cPFL &Y & XILINX

Ecole Polytechnique Fédérale de Lausanne

A Dynamically Scheduled HLS Flow in MLIR

by Morten Borup Petersen

Master Thesis

Prof. Paolo Ienne - EPFL LAP
Thesis Advisor

Stephen Neuendorffer - Xilinx Research
Thesis Supervisor

EPFLIC LAP
INF 136 (Batiment INF)
CH-1015 Lausanne

January 28, 2022

Acknowledgments

Thank you to Paolo Ienne, Lana Josipovi¢, and Mirjana Stojilovi¢ for allowing me to be both a student as
well as a collaborator of yours during my time at EPFL.

Thank you to Mike Urbach for the countless code reviews and discussions that we have shared to get
HLS in CIRCT where it is today.

And finally, thank you to Stephen Neuendorffer for being a great teacher and mentor, not only in the
context of this thesis, but also with respect to the many conversations that we have shared, on work, life,
career, and how to find ones’ path through it all.

Ringsted, Denmark, January 28, 2022 Morten Borup Petersen

Abstract

In High-Level Synthesis (HLS), we consider abstractions that span from software to hardware and
target heterogeneous architectures. Therefore, managing the complexity introduced by this is key to
implementing good, maintainable, and extendible HLS compilers. Traditionally, HLS flows have been
built on top of software compilation infrastructure such as LLVM, with hardware aspects of the flow
existing peripherally to the core of the compiler. Through this work, we aim to show that MLIR, a compiler
infrastructure with a focus on domain-specific intermediate representations (IR), is a better infrastructure
for HLS compilers. Using MLIR, we define HLS and hardware abstractions as first-class citizens of the
compiler, simplifying analysis, transformations, and optimization. To demonstrate this, we present a C-
to-RTL, dynamically scheduled HLS flow. We find that our flow generates circuits comparable to those of
an equivalent LLVM-based HLS compiler. Notably, we achieve this while lacking key optimization passes
typically found in HLS compilers and through the use of an experimental front-end. To this end, we show
that significant improvements in the generated RTL are but low-hanging fruit, requiring engineering
effort to attain. We believe that our flow is more modular and more extendible than comparable open-
source HLS compilers and is thus a good candidate as a basis for future research. Apart from the core HLS
flow, we provide MLIR-based tooling for C-to-RTL cosimulation and visual debugging, with the ultimate
goal of building an MLIR-based HLS infrastructure that will drive innovation in the field.

ii

Contents

Acknowledgments
Abstract
1 Introduction

2 Background
2.1 High-Level Synthesis e
2.1.1 Dynamically Scheduled HLS
2.1.2 HLSInfrastructure ittt e
2.2 MLIR . . o
2.2.1 Dialectsand Operations e
222 IRSemantics.

23 CIRCT e

3 An End-To-End Dynamically Scheduled HLS Flow in MLIR
3.1 Source Abstractionand Front-End
3.2 Dataflow IR & Dataflow Lowering
3.2.1 TheHandshake Dialecto,
3.2.2 From Standard to HandshakeIR
3.3 Progressive Hardware Lowering i

4 ATestable and Debuggable HLS Infrastructure
4.1 Transaction-based RTL Simulation
4.1.1 Generating Transactors ittt ittt
4.2 Source-Level Testbench Transformations
4.2.1 Testbench Cosimulation.
4.2.2 Desynchronizing RTL Simulator Invocations
4.3 AnEnd-to-EndExample e e
4.4 HSAbg.

ii

ii

22
23
24
24
26
33

5 Evaluating the Dynamically Scheduled Flow
5.1 Front-endEvaluation.
5.2 Handshake IR Evaluation
5.3 Hardware Evaluation
5.4 On MLIR as an Infrastructure for HLS

6 Task Pipelining in Dataflow Circuits

6.1 A Case for Task Pipelining

6.2 Making Loops Safe Under Task Pipelining

6.3 Feedforward and Feedback Task Pipelining

6.3.1

CFG Structure for Task Pipelineable Circuits

6.4 TaskPipeliningExample

6.4.1

Limitations

7 Conclusions and Future Work
7.1 FutureWork

Appendix

A1 ToolingOverview
A2 HLSToolTutorial

A21
A2.2
A23
A24
A2.5
A2.6

Bibliography

Setup
Usecase 1: An examplekernel
Usecase 2: Testbenches and cosimulation
Usecase 3: HSdbg Visualization and Checkpointing
Usecase 4: Modifying kernels at the MLIR level . .
Usecase 5: Creating a Binary Executable Testbench

iv

53
53
55
58
60

62
64
66
68
70
72
73

74
75

79
81
81
82
83
84
85
86

88

Chapter 1

Introduction

As Moore’s law is tapering off, and with the breakdown of Dennard scaling, the computing landscape
has transitioned towards ever more heterogeneity over the past decade. GPGPU and domain-specific
accelerators in the Al space have shown that specialization is the most promising path to satisfy the
increasing demands for computational power. However, increased specialization inevitably implies a
divergence from general-purpose programming models—the programming models for which traditional
CPU-targeting compilers have been designed. From the compiler’s view, the modern computing
landscape is broad, both in terms of the inputs we consider and the targets to which we compile. A
notion that made general purpose CPU-targeting compiler infrastructures great was the idea of a shared
intermediate representation, wherein different input languages and target architectures could all benefit
from a shared set of target-independent optimizations. However, a one-representation-fits-all approach
has become a limiting factor for compilation in the modern heterogeneous computational landscape.

Hardware is hard - to create high-quality digital designs requires intimate knowledge of both the
fundamentals of the field as well as device-specific capabilities. Furthermore, with a need to consider
many design points in design exploration, manually describing our accelerators in RTL-level hardware
description languages (HDLs) can quickly become prohibitively expensive. As a solution to this, High-
Level Synthesis (HLS) seeks to enable the generation of hardware designs directly from a software
description, and by doing so, reduce development time, ensure correctness, and allow software-native
designers to perform hardware design.

HLS tools will often be based on software compiler infrastructure. While this design has allowed
tools to leverage decades of work into high-performance software compilers capabilities, using such
infrastructure for hardware construction has inherent challenges in managing the complexity and
changes in levels of abstraction involved in an HLS flow. So as with hardware, it is now time to specialize
the compiler itself—without losing what made traditional CPU compiler infrastructure great. Recently, the
MLIR (Multi-Level Intermediate Representation) project has become a cornerstone in the heterogeneous
compilation space. MLIR is an LLVM project that builds on the lessons learned from the past decades
of research and development into the LLVM compiler infrastructure. The goal of MLIR is to provide an
infrastructure that makes it cheap to define new domain-specific intermediate representations (IRs),

transform them, and mix and match them alongside other IRs. The use of domain-specific IRs is observed
in many existing HLS flows [31, 37, 52]. Naturally, the motivation for introducing an IR in HLS is to manage
the complexity of going from sequential software to parallel hardware, while having a representation that
facilitates transformation and optimization. At a high level, HLS can be considered not just as the process
of taking an arbitrary sequential program and turning it into a hardware description. Instead, we can
consider it a flow that maps software onto hardware units, whether being programmable logic—which
itself can use many different models of computation—, hardened IPs, or CPU execution. To facilitate
such mappings, program transformations are needed at both high levels of abstraction, such as loop
tiling, or low levels, when converting from branching control flow to a finite state machine (FSM) model.
Many such transformations care heavily about the structure of the code. However, in traditional IRs such
as LLVM IRs, the high-level structure is quickly lost, making complex HLS transformations difficult at
best, impossible at worst. By using multiple levels of abstractions through MLIR, we can clearly define
where and how we perform HLS transformations and optimizations. All this is under the consideration of
design constraints such as power, area, throughput, and latency requirements. Due to the vast range of
abstractions and constraints to be considered, HLS tools must be built using infrastructure that lessens
the burden of working with, and lowering through, the different levels of abstraction.

That is the main theory of this work—we believe that approaching HLS with a primary focus
on the abstractions used is a better way of both researching and engineering HLS tools. It is then
these abstractions that guide our transformations—transformations make an abstraction powerful and
meaningful, and an abstraction is only as good as the transformations it enables.

This work presents an end-to-end MLIR-based HLS flow. The core of which is based on the CIRCT
project, an LLVM incubator project that seeks to use MLIR as the basis for a hardware compilation
infrastructure. Through CIRCT, we can leverage existing infrastructure to lower a high-level hardware IR
into synthesizable HDL. Since HLS is a vast field, we do not seek to solve "HLS in MLIR” but rather show
one possible path from software to hardware. In doing so, this work will mainly focus on dynamically
scheduled HLS instead of statically scheduled HLS.

The preliminary building blocks for supporting a dynamically scheduled HLS flow in CIRCT existed
prior to this project, which has been leveraged extensively through this work. These include definitions
of the core abstractions to be used, as well as work on lowering from software to our domain-specific IR,
and from the latter down to hardware. In this project, we face the challenge of composing and integrating
existing tooling both within CIRCT and outside, as well as the development of new tooling to allow for
the synthesis and simulation of C programs to a SystemVerilog representation.

To show that the proposed flow is viable for both future research and engineering efforts, significant
work has gone into the creation of an ecosystem supporting the HLS compiler itself. We provide tools
for cosimulating C testbenches with RTL simulations of kernels generated by the compiler, a system for
visually debugging RTL simulations at the level of a domain-specific IR, and a driver for composing all
tools in the flow. Careful consideration has gone into the design of these tools to ensure reproducibility
and general applicability for this project and future projects to come.

In evaluating the quality of our flow, we compare both qualitatively and quantitatively against a

comparable compiler, Dynamatic [31]. In this, we compare at the front-end, dataflow IR and hardware
level to identify the effects of either flow at these levels of abstraction. To evaluate the quality of the
emitted hardware, we compare resource consumption between designs generated by the two systems.

Finally, we present a new model for task pipelining in dataflow circuits. The compiler which this
flow is modeled after, Dynamatic, assumes no task pipelining. This significantly limits performance
in real world programs that do not have a structure of a single nested loop. Through our model, we
show that a significant increase in kernel initiation interval and temporal utilization can be achieved.
Furthermore, this solution is compatible with our proposed cosimulation infrastructure such that a
sequentially described high-level testbench can exercise the decoupled interface of a task-pipelineable
accelerator.

This thesis is structured as follows:

In chapter 2, an introduction to the topic of HLS and an overview of the current state-of-the-art is
given. Here, we also introduce MLIR and the CIRCT project, the building blocks of the proposed flow. In
chapter 3 we go through the end-to-end dynamically scheduled HLS flow, presenting the choice of front-
end, description of the dataflow IR, dataflow lowering, and finally how dataflow circuits are lowered to
hardware. In chapter 4 we describe the importance of cosimulation in HLS and our solution to an MLIR-
based approach for cosimulating high-level testbenches with RTL simulations of generated hardware.
Furthermore, we present HSdbg, a tool for visually debugging RTL simulations of handshake circuits. In
chapter 5 we compare our flow with Dynamatic, as well as a qualitative analysis on the applicability of
MLIR to HLS compilers. In chapter 6 we present a new model for the generation of dataflow circuits safe
for task pipelining. In chapter 7 we conclude on the work, as well as provide possible directions for future
work. In Appendix, we provide a comprehensive guide to our driver tool, h1stool, as well as a guide to
reproducing the experiments performed through this work.

The output of this work is available in the CIRCT repository' as well as the CIRCT-HLS repository?.
CIRCT-HLS is a separate repository not managed by the LLVM project, which has been used to capture
this work’s integration and testing aspects. We expect that a substantial amount, if not all, of CIRCT-HLS
will eventually merge into CIRCT.

Ihttps://github. com/11vm/circt
2https://github.com/circt-hls/circt-hls

https://github.com/llvm/circt
https://github.com/circt-hls/circt-hls

Chapter 2

Background

High-level synthesis is an interdisciplinary field, considering everything from language design and
compiler construction to hardware design—basic knowledge within these fields is assumed. To introduce
the reader to the background relevant for this thesis, we will first provide a general introduction to the
field of high-level synthesis. Here, we introduce the motivations for HLS, the concepts of statically and
dynamically scheduled HLS, and a survey of existing HLS infrastructure. Then we describe MLIR, the
compilation infrastructure upon which this work builds. Here, we introduce its motivations as well as an
overview of its concept of dialects. Finally, we describe CIRCT, an MLIR-based hardware compilation
infrastructure, which this work is part of.

2.1 High-Level Synthesis

The need for high-level design methods has been seen in both software and hardware development
since the inception of the fields. In software, the use of programming languages at ever-higher levels of
abstraction has been a natural evolution to both increase productivity and the capabilities available to
the programmer. Likewise, when considering digital hardware, transistor-level design quickly became
unfeasible as Moore’s law started to scale. As a result, hardware description languages were developed
to raise the level of abstraction for a hardware designer to the RTL level. However, contrary to software,
the hardware world has been slow to move beyond this step. This can be attributed to the difficulties of
needing cycle-accurate behaviour. While software can rely on operating systems and application binary
interfaces (ABIs) to handle resources and inter-procedural control flow, hardware must have intimate
knowledge of the often latency-sensitive interfaces and device-specific behavior which digital circuits
are designed under.

This poses a problem in our current age; efficient RTL level design requires skills orthogonal to those of
software engineering. With the ever-growing need for specialization and domain-specific accelerators, we
seek to close the gap between the behavioral specification of an accelerator and its structural definition.
Thus, through the proliferation of reconfigurable hardware, allowing skilled software designers to target
hardware devices, without intimate knowledge of RTL level design.

High-level synthesis (HLS) is one solution to this problem. In short, HLS transforms a behavioral
software program into parallel hardware with equivalent semantics, while leveraging hard- and soft IP,
system-on-chip (SoC) peripherals, and programmable logic. HLS is a vast field, spanning digital design,
compiler engineering, chip design, and everything in between. While the concepts of HLS have been
researched since the 1970s [19] and the core concepts of the field well established since the 1990s [23], it
was not until the proliferation of FPGAs that use of the technology started to take off beyond research
environments [15, 34]. Today, HLS tools have become vital given their enablement of rapid development
and deployment of new algorithms on reprogrammable hardware.

The classical approach to HLS is through statically scheduled HLS. In this model, a program is
initially partitioned into substructures, which are transformed into a hardware representation through
scheduling and allocation. Scheduling partitions the operations of a design with respect to time, and
allocation with respect to hardware resources. In this process, allocation achieves spatial parallelism
by deciding the amount of functional units in a design, which enables the scheduling of operations in
parallel - these problems are thus intertwined. HLS algorithms are typically performed under latency
and area constraints, with the tradeoff usually being higher performance (latency, f;,4x, throughput)
implying greater resource usage. Any given design will be assigned a schedule, guiding the activation
and interconnection of the allocated functional units during kernel invocation. In statically scheduled
HLS, this schedule is fixed at compile time, and under the consideration of the allocated hardware and
input program, accounts for the resolution of possible structural and data hazards during execution. A
static schedule and a set of allocated hardware units can then be transformed into a finite state machine +
datapath (FSMD) model. In this model, the functional and storage units as well as their interconnections
comprise the datapath, whereas the schedule drives the definition of the FSM controller. This FSM

controller will interact with components in the datapath to drive runtime routing and component
enablement. Considering kernel performance, speedup through parallelism can be achieved in two
ways - spatial parallelism, as described above, and temporal parallelism. A key factor to designing high-
performance circuits is to maximize temporal use of the allocated hardware resources, which is done
through the process of pipelining. For a given kernel, pipelining can be achieved both for structures
within the kernel, such as loop pipelining, and across kernel calls, task pipelining, meaning that multiple
invocations of a kernel can be live concurrently.

The main barrier to efficient pipelining is the HLS tools’ ability to determine dependencies across
initiations of the pipeline. Most significantly, a read-after-write (RAW) hazard may occur when
later iterations of the pipeline require the use of a value written in earlier iterations of the pipeline. In
such cases, later iterations must wait for the earlier pipeline iteration to compute a value before the
later iteration can proceed. Such dependencies may also occur across memory accesses, wherein each
loop iteration reads from and writes to the same memory. In such cases, the HLS tool often has to
conservatively assuming that a RAW hazard can occur on any iteration, thus substantially reducing the
initiation interval (II) of the pipeline, being the number of cycles between subsequent initiations
of a pipeline. To illustrate, consider the histogram kernel in Figure 2.1.

void histogram(int f[N], int hist[N]) {
for (int i = 0; 1 < N; +1i)
hist[f[i]]++;

Figure 2.1: Histogram kernel.

The hist array is accessed by a value that is read through a pointer, £ [1]. Due to this, it is impossible
to statically determine whether subsequent loop iterations indexing into hist may alias. As such, a
statically scheduled flow will, in general, resort to conservatively assume that all ambiguous indexes into
hist may alias. This is visualized in Figure 2.2, assuming a memory access latency of one cycle and an
adder latency of three cycles. Due to this, subsequent iterations of the loop body may only start once
every five cycles, i.e., II=5. This conflicts with our desire to maximize throughput by minimizing the II of
the kernel.

Cycle
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
st . B - - - - - >
< |t1=1d[t2=1d _ .
flo] | histt1] B3=t2+1 hlsttgﬂ,

: t
€ t1 = 1dYt2 = Id sl
5" i t3=12+1 hist[t1],
E f[1] | hist[t1] p
_ K 1= dY2 =i t3=t2+1 hisf[ttﬂ
M f2] |hist[t1] i

Figure 2.2: Static schedule of the hist kernel. Red arrows denote possible inter-iteration dependencies.

2.1.1 Dynamically Scheduled HLS

Statically scheduled HLS fails to generate high-performance circuits in the presence of dependencies
that are ambiguous at compile time. This may occur with the existence of variable-latency functional
units, memory dependencies, and control dependencies. This observation does not solely impact HLS, it
is rather a central issue in the field of computer architecture, and similar challenges are met in the design
of (statically scheduled) VLIW processors [27] versus their dynamically scheduled counterparts.

Cycle
1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 .
st : : - - - : : >
—|t1=1d|t2=1d _ _
flo] |histt1] t3=t2+1 hlstt:[;ﬂ,
c
2 t4=1d [t5=Id st
g 17 |nist 6=t5+1 hist[t4],
g f1] | hist(t4] (0]
- t7=Id | t8 = Id st
° 2] |hist t9=1t8 + 1 hist[t7],
v fl2] | hist[t7] i

Figure 2.3: Dynamic schedule of the hist kernel, assuming no runtime dependencies.

Consider again the histogram kernel in Figure 2.1. While a statically scheduled approach has to
conservatively schedule based on worst-case assumptions, in practice, it may be that actual conflicting
accesses into hist occur rarely. We want to optimize for the common case, which is where a dynamically
scheduled approach is beneficial. Instead of relying on static worst-case assumptions, dynamically
scheduled circuits insert runtime dependency checks which guide the scheduling of the hardware units
employed throughout the circuit. In this model, we can achieve the best-case dynamic schedule, shown
in Figure 2.3 with an I] = 1 and much greater parallelism’.

Recently, methods for dynamically scheduled HLS have been developed, allowing for a structured
approach to convert a control and dataflow graph (CDFG) program into a dataflow circuit [30, 31]. This
method relies on the use of elastic circuits [11], a latency insensitive, composable dataflow model. An
elastic interface consists of handshake control signals (ready/valid wires) alongside a data signal. Elastic
circuits lend themselves to both synchronous and asynchronous design, wherein request-acknowledge
handshaking can be used to connect FSMs of variable or unknown latencies in sequence. As compared
to a statically scheduled approach, control in elastic circuits is fully distributed, implying that each
component defines its outputs (readiness of input handshake ports, validity of output handshake ports)
based solely on its inputs (validity of input handshake ports, readiness of output handshake ports) as
well as its current state, if synchronous.

1 Assuming no constraints on the number of ports in the hist memory, allocation of three distinct adders or alternatively a
single pipelined adder.

in in@ inN in@ inN in data in0 inN

Fork Join CMerge Buffer t"—>Branch Merge
v v v v Vv v
out@--- outN out idx out out true false out Ready/Valid
1n tr‘l?ger' 1n[§.‘ ::1nN 1n(§_‘ .:J..nN Data
Y L_)
Source Sink Constant| > Muz f
v v v v
out out out out

Figure 2.4: Dataflow operators considered in this work.

Figure 2.4 shows the operators used in the dataflow model of this work. These dataflow components
have the capabilities necessary to translate a CDFG into a semantically equivalent dataflow circuit. The
semantics of these operations are as follows:

A fork operation takes a single input and replicates it to NV outputs.

A join operation is a control-only operator which assigns out to valid once all inputs are ready.

A control merge operation non-deterministically transacts any valid input on out and the index of the
transacted input on idx.

A buffer operation can buffer a transaction through decoupling its input readiness from its output
readiness. The capacity of the buffer defines the maximum number of transactions stored within.
Implementation style can be sequential to break combinational paths or as a transparent first-in, first-
out (FIFO) buffer, used to manage backpressure. In dataflow circuits, a buffer can be inserted on any
path without modifying the semantics of the circuit [7].

A branch operation will, upon both its cond and data inputs being valid and the selected output
(true/false) being ready, emit its data operand to the selected output.

A merge operation functions like the control merge operation, but does not provide an index output.

A source operation always has its output valid and can be used as a continuous source of control tokens.
A sink operation is always ready to accept a transaction on its input and can be used to tie off unused
signals.

A constant operation will, when provided with an input control value, output a compile-time fixed value
on its output.

A mux operation will, upon its sel and selected input signal being valid, and out being ready, output the
value of the selected input on its output.

Any arbitrary function can be placed within a handshaking component, represented by the f operation;
such components will have join semantics for synchronizing the input and outputs - all inputs must be
valid, and the output must be ready before the function may provide a valid output. This is also what is
known as a unit-rate actor [20], and is used for wrapping unary and binary operators (+, A, 7, ...).

in@ ir]N ctrl 1dA stA stD 1dA 1dD' go stA stD go

Function Memory Load Store
T
outd outN ctrl 1dD ldF stF 1dA' 1dD stA' stD'

Figure 2.5: Dataflow function and memory operations.

Figure 2.5 shows how the concepts of functions and memories are handled in the dataflow model.
A function is a component with an arbitrary number of input and outputs, and mandatory input and
output control signals. These control signals indicate when the function should start execution and
when the function is finished. The memory component provides (in our model) an arbitrary number
of input and output ports. Each load and store port has an associated output control signal to indicate
that the memory operation was completed. For a store operation, stA, stD represents address and data
signals coming from a predecessor operation. These are sent to a memory operation through stA’,stD?’,
subject to synchronization with the go signal. Similar logic applies for the load operation, wherein 1dD”
represents data coming from a memory, and 1dD data sent to a successor operation. The go signal can be
used as a synchronization mechanism to stall the execution of a memory operation, in cases of runtime
RAW conflicts.

Having a dataflow representation of a CDFG program, operators must be lowered further into their
hardware representation. Edwards et al. [20] describes the implementation of compositional dataflow
components. These are hardware implementations of the dataflow operators mentioned earlier, that
have the property of being composable, while breaking combinational cycles in the control network of a
circuit. This style of implementation will be revisited in section 3.3.

Finally, we note that while dynamically scheduled circuits show promising performance, there is
no such thing as a free lunch. Statically scheduled circuits will theoretically always remain superior to
their dynamically scheduled counterpart in cases where all dependencies and latencies are known at
compile time—thus removing the need for design elasticity and the hardware overhead which comes
with such an implementation. DASS [12] explores how a design may be partitioned into its statically
and dynamically scheduled parts, striking a balance between possible performance and resource usage,
showing promising results in cases where such partitioning is done.

2.1.2 HLS Infrastructure

Traditionally, open-source HLS tools have leveraged software compilation infrastructures, with LLVM
being the most commonly used [48]. Some examples of LLVM based HLS tools are LegUp [9], able to
generate a design using a mixture of RTL and code running on a soft MIPS processor and AutoPilot [15, 63],
able to synthesize a mixture of C, C++, and SystemC, which also provides methods for design exploration
and cosimulation. The use of a software compilation infrastructure is with good reason; HLS and

software compilation share many optimization goals, a few examples being common subexpression
elimination (CSE), constant folding, and loop transformations [15, 22]. In general, these optimizations
are performed on unstructured IR—an IR which expresses control flow through the use of basic blocks
and branches. Structured IRs, and abstract syntax trees (AST) in general, define control flow through
operations like if -, for-, and while constructs.

HLS
transformations

R)

(.
C,C++ |>| ClangAsT > LLWMIR |» HSIR | R1L |

Figure 2.6: Example LLVM-based HLS flow, using C/C++ as its source language. HLS transformations are
performed both at the structured AST level (i) as well as the unstructured LLVM IR level (ii). Often, some
form of domain-specific HLS IR will be used to bridge the gap between LLVM IR and RTL emission.

Figure 2.6 shows how an HLS compiler might be based on an LLVM pipeline. HLS transformations
may be performed both before and after LLVM IR. A large and important class of HLS optimizations, loop
nest optimizations, is most easily performed before conversion into unstructured IR. In an HLS context,
loop optimizations may aid in e.g. guiding loop splitting to improve pipelining performance [38], to guide
loop tiling and unrolling, as well as memory access analysis and partitioning, to exploit data and loop
level parallelism in hardware [13, 14]. Many of such optimizations can only apply when program structure
is maintained or recoverable. Once unstructured, memory access patterns and control flow become at
best hard to analyze, and at worst, ambiguous, to the point where transformations cannot apply without
danger of modifying program semantics. As a result, many HLS optimizations need to be performed
at the AST level (Clang AST, for C/C++ based HLS flows, Figure 2.6(i)) where structure is maintained.
This then presents the issue that ASTs in LLVM are source language specific, thus restricting the HLS
transformations to a single source language. A better solution would be to anchor transformations
to the concepts that the transformation cares about, i.e. the concept of a loop, and make that source
independent. This is the approach taken by MLIR, as we shall see in section 2.2. While not necessarily a
barrier for research, it is a significant limitation if we want open-source HLS tools to learn from staged
compiler design, decoupling source and target-level transformations, as well as avoiding reimplementing
that which is shared between all HLS flows.

Due to the recent open-sourcing of the Xilinx Vitis [61] LLVM front-end, we can gain insight into
how commercial tools handle some of the complexities discussed above. The Vitis front-end ingests,
and transforms, LLVM IR and annotates source-level pragmas at points in the IR where the pragma
semantics most closely relate to the operations of the source program, e.g. loop-level pragmas being
attached as attributes to backedges in the control flow graph (CFG). These attributes—scattered across
the unstructured IR—are used in the (closed-source) Vitis backend to guide HLS transformations and
hardware emission. We may also imagine that more complex semantics are inserted as functio