. Suppose that there exists some point x 2

R�0
n
S
j�h Tj such that limm!1

1
m

Pm
jDhC1 fj .x/ D 0. Denote by Qj the

“cube” from zDj .R�0
/ that contains x. Since Qi 62 Ti for any i � h, by definition

we have

fj .x/ D
�.Qj /

�.G.Qj //
�G.Qj /.x/ � 1 for any j � h.

Then (4.2) tells us that, for any " > 0,����
mX

jDhC1

�.Qj /

�.G.Qj //
�G.Qj /.x/ �m

���� � "m
for any m big enough. In particular, choosing " D 1

2
we infer that, for some

m0 D m0.x/,
mX

jDhC1

�.Qj /

�.G.Qj //
�G.Qj /.x/ �

m

2
for any m � m0.
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Since �.G.Qj // � �0 �.Qj /, we get

(4.4)
mX

jDhC1

�G.Qj /.x/ �
�0m

2
for m � m0.

For each j � h, let Q0
j 2 DW.R0/ be such that Qj D ��0

.Q0
j /. Recall that

the Key Lemma (we can apply this because F.xQ0
j
; A`.Q0

j // � N0) asserts that

F.xQ0
jC1

; A`.Q0
jC1// �

1

2
F.xQ0

j
; A`.Q0

j // if x 2 G.Qj /

and otherwise just ensures that

F.xQ0
jC1

; A`.Q0
jC1// � .1C CA�1=2/ F.xQ0

j
; A`.Q0

j // if x 2 Qj nG.Qj /:

These estimates and (4.4) imply that

F.xQ0
mC1

; A`.Q0
mC1// �

�
1

2

��0m=2
.1C CA�1=2/m for m � m0.

However, if A is chosen big enough (recall that A is independent of �0 and can be
taken arbitrarily big in the Key Lemma 3.1), this implies that

F.xQ0
m
; A`.Q0

m//! 0 as m!1,

which cannot happen because x 62
S
j�h Tj , recalling the definition of Tj . This

concludes the proof of the claim and of the lemma. �

The proof of Theorem 1.1 will follow as a straightforward consequence of Lemma
4.1 and the next result of Adolfsson and Escauriaza:

LEMMA 4.3 ([1, lemma 0.2]). Let D � R
n be a Lipschitz domain and let V be

a relatively open subset of @D. Let v be a nonzero function harmonic in D and
continuous in xD that vanishes identically in V , and whose normal derivative @�v
vanishes in a subset E � V of positive surface measure. Then, for every point
x 2 V that is a density point of E (with respect to surface measure), we have

(4.5) lim
r!0

R
B.x;r/\D jvjdmR
B.x;6r/\D jvjdm

D 0:

Actually, the identity (4.5) is not stated explicitly in lemma 0.2 in [1]. Instead,
it is said that v vanishes to infinite order in x. However, a quick inspection of the
proof shows that the authors actually prove (4.5), which in turn implies that v van-
ishes to infinite order in x. The lemma above relies on [2, lemma 1 and theorem
1]. Though the proof of [2, lemma 1] is not correct—as explained in [4, para-
graph before lemma 5]—one can replace that lemma either by [1, lemma 2.2] or



UNIQUE CONTINUATION AT THE BOUNDARY 23

by more quantitative arguments involving [4, lemma 4] and well-known proper-
ties of harmonic functions.3 For the reader’s convenience I provide an alternative
self-contained proof in the Appendix C.

PROOF OF THEOREM 1.1. As explained at the beginning of Section 3, it suf-
fices to show that @�u cannot vanish in a subset of positive surface measure of
�0 \ C.R0/ (since this set contains the ball B0).

For the sake of contradiction, suppose that @�u vanishes in a subset E � �0 \

C.R0/ of positive surface measure. By Lemma 4.3, for any x 2 �0 \ C.R0/ that
is a density point of E,

lim
r!0

R
B.x;6r/ jujdmR
B.x;r/ jujdm

D1:

By the subharmonicity of juj, for r small enough,

h.x; r=2/1=2 D

�«
@B.x;r=2/

juj2 d�

�1=2
.

«
B.x;r/

jujdm:

Also, by Cauchy-Schwarz and the fact that h.x; �/ is nondecreasing in r ,«
B.x;6r/

jujdm �

�«
B.x;6r/

juj2 dm

�1=2
� h.x; 6r/1=2:

Therefore,

lim inf
r!0

h.x; 6r/1=2

h.x; r=2/1=2
& lim inf

r!0

ª
B.x;6r/ jujdmª
B.x;r/ jujdm

D1:

Consequently,

lim
r!0

h.x; 12r/

h.x; r/
D1;

which contradicts Lemma 4.1. �

Appendix A Existence of Nontangential Limits for ru
Let � � R

n be a Lipschitz domain, and let � denote the surface measure on
@�. For � -a.e. x, there exists a tangent hyperplane to @� in x and the outer unit
normal �.x/ is well-defined. For an aperture parameter a 2 .0; 1/ we consider the
one-sided inner cone with axis in the direction of ��.x/ defined by

XCa .x/ D
�
y 2 Rn W .x � y/ � �.x/ > ajy � xj

	
:

Analogously, we consider the outer cone

X�a .x/ D
�
y 2 Rn W .y � x/ � �.x/ > ajy � xj

	
:

3 I thank Luis Escauriaza for informing me about this fact.
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For a given function f W Rn n@�! R and a fixed parameter a 2 .0; 1/, we define
the nontangential limits

fC;a.x/ D lim
X
C
a .x/3y!x

f .y/; f�;a.x/ D lim
X�
a .x/3y!x

f .y/;

whenever they exist.
Although the following result is already known (see [9, theorem 5.19], I have

not been able to find an easy argument in the literature and thus I provide a detailed
proof based on Dahlberg’s theorem on harmonic measure [6].

THEOREM A.1. Let� � Rn be a Lipschitz domain, letB be an open ball centered
in @�, and let � D B \ @� be a Lipschitz graph. Let u be a function harmonic in
� and continuous in x�. Suppose that u vanishes in �. Then, for any a 2 .0; 1/,
.ru/C;a exists � -a.e. and belongs to L2loc.� j�/. Further, .ru/C;a has vanishing
tangential component. That is, .ru/C;a D .@�u/ �. In addition, assuming that
� \ B is above �,

lim
"!0

ru.� C " en/! .@�u/ � in L2loc.� j�/:

Also, in the sense of distributions,

.�u/jB D �@�u � j�:

PROOF. We extend u by 0 out of � and denote

uC D max.u; 0/; u� D �min.u; 0/;

so that uC and u� are continuous and subharmonic in B . This implies that, in
the sense of distributions, in B , �u D �uC � �u� is a signed Radon measure
supported on �.

First we claim that

(A.1) .�u/jB D � !j�;

where � 2 L1loc.�/ and ! is the harmonic measure for � with respect to some
fixed pole p 2 �. To prove the lemma we may assume B small enough so that
� n 2B ¤ ¿ and that p 2 � n 2B . To prove the claim, let B 0 be an open ball
concentric with B such that xB 0 � B . We will show that that there exists some
constant C2 depending on B 0 and p such that for any compact set K � �, it holds
that

(A.2) jh�u; �Kij � C2 !.K/:

By duality, this implies (A.1).
Given an arbitrary " 2 .0; 1

2
dist.K;Rn n B 0//, let fQigi2I be a lattice of cubes

that cover Rn, with diameter equal to "=2. Let f'igi2I be a partition of unity of
R
n, so that each 'i is supported in 2Qi and krj'ik1 . `.Qi /

�j for j D 0; 1; 2.
Then we have

(A.3) h�u; �Ki D
D
�u;

X
i2I 0

'i

E
�
D
�u;

X
i2I 0

'i � �K

E
;
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where I 0 is the collection of indices i 2 I such that 2Qi \K ¤ ¿. Since .�u/jB
is a signed Radon measure,���D�u; X

i2I 0

'i � �K

E��� � 
j�uj; �U".K/nK �! 0 as "! 0,

where U".K/ is the "-neighborhood of K. Concerning the other term in (A.3), we
have ���D�u;X

i2I 0

'i

E��� � X
i2I 0

��hu;�'i i�� .X
i2I 0

1

`.Qi /2

Z
2Qi

jujdm:

Since juj is subharmonic and continuous in B and vanishes in B n�, by the bound-
ary Harnack principle (see theorem 5.1 from [8], for example), we have

ju.x/j � C3 g.x; p/ for all x 2 B 0 \�,

where g. � ; �/ is the Green function of � and C3 depends on u, p, and B 0, but not
on K. Thus, ���D�u; X

i2I 0

'i

E��� .X
i2I 0

1

`.Qi /2

Z
2Qi

g.x; p/dx;

with the implicit constant depending on u, p, and B 0. By standard estimates for
the harmonic measure (see (4.3) and (4.4) from [8], for example), we have

g.x; p/ .
!.4Qi /

`.Qi /n�2
for all x 2 2Qi \�, i 2 I .

Therefore, ���D�u; X
i2I 0

'i

E��� .X
i2I 0

!.4Qi / � !.U4".K//:

Letting " ! 0, we have !.U4".K// ! !.K/ and thus (A.2) follows, which
implies the claim (A.1) .

Next recall that by Dahlberg’s theorem, harmonic measure on a Lipschitz do-
main � is a B2 weight with respect to the surface measure � . In particular, the
density function d!

d�
belongs to L2loc.�/. Therefore, in the sense of distributions,

.�u/jB D h � j� for some h 2 L2loc.�/.

Our next objective consists in showing that .ru/C;a exists � -a.e., and moreover
.ru/C;a D .@�u/ � 2 L

2
loc.� j�/. To this end, consider an arbitrary open ball zB

centered in � such that 4 zB � B . Let ' be a C1 function that equals 1 on 2 zB and
vanishes out of 3 zB , and let v D ' u. Observe that

(A.4) v D E ��.' v/ D E � .' �uC u�' C 2ru � r'/;

where E is the fundamental solution of the Laplacian. Note also thatru 2 L2loc.B/,
by Caccioppoli’s inequality.



26 X. TOLSA

For a finite Borel measure �, let R� be the .n� 1/-dimensional Riesz transform
of �. That is,

R�.x/ D

Z
x � y

jx � yjn
d�.y/;

whenever the integral makes sense. From the identity (A.4), we deduce that, for all
x 62 �,

rv.x/ D cn
�
R.' g � j�/.x/CR.u�' m/.x/C 2R.ru � r' m

�
.x/
�

(recall thatm is the Lebesgue measure inRn). Observe thatR.u�' m/ andR.ru�
r'm/ are continuous functions in zB . On the other hand, the nontangential limit
.R.' g � j�//�;a.x/ exists for � -a.e. x 2 @�, by the classical jump formulas for
the Riesz transforms (see [18], for example). Taking also into account that rv D
ru in zB , it follows then that .ru/�;a.x/ exists for � -a.e. x 2 � \ zB . By the
L2.�/ boundedness of the (principal value) Riesz transform operator R. � �/ on
Lipschitz graphs, we deduce that .ru/�;a 2 L2.� j�\ zB/.

Since u � 0 in �c , it is clear that .ru/�;a � 0 in � \ zB . As the tangen-
tial component of R.' g � j�/.x/ is continuous across @� for � -a.e. x 2 @�,
again by the jump formulas for the Riesz transforms, we deduce that the tangential
component of .ru/C;a coincides with the tangential component of .ru/�;a � -a.e.
in � \ zB , and thus .ru/C;a � 0 in � \ zB , which is equivalent to saying that
.ru/C;a D .@�u/� in � \ zB .

It remains to prove that .�u/jB D �@�u � j� in the sense of distributions. To
this end, let  be a C1 function supported in zB . Without loss of generality we
may assume that�\ zB is a Lipschitz graph with respect to the horizontal axes and
that � \ zB lies above � \ zB . For 0 < " � r. zB/, denote �" D � C " en and
�" D �C " en, where en D .0; : : : ; 0; 1/. Then we have

(A.5)

h�u;  i D

Z
u� dm D lim

"!0

Z
zB\�"

u� dm

D lim
"!0

Z
zB\@�"

u @� d� � lim
"!0

Z
zB\@�"

 @�ud�

D 0 �

Z
�

 @�ud�:

The last identity follows from the fact that, in a neighborhood of �\ zB , as "! 0,
u. � C " en/ converges uniformly to 0 and ru. � C " en/ converges to .ru/C;a in
L2.� j

�\ zB
/ (this is proven by arguments analogous to the ones above for the � -

a.e. existence of the limit .ru/C;a.x/ in �). From (A.5), we deduce that �u D
�@�u � j� in zB , and thus also in B . �

Appendix B Whitney Cubes
In this appendix we prove some of the properties of the Whitney cubes con-

structed at the beginning of Section 3.
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LEMMA B.1. Let � ¨ Rn be open. Then there exists a family W of dyadic cubes
with disjoint interiors such that [

Q2W

Q D �;

and moreover there are some constants � > 20 and D0 � 1 such the following
holds for every Q 2W:

(i) 10Q � � and diam.Q/ < 1
20

dist.Q; @�/;
(ii) �Q \ @� ¤ ¿;

(iii) there are at most D0 cubes Q0 2W such that 10Q\ 10Q0 ¤ ¿. Further,
for such cubes Q0, we have 1

2
`.Q0/ � `.Q/ � 2`.Q0/.

PROOF. We assume the dyadic cubes to be half-open and half-closed. Let c0 2
.0; 1

2
/ be some constant to be fixed below. Denote d.x/ D dist.x; @�/, and let W

be the family of all dyadic cubes Q � � that satisfy

(B.1) `.Q/ � c0 inf
x2Q

d.x/

and moreover are maximal. It is immediate to check that the cubes from W cover
� and are disjoint, because they are maximal.

For all Q 2W , since c0 d.x/ � `.Q/ for all x 2 Q, it follows that

dist.Q; @�/ � c�10 `.Q/:

Taking c0 small enough, the properties (i) and (ii) follow.
Let Q;Q0 2 W satisfy 10Q \ 10Q0 ¤ ¿. Let Q00 the dyadic parent of Q0,

which is also contained in �, by (i). By the definition of W , there exists x00 2 xQ00

such that `.Q00/ � c0 d.x
00/. Fix also any x 2 Q. From the condition 10Q \

10Q0 ¤ ¿, it follows that jx � x00j � C .`.Q/ C `.Q0//, where C is some
constant depending just on n. Then we have

`.Q/ � c0 d.x/ � c0 d.x
00/C c0 jx � x

00j � 2 `.Q0/C c0 C.`.Q/C `.Q0//:

For c0 small enough we deduce that `.Q/ � 2:5 `.Q0/, which implies that `.Q/ �
2 `.Q0/ because `.Q/=`.Q0/ D 2k for some k 2 Z. Reversing the roles of Q and
Q0, we deduce that 1

2
`.Q0/ � `.Q/ � 2`.Q0/. From this property and standard

volume considerations it follows easily that there are at most D0 cubes Q0 2 W
such that 10Q \ 10Q0 ¤ ¿, with D0 depending just on n. �

LEMMA B.2. Let � be a Lipschitz domain, and let �, B0, �0, H0, �, and R0 be
as in Section 3. Also, let J.R0/ be as in (3.2) and, for k � 1, let Jk.R0/ � J.R0/

be the subfamily of .n� 1/-dimensional dyadic cubes inH0 with side length equal
to 2�k`.R0/. Then, for each Q0 2 Jk.R0/ there exists some cube Q 2 W such
that �.Q/ D Q0, �.Q/ � �.R0/, and such that Q is below R0.

PROOF. LetQ0 2 Jk.R0/ and denote by x0 its center, so that x0 2 H0\�.R0/

too. Let Lx0 be the line orthogonal to H0 through x0. Let x be the intersection
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of Lx0 with the lower face of R0, and let x00 D Lx0 \ �0. Let S be the segment
.x; x00/, which lies on Lx0 .

Consider the sequence of dyadic Whitney cubes fRj gj�1 �W that intersect S ,
so that

S D Lx0 \
[
j�1

Rj ;

and assume that the sequence is ordered in such a way that, for all j � 0, Rj and
RjC1 are neighbors and RjC1 is below Rj . The sequence of side lengths `.Rj /
tends to 0 as j !1 because dist.Rj ; @�/! 0 as j !1. Also, for any j � 0,
`.Rj /=`.RjC1/ equals 1, 1

2
, or 2, by the property (iii) in Lemma B.1. This implies

that, for some j � 1, `.Rj / D 2�k`.R0/. Indeed, we claim that the cube Rj such
that `.Rj / � 2�k`.R0/ and j is minimal does the job. To check this, notice that,
by the minimality of j , `.Rj�1/ � 2�kC1`.R0/. So property (iii) of Lemma B.1
implies that `.Rj / � 2�k`.R0/ and the claim follows.

Notice now that�.Rj / D Q0, because both�.Rj / andQ0 are .n�1/-dimensional
dyadic cubes in H0 with side length 2�k`.R0/ and both contain x0. �

Appendix C An Alternative Proof of Lemma 4.3
We assume that we are under the assumptions of Lemma 4.3. So given a Lips-

chitz domainD � Rn and a relatively open subset V of @D, we consider a nonzero
function v that is harmonic in D and continuous in xD, vanishing identically in V ,
and whose normal derivative @�v also vanishes in a subset E � V of positive sur-
face measure. We have to show that, for every point x 2 V that is a density point
of E (with respect to surface measure), it holds that

(C.1) lim
r!0

R
B.x;r/\D jvjdmR
B.x;6r/\D jvjdm

D 0:

To this end, for such point x, given " 2 .0; 1/, let r0 > 0 be small enough so that
B.x; r0/ \ @D � V and

�.@D \ B.x; r/ nE/ � " �.@D \ B.x; r// for all 0 < r � r0.

We fix r 2 .0; r0=3/. Without loss of generality, we assume that x D 0 and denote
Br D B.0; r/, We also assume that @D \ B2r is a Lipschitz graph with respect to
the horizontal axes, and that D is above the graph. As usual, we understand that v
has been extended by 0 in Dc . As shown in Theorem A.1,

.�v/jBr D �@�v � j@D\Br DW �:

Thus, g WD v � E � � is harmonic in Br :
We intend to apply the three-ball inequality to the function g. In order to do this,

first we need to estimate the total variation of the signed measure �. We apply the
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Rellich-Necas identity

2.� � rv/�v

D 2 div..� � rv/rv/ � div.� jrvj2/C jrvj2 div� � 2
X
i;j

@i�j @iv @j v;

with a vector field � D ' en, where ' is a smooth function supported on B.3=2/r
and identically 1 on Br . Integrating the above identity in B2r \D with respect to
Lebesgue measure and applying the divergence theorem, we obtain

0 D

Z
@D\B2r

�
2 '.y/ @nv.y/ @�v.y/ � '.y/ jrv.y/j

2 .en � �.y//
�
d�.y/

C

Z
B2r

@n' jrvj
2 dy � 2

Z
B2r

X
i

@i'n @iv @nv dy:

In fact, to be more precise, since v need not be smooth up to @D, first we apply the
divergence theorem in the domain B2r \ .�en CD/ with � > 0, and then we let
� ! 0 as in the proof of Lemma 2.2. Taking into account that rv D .@�v/� on
@D \ B2r , we getZ

@D\B2r

'.y/ j@�v.y/j
2 .en � �.y//d�.y/

D �

Z
B2r

@n' jrvj
2 dy C 2

Z
B2r

X
i

@i'n @iv @nv dy:

Thus, recalling that �Br � ' � �B.3=2/r and applying Caccioppoli’s inequality,Z
@D\Br

j@�v.y/j
2 d�.y/ .

1

r

Z
B 3
2
r

jrvj2 dy .
1

r3

Z
B2r

jvj2 dy:

Now, by Cauchy-Schwarz, we derive

k�k D

Z
@D\Br

j@�v.y/jd�.y/

�

�Z
@D\Br

j@�v.y/j
2 d�.y/

�1=2
�.Br \ @D nE/1=2

. "
1
2 r

n
2
�2

�Z
B2r

jvj2 dy

�1=2
:

Let x0 D � r
10
en. Then there is some c2 > 0 depending just on the Lipschitz

character of D such that B.x0; 2c2r/ � Br n xD. We denote r 0 D c2r . Observe
now that for any s 2 �r 0; r�,

(C.2)
Z
@B.x0;s/

jE � �jd� .
Z Z

@B.x0;s/

1

jy � ´jn�2
d�.y/d j�j.´/ . k�k s:
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Thus, the function4 w WD E � � satisfies«
@B.x0;s/

jwjd� .
1

rn�2
k�k . "1=2

1

rn=2

�Z
B2r

jvj2 dy

�1=2

� "1=2
�«

B2r

jvj2 dy

�1=2
;

(C.3)

with the implicit constants, from now on, possibly depending on c2 and thus on the
Lipschitz character of D.

Since g D w in B.x0; 2r 0/, and g is harmonic in B.x0; 2r 0/ and continuous in
B.x0; 2r 0/, we deduce that, for all ´ 2 B.x0; r 0/,

jg.´/j .

«
@B.x0;2r 0/

jgjd� . "1=2
�«

B2r

jvj2 dy

�1=2
:

Hence,

hg.x
0; r 0/ WD

«
@B.x0;r 0/

jgj2 d� . "

«
B2r

jvj2 dy:

Next we estimate hg.x0; 34r/. We write«
@B.x0; 4

5
r/

jgjd� �

«
@B.x0; 4

5
r/

jvjd� C

«
@B.x0; 4

5
r/

jwjd�:

Since jvj is subharmonic in B2r and continuous in B2r , we have

jv.´/j .

«
B2r

jvjdy for all y 2 Br .

Therefore,«
@B.x0; 4

5
r/

jgjd� .

«
B2r

jvjdy C "1=2
�«

B2r

jvj2 dy

�1=2
.

�«
B2r

jvj2 dy

�1=2
:

Since g is harmonic in B.x0; 4
5
r/ and continuous in B.x0; 4

5
r/, we have, for all

´ 2 B.x0; 3
4
r/,

jg.´/j .

«
@B.x0; 4

5
r/

jgjd� .

�«
B2r

jvj2 dy

�1=2
;

and so
hg.x

0; 3
4
r/ .

«
B2r

jvj2 dy:

Recall now that, by the three-ball inequality, given � 2 .0; 1/ and r2 > r1 > 0

such that B.x0; r2/ � Br , it holds that

hg
�
x0; r�1 r

1��
2

�
� hg.x

0; r1/
�hg.x

0; r2/
1��:

4 In the case n D 2 it is better to choose w D E � � � 1
2�

�.R2/ log r D 1
2�

log jxj
r
� �, and

then (C.2) and (C.3) follow analogously.
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In fact, this inequality is an immediate consequence of the convexity of the function
log hg.x0; et /, proven in Lemma 2.2 in a more general situation. Applying this
inequality with r1 D r 0, r2 D 3

4
r , and � such that

.r 0/� .3
4
r/1�� D 2

3
r;

i.e.,

� D
log 9

8

log 3
4c2

;

we infer that
hg.x

0; 2
3
r/ . "�

«
B2r

jvj2 dy:

Hence, using Cauchy-Schwarz and again (C.3),«
@B.x0; 2

3
r/

jvjd� �

«
@B.x0; 2

3
r/

jgjd� C

«
@B.x0; 2

3
r/

jwjd�

. hg.x
0; 2
3
r/1=2 C "1=2

�«
B2r

jvj2 dy

�1=2

. "�=2
�«

B2r

jvj2 dy

�1=2
:

Since jvj is subharmonic in B3r and continuous in B3r and B.1=2/r � B.x0; 2
3
r/,

we get«
B 1
2
r

jvjdy .

«
@B.x0; 2

3
r/

jvjd� . "�=2
�«

B2r

jvj2 dy

�1=2
. "�=2

«
B3r

jvjdy:

So we have shown that, for any " > 0, if r is small enough,ª
B.1=2/r

jvjdyª
B3r

jvjdy
. "�=2;

which proves the lemma.
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