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Master thesis
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Abstract
The objective of this master’s thesis is to describe the causal effect of ever
being imprisoned on the probability of having human immunodeficiency virus
among people who inject drugs. Here, we meta-analyse individual-level pa-
tient data that has been collected throughout Europe. Firstly, we provide an
overview of the individual patient data and the process of merging the data
sets into a complete analysis data set. Subsequently, we provide an overview
of the bias reduction and causal inference and modelling methods such as
propensity score matching and generalised linear mixed model. Finally, the
thesis focuses on applying these practices on the merged data set. As a result,
the thesis confirms the existence of a risk-increasing effect of ever imprison-
ment to the probability of having human immunodeficiency virus.
CERCS research specialisation: P160 Statistics, operations research, pro-
gramming, financial and actuarial mathematics.
Key Words: Statistical inference, causality, meta-analysis, imprisonment,
HIV.
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VANGISTUSAJALOO PÕHJUSLIK MÕJU HIV TÕENÄOSUSELE
SÜSTIVATE UIMASTIKASUTAJATE SEAS: INDIVIIDI-TASANDI

METAANALÜÜS
Magistritöö

Jürgen Rannap

Lühikokkuvõte
Käesoleva magistritöö eesmärk on kirjeldada vangistusajaloo ja inimese im-
muunpuudulikkuse viirusesse sattumise põhjuslikku seost süstivate uimas-
tikasutajate seas kasutades selleks üleeuroopaliselt kogutud individuaalse
patsiendi andmete metaanalüüsi. Esmalt tutvustame antud vaatlusuuringu
jaoks kogutud andmeid ja andmete terviklikuks analüüsiandmestikuks koon-
damise protsessi. Järgnevalt anname ülevaate analüüsiks kasutatavatest nihke
vähendamise ja põhjusliku seose hindamise tehnikatest ja modelleerimismee-
toditest nagu kalduvusskoori sobitamine ning üldistatud lineaarsed sega-
mudelid. Lõputöö viimane osa keskendub tutvustatud meetodite rakendamisele
analüüsiandmestiku peal. Töö tulemus kinnitab vangistusajaloo riski su-
urendava mõju olemasolu inimese immuunpuudulikkuse viirusesse sattumise
tõenäosusele.
CERCS teaduseriala: P160 Statistika, operatsioonianalüüs, programmeer-
imine, finants- ja kindlustusmatemaatika.
Märksõnad: Statistiline järeldamine, põhjuslikkus, metaanalüüs, vangistus,
HIV.
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Introduction

Observational trials, focusing on causal estimations, suffer greatly from the
fundamental problem of causal inference, which states that only one poten-
tial outcome under an exposure is ever measured. Randomised controlled
trials overcome this by randomly assigning the exposure in trial subjects. In
observational studies, however, the challenge arises from the outset of the
trial and is fundamentally embedded in the design, where exposure groups
are generally not randomly assigned. This introduces several obstacles in
estimating accurate causal relationships, including confounding bias along
with selection bias. To overcome these obstacles, several bias reduction tech-
niques have been developed including methods utilising the propensity score,
formulated by P. R. Rosenbaum and D. B. Rubin (Rosenbaum and Rubin,
1983).

Here, we investigate the causal effect of ever imprisonment on Human Immun-
odeficiency Virus (HIV) among people who inject drugs (PWID) in Europe
according to individual patient data collected in the project "European Study
Group for Mathematical Modelling and Epidemiological Analysis of Drug Re-
lated Infectious Diseases", coordinated by the European Monitoring Centre
for Drugs and Drug Addiction. We apply propensity score techniques for bias
reduction in this observational study of individual patient data meta-analysis.
The thesis is a comprehensive overview of the article (Wiessing, Uusküla, and
Rannap et al., 2021) submitted to The Addiction.

Injection drug use occurs in most countries, and infection with HIV and
hepatitis C virus (HCV) is prevalent in many populations of PWID. PWID
are at high risk for contracting HIV in relation to sharing needles, syringes,
or other drug injection equipment (e.g., cookers) with HIV infected peers.
Globally, about 20% of PWID are living with HIV infection (ranging from
1% in Australasia to 36% in Latin America) (Degenhardt et al., 2017). Also,
PWID experience a high prevalence of incarceration as a result of the drug-
related crimes. In addition, there is a substantial overlap of PWID and people
who have been imprisoned in Europe, stretching from 5% in France to 50%

5



in Estonia (Kivimets et al., 2018). The behaviour increasing HIV risk among
PWID does not only occur inside prisons. A systematic review concerning
recently released people in the population of PWID suggest that those people
have substantially higher risk of HIV infection (Stone et al., 2018).

Alternatively, imprisonment could be an opportunity for diagnosing HIV and
providing relevant treatment and intervention including opioid substitution
treatment, needle and syringe programmes and anti-retroviral therapy for
PWID. To our knowledge, this study is the largest individual patient data
meta-analysis conducted as yet, assessing the causal relationship between
imprisonment and HIV among community-recruited PWID.

The thesis is divided into three sections. In the first section, we give an
overview of the data collected and the unification of the data into the com-
plete HIV data set. The second section introduces the theoretical framework
later used in the analysis. The final section focuses on the application of
the methods on the HIV data set to estimate the causal effect of HIV on
imprisonment among PWID.
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1 Data Description

The goal of this chapter is to describe how to transform the data to conduct
individual-level meta-analysis. The data was collected from people who inject
drugs (PWID) currently from 82 cross-sectional studies carried out across 13
countries in Europe from 2001 to 2016. These 82 distinct studies were further
grouped into 22 sites according to the country, city and year of the study.
The sites varied from the data collected, the sampling method used and the
final received sample size.

Compared to the meta-analysis of aggregated summary data, individual-level
meta-analysis uses combined subject level data of multiple studies to assess
a certain research question. This allows to better control the exact model
specification and handle missing data. Therefore, bias reduction and a better
control over confounding can be achieved (Stewart and Tierney, 2002). In
order to carry out the individual-level meta-analysis across all the sites, the
data were unified as the definitions of variables differed across the sites.

1.1 Unification of data across sites

The unified variable definitions were created such that the maximum amount
of information could be used, while retaining the integrity of the collected
data. The data unification procedure across the 22 sites (Table 1.2) included
the definitions for each of the variables of interest. As the data varied across
the sites in the variable definitions or specific recall periods used, the defini-
tions of these unified variables had to be delicately constructed.

Raw variables defined either as numeric or categorical depending on the site
were mapped to either categorical or numeric types. If the unified variable
definition was more accurate than the definition in the site, it was decided to
logically replace the values not defined as accurately as proposed in our uni-
fied variable definitions. As a result, to transform categorised numeric values
into numeric, the middle points of the categories were used as the corre-
sponding numeric values. When transforming numeric values into categories,
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naturally the corresponding categories to which the numeric value belongs
to was chosen.

When defining the classes for categorical variables, new categories were de-
rived by unifying intersecting categories. This resulted in the categories being
defined by the largest boundaries possible to include the smaller categories
within. Although this technique introduces some loss of information, it en-
ables combining variables with different levels of precision.

In Table 1.1, the definitions of the unified variables used in the analysis are
shown with their corresponding priority, variable type and categories. The
variables Country, City and Year uniquely identify a site.

The main variables of interest were binary, describing whether the individual
has been infected with HIV and whether the person has ever been impris-
oned. The primary goal of the analysis was to describe the causal relationship
between those two primary variables. Secondary variables were included to
adjust the imprisonment-HIV analysis for the potential confounding effects
and to understand the effects of the secondary variables on the probabil-
ity of having HIV. The aggregate level variable measuring wealth inequality,
defined on the site level, was included to further control for potential con-
founding. The primary variables were available with the same definitions in
most of the sites with the exception of the Czech Republic (CZ) and Por-
tugal (PT-P) data for HIV, where only the self-reported HIV status was
available, whereas in other sites various test to detect HIV were performed.
A logical imputation step of the primary variable HIV was performed using
the information of subjects receiving antiretroviral therapy (ART) in studies,
where this information was collected. That allowed missing HIV statuses to
be replaced with having HIV in the cases where the subject had received
ART.

The unification procedure also required defining joint recall periods. The re-
call periods were unified by taking firstly into account the information that
was of interest to us in the variable definition, either showing the subject’s
habits of certain risk measures across the entire lifespan or of a shorter period,
and secondly the availability of such information on the site level. For Impris-
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Table 1.1: Variable definitions of the unified data

Variable name Priority Variable type Definition Categories

Country ID variable Categorical The country of the site.

City ID variable Categorical The city of the site.

Year ID variable Categorical The year of the data collection on site

HIV Primary Categorical
Is the subject tested HIV positive
in the current testing?

Y, N

Ever in prison Primary Categorical Has the subject ever been imprisoned? Y, N

Sex Secondary Categorical The sex of the subject. M, F

Age Secondary Numeric The age of the subject in years.

Duration of injecting Secondary Numeric Duration of injection in years.

Frequency of injecting Secondary Categorical Frequency of injection, the most recent data.
Daily or more,
Less than daily

Recently sharing syringes Secondary Categorical
Has the subject shared needle
or syringe recently?

Y, N

Ever sharing syringes Secondary Categorical Has the subject ever shared needle or syringe? Y, N

Categorical number of
sex partners

Secondary Categorical The number of sex partners in the last year. 0, 1, 2-9, ≥10

Number of sex partners Secondary Numeric The number of sex partners in the last year.

Main source of clean syringes Secondary Categorical Primary source of clean syringes.
Pharmacy,
NSP & outreach,
Other

Opioid substitution therapy Secondary Categorical
Has the subject ever received
opioid substitution treatment?

Y, N

Main drug injected Secondary Categorical Primary substance(s) injected most recently.

Opioid, Cocaine,
Opioid & Cocaine,
Amphetamine,
Other

Overdose Secondary Categorical Has the subject ever experienced overdose? Y, N

Gini index Aggregated Numeric
Wealth inequality measure,
higher value indicates greater inequality

onment (Ever in prison), needle or syringe sharing (Ever sharing syringes),
Opioid substitution treatment and Overdose we used the entire lifespan of
the subject as the recall period. The recall period of an entire lifespan was
used as such variable definition is easily recollected by a subject and it shows
the subject’s habits across their entire lifespan.

The sharing of needles or syringes was categorised into two variables Recently
sharing syringes and Ever sharing syringes. The first with an unfixed recall
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time and the other with the recall time of a subject’s lifespan. The recall pe-
riod was chosen not to exceed one month as that was assumed to express the
subject’s recent behaviours regarding syringe or needle sharing. The number
of sex partners was counted within a period of one year and for the respective
categorical variable the numeric value was mapped into categories with the
same recall period of one year.

The recall periods for Main drug injected and Main source of clean syringes
varied the most across different sites. For these variables, it was decided to
use the most recent recall period available from each site. Although this still
left some discrepancies between the recall periods between sites, the majority
of the recall periods are one month except for 6 and 12 month recall periods.

Aggregate-level measures that could have an impact on the outcome were also
assessed. The aggregate-level variables included: Opioid substitution ther-
apy coverage of opioid users in community, Needle and Syringe Programme
(NSP) coverage of PWID in community, HIV prevalence among PWID in
community, PWID prevalence in community, Antiretroviral Therapy (ART)
coverage among PWID in community, incarceration rate in general popu-
lation, incarceration rate in PWID, Gini index, unemployment in general
population, Opioid substitution therapy coverage in prisons, NSP in prisons,
HIV prevalence in PWID in prisons, PWID prevalence in prisons, and con-
dom coverage in prisons. However, Gini index was the only aggregate-level
variable kept in the final analysis as other aggregate-level variables did not
improve the model fit.

The unification procedure also left out a large number of variables collected
within sites. These variables were not included into the final data set being
either not beneficial in describing the causal relationship in question, having
too many sites with the information not being collected or having the data be
considerably of poor quality. Examples of this included the type of first drug
ever used, prostitution (having sex for money or drugs), alcohol use habits
or disorder, smoking habits and nicotine use, etc.

Using the unified variable definitions, the site-specific data was merged. Con-
catenating the data from different sites left us with a total of n = 43, 807
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subjects in the final data set with sample sizes ranging from n = 95 in
site PL-W to n = 27, 823 in site UK-WEnI. Table 1.2 gives an overview of
the number of subjects, the distribution of primary variables of interest and
missing data information on these variables by each site.

1.2 Missing data

All of the data that was not available from the sites was initially coded as
"not available" (NA). The missingness in the data set was bifold, containing
missing data on the subject level and complete missingness of a variable on
the site level, the latter of which occurring when the information was not
collected from the sites. The amount of missing data was substantial, with
the number of observations with no missing values being only 418 (0.95%).
Figure 1.1 gives an overview of the missingness across the entire data set,
showing the scope of missing data points by variable. The primary variables
of interest HIV and Ever in prison have missingness of 1.9% and 3.3% re-
spectively while variables including Recently sharing syringes, Main source
of clean syringes and Overdose all have missingness percentages of over 50%.
Furthermore, as part of missingness came from the sites not collecting the
information, the amount of missing data across sites and therefore countries
varied greatly (see Appendix 1).

The large proportion of missing observations in the data implied the necessity
to take missingness into account and avoid potentially biased inference. In
the analyses, we assumed that the missing data were missing at random as
most of the missingness occurred because the information was not collected
by the sites.
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Figure 1.1: Proportion of missing (red) and observed (blue) data points in the
combined data set.
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Table 1.2: Sample size and distribution of primary variables of interest by site.
Number of missing data shown in parentheses

Site Sample size Sexmale HIV+ Imprisoned

CZ 760 65.1% 0.23% (332) 39.8% (2)
EE-T 1031 79.1% 52.3% 62.4%
FI-7 600 68.4% (14) 1.19% (12) 34.9% (19)
GR-A 3320 84.5% (1) 15.2% 48.8% (13)
HU 1054 74.4% 0.19% 49.2% (7)
LV-5s 666 66.9% (14) 11.0% (319) 45.7% (12)
LV-R 290 74.5% 31.0% 50.3%
LU 420 75.2% (5) 17.5% (112) 40% (130)
NL-A 262 67.6% 11.5% (18) 89.1% (14)
PL-G 200 77.0% 25.3% (2) 33.7% (1)
PL-GK 193 75.1% 18.9% (8) 50.8% (4)
PL-Ms 776 71.4% (10) 18.0% (10) 45.7% (15)
PL-W 95 74.5% (1) 14.7% 30.9% (1)
PT-P 253 86.6% 42.3% 40.9% (1)
RU-5s 520 68.5% 37.5% 51.2% (4)
RU-IN 593 71.8% 19.1% 17.5% (5)
RU-StP 811 77.8% 55.7% 33.8%
RU-V 310 81.9% 5.48% 15.2% (1)
SP-C 730 82.4% (1) 27.3% (16) 70.1%
SP-MBS 637 74.3% 25.3% 48.7%
UK-EWnI 27,823 73.6% (331) 1.21% 64.0% (1208)
UK-S 2463 69.7% (14) 0.77% 65.7% (22)

Total 43,807 74.3% (391) 7.21% (829) 58.7% (1459)

Note: CZ = Czech Republic; EE-T = Tallinn, Kohtla-Järve, Estonia; FI-7 = seven cities (Helsinki,
Vantaa, Espoo, Tampere, Turku, Lahti, Hämeenlinna), Finland; GR-A = Athens, Greece; HU =
Hungary; LV-5s = five geographical areas (Riga, Jurmala, Ogre, Liepaja, Bauska), Latvia; LV-R = Riga
and surrounding areas, Latvia; LU = Luxembourg; NL-A = Amsterdam, Netherlands; PL-G = Gdańsk,
Poland; PL-GK = Gdańsk, Kraków, Poland; PL-Ms = six regions: Mazowieckie (Warszawa), Lubuskie
(Zielona Góra, Gorzów Wlkp., Cibórz, Nowy Dworek), Śląskie (Katowice, Chorzów, Sosnowiec),
Dolnośląskie (Wrocław – 2 locations), Lubelskie (Lublin, Puławy), Warmińsko-Mazurskie (Olsztyn,
Elbląg, Barczewo), Poland; PL-W = Warszawa, Poland; PT-P = Porto, Portugal; RU-5s = five cities
(Barnaul, Volgograd, Naberezhnye, Chelny, Perm, Abakan), Russia; RU-IN = Ivanovo, Novosibirsk,
Russia; RU-StP = Saint Petersburg, Russia; RU-V = Voronezh, Russia; SP-C = Catalonia, Spain;
SP-MBS = Madrid, Barcelone, Seville, Spain; UK-EWnI = England, Wales & Northern Ireland, United
Kingdom; UK-S = Scotland, United Kingdom
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2 Methodology

In this chapter, we give an overview of the theoretical framework later used
in the analysis. We describe the techniques of propensity score matching,
widely used for the reduction of bias in the case of observational study data;
multiple imputation, a flexible tool for dealing with missing data problems;
and generalized linear mixed models, an extension of linear mixed models
used to model correlated non-Gaussian responses.

2.1 Propensity score matching

Propensity score techniques are widely used in observational studies to re-
duce the effects of confounding and selection bias. Confounding arises from
covariates affecting both exposure and the outcome when not adequately con-
trolled, whilst selection bias is the result of a non-random selection process
of the study sample, with subjects having disparate probabilities of being
selected (Haneuse, 2016). Propensity score methods adjust for these discrep-
ancies with the balancing of baseline covariate distributions in the exposed
and unexposed treatment groups using a balancing score - propensity score
(Rosenbaum and Rubin, 1983). In the case of randomised controlled trials,
the balancing of baseline covariates is achieved with the study design (expo-
sure randomisation) and a direct comparison of exposure groups is feasible
for estimating the treatment effect. In observational trials, however, where
generally such balance is not present, a crude comparison of exposure groups
might not be viable (see Fundamental Problem of Causal Inference (Holland,
1986)) and therefore can be subject to considerable bias.

Propensity score matching, a propensity score based bias reduction algorithm
for observational studies, tries to imitate a randomised sample by matching
exposed and unexposed subjects on the basis of the propensity score to es-
timate the effect of the exposure on an outcome. We use propensity score
matching to create a sample in which imprisoned subjects are comparable to
non-imprisoned subjects on all baseline covariates, mimicking a randomised
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A Y

L

Figure 2.1: Directed acyclic graph representing the causal relationships between a
confounder set L, an exposure A and an outcome Y

trial. We introduce the following definition for the propensity score, originally
coined by Rosenbaum and Rubin.

Definition. (Rosenbaum and Rubin, 1983)
The propensity score π(L) is the conditional probability that an individual is
assigned to a particular exposure group given the set of observed covariates
L.

Mathematically, given that L is a set of confounding covariates sufficient
to adjust for confounding between a binary exposure A and an outcome
Y , depicted as a causal diagram in Figure 2.1, the propensity score can be
expressed as the following probability

π(L) = P (A = 1|L).

As the exposure variable A is binary, the propensity score can, for example,
be modelled and computed by fitting a logistic regression model

π(L) = P (A = 1|L) =
exp(α + β′L)

1 + exp(α + β′L)
,

where α is the model intercept, β is the parameter vector and L is the vector
of confounding covariates.

To justify the reasoning behind the propensity score matching method, (Rosen-
baum and Rubin, 1983) and (Hernán and Robins, 2020) have demonstrated
two key properties of the propensity scores. Firstly, the equivalency of the
propensity score to the balancing score which we later confirm, suggests that
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grouping on similar propensity scores imitates a pseudorandomised trial given
the set of observed confounders L. Secondly, that conditional exchangeabil-
ity, given the confounders L, implies conditional exchangeability given the
propensity scores π(L). This is later used to show that instead of matching
being conducted on the entire confounder set L, it is sufficient to conduct
matching on the propensity score π(L).

In the following section, we will consider A as a dichotomous exposure vari-
able, Y as a dichotomous outcome variable and L as the set of confounding
covariates sufficient to adjust for confounding between the binary exposure
A and outcome Y . We start with the proof of the equivalency of propensity
score to the balancing score.

Definition. (Rosenbaum and Rubin, 1983)
A balancing score b(L) is a function of the observed covariates L such that
the conditional distribution of L given b(L) is the same for exposed (A = 1)

and unexposed (A = 0). That is

L ⊥⊥ A|b(L).

We give the proof of the propensity score being a balancing score as a lemma
below. For the proof, we use the law of total expectation.1

Lemma 1. The propensity score π(L) is a balancing score.

Proof. The statement that the propensity score is a balancing score, by def-
inition, means that given a propensity score π(L)

L ⊥⊥ A|π(L).

It is sufficient to show that

P (A = 1|π(L), L) = P (A = 1|π(L)),

1Let X and Y be random variables defined on the same probability space and let E(X)

be defined, then E(X) = E(E(X|Y )). Proof given in (Weiss, 2006).
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which implies the conditional independence of L and A conditional on π(L).

P (A = 1|π(L), L) = P (A = 1|L)

= π(L)

= E(π(L)|π(L))

= E(E(A|L)|π(L))

= E(E(A|L, π(L))|π(L))

= E(A|π(L))

= P (A = 1|π(L)).

(1)

In the case of randomised trials, the study design prevents treatment as-
signment to be associated with any covariate. Lemma 1 ensures the same
disassociation for observational trials, conditional on the propensity score
π(L). We can therefore conclude that given the set of observed confounders
L, conditioning on the propensity score π(L) imitates a pseudorandomised
trial as the exposure and the set of confounder variables are independent
conditional on the propensity score.

We proceed with the second key property of the propensity score, which indi-
cates that conditional exchangeability transfers to the case of the propensity
score. For showing this we start with the definition of counterfactuals.

Definition. (Hernán and Robins, 2020)
Let Y a be the outcome variable that would have been observed under the
treatment value A = a, a ∈ {0, 1}. The variable Y a is referred to as a coun-
terfactual outcome.

The counterfactual outcomes are widely used in the field of causal inference,
as they allow for a simple formulation of the theory, being the main vari-
able of interest. We continue with the definition of exchangeability using the
counterfactual outcomes.
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Definition. (Hernán and Robins, 2020)
If the counterfactual outcome Y a and the treatment assignment A are inde-
pendent for all a ∈ A, then we say that the exposed and unexposed subjects
are exchangeable. That is

Y a ⊥⊥ A, a ∈ A.

Conditional exchangeability, conditional on the covariate vector L, is now
defined as

Y a ⊥⊥ A|L, a ∈ A.

From the definition we can derive that under conditional exchangeability
there are no unobserved differences in the outcomes between the exposure
groups, had the two groups both received treatment within levels of the
covariate L. The next lemma links the ideas of conditional exchangeability
and propensity models, where exchangeability of the exposed and unexposed
within levels of the covariates L indicates exchangeability of the exposed and
unexposed within levels of the propensity score π(L).

Lemma 2. If the treatment assignment A is exchangeable within levels of the
confounders L, then it is exchangeable within levels of the propensity score
π(L). That is for a = 0, 1

Y a ⊥⊥ A|L⇒ Y a ⊥⊥ A|π(L).

Proof. Let us assume treatment assignment A to be exchangeable within
levels of the confounder set L, meaning

Y a ⊥⊥ A|L, a ∈ A.

It now suffices to show that

P (A = 1|Y a, π(L)) = P (A = 1|π(L)),

which implies the conditional independence of Y a and A conditional on π(L).
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P (A = 1|Y a, π(L)) = E[A|Y a, π(L)]

= E[E(A|Y a, L, π(L))|Y a, π(L)]

= E[E(A|Y a, L)|Y a, π(L)]

= E(π(L)|Y a, π(L)]

= π(L)

(1)
= P (A = 1|π(L)).

Lemma 2 indicates that instead of matching being conducted on the entire
confounder set L, it suffices to match on the propensity score π(L). This
follows straight from the lemma, as when conditional exchangeability holds,
there are no unobserved differences in the outcomes between the exposure
groups, had the two groups both received treatment given the propensity
score π(L). Furthermore, it can be shown that under conditional exchange-
ability the unbiased causal effect of an exposure on an outcome can be de-
rived as a simple mean difference of the exposure groups within levels of
the propensity score (Stuart, 2010). Therefore, the straightforward nature
of the estimates justifies the implementation of propensity score matching
in the case of observational study data, where the main assumption to be
considered is the assumption of no unmeasured confounding, meaning that
we account for all confounding in the estimation of the propensity scores.

2.1.1 Estimation of the propensity score

In randomised controlled trials, the true value of the propensity score is
given by the design and is equal to a fixed probability, mostly 0.5, meaning
the probability of an exposure conditional on the confounding variables is
an even chance event. In observational studies, the true value cannot be ob-
tained as the probability of exposure assignment is unknown. Therefore, an
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estimate is needed of the true propensity scores (Austin, 2011). The propen-
sity scores can be estimated using a logistic regression model with logit or
probit link controlling for all the baseline covariates L (Austin, 2011; Hernán
and Robins, 2020). Higher order terms and interactions between covariates
can be introduced in the model to better the covariate balance between the
exposure groups (Dehejia and Wahba, 1999). Propensity score estimation
with the use of bagging and boosting, decision trees and random forests have
also been investigated (Lee, Lessler, and Stuart, 2010).

In the case of variable selection to the propensity score model, it is crucial, to
meet the assumption of conditional exchangeability, to include all variables
known to be related to exposure assignment and outcome in the estimation
of the propensity scores (Rubin and Thomas, 1996). When matching on the
propensity scores, the inclusion of variables unrelated to the exposure assign-
ment will have little influence on the propensity score model. On the other
hand, the exclusion of a potentially important covariate can lead to a fur-
ther increase in bias (Stuart, 2010). Therefore, regarding variable selection to
the propensity score model, a liberal approach should be favoured to include
variables with a potential association with the exposure assignment or the
outcome.

2.1.2 Matching on the propensity score

Several propensity score techniques for bias reduction have been suggested,
including covariate adjustment, inverse probability treatment weighting, sub-
classification and propensity score matching (Austin, 2011; Rosenbaum and
Rubin, 1983). Here, we will focus on the method of matching on the propen-
sity score. The matching algorithm requires the definition of a distance mea-
sure to assess the similarity between two different subjects - more precisely
their propensity scores. The distance measure used later in the analysis is
taken as the propensity score distance.

Definition. Let πi and πj, i 6= j be the propensity scores of subjects i and
j respectively. The propensity score distance Dij between the two scores is
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given by a scalar difference:

Dij = |πi − πj|,

where πi = P (Ai = 1|Li).

The matching procedure was implemented using a k : 1 nearest neighbour
matching algorithm, as this is the most common design for matching on the
propensity score (Zakrison, Austin, and McCredie, 2018). The nearest neigh-
bour procedure matches each exposed subject to the nearest unexposed k

subjects conditional on the propensity score distance measure. The choice of
the matching ratio is fundamentally a bias-variance trade-off (Stuart, 2010),
as for k : 1 matching, smaller values of k will lead to closer matches and there-
fore lesser bias. On the other hand, larger k values lead to increased sample
size but also to less accurate matches. Usually, the choice of k = 1 is selected
which on the one hand presents simplicity but also can lead to a large amount
of discarded unexposed subjects. The variable ratio algorithm (Stuart, 2010)
was implemented within the nearest neighbour matching which allowed k to
vary within each match. This is beneficial in the case where we have large
amounts of close matches, as controlling for the loss of close matches can
aid in the goodness of the matching procedure in general. Matching with re-
placement can also be implemented, where a certain unexposed subject can
be matched to several exposed subjects. This is beneficial in avoiding addi-
tional bias in the case where the number of unexposed subjects compared to
exposed subjects is small (Stuart, 2010).

The goodness of the matching procedure can be assessed by the evaluation
of covariate balance in the two matched groups, where covariate balance is
measured as the similarity of the empirical distributions of all covariates
(Stuart, 2010). The most common numerical balance measures are the stan-
dardised difference of means and the ratio of variances between the exposed
and unexposed groups. The standardised mean difference (smd) is defined
as the absolute difference of means of the i’th covariate in the exposed Lei

and unexposed Lui groups divided by the pooled standard deviation using
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the standard deviation in the exposed σei and the unexposed σui , calculated
as

smdi =
|L̄ei − L̄ui |√
(σe

i )
2+(σu

i )
2

2

. (2)

The variance ratio (vr) is defined as the ratio of variances in the exposed and
the unexposed groups of the i’th covariate, calculated as

vri =
(σei )

2

(σui )2
. (3)

The post-matched standardised differences of means less than 0.25 and vari-
ance ratios bounded by 0.5 and 2 for a given covariate Li suggest a moderately
suitable covariate balance (Rubin, 2001).

2.1.3 Analysis on the matched data

The matching methods are in nature not a causal inference estimation tech-
nique and generally, a regression analysis is implemented to lower the residual
covariate imbalance between the exposure groups (Stuart, 2010). After the
matching algorithm links exposed and unexposed subjects, pooled matched
data is compiled which includes all exposed and unexposed subjects and the
baseline covariates to be included in the regression model. The pooled data
set is assumed to have achieved sufficient balance of the baseline covariates
and the data should have same properties as if it came from a randomised
trial. For the variable ratio matching algorithm, the addition of weights to
the matched subjects are introduced (Stuart, 2010). These weights are later
directly implemented in the model fitting process through the use of weighted
regression. The weights are calculated as a proportion of the number of un-
exposed matched to each exposed subject.

22



2.2 Multiple imputation

Multiple imputation is a conventional approach for dealing with the problem
of missing data. The concept is an extension on single imputation, where
missing values are replaced several times instead of only once. This funda-
mental difference of multiplicity signifies the advantage of multiple imputa-
tion over single imputation: single imputation procedures are not capable
of accounting for the sampling variability in the imputations (Rubin, 1987).
The concept of multiple imputation involves multiple replacements to the
missing data to receive several complete data sets by random draws from the
posterior predictive distribution given the observed data. These separate and
complete data sets are then individually analysed and the results combined
into a single estimate.

The two main multiple imputation methods are joint modelling and multiple
imputation by chained equations (MICE). The joint modelling techniques
all assume variables in the data set to follow a joint model e.g. multivariate
normal or log-linear (Buuren and Groothuis-Oudshoorn, 2011). The deter-
mining of this joint model however can in itself pose great difficulty. A more
flexible approach is the MICE procedure, where a series of regression models
are run on a variable-by-variable basis, conditional on other variables in the
data set (Azur et al., 2011). This allows variables with different distributions
to be modelled based on a univariate distribution and leaves aside the need
for an assumption of a joint higher degree model. The MICE procedure as-
sumes that conditional on other variables in the imputation, the missing data
is missing at random (MAR), which implies that the probability of a value
being missing is independent of the unobserved variables, conditional on the
observed variables (Azur et al., 2011). The assumption of MAR is relevant
for the imputation procedure to produce unbiased estimates (Rubin, 1987).

According to (Azur et al., 2011), the MICE process can be summarised in
the following steps:

1. A mean imputation is implemented for each missing value;

2. The imputations are set back to missing for one chosen variable;
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3. The existing values of the chosen variable are regressed on all/some
other variables in the data set;

4. The missing values of the variable regressed on are replaced with the
imputed values, based on the predictions of the fitted model, using a
chosen method (described later);

5. Steps 2-4 are repeated for each variable with missing values. The im-
putation of all variables having missing values is considered as one
iteration;

6. Steps 2-4 are repeated for a given number of iterations and the imputed
values updated at each iteration.

The imputation process is a recurrent one, with the entire process begin re-
peated when the assigned number of iterations has been completed. This rep-
etition produces several complete imputed datasets that are later individually
analysed. To assess the goodness of the imputation (Buuren and Groothuis-
Oudshoorn, 2011) have suggested that the by-variable plotted densities of
observed and imputed data can be compared.

For the imputation procedure, several imputation methods have been sug-
gested (Buuren and Groothuis-Oudshoorn, 2011). In this thesis, we will spec-
ify the methods later used in the analysis process, which include predictive
mean matching, logistic regression and multinomial logistic regression. The
predictive mean matching algorithm, introduced by (Rubin and Schenker,
1986; Little, 1988), can be considered as a hot-deck imputation method for
all cases of quantitative variables, where the missing values are replaced with
a similar observed value. The predictive mean matching algorithm (Buuren,
2012) randomly selects the observed value as the imputation value from a
pool of observed subjects, where the model-based predicted means of the
variable in question are closest to the predicted mean of the missing observa-
tion. The logistic regression and multinomial logistic regression are used in
order to model dichotomous and polytomous variables respectively and are
explicitly described in (Greene, 2003).
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2.2.1 Parameter estimation

The parameter estimates from the complete data sets are obtained with a
separate analysis performed on each data set individually. The different pa-
rameter estimates are thereafter combined using Rubin’s rule (Rubin, 1987).

The following expressions are taken from (Rubin, 1987). Given M complete
data sets, the multiple imputation estimate θ̂∗ of a parameter θ is given by

θ̂∗ =
1

M

M∑
m=1

θ̂m, (4)

where θ̂m,m = 1, . . . ,M is the model parameter estimate of the m’th data
set. The formula shows that the multiple imputation estimate θ̂∗ is obtained
by an averaging measure of the different model parameters.

The total variance estimate VTotal of the multiple imputation estimate θ̂∗ is
given by

VTotal =
1

M

M∑
m=1

σ̂2
m︸ ︷︷ ︸

between
imputation
variance

+

(
M + 1

M

)
1

M − 1

M∑
m=1

(θ̂m − θ̂∗)2︸ ︷︷ ︸
within imputation variance

, (5)

where σ̂2
m,m = 1, . . . ,M is the variance of the estimate θ̂m. The total variance

can be viewed as a combination of both between imputation and within
imputation variances.

2.3 Generalised linear mixed model

Generalised linear mixed models (GLMM) are a tool of regression analysis
used for modelling a structure of correlated non-Gaussian responses. GLMM
can be viewed as a generalization of the linear mixed models, where the
distribution of the response is assumed normal (Jiang, 2007). With GLMM
we allow the response to be of various distributions, such as binary. GLMM
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can also be viewed as an extension of the generalised linear models, where
only uncorrelated responses can be included (Jiang, 2007). With GLMM we
permit responses to have some correlation structure. The correlation struc-
ture enables modelling of data where similarities in response measures could,
for example, stem from responses coming from the study site or multiple
measurements of even the same subject.

Let the observations yi, i = 1, . . . , n represent the univariate response vari-
ables for n subjects and xi, zi the p- and q-dimensional vectors of explana-
tory variables associated with the p fixed and q random effects respectively.
Further, suppose that β is a p-dimensional vector of fixed effects and α is
a q-dimensional vector of random effects where the responses yi are condi-
tionally independent, conditional on α, with means (Breslow and Clayton,
1993)

E(yi|α) = µi, i = 1, . . . , n. (6)

As with the generalised linear models, the conditional mean µi in GLMM
is also related to the linear predictor ηi via a link function g(·) with inverse
h = g−1 as

g(µi) = ηi, i = 1, . . . , n, (7)

where ηi = x′iβ + z′iα (Breslow and Clayton, 1993). For a generic form of
the model, let us denote

y =


y1

y2
...
yn

 , X =


x′1

x′2
...
x′n

 , Z =


z′1

z′2
...
z′n

 ,

then from (6) and (7) the conditional mean satisfies
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E(y|α) = h(Xβ +Zα).

We assume that α is from a multivariate normal distribution with mean 0

and covarianceD(θ), where θ is the component specifying the distribution of
the random effects (Breslow and Clayton, 1993). The general form of GLMM
for the response y can be therefore written as

y = Xβ +Zα+ ε,

where ε ∼ N(0,Σ) and α ∼ N(0,D(θ)).

For the logistic mixed model, used as the main analysis model, we would as-
sume the binary responses y1, . . . , yn to be conditionally independent Bernoulli
distributed with pi = P (yi = 1|α). Drawing on the reasoning above we would
have

logit(pi) = log

(
pi

1− pi

)
= x′iβ + z′iα,

with the link function g(·) = logit(·), i = 1, . . . , n.

2.3.1 Model parameter estimation

The GLMM model parameters can be estimated using the maximum likeli-
hood method based on the full marginal likelihood function L(β,θ) (Rau-
denbush, Yang, and Yosef, 2000). From the definition of the likelihood func-
tion we can derive the full marginal likelihood L(β,θ) as an integral of the
marginal density, marginalising out the random effect parameter α

L(β,θ|y) =

∫
fy|α(y|α,β)fα(α|θ)dα, (8)

where fy|α(y|α,β) is the probability density of the response vector y and
fα(α|θ) is the probability distribution with a parameter vector θ (Rauden-
bush, Yang, and Yosef, 2000).
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The maximum likelihood estimation requires the maximisation of equation
(8), where in general the integration can not be evaluated due to the high
dimensionality of the distribution of random effects (Raudenbush, Yang, and
Yosef, 2000). To overcome this, a range of approximation processes of the
integral have been introduced. A well-known approximation process is the
Laplace approximation, which yields asymptotically unbiased estimates of
the model parameters (Jiang, 2007). The Laplace method takes advantage
of the Taylor expansion and the fact that the conditional distribution of the
response with the random effect follows an exponential distribution family
(Raudenbush, Yang, and Yosef, 2000). This allows approximating the integral
kernel fα(α|θ) by an expression proportional to the Gaussian probability
density and as a consequence enables the approximate computing of the full
marginal likelihood function.

2.4 Derivation of the confidence interval for relative risk

using the Delta method

The Delta method (Agresti, 2013) states that if an arbitrary statistic Tn is
normally distributed with a mean θ and a standard error of σ/

√
n, with

the subscript n denoting the statistics Tn dependence on the sample size n,
simultaneously written as a convergence in distribution, denoted by

√
n(Tn − θ)

D−→ N(0, σ2),

then for any function g, where g′(θ) exists and is not equal to 0 the following
convergence holds

√
n(g(Tn)− g(θ))

D−→ N(0, σ2[g′(θ)]2).

We can take advantage of the aforementioned method for finding the confi-
dence interval for a relative risk (RR) from an odds ratio (OR) by noting
that the distribution of log odds ratio, denoted here by L, is approximately
normal (Agresti, 2013)
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L ∼ N(log(OR), σ2).

We propose for the function g(·) the following

g(L) :=
exp(L)

1− p0 + p0 exp(L)
,

which from (Grant, 2014) we know is the conversion function from an odds
ratio to a relative risk for L = log(OR), where p0 is the is the baseline
risk. Now, for finding the confidence interval for the relative risk we need to
calculate the derivative of g(L) with respect to L.

g′(L) =
exp(L)[1− p0 + p0 exp(L)]− p0 exp(L) · exp(L)

[1− p0 + p0 exp(L)]2

=
exp(L)(1− p0)

[1− p0 + p0 exp(L)]2
.

Therefore, we know from the Delta method that

g(L) ∼ N [g(log(OR)), σ2(g′(log(OR)))2].

Now, as g(L) is normally distributed and from g(log(OR)) = RR we can
obtain the 95% confidence interval for the population mean RR, which can
be calculated as

(
exp(L̂)

1− p0 + p0 exp(L̂)
± z0.975 · se(L̂)

exp(L̂)(1− p0)
[1− p0 + p0 exp(L̂)]2

)
,

where L̂ is the estimated log(OR), z0.975 the 0.975 quantile of the standard
normal distribution and se(L̂) the standard error of the estimated log(OR).
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3 Statistical analysis of the HIV dataset

In this thesis, a propensity score matched sample is used to estimate the
effect of imprisonment on the probability of having HIV among people who
inject drugs. The individual-level data was collected in the form of survey
results, received from several sites (n = 22) across 13 countries in Europe,
meaning that the analysis was an individual patient-level meta-analysis. The
effect of imprisonment on HIV was estimated using generalised linear mixed
models with random effects of country and city-year of the respective survey.
Due to a large number of missing values in the collected data, mainly at site
level, an imputation process was implemented on the whole data set.

3.1 Imputation

The imputation procedure was implemented due to the amount of missing
data in the combined data set being substantial (99.05% of subjects contain
missing values). The large number of subjects containing missing values re-
sulted in a complete case analysis to be considered inapt. Therefore, assuming
that the data was missing at random (MAR), a more appropriate method of
multiple imputation (MI) was chosen as it enables using the entire sample.

As the missingness occurred directly on the patient level (some values miss-
ing within each site) and also on the site or country level (entire variable
missing from the site), the MI procedure was implemented in two stages.
Firstly, the MI procedure was applied within each country and thereafter on
the whole data set, as overlooking the clustering of countries and perform-
ing a single-level imputation would be subject to additional bias (Buuren,
2012). The within-country imputation was conducted to take into account
the country-specific similarities of subjects, while the second stage of the
imputation over the whole data set was implemented to compensate for the
variables that were not measured within countries. Both imputation stages
were carried out using five imputations (m = 5) with 30 iterations for each
imputation step which resulted in 25 unique imputed data sets. The methods
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Prison HIV

L

Figure 3.1: Directed acyclic graph representing the causal relationships between
the set of confounders L, imprisonment and HIV.

used in all imputations were predictive mean matching for all quantitative
variables, logistic regression method for binary variables, and multinomial
logistic regression for imputing variables with more than two categories. The
MI algorithm was implemented in R (version 3.6.1) using the package MICE
(Buuren and Groothuis-Oudshoorn, 2011).

3.2 Propensity score matching

We used propensity score matching to construct a pseudo-randomised sam-
ple by matching imprisoned subjects to non-imprisoned subjects in order to
estimate the effect of imprisonment on the probability of having HIV. For the
propensity score matching algorithm, we followed the causal diagram given
in Figure 3.1. In the diagram, we have the exposure of a patient having ever
been imprisoned, assigned to the variable "Prison", the outcome of a patient
having HIV, assigned to the variable "HIV" and the set of confounders L,
which included all individual-level variables given in Table 1.1. To estimate
the effect of imprisonment on being HIV positive, we tried to take the con-
founding between the confounder set L and imprisonment into account with
the aid of propensity score matching, effectively erasing this confounding re-
lationship. For the following sections, the city of the site and the year of data
collection on site were combined into a joint variable "city-year".

31



3.2.1 Propensity score estimation

The propensity score, a probability of a PWID being ever imprisoned, can
be estimated by fitting a regression model on imprisonment and is therefore
highly dependent on the variable selection into the model. To acquire the
model with the propensity score estimations closest to their true values and
to best try to meet the assumption of conditional exchangeability, we have
to control for all covariates which are associated with either imprisonment or
having HIV.

The propensity scores were estimated using a logistic regression model with
logit link, including all individual level variables given in Table 1.1 excluding
HIV and with City and Year combined into city-year. To improve model fit
and predictive power of the propensity score model, higher degrees and inter-
actions of covariates were introduced. The final model is given in equation 9.

ln

[
P ("Prison" = 1)

1− P ("Prison" = 1)

]
= β0 + βL1.

2 (9)

The selection of the higher orders and interactions of covariates into the
propensity score model was determined with different information criteria,
including the Akaike and Bayesian information criteria. The distributions of
the obtained propensity scores by the exposure imprisonment for all 25 data
sets is given in Figure 3.2. The figure shows a relatively large intersection
of the propensity scores by the imprisoned and non-imprisoned subjects.
This overlap is a good indicator for the following matching procedure, where
imprisoned subjects are matched to non-imprisoned subjects conditional on
their propensity score.

A logistic mixed-effect model with logit link, where the variables city-year
and Country were chosen as random effects, was also applied for the estima-

2Here β0 is the intercept, β is the parameter vector and L1 the set of individual level
confounders additionally including higher order terms of Age, Duration of injecting and
Number of sex partners and the following interactions: city-year and (Duration of injecting,
Age), Duration of injecting and (Sex, Age, Main drug injected) and Main drug injected
and (Sex, Frequency of injecting).
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tions of the propensity scores but later discarded due to lack of significant
improvement and a major increase in computing time over the simpler logistic
regression model.
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Figure 3.2: Distribution of propensity scores by ever imprisonment for all 25
complete data sets. Non-imprisoned subjects are represented with red, imprisoned
subjects with blue curves.

3.2.2 Matching procedure

The aim of the matching procedure is to construct the pseudo-randomised
sample of imprisoned and non-imprisoned subjects given the set of all con-
foundersL. We match each imprisoned subject on one or more non-imprisoned
subjects based on the specific propensity score values.

A matching procedure using multiple mathcing groups was implemented to
better match the results and therefore reduce the bias in the final estimates.
The idea of matching within a defined group derived from a matching tech-
nique, where multiple control groups are matched to one exposure group
(Stuart and Rubin, 2008). Hence, we joined sites into groups on which the
matching was implemented. These groups were created, taking into account
geographical proximity and epidemiological similarities, including the HIV
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prevalence of a specific region. Over the whole dataset 7 of these groups were
defined (group 1 - UK-EWnI, UK-S; group 2 - RU-IN, RU-StP, RU-V, RU-5s;
group 3 - GR-A; group 4 - CZ, HU, PL-G; PL-GK, PL-W, PL-Ms; group
5 - EE-T, LV-5s, LV-R; group 6 – LU, NL-A, FI-7; group 7 - PT-P, SP-
C, SP-MBS). Therefore, each imprisoned subject could only be matched to
non-imprisoned subjects from the same defined group. The idea of matching
being executed on a city-year level was also considered but abandoned on
the account of scarcity of imprisoned subjects in some sites.

Within each group, the nearest neighbour k : 1 matching using a variable
ratio matching algorithm (Stuart, 2010) with the propensity score difference
was implemented. A limit to the maximum number of matches of k = 4

was set due to there being a large number of close matches, many of which
were of the 4 : 1 by nature, meaning that each imprisoned subject matched
to the maximum number of 4 non-imprisoned subjects. The variable ratio
matching algorithm induces flexibility of the matching ratio that aided in
the groups where close matches were not so common, contributing to smaller
bias in the final estimate. The variable ratio matching algorithm permitted
imprisoned subjects to match to a maximum of four non-imprisoned subjects
with the lowest respective propensity score differences. A tolerance measure
equal to 10−5 was used so that the propensity score differences less than
this measure were considered equal. In the case where more than four non-
imprisoned subjects had a score difference of less than the tolerance measure,
amongst those, four subjects were chosen randomly. However, where less
or equal to four non-imprisoned subjects matched within the measure of
tolerance, the matching resulted in these specified matches. This ensured
that the proportion of non-imprisoned subjects would not be too dissimilar
between the matching groups. In addition, matching using a variable ratio
algorithm avoided the loss of several matches within the measure of tolerance,
where lesser matches arose, improving further the overall quality of matching.
We did not define the smallest accepted distance between the propensity
scores of two subjects (caliper size) as a large number of close matches were
identified among all groups.
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The matching procedure was implemented with replacement, which allowed
the same non-imprisoned subject to be matched to multiple imprisoned sub-
jects. In addition, the variable ratio matching procedure allowed different
number of non-imprisoned subjects to be matched to each imprisoned sub-
ject. Therefore, weights proportional to the number of non-imprisoned matched
to each imprisoned subject were assigned. These weights were later accounted
for in the analysis through the use of weighted regression. The propensity
score matching was performed with R (version 3.6.1) using the function
Match together with MatchBalance from the package Matching (Sekhon,
2011). Following this, the matched data sets from each group were then com-
bined.

The goodness of matching was evaluated using the most common numeri-
cal balance measures of mean standardised differences and variance ratios
between between the imprisoned and non-imprisoned for each covariate as
given in equation 2 and equation 3 respectively. After propensity score match-
ing, 97.4% of all absolute standardised mean differences were below the cho-
sen threshold of 25%. Furthermore, 76.6% of these differences were below
the even lower threshold of 10%. In addition, 93.4% of the variance ratios
stayed within the interval from 0 to 2 . The large majority of below thresh-
old differences and within boundary variance ratios suggested a relatively
good balance between the two exposure groups. Additionally, to illustrate
the matching effect, distributional balance plots for all first order variables
were plotted (see Appendix 2).

3.3 Modelling

To model the effect of ever being imprisoned on the probability of having
HIV among people who inject drugs, a generalised linear mixed model was
estimated. The model contained all variables given in Table 1.1 with city-
year accounting for the City and Year of data collection and the exception of
Country, Recently sharing syringes and the Categorical number of sex part-
ners as similar information acquired already using either variables of Ever
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sharing syringes or Number of sex partners. We used a logistic model with
logit link, where variables city-year and the matching group were considered
as random effects. The weights received from the variable ratio matching al-
gorithm were directly introduced into the regression model through weighted
least squares. Due to the number of random effects being larger than one, the
estimation of the model’s log-likelihood and therefore the model parameters
was performed using the Laplace approximation of the integrand. The final
model is given in equation 10.

ln

[
P ("HIV"=1|group, city-year)

1− P ("HIV" = 1|group, city-year)

]
= γ0 + γL2 + αgroup + αcity-year.

3

(10)

As the imputation procedure along with matching and modelling was done 25
times, the final model estimates were pooled (using equations 4 and 5) to ob-
tain single estimates for the model parameters along with the corresponding
standard errors and p-values that should control for the overall type I error.
The final estimates given as adjusted odds ratios with the 95% confidence
interval for all model characteristics are presented in Table 3.1.

The model estimates show the adjusted odds of HIV positivity to be 32%
higher among PWID who have ever been imprisoned compared to those never
imprisoned (AOR 1.32, 95% CI 1.09 − 1.59). That is, ever imprisonment
having a 29% increase in HIV risk among PWID (RR 1.29, 95% CI 1.07-1.51;
AOR 1.32, 95% CI 1.09-1.59; HIV prevalence in never imprisoned 7.28% 95%
CI 6.90-7.66%). Further, longer duration of drug injection (AOR 1.31, 95%
CI 1.16 − 1.48), ever having shared needles or syringes (AOR 1.91, 95% CI
1.59−2.28) and a national higher wealth inequality measure (AOR 1.34, 95%
CI 1.18−1.51) all have a positive effect on the probability of HIV positivity. In
addition, the most recent main drug injected being Cocaine (AOR 2.70, 95%

3Here γ0 is the intercept, γ is the parameter vector, L2 the set of individual level
confounders and αgroup and αcity-year the matching group and city-year specific random
effects from the N(0, σ2

group) and N(0, σ2
city−year) distributions respectively, with σ2

group

and σ2
city−year denoting the variances of the random intercepts of group and city-year.
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Table 3.1: Study characteristics with estimations on the effect of HIV presented
in adjusted odds ratios. For categorical variables the number of HIV+ and total
subjects is given, for numerical variables the mean, range and standard deviation
is given.

HIV+/total AOR 95% CI

Socio-demographic characteristics
Age (mean, range, SD) all 32.77, 13-78, 8.42 0.84 0.76-0.94
Age (mean, range, SD) HIV+ 33.61, 17-64, 7.61
Sex
Male 2378/32,251 0.77 0.65-0.91
Female 710/11,165 1

Drug use characteristics
Duration of injecting (mean, range, SD) all 11.19, 0.02-53, 8.04 1.31 1.16-1.48
Duration of injecting (mean, range, SD) HIV+ 14.02, 0.33-40, 7.44
Frequency of injecting
Less than daily 1701/17,551 0.90 0.76-1.07
Daily or more 1016/12,449 1

Main drug injected
Amphetamine 171/1597 1
Cocaine 230/2030 2.70 1.73-4.22
Opioid 1796/22,143 1.52 1.05-2.18
Opioid & Cocaine 264/2282 2.16 1.33-3.53
Other 83/1304 1.55 0.88-2.72

Overdose
yes 1039/2432 1.21 0.97-1.51
no 681/2928 1

Ever sharing syringes
yes 1697/11,619 1.91 1.59-2.28
no 1119/19,702 1

Sexual behaviour
Number of partners (mean, range, SD) all 3.36, 0-2400, 25.38 1.03 0.996-1.06
Number of partners (mean, range, SD) HIV+ 7.85, 0-2400, 72.92
Environmental factors
Opioid substitution therapy
yes 1075/27,047 1.22 0.96-1.56
no 632/8915 1

Main source of clean syringes
NSP+outreach 773/2451 1
Pharmacy 745/2368 0.72 0.59-0.88
Other 91/559 0.88 0.59-1.31

Ever in prison
yes 1803/24,857 1.32 1.09-1.59
no 1239/17,491 1

Study level measures
Gini index (mean, range, SD) 33.54, 25.4-44, 4.76 1.34 1.18-1.51
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CI 1.73− 4.22), Opioid (AOR 1.52, 95% CI 1.05− 2.18) or a combination of
the two (AOR 2.16, 95% CI 1.33−3.53) as compared to those whose primary
most recent injection being amphetamines also have a positive effect on the
probability of HIV positivity.

On the other hand, both socio-demographic characteristics considered in
our analysis, including the increase in the subject’s age (AOR 0.84, 95%
CI 0.76 − 0.94) or the subject being male (AOR 0.77, 95% CI 0.65 − 0.91)
had a protective effect on the HIV positivity among PWID. Similarly, hav-
ing the primary source of syringes from the pharmacy (AOR 0.72, 95% CI
0.59 − 0.88) compared to an outreach or a needle and syringe program also
has a protective effect against HIV positivity among PWID.
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3.4 Sensitivity analysis

To address the suitability of the propensity score technique and test the
robustness of the estimation of ever imprisonment on HIV among people who
inject drugs, a sensitivity analysis was executed. In this section, we conducted
additional analysis on the imprisonment effect on HIV using multiple different
approaches. The first sensitivity analysis follows straight from the propensity
score matching, where the exposure effect is assessed within subsets defined
by the estimated propensity scores. For the second sensitivity analysis, we
estimate the effect on the raw imputed data, without any implementation
of propensity score methods. Finally, we study the unadjusted effect of ever
imprisonment on HIV both on the propensity score matched data and the
unmatched imputed data by univariable regression.

3.4.1 Propensity score stratification

Propensity score stratification is a bias reduction technique in which subjects
are categorised into strata according to their estimated propensity scores
(Austin, 2011). As this stratification is based on the propensity score, being a
balancing score, the distribution of the observed covariates should be directly
comparable within each stratum. This allows estimation of the exposure effect
to take place within strata, using regular modelling, after which the stratum-
specific estimates can be combined into the overall exposure effect. Usually,
the stratification is based on quintiles of the estimated propensity scores and
the subjects are divided into five subgroups of equal size (Cochran, 1968).
Defining the subgroups based on the propensity score quintiles means that
higher ranks of subgroups come with increasing probabilities of ever being
imprisoned, while by the definition of the propensity score, higher propensity
score values indicate higher probabilities of ever being imprisoned.

For the stratum-specific estimation of imprisonment on having HIV among
PWID, a generalised linear mixed model was used. The shape of the model
was identical to that used for the propensity score matched data, given in
equation 10, with the exception of random effects. The random effects for the
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current model were Country and city-year. The random effect parameters
here were altered from those used in the propensity score matching model,
as here the defining of matching groups was not needed and to receive the
highest precision in the random effects with the model being convergent.
Due to no matching conducted in this analysis, the matching weights were
discarded from the model. Similarly to the estimates for the matched data,
the stratification estimates were pooled across the 25 unique imputed data
sets. This resulted in the stratum-specific estimates, given as adjusted odds
ratios with the 95% confidence intervals, of the imprisonment effect on HIV,
shown in Table 3.2.

The fractional values in the subject count come from averaging the total
number of subjects and ever imprisoned subjects over the 25 datasets. The
combined exposure effect, shown in the same table, can be obtained by pool-
ing the results from the stratum-specific estimates with the use of weights,
defined by the proportion of subjects in a given stratum (Rudolph et al.,
2016). For the assessment of the effectiveness of the stratification process,
distributional balance plots for all variables were plotted by cohort (see Ap-
pendix 3).

Table 3.2: Stratum-specific estimation of imprisonment effect on HIV

Stratum Imprisoned Subjects AOR 95% CI

1 2353.6 8762 1.78 1.47-2.16
2 4305.7 8761 1.63 1.30-2.04
3 5416.6 8761 1.30 1.02-1.65
4 6320.6 8761 1.15 0.83-1.58
5 7355.4 8762 0.94 0.68-1.29

Combined 1.32 1.17-1.49

The overall estimation of the imprisonment effect on HIV among PWID,
given as an adjusted odds ratio was 1.32 (95% CI 1.17−1.49), which is fairly
similar to the estimate acquired from propensity score matching 1.32 (95%
CI 1.09− 1.59).
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Table 3.2 presents the stratum specific estimates of the imprisonment effect
on HIV status among PWID. For strata one to three a positive effect of
HIV positivity is estimated among PWID who have ever been imprisoned
compared to those never imprisoned (stratum 1 AOR 1.78, 95% CI 1.47 −
2.16), (stratum 2 AOR 1.63, 95% CI 1.30−2.04), (stratum 3 AOR 1.30, 95%
CI 1.02− 1.65). For strata four and five no statistically significant effect was
established.

3.4.2 Estimation without propensity score methods

The sensitivity analysis also included a direct approach of estimating the
probability of having HIV among PWID without the use of propensity score
methods. This direct approach meant that a model was fitted immediately
after the imputation steps with no matching taking place. Modelling directly
the imputed data allowed us to compare the two approaches and to under-
stand the impact of propensity score matching on the estimates within our
data set.

A generalised linear mixed model, analogous to that used for the propensity
score matched data, given in equation 10 was used. The difference in the
models was in the random effect parameters, where Country and city-year
were used as random effects. The random effect parameters here were altered
from those used in the propensity score matching model, as here the defining
of matching groups was not needed and to receive the highest precision in
the random effects with the model being convergent. As no matching had
occurred, the matching weights were also discarded from the model. Simi-
larly with the other approaches, the estimations were pooled across the 25
imputed data sets. The final estimates are given in Table 3.3 together with
the estimates of the propensity score matched model for comparison.

The estimate of ever being in prison for the unmatched model 1.48 (95%
CI 1.34 − 1.63) differs somewhat from the estimate in the propensity score
matched model 1.32 (95% CI 1.09−1.59). Comparing the confidence intervals
of the two estimates, we see overlapping, however, the unmatched model
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Table 3.3: Effect estimates of having HIV for both propensity score matched data
and unmatched data presented in adjusted odds ratios for all study variables

Multivariable propensity
score matched model

Multivariable
unmatched model

AOR 95% CI AOR 95% CI

Socio-demographic characteristics
Age 0.84 0.76-0.94 0.89 0.82-0.96
Sex
Male 0.77 0.65-0.91 0.88 0.79-0.97
Female 1 1

Drug use characteristics
Duration of injecting 1.31 1.16-1.48 1.33 1.23-1.43
Frequency of injecting
Less than daily 0.90 0.76-1.07 0.83 0.73-0.93
Daily or more 1 1

Main drug injected
Amphetamine 1 1
Cocaine 2.70 1.73-4.22 2.62 1.90-3.61
Opioid 1.52 1.05-2.18 1.54 1.23-1.92
Opioid & Cocaine 2.16 1.33-3.53 2.50 1.76-3.54
Other 1.55 0.88-2.72 1.60 1.19-2.14

Overdose
yes 1.21 0.97-1.51 1.31 1.07-1.59
no 1 1

Ever sharing syringes
yes 1.91 1.59-2.28 1.68 1.51-1.86
no 1 1

Sexual behaviour
Number of partners 1.03 0.996-1.06 1.03 1.01-1.06
Environmental factors
Opioid substitution therapy
yes 1.22 0.96-1.56 1.25 1.05-1.49
no 1 1

Main source of clean syringes
NSP+outreach 1 1
Pharmacy 0.72 0.59-0.88 0.74 0.62-0.88
Other 0.88 0.59-1.31 0.89 0.61-1.28

Ever in prison
yes 1.32 1.09-1.59 1.48 1.34-1.63
no 1 1

Study level measures
Gini index 1.34 1.18-1.51 1.25 1.10-1.44
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gives a seemingly larger effect to ever imprisonment on acquiring HIV among
PWID.

Table 3.3 also indicates relatively similar effect estimates for both of the
models, as the direction of the adjusted odds ratios are equivalent for all
parameters included in both models. Additionally, all significant effect es-
timates for the propensity score matched model are also statistically sig-
nificant for the unmatched model. Nevertheless, for the unmatched model,
Frequency of injecting of less than daily compared to daily or more 0.83 (95%
CI 0.73 − 0.93), Other main drug injected compared to Amphetamine 1.60

(95% CI 1.19− 2.14), ever experiencing overdose 1.31 (95% CI 1.07− 1.59),
higher number of sex partners 1.03 (95% CI 1.01− 1.06) and ever receiving
opioid substitution therapy 1.25 (95% CI 1.05 − 1.49) are all statistically
significant in contrast to the results of the propensity score matched model.

Furthermore, the point estimates of the propensity score matched model for
Male gender, Ever sharing syringes and Ever in prison are not covered by
the confidence intervals of the unmatched model. However, when comparing
the corresponding confidence intervals of the two models, we see coinciding
of all respective intervals.

3.4.3 Unadjusted estimations on imputed and matched data

Lastly, we examine the unadjusted effect of imprisonment on HIV among
PWID both on the propensity score matched data and the unmatched im-
puted data by univariable regression. For the propensity score matched data
we used a generalised linear mixed model, given in equation 10, where the
parameter vector L2 contained only the effect of imprisonment. For the un-
matched imputed data, the same mixed model was used with the difference
in the matching group specific random effect, which was substituted for the
Country specific random effect, as no matching had taken place in the im-
puted data set. Similarly to the other methods, the estimations were pooled
across the 25 data sets to receive the final pooled estimates of imprisonment
on HIV for both approaches.
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The unadjusted effect estimate on the raw imputed data of 1.76 (95% CI
1.61 − 1.94) alters considerably from the unajdusted effect estimate on the
propensity score matched data of 1.27 (95% CI 1.05 − 1.53), both given
as odds ratios, which is noticeably closer to the adjusted estimate of the
propensity score matched model 1.32 (95% CI 1.09 − 1.59). Although the
two unadjusted estimates share the direction, the unmatched effect is evi-
dently overestimated, yielding confidence intervals with no overlap. This re-
sult supports the findings of the propensity score matching procedure, where
a relatively good balance between the two imprisonment groups was identi-
fied. Consequently, this demonstrates that in the propensity score matched
data the confounding between the confounder set and imprisonment has been
largely adjusted for, with the confounding relationship having been effectively
erased.
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4 Discussion

In general, traditional regression analysis is appropriate in estimating causal
inference. The causal effect estimates of an exposure on an outcome result
from conditioning on the confounder set (see example diagram in Figure 2.1),
hence blocking all causal paths intercepting it. However, as the confounder
set is often high-dimensional, statistical inference methods exclusively relying
on regression analysis rarely work in practice due to misspecification of the
regression model and the issues with the curse of dimensionality, where ad-
equate sample size is seldom achieved. While traditional regression analysis
focuses on modelling the association between the confounders and the out-
come, any misspecification to the model lead to biased effect estimators and
therefore inferring causal effects becomes inadequate. (Hernán and Robins,
2020)

The problem of misspecification is particularly significant when little overlap
between the exposure groups exists (Rubin, 1997). In this case, extrapolation
is needed in order to infer causal effects. Propensity score methods, on the
other hand, are not susceptible to extrapolation or the curse of dimensional-
ity as they make use of modelling the association between the exposure and
confounders (Vansteelandt and Daniel, 2014). This, however, leads to larger
standard errors when compared against regression methods, where the uncer-
tainty in extrapolation is ignored, and therefore wider confidence intervals,
also seen in the results of this study (see Table 3.3).

In addition, the study revealed an exposure response type effect in the propen-
sity score stratification sensitivity analysis. Table 3.2 presented the stratum
specific estimates of the imprisonment effect on HIV status among PWID.
Interestingly, the decrease of point-wise estimates together with the 95% con-
fidence intervals with higher ranks of subgroups suggest a diminishing effect
of imprisonment on HIV among PWID. Furthermore, in the bottom two sub-
groups where the probability of imprisonment was the highest, there is no
longer a statistically significant difference between the ever imprisoned and
non-imprisoned with regard to HIV positivity among PWID. Hence, as the
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subgroups were defined based on the quintiles of the estimated propensity
scores, our results indicate that for subgroups, where the probability of ever
being imprisoned is higher, the adjusted odds ratio of HIV positivity were
lower among ever imprisoned PWID compared to those never imprisoned.

This study has also important caveats that should be noted. Foremost, the
analysis data set being not a complete random sample, causal inference esti-
mations will always be subject to dispute, leading from the assumption of no
unmeasured confounding where one can never affirm it to be completely satis-
fied. As this study tackles the stigmatised and hidden issues of imprisonment
and HIV, both of which challenging for the subjects and a population hard
to reach by the investigators, a completely random sample would presently
be unfeasible. Specifically, randomisation at an individual level not even pos-
sible. The sampling methods in this study were also dissimilar across sites,
varying between convenience sampling, respondent driven sampling, snowball
sampling and purposive sampling methods, all adding to further divergence
of the collected data. In addition, the unification of such extensive base data
collected in different years will always lead to a loss of information in some
regard. Nevertheless, aim of minimal data loss was pursued during the whole
study process.

Estimating effect sizes using propensity score techniques could also pose some
problems and the assumptions for using propensity scores should be carefully
examined when using this method. For example, the propensity score should
be constructed on the entire confounder set L, an assumption that is difficult
to validate in practice. In our analysis, we have included as many variables as
possible and as literature has suggested, including many higher order terms,
and thus we expect the confounder set L to be well described with our choice
although existence of additional variables cannot be ruled out.

In literature, propensity score techniques have also been greeted with some
reluctance. King and Nielsen (King and Nielsen, 2019) propose two main
critiques to the propensity score matching method. Firstly, that matching
on the propensity score attempts to imitate a completely randomised de-
sign instead of a more efficient randomised block design. Correct inference
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is therefore yet more reliant on the propensity score model being correctly
specified, as covariate balance is attained evenly from all covariates included
into the propensity score model. An alternative would be matching on the
Mahalanobis distance, where prior knowledge of variable importance can be
taken into account. Secondly, that propensity score matching may give rise to
the “propensity score matching paradox”. The paradox states that data sets
with good underlying covariate balance may lead to increased imbalance in
the covariate distributions between exposure groups after the matching pro-
cedure caused by too narrow of a chosen caliper size. As in the current study,
all exposed subjects had an adequate number of matches, many of which
more than one, we believe that in this study this issue was under control.
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Conclusion

The thesis explored the causal effect of ever imprisonment on Human Im-
munodeficiency Virus (HIV) among people who inject drugs (PWID) from
individual patient data collected in the project "European Study Group for
Mathematical Modelling and Epidemiological Analysis of Drug Related Infec-
tious Diseases", coordinated by the European Monitoring Centre for Drugs
and Drug Addiction. The thesis is a comprehensive overview of the article
(Wiessing, Uusküla, and Rannap et al., 2021) submitted to The Addiction.
We introduced propensity score methods as bias reduction techniques, ap-
plied to the unified HIV data set, to support in the estimating of this causal
effect. To the knowledge of the authors, this study is the largest individual
patient data meta-analysis conducted as yet, assessing the aforementioned
causal relationship.

Our results suggest that imprisonment significantly increases risk for HIV
infection among PWID (RR 1.29, 95% CI 1.07-1.51; AOR 1.32, 95% CI
1.09-1.59; HIV prevalence in never imprisoned 7.28% 95% CI 6.90-7.66%).
A recent systematic review and meta-analysis (Stone et al., 2018) proposed
ever imprisonment having a comparable 25% increase in HIV risk among
PWID, supporting our main estimate. Besides the effect of imprisonment,
our analysis highlights several other factors to be associated with the risk of
HIV, including the age and sex of the subjects, injection duration, main drug
injected, ever sharing syringes, main source of clean syringes at the individual
level, and Gini index, as a societal level factor (indicator of socio-economic
inequality).

Although the results of our study are concordant with previous research, we
need to acknowledge the plausible deviation from the assumption of condi-
tional exchangeability and therefore from the assumption of no unmeasured
confounding in our estimations of the propensity score. Nevertheless, due to
the construction of our propensity score model and the sensitivity analysis re-
sults, we argue that this assumption is highly likely to be valid. Furthermore,
the assumption of no unmeasured confounding is also assumed to hold for all
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other regression-based approaches that estimate the treatment effect in ob-
servational studies (Austin, 2011). Consequently, due to the large amount of
sites with different definitions of collected variables and the variability in the
specific recall periods, the data unification process will always lead to lower
accuracy of study data compared to the site-specific data. To mitigate this,
the unification process was executed so to minimise the potential bias leading
from the unification process. In light of these preceding limitations, further
research is needed to assess the constraints resulting from the propensity
score methods and data unification issues and to more precisely describe the
association of HIV transmission with regard to imprisonment among PWID.
While these biases may influence the estimate of imprisonment-HIV associ-
ation, they seem unlikely to have caused the clear patterns observed in this
study.

In conclusion, the study confirms a risk-increasing causal relationship be-
tween HIV risk and the history of incarceration among community-recruited
PWID in Europe. The methods of propensity scores, including matching and
stratification, both yield results similar to previous research. We believe that
the implementation of the propensity score methods help in the accuracy of
the causal estimation with regard to reducing the bias naturally present in
observational studies.
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Appendix 1. Missingness patterns by country
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Figure A1: Proportion of missing (red) and observed (blue) data points by country
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Appendix 2. Distributional balance plots of matched

data
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Figure A2: Density plots of numerical variables before and after matching by
imprisonment
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Figure A3: Proportionality plots of categorical variables before and after matching
by imprisonment
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Appendix 3. Distributional balance plots of strat-

ified data
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Figure A4: Density plots of numerical variables by cohort compared to overall by
imprisonment
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Figure A5: Proportionality plots of categorical variables by cohort compared to
overall by imprisonment
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