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Transgenic mice overexpressing the PGE2 receptor EP2 on 
mast cells exhibit a protective phenotype in a model of allergic 
asthma

To the Editor,
Pharmacological inhibition of airway mast cell (MC) activity has re-
ceived considerable attention as a plausible anti-asthma strategy. 
Activation of the MC prostaglandin E2 (PGE2) receptor E prostanoid 
2 (EP2) may drive this potentially therapeutic mechanism. Indeed, 
specific EP2 activation inhibits both murine1 and human2 airway 
MC activity in vitro. Furthermore, EP2 agonism-mediated reduc-
tion in airway pathology has been linked to restricted MC activity 
in human3 and in murine4 models, and we reported upregulation of 
PGE2 and of EP2 mRNA, but not EP1, EP3, and EP4, upon exposure of 
mice to house dust mite (HDM) aeroallergens.5 In light of these data, 
we hypothesized that the EP2-mediated improvement observed in 
mouse models of asthma was a consequence of reduced MC activity, 
and that the PGE2-EP2-MC axis acts as an endogenous protective 
mechanism.6 To bridge this knowledge gap, we have created trans-
genic (TG) mice overexpressing the EP2 receptor on MCs and have 
studied the response of mice sensitized to HDM aeroallergens (pro-
tocol in Supp. Figure 1). To generate the TG colony, a construct con-
taining the MC-specific Cma1 promoter and the EP2 receptor coding 

region (Ptger2) was microinjected into C57BL/6OlaHsd zygotes. The 
TG mice were backcrossed to obtain mice overexpressing EP2 on a 
BALB/c genetic background (see details in the Repository Material 
and Supp. Figures 2-4). All animals were bred at the Animal Facility 
of the Universidad Autónoma de Barcelona, and the procedures 
were approved by the Ethics Committee for Animal Research. To our 
knowledge, this is the first report of a mouse line constitutively over-
expressing EP2 selectively on MCs.

To assess the impact of MC-specific EP2 overexpression on air-
way MC activity, murine chemokine mouse MC protease 1 (mMCP1) 
levels were measured in lung homogenates of mice sensitized to 
HDM aeroallergens. Non-sensitized wild-type (WT) and TG animals 
both had virtually no MC activity (Figure 1A), which reflected the 
equivalent baseline airway MC numbers (Supp. Figure 4A). mMCP1 
production increased in HDM-exposed mice of both genotypes. 
However, mMCP1 upregulation was significantly lower in sensitized 
TG than in sensitized WT animals (Figure 1A). Therefore, EP2 over-
expression reduced HDM-induced MC activation in vivo. To confirm 
that this effect was specifically driven by EP2 activation, mice were 
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F I G U R E  1  (A) HDM-induced airway MC activity in mice overexpressing EP2. Mast cell (MC) activity was assessed by measuring mMCP1 
concentration in lung homogenates normalized by total protein. WT mice exposed to HDM exhibit a significant increase in MC activity. The 
level of MC activation increased further in the presence of an E prostanoid receptor 2 (EP2) antagonist (PF) at both 2.5 and 10 mg/kg. TG 
mice overexpressing EP2 on MC exhibited a less pronounced increase of MC activity. Pretreatment with an EP2 antagonist counteracted 
the reduced MC activity in TG mice, resulting in activity levels that were essentially equivalent between both genotypes (TG and WT). (B) 
HDM-induced eosinophilia in mice overexpressing EP2. Airway inflammation was assessed by a differential cell count in bronchoalveolar 
lavage suspensions (see the full inflammatory cell count in Supp. Figure 5). WT mice exposed to HDM exhibited significant eosinophilia, 
which further increased in the presence of an EP2 antagonist at both 2.5 and 10 mg/kg. In TG mice overexpressing EP2 on MC, eosinophil 
recruitment was attenuated. After pretreatment with the EP2 antagonist, the effect of EP2 overexpression on eosinophilia was abrogated. 
Results are expressed as mean ± SEM. Statistical significance was evaluated using a two-way analysis of variance (ANOVA) with a Bonferroni 
post hoc test. *p<0.05, **p<0.01, and ***p<0.001. HDM (house dust mite-sensitized); MC (mast cell); NS (non-sensitized); PF (PF-0441848); 
TG (transgenic); Veh (vehicle); and WT (wild-type)

F I G U R E  2  HDM-induced airway reactivity in mice overexpressing EP2. Airway reactivity was assessed by means of invasive 
plethysmography and expressed as a percentage of baseline lung resistance (RL). (A) Airway resistance in WT and TG mice exposed to HDM. 
Sensitization to HDM aeroallergens induced a significant increase in airway reactivity to methacholine (ie, airway hyperresponsiveness 
[AHR]) in WT mice (HDM/WT), while sensitized TG mice overexpressing E prostanoid receptor 2 (EP2) (HDM/TG) did not develop AHR. (B) 
Airway reactivity after pretreatment with an EP2 antagonist. In the presence of the EP2 antagonist (PF), both sensitized WT (HDM/WT+PF) 
and sensitized transgenic (HDM/TG+PF) mice developed AHR. Indeed, contrary to what is observed in Figure 2A, there was no significant 
difference between HDM/WT and HDM/TG when the mice were pretreated with 2.5 mg/kg of PF. Results are expressed as mean ± SEM. 
Statistical significance was evaluated using a two-way analysis of variance (ANOVA) with a Bonferroni post hoc test. Statistically significant 
differences were found between baseline reactivity (NS mice) and HDM-sensitized mice. HDM (house dust mite-sensitized); RL (lung 
resistance); NS (non-sensitized); PF (PF-0441848); TG (transgenic); and WT (wild-type)
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pretreated with the selective EP2 antagonist PF-04418948 prior to 
sensitization. In both TG and WT animals, EP2 antagonism fostered a 
further increase of HDM-induced MC activity, along the lines of our 
recent observation in murine lung MCs in vitro.1 Interestingly, the 
difference in HDM-induced MC activity observed between TG and 
WT mice was abrogated after blockade of the EP2 receptor. All in 
all, this suggests that EP2 receptor overexpression on MCs leads  to 
an increased interation between endogenous PGE2 and EP2, which 
restricts HDM-induced MC activity.

To analyze the consequences of EP2-driven MC inhibition, 
HDM-induced airway inflammation and reactivity were assessed. 
Inflammation was quantitated through a differential inflamma-
tory cell count in bronchoalveolar lavage suspensions (Figure  1B). 
Prominent bronchovascular eosinophilic infiltration developed in 
mice exposed to HDM. Mimicking the MC activity pattern, the eo-
sinophilia was lower in TG mice than in WT animals (although the 
difference did not achieve statistical significance). The lower eosino-
philic infiltration was paralleled by a trend toward a higher number of 
macrophages, whereas neutrophil and lymphocyte counts remained 
equivalent between TG and WT mice (Supp. Figure 5). Also parallel-
ing the effect observed on MCs, both TG and WT animals exhibited 
a further dose-dependent increase of inflammatory infiltrate in mice 
pretreated with EP2 antagonist. However, EP2 antagonism did not 
fully reverse the improvement of the inflammatory process driven by 
EP2 overexpression. Analyzed in the context of previous data where 
reduced bronchovascular inflammation was demonstrated in HDM-
sensitized mice treated with a selective EP2 agonist,4 the current 
data support the view that an endogenous PGE2-EP2-MC compensa-
tory mechanism may attenuate HDM-driven eosinophilic inflamma-
tion. Finally, invasive plethysmography was used to measure airway 
reactivity to methacholine (Figure  2). Non-sensitized TG and WT 
animals exhibited no difference in baseline airway constriction upon 
increasing doses of methacholine (Figure 2A). HDM-sensitized WT 
animals developed the expected level of airway hyperresponsive-
ness (AHR) after a 10-day exposure to HDM aeroallergens. Indeed, 
as per ANOVA, lung resistance (RL) was significantly higher in sensi-
tized than in non-sensitized WT mice. By contrast, the methacholine 
dose-response curve of sensitized TG animals overexpressing EP2 on 
MCs showed no induction of AHR upon exposure to HDM. Indeed, 
contrary to WT animals, the RL of sensitized and non-sensitized TG 
mice did not differ. This finding agrees with our previous observa-
tions after exogenous EP2 activation.4 Pretreatment of mice with 
the EP2 antagonist PF-0418948 (Figure 2B) abrogated the beneficial 
effect exerted by EP2 overexpression on HDM-induced airway reac-
tivity. Contrary to mice that were not pretreated with PF-0418948, 
both TG and WT animals exhibited similar levels of AHR after metha-
choline treatment in the presence of 2.5 mg/kg of the antagonist.

We have shown that MC-specific EP2 overexpression pro-
tects from HDM aeroallergen-induced airway pathology in a IgE-
dependent murine asthma model. A direct connection between 
reduced MC activity and improvement of airway inflammation 
and reactivity has been demonstrated. The finding that EP2 an-
tagonism worsens HDM-induced harmful effects in WT animals, 

and reverses the benefit exerted by EP2 overexpression, supports 
the hypothesis that the PGE2–EP2–MC axis acts as a natural de-
fensive barrier. This is consistent with the recent observation that 
PGE2 protects from the development of anaphylaxis and MC hy-
perresponsiveness.7 It also builds on our hypothesis of compen-
satory PGE2 and EP2 upregulation in mice exposed to HDM5 and 
on the preventive effect exerted by exogenous EP2 activation.4 
In a recent consensus report,8 the European Academy of Allergy 
and Clinical Immunology (EAACI) Task Force discussed the need 
to further research the role of eicosanoids in asthma and allergic 
diseases. The authors specifically mention the bronchoprotective 
and anti-inflammatory properties of PGE2 in the lungs, remind us 
of its ability to reduce MC activity, and request further studies 
with selective EP1-4 analogues. By using an alternative approach, 
we hope to have contributed to the link between eicosanoid biol-
ogy and asthma pathophysiology. Further characterization of the 
cellular and molecular events involved in the PGE2–EP2–MC axis 
in the newly created C.B6-Tg (Cma1-Ptger2) mice will undoubtedly 
unravel new anti-asthma therapeutic target candidates and offer 
future research opportunities.
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Type 2 biomarker expression (FeNO and blood eosinophils) is 
higher in severe adult-onset than in severe early-onset asthma

To the Editor,
Severe asthma is predominantly associated with a type 2 inflamma-
tory pattern1; however, it is unclear whether the expression of type 

2 biomarkers differs between severe early-onset asthma (SEA) and 
severe adult-onset asthma (SAA). This issue is of particular impor-
tance for the question whether the age of asthma onset can be a 

Abbreviations: FeNO, fractional exhaled nitric oxide; GINA, global initiative for asthma; IgE, immunoglobulin E; OCS, oral corticosteroid; SAA, severe adult-onset asthma; SEA, severe 
early-onset asthma; UK, United Kingdom; UKSAR, United Kingdom severe asthma registry.
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