
École Polytechnique Fédérale de Lausanne

A Dynamically Scheduled HLS Flow in MLIR

by Morten Borup Petersen

Master Thesis

Prof. Paolo Ienne - EPFL LAP

Thesis Advisor

Stephen Neuendorffer - Xilinx Research

Thesis Supervisor

EPFL IC LAP

INF 136 (Bâtiment INF)

CH-1015 Lausanne

January 28, 2022

Acknowledgments

Thank you to Paolo Ienne, Lana Josipović, and Mirjana Stojilović for allowing me to be both a student as

well as a collaborator of yours during my time at EPFL.

Thank you to Mike Urbach for the countless code reviews and discussions that we have shared to get

HLS in CIRCT where it is today.

And finally, thank you to Stephen Neuendorffer for being a great teacher and mentor, not only in the

context of this thesis, but also with respect to the many conversations that we have shared, on work, life,

career, and how to find ones’ path through it all.

Ringsted, Denmark, January 28, 2022 Morten Borup Petersen

i

Abstract

In High-Level Synthesis (HLS), we consider abstractions that span from software to hardware and

target heterogeneous architectures. Therefore, managing the complexity introduced by this is key to

implementing good, maintainable, and extendible HLS compilers. Traditionally, HLS flows have been

built on top of software compilation infrastructure such as LLVM, with hardware aspects of the flow

existing peripherally to the core of the compiler. Through this work, we aim to show that MLIR, a compiler

infrastructure with a focus on domain-specific intermediate representations (IR), is a better infrastructure

for HLS compilers. Using MLIR, we define HLS and hardware abstractions as first-class citizens of the

compiler, simplifying analysis, transformations, and optimization. To demonstrate this, we present a C-

to-RTL, dynamically scheduled HLS flow. We find that our flow generates circuits comparable to those of

an equivalent LLVM-based HLS compiler. Notably, we achieve this while lacking key optimization passes

typically found in HLS compilers and through the use of an experimental front-end. To this end, we show

that significant improvements in the generated RTL are but low-hanging fruit, requiring engineering

effort to attain. We believe that our flow is more modular and more extendible than comparable open-

source HLS compilers and is thus a good candidate as a basis for future research. Apart from the core HLS

flow, we provide MLIR-based tooling for C-to-RTL cosimulation and visual debugging, with the ultimate

goal of building an MLIR-based HLS infrastructure that will drive innovation in the field.

ii

Contents

Acknowledgments i

Abstract ii

1 Introduction 1

2 Background 4

2.1 High-Level Synthesis . 5

2.1.1 Dynamically Scheduled HLS . 7

2.1.2 HLS Infrastructure . 9

2.2 MLIR . 12

2.2.1 Dialects and Operations . 13

2.2.2 IR Semantics . 15

2.2.3 On Executability . 16

2.3 CIRCT . 18

2.3.1 A Tour of CIRCT . 19

2.3.2 HLS in CIRCT . 20

3 An End-To-End Dynamically Scheduled HLS Flow in MLIR 22

3.1 Source Abstraction and Front-End . 23

3.2 Dataflow IR & Dataflow Lowering . 24

3.2.1 The Handshake Dialect . 24

3.2.2 From Standard to Handshake IR . 26

3.3 Progressive Hardware Lowering . 33

4 A Testable and Debuggable HLS Infrastructure 38

4.1 Transaction-based RTL Simulation . 39

4.1.1 Generating Transactors . 40

4.2 Source-Level Testbench Transformations . 44

4.2.1 Testbench Cosimulation . 44

4.2.2 Desynchronizing RTL Simulator Invocations . 45

4.3 An End-to-End Example . 48

4.4 HSdbg . 49

iii

5 Evaluating the Dynamically Scheduled Flow 53

5.1 Front-end Evaluation . 53

5.2 Handshake IR Evaluation . 55

5.3 Hardware Evaluation . 58

5.4 On MLIR as an Infrastructure for HLS . 60

6 Task Pipelining in Dataflow Circuits 62

6.1 A Case for Task Pipelining . 64

6.2 Making Loops Safe Under Task Pipelining . 66

6.3 Feedforward and Feedback Task Pipelining . 68

6.3.1 CFG Structure for Task Pipelineable Circuits . 70

6.4 Task Pipelining Example . 72

6.4.1 Limitations . 73

7 Conclusions and Future Work 74

7.1 Future Work . 75

Appendix

A.1 Tooling Overview . 79

A.2 HLSTool Tutorial . 81

A.2.1 Setup . 81

A.2.2 Usecase 1: An example kernel . 82

A.2.3 Usecase 2: Testbenches and cosimulation . 83

A.2.4 Usecase 3: HSdbg Visualization and Checkpointing . 84

A.2.5 Usecase 4: Modifying kernels at the MLIR level . 85

A.2.6 Usecase 5: Creating a Binary Executable Testbench . 86

Bibliography 88

iv

Chapter 1

Introduction

As Moore’s law is tapering off, and with the breakdown of Dennard scaling, the computing landscape

has transitioned towards ever more heterogeneity over the past decade. GPGPU and domain-specific

accelerators in the AI space have shown that specialization is the most promising path to satisfy the

increasing demands for computational power. However, increased specialization inevitably implies a

divergence from general-purpose programming models—the programming models for which traditional

CPU-targeting compilers have been designed. From the compiler’s view, the modern computing

landscape is broad, both in terms of the inputs we consider and the targets to which we compile. A

notion that made general purpose CPU-targeting compiler infrastructures great was the idea of a shared

intermediate representation, wherein different input languages and target architectures could all benefit

from a shared set of target-independent optimizations. However, a one-representation-fits-all approach

has become a limiting factor for compilation in the modern heterogeneous computational landscape.

Hardware is hard - to create high-quality digital designs requires intimate knowledge of both the

fundamentals of the field as well as device-specific capabilities. Furthermore, with a need to consider

many design points in design exploration, manually describing our accelerators in RTL-level hardware

description languages (HDLs) can quickly become prohibitively expensive. As a solution to this, High-

Level Synthesis (HLS) seeks to enable the generation of hardware designs directly from a software

description, and by doing so, reduce development time, ensure correctness, and allow software-native

designers to perform hardware design.

HLS tools will often be based on software compiler infrastructure. While this design has allowed

tools to leverage decades of work into high-performance software compilers capabilities, using such

infrastructure for hardware construction has inherent challenges in managing the complexity and

changes in levels of abstraction involved in an HLS flow. So as with hardware, it is now time to specialize

the compiler itself—without losing what made traditional CPU compiler infrastructure great. Recently, the

MLIR (Multi-Level Intermediate Representation) project has become a cornerstone in the heterogeneous

compilation space. MLIR is an LLVM project that builds on the lessons learned from the past decades

of research and development into the LLVM compiler infrastructure. The goal of MLIR is to provide an

infrastructure that makes it cheap to define new domain-specific intermediate representations (IRs),

1

transform them, and mix and match them alongside other IRs. The use of domain-specific IRs is observed

in many existing HLS flows [31, 37, 52]. Naturally, the motivation for introducing an IR in HLS is to manage

the complexity of going from sequential software to parallel hardware, while having a representation that

facilitates transformation and optimization. At a high level, HLS can be considered not just as the process

of taking an arbitrary sequential program and turning it into a hardware description. Instead, we can

consider it a flow that maps software onto hardware units, whether being programmable logic—which

itself can use many different models of computation—, hardened IPs, or CPU execution. To facilitate

such mappings, program transformations are needed at both high levels of abstraction, such as loop

tiling, or low levels, when converting from branching control flow to a finite state machine (FSM) model.

Many such transformations care heavily about the structure of the code. However, in traditional IRs such

as LLVM IRs, the high-level structure is quickly lost, making complex HLS transformations difficult at

best, impossible at worst. By using multiple levels of abstractions through MLIR, we can clearly define

where and how we perform HLS transformations and optimizations. All this is under the consideration of

design constraints such as power, area, throughput, and latency requirements. Due to the vast range of

abstractions and constraints to be considered, HLS tools must be built using infrastructure that lessens

the burden of working with, and lowering through, the different levels of abstraction.

That is the main theory of this work—we believe that approaching HLS with a primary focus

on the abstractions used is a better way of both researching and engineering HLS tools. It is then

these abstractions that guide our transformations—transformations make an abstraction powerful and

meaningful, and an abstraction is only as good as the transformations it enables.

This work presents an end-to-end MLIR-based HLS flow. The core of which is based on the CIRCT

project, an LLVM incubator project that seeks to use MLIR as the basis for a hardware compilation

infrastructure. Through CIRCT, we can leverage existing infrastructure to lower a high-level hardware IR

into synthesizable HDL. Since HLS is a vast field, we do not seek to solve ”HLS in MLIR” but rather show

one possible path from software to hardware. In doing so, this work will mainly focus on dynamically

scheduled HLS instead of statically scheduled HLS.

The preliminary building blocks for supporting a dynamically scheduled HLS flow in CIRCT existed

prior to this project, which has been leveraged extensively through this work. These include definitions

of the core abstractions to be used, as well as work on lowering from software to our domain-specific IR,

and from the latter down to hardware. In this project, we face the challenge of composing and integrating

existing tooling both within CIRCT and outside, as well as the development of new tooling to allow for

the synthesis and simulation of C programs to a SystemVerilog representation.

To show that the proposed flow is viable for both future research and engineering efforts, significant

work has gone into the creation of an ecosystem supporting the HLS compiler itself. We provide tools

for cosimulating C testbenches with RTL simulations of kernels generated by the compiler, a system for

visually debugging RTL simulations at the level of a domain-specific IR, and a driver for composing all

tools in the flow. Careful consideration has gone into the design of these tools to ensure reproducibility

and general applicability for this project and future projects to come.

In evaluating the quality of our flow, we compare both qualitatively and quantitatively against a

2

comparable compiler, Dynamatic [31]. In this, we compare at the front-end, dataflow IR and hardware

level to identify the effects of either flow at these levels of abstraction. To evaluate the quality of the

emitted hardware, we compare resource consumption between designs generated by the two systems.

Finally, we present a new model for task pipelining in dataflow circuits. The compiler which this

flow is modeled after, Dynamatic, assumes no task pipelining. This significantly limits performance

in real world programs that do not have a structure of a single nested loop. Through our model, we

show that a significant increase in kernel initiation interval and temporal utilization can be achieved.

Furthermore, this solution is compatible with our proposed cosimulation infrastructure such that a

sequentially described high-level testbench can exercise the decoupled interface of a task-pipelineable

accelerator.

This thesis is structured as follows:

In chapter 2, an introduction to the topic of HLS and an overview of the current state-of-the-art is

given. Here, we also introduce MLIR and the CIRCT project, the building blocks of the proposed flow. In

chapter 3 we go through the end-to-end dynamically scheduled HLS flow, presenting the choice of front-

end, description of the dataflow IR, dataflow lowering, and finally how dataflow circuits are lowered to

hardware. In chapter 4 we describe the importance of cosimulation in HLS and our solution to an MLIR-

based approach for cosimulating high-level testbenches with RTL simulations of generated hardware.

Furthermore, we present HSdbg, a tool for visually debugging RTL simulations of handshake circuits. In

chapter 5 we compare our flow with Dynamatic, as well as a qualitative analysis on the applicability of

MLIR to HLS compilers. In chapter 6 we present a new model for the generation of dataflow circuits safe

for task pipelining. In chapter 7 we conclude on the work, as well as provide possible directions for future

work. In Appendix, we provide a comprehensive guide to our driver tool, hlstool, as well as a guide to

reproducing the experiments performed through this work.

The output of this work is available in the CIRCT repository1 as well as the CIRCT-HLS repository2.

CIRCT-HLS is a separate repository not managed by the LLVM project, which has been used to capture

this work’s integration and testing aspects. We expect that a substantial amount, if not all, of CIRCT-HLS

will eventually merge into CIRCT.

1https://github.com/llvm/circt
2https://github.com/circt-hls/circt-hls

3

https://github.com/llvm/circt
https://github.com/circt-hls/circt-hls

Chapter 2

Background

High-level synthesis is an interdisciplinary field, considering everything from language design and

compiler construction to hardware design—basic knowledge within these fields is assumed. To introduce

the reader to the background relevant for this thesis, we will first provide a general introduction to the

field of high-level synthesis. Here, we introduce the motivations for HLS, the concepts of statically and

dynamically scheduled HLS, and a survey of existing HLS infrastructure. Then we describe MLIR, the

compilation infrastructure upon which this work builds. Here, we introduce its motivations as well as an

overview of its concept of dialects. Finally, we describe CIRCT, an MLIR-based hardware compilation

infrastructure, which this work is part of.

4

2.1 High-Level Synthesis

The need for high-level design methods has been seen in both software and hardware development

since the inception of the fields. In software, the use of programming languages at ever-higher levels of

abstraction has been a natural evolution to both increase productivity and the capabilities available to

the programmer. Likewise, when considering digital hardware, transistor-level design quickly became

unfeasible as Moore’s law started to scale. As a result, hardware description languages were developed

to raise the level of abstraction for a hardware designer to the RTL level. However, contrary to software,

the hardware world has been slow to move beyond this step. This can be attributed to the difficulties of

needing cycle-accurate behaviour. While software can rely on operating systems and application binary

interfaces (ABIs) to handle resources and inter-procedural control flow, hardware must have intimate

knowledge of the often latency-sensitive interfaces and device-specific behavior which digital circuits

are designed under.

This poses a problem in our current age; efficient RTL level design requires skills orthogonal to those of

software engineering. With the ever-growing need for specialization and domain-specific accelerators, we

seek to close the gap between the behavioral specification of an accelerator and its structural definition.

Thus, through the proliferation of reconfigurable hardware, allowing skilled software designers to target

hardware devices, without intimate knowledge of RTL level design.

High-level synthesis (HLS) is one solution to this problem. In short, HLS transforms a behavioral

software program into parallel hardware with equivalent semantics, while leveraging hard- and soft IP,

system-on-chip (SoC) peripherals, and programmable logic. HLS is a vast field, spanning digital design,

compiler engineering, chip design, and everything in between. While the concepts of HLS have been

researched since the 1970s [19] and the core concepts of the field well established since the 1990s [23], it

was not until the proliferation of FPGAs that use of the technology started to take off beyond research

environments [15, 34]. Today, HLS tools have become vital given their enablement of rapid development

and deployment of new algorithms on reprogrammable hardware.

The classical approach to HLS is through statically scheduled HLS. In this model, a program is

initially partitioned into substructures, which are transformed into a hardware representation through

scheduling and allocation. Scheduling partitions the operations of a design with respect to time, and

allocation with respect to hardware resources. In this process, allocation achieves spatial parallelism

by deciding the amount of functional units in a design, which enables the scheduling of operations in

parallel - these problems are thus intertwined. HLS algorithms are typically performed under latency

and area constraints, with the tradeoff usually being higher performance (latency, fmax , throughput)

implying greater resource usage. Any given design will be assigned a schedule, guiding the activation

and interconnection of the allocated functional units during kernel invocation. In statically scheduled

HLS, this schedule is fixed at compile time, and under the consideration of the allocated hardware and

input program, accounts for the resolution of possible structural and data hazards during execution. A

static schedule and a set of allocated hardware units can then be transformed into a finite state machine +

datapath (FSMD) model. In this model, the functional and storage units as well as their interconnections

comprise the datapath, whereas the schedule drives the definition of the FSM controller. This FSM

5

controller will interact with components in the datapath to drive runtime routing and component

enablement. Considering kernel performance, speedup through parallelism can be achieved in two

ways - spatial parallelism, as described above, and temporal parallelism. A key factor to designing high-

performance circuits is to maximize temporal use of the allocated hardware resources, which is done

through the process of pipelining. For a given kernel, pipelining can be achieved both for structures

within the kernel, such as loop pipelining, and across kernel calls, task pipelining, meaning that multiple

invocations of a kernel can be live concurrently.

The main barrier to efficient pipelining is the HLS tools’ ability to determine dependencies across

initiations of the pipeline. Most significantly, a read-after-write (RAW) hazard may occur when

later iterations of the pipeline require the use of a value written in earlier iterations of the pipeline. In

such cases, later iterations must wait for the earlier pipeline iteration to compute a value before the

later iteration can proceed. Such dependencies may also occur across memory accesses, wherein each

loop iteration reads from and writes to the same memory. In such cases, the HLS tool often has to

conservatively assuming that a RAW hazard can occur on any iteration, thus substantially reducing the

initiation interval (II) of the pipeline, being the number of cycles between subsequent initiations

of a pipeline. To illustrate, consider the histogram kernel in Figure 2.1.

void histogram(int f[N], int hist[N]) {
 for (int i = 0; i < N; ++i)
 hist[f[i]]++;
}

Figure 2.1: Histogram kernel.

The hist array is accessed by a value that is read through a pointer, f[i]. Due to this, it is impossible

to statically determine whether subsequent loop iterations indexing into hist may alias. As such, a

statically scheduled flow will, in general, resort to conservatively assume that all ambiguous indexes into

hist may alias. This is visualized in Figure 2.2, assuming a memory access latency of one cycle and an

adder latency of three cycles. Due to this, subsequent iterations of the loop body may only start once

every five cycles, i.e., II=5. This conflicts with our desire to maximize throughput by minimizing the II of

the kernel.

t1 = ld
f[0] t3 = t2 + 1

st
hist[t1],

t3

t2 = ld
hist[t1]

t1 = ld
f[1] t3 = t2 + 1

st
hist[t1],

t3

t2 = ld
hist[t1]

t1 = ld
f[2] t3 = t2 + 1

st
hist[t1],

t3

t2 = ld
hist[t1]

Cycle

Ite
ra
tio

n
1

2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.2: Static schedule of the hist kernel. Red arrows denote possible inter-iteration dependencies.

6

2.1.1 Dynamically Scheduled HLS

Statically scheduled HLS fails to generate high-performance circuits in the presence of dependencies

that are ambiguous at compile time. This may occur with the existence of variable-latency functional

units, memory dependencies, and control dependencies. This observation does not solely impact HLS, it

is rather a central issue in the field of computer architecture, and similar challenges are met in the design

of (statically scheduled) VLIW processors [27] versus their dynamically scheduled counterparts.

t1 = ld
f[0] t3 = t2 + 1

st
hist[t1],

t3

t2 = ld
hist[t1]

t4 = ld
f[1] t6 = t5 + 1

st
hist[t4],

t6

t5 = ld
hist[t4]

t7 = ld
f[2] t9 = t8 + 1

st
hist[t7],

t9

t8 = ld
hist[t7]

Cycle

Ite
ra
tio

n
1

2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.3: Dynamic schedule of the hist kernel, assuming no runtime dependencies.

Consider again the histogram kernel in Figure 2.1. While a statically scheduled approach has to

conservatively schedule based on worst-case assumptions, in practice, it may be that actual conflicting

accesses into hist occur rarely. We want to optimize for the common case, which is where a dynamically

scheduled approach is beneficial. Instead of relying on static worst-case assumptions, dynamically

scheduled circuits insert runtime dependency checks which guide the scheduling of the hardware units

employed throughout the circuit. In this model, we can achieve the best-case dynamic schedule, shown

in Figure 2.3 with an I I = 1 and much greater parallelism1.

Recently, methods for dynamically scheduled HLS have been developed, allowing for a structured

approach to convert a control and dataflow graph (CDFG) program into a dataflow circuit [30, 31]. This

method relies on the use of elastic circuits [11], a latency insensitive, composable dataflow model. An

elastic interface consists of handshake control signals (ready/valid wires) alongside a data signal. Elastic

circuits lend themselves to both synchronous and asynchronous design, wherein request-acknowledge

handshaking can be used to connect FSMs of variable or unknown latencies in sequence. As compared

to a statically scheduled approach, control in elastic circuits is fully distributed, implying that each

component defines its outputs (readiness of input handshake ports, validity of output handshake ports)

based solely on its inputs (validity of input handshake ports, readiness of output handshake ports) as

well as its current state, if synchronous.

1Assuming no constraints on the number of ports in the hist memory, allocation of three distinct adders or alternatively a
single pipelined adder.

7

in

out0 outN

in0 inN

out

in0 inN

outidx out

in

in0 inN

sel

data

falsetrue

out

trigger

out

in

out

in0 inN

... ...

... ...

... Ready/Valid

Data

out

in0 inN

out

...cond

Figure 2.4: Dataflow operators considered in this work.

Figure 2.4 shows the operators used in the dataflow model of this work. These dataflow components

have the capabilities necessary to translate a CDFG into a semantically equivalent dataflow circuit. The

semantics of these operations are as follows:

A fork operation takes a single input and replicates it to N outputs.

A join operation is a control-only operator which assigns out to valid once all inputs are ready.

A control merge operation non-deterministically transacts any valid input on out and the index of the

transacted input on idx.

A buffer operation can buffer a transaction through decoupling its input readiness from its output

readiness. The capacity of the buffer defines the maximum number of transactions stored within.

Implementation style can be sequential to break combinational paths or as a transparent first-in, first-

out (FIFO) buffer, used to manage backpressure. In dataflow circuits, a buffer can be inserted on any

path without modifying the semantics of the circuit [7].

A branch operation will, upon both its cond and data inputs being valid and the selected output

(true/false) being ready, emit its data operand to the selected output.

A merge operation functions like the control merge operation, but does not provide an index output.

A source operation always has its output valid and can be used as a continuous source of control tokens.

A sink operation is always ready to accept a transaction on its input and can be used to tie off unused

signals.

A constant operation will, when provided with an input control value, output a compile-time fixed value

on its output.

A mux operation will, upon its sel and selected input signal being valid, and out being ready, output the

value of the selected input on its output.

Any arbitrary function can be placed within a handshaking component, represented by the f operation;

such components will have join semantics for synchronizing the input and outputs - all inputs must be

valid, and the output must be ready before the function may provide a valid output. This is also what is

known as a unit-rate actor [20], and is used for wrapping unary and binary operators (+, ∧, ¬, ...).

8

out0 outN ctrl

in0 inN ctrl

ldD

ldA

ldF

stA stD

stF

ldA

ldA'

ldD'

ldD

go stA

stA'

stD

stD'

go

Figure 2.5: Dataflow function and memory operations.

Figure 2.5 shows how the concepts of functions and memories are handled in the dataflow model.

A function is a component with an arbitrary number of input and outputs, and mandatory input and

output control signals. These control signals indicate when the function should start execution and

when the function is finished. The memory component provides (in our model) an arbitrary number

of input and output ports. Each load and store port has an associated output control signal to indicate

that the memory operation was completed. For a store operation, stA, stD represents address and data

signals coming from a predecessor operation. These are sent to a memory operation through stA’,stD’,

subject to synchronization with the go signal. Similar logic applies for the load operation, wherein ldD’
represents data coming from a memory, and ldD data sent to a successor operation. The go signal can be

used as a synchronization mechanism to stall the execution of a memory operation, in cases of runtime

RAW conflicts.

Having a dataflow representation of a CDFG program, operators must be lowered further into their

hardware representation. Edwards et al. [20] describes the implementation of compositional dataflow

components. These are hardware implementations of the dataflow operators mentioned earlier, that

have the property of being composable, while breaking combinational cycles in the control network of a

circuit. This style of implementation will be revisited in section 3.3.

Finally, we note that while dynamically scheduled circuits show promising performance, there is

no such thing as a free lunch. Statically scheduled circuits will theoretically always remain superior to

their dynamically scheduled counterpart in cases where all dependencies and latencies are known at

compile time—thus removing the need for design elasticity and the hardware overhead which comes

with such an implementation. DASS [12] explores how a design may be partitioned into its statically

and dynamically scheduled parts, striking a balance between possible performance and resource usage,

showing promising results in cases where such partitioning is done.

2.1.2 HLS Infrastructure

Traditionally, open-source HLS tools have leveraged software compilation infrastructures, with LLVM

being the most commonly used [48]. Some examples of LLVM based HLS tools are LegUp [9], able to

generate a design using a mixture of RTL and code running on a soft MIPS processor and AutoPilot [15, 63],

able to synthesize a mixture of C, C++, and SystemC, which also provides methods for design exploration

and cosimulation. The use of a software compilation infrastructure is with good reason; HLS and

9

software compilation share many optimization goals, a few examples being common subexpression

elimination (CSE), constant folding, and loop transformations [15, 22]. In general, these optimizations

are performed on unstructured IR—an IR which expresses control flow through the use of basic blocks

and branches. Structured IRs, and abstract syntax trees (AST) in general, define control flow through

operations like if-, for-, and while constructs.

C, C++ Clang AST LLVM IR

HLS
transformations

HLS IR RTL
(i) (ii)

Figure 2.6: Example LLVM-based HLS flow, using C/C++ as its source language. HLS transformations are
performed both at the structured AST level (i) as well as the unstructured LLVM IR level (ii). Often, some
form of domain-specific HLS IR will be used to bridge the gap between LLVM IR and RTL emission.

Figure 2.6 shows how an HLS compiler might be based on an LLVM pipeline. HLS transformations

may be performed both before and after LLVM IR. A large and important class of HLS optimizations, loop

nest optimizations, is most easily performed before conversion into unstructured IR. In an HLS context,

loop optimizations may aid in e.g. guiding loop splitting to improve pipelining performance [38], to guide

loop tiling and unrolling, as well as memory access analysis and partitioning, to exploit data and loop

level parallelism in hardware [13, 14]. Many of such optimizations can only apply when program structure

is maintained or recoverable. Once unstructured, memory access patterns and control flow become at

best hard to analyze, and at worst, ambiguous, to the point where transformations cannot apply without

danger of modifying program semantics. As a result, many HLS optimizations need to be performed

at the AST level (Clang AST, for C/C++ based HLS flows, Figure 2.6(i)) where structure is maintained.

This then presents the issue that ASTs in LLVM are source language specific, thus restricting the HLS

transformations to a single source language. A better solution would be to anchor transformations

to the concepts that the transformation cares about, i.e. the concept of a loop, and make that source

independent. This is the approach taken by MLIR, as we shall see in section 2.2. While not necessarily a

barrier for research, it is a significant limitation if we want open-source HLS tools to learn from staged

compiler design, decoupling source and target-level transformations, as well as avoiding reimplementing

that which is shared between all HLS flows.

Due to the recent open-sourcing of the Xilinx Vitis [61] LLVM front-end, we can gain insight into

how commercial tools handle some of the complexities discussed above. The Vitis front-end ingests,

and transforms, LLVM IR and annotates source-level pragmas at points in the IR where the pragma

semantics most closely relate to the operations of the source program, e.g. loop-level pragmas being

attached as attributes to backedges in the control flow graph (CFG). These attributes—scattered across

the unstructured IR—are used in the (closed-source) Vitis backend to guide HLS transformations and

hardware emission. We may also imagine that more complex semantics are inserted as function calls

at the LLVM IR level, which later map to intrinsics2 implemented by the HLS backend. While we can

only speculate about the challenges and restrictions faced by such a commercial tool, such an approach

2Compiler intrinsics, also known as built-in functions, are functions implemented by the compiler itself. These may map to
a sequence of instructions or aid in guiding program transformations.

10

still suffers from the removal of structured information about memory access patterns and control flow,

which may be vital in informing the backend about high-level program behaviour.

Programming models for driving HLS flows can be divided into two groups; general-purpose and

domain-specific. Considering general-purpose programming models, low-level languages, most notably

C/C++, have long been the de-facto language for commercial tools such as Vivado HLS [28] or Intel

HLS [54]. Being imperative in nature, such languages allow for static analysis of program behavior and

memory accesses. Contrary to this, domain-specific HLS flows consider a more restricted programming

model. Due to this, such flows can place more assumptions on, e.g. program control flow, data liveness,

and memory accesses. By doing so, such flows allow for complex program transformations only possible

due to the added information provided by the programming model itself. Domain-specific HLS has

become increasingly prevalent during the past decade due to the rise of domain-specific accelerators.

Tools such as FINN [56], a framework for building FPGA accelerators of binarized neural networks,

Dahlia [42], a programming language for designing FPGA accelerators, and StreamBlocks [5], a compiler

for actor-based dataflow programs, all act as front-end tools that produce C++ code for further synthesis

in Vivado HLS. This is reasoned by the fact that these high-level programming models perform program

transformations based on domain-specific knowledge. C++ is then the semantically closest point at

which such front-ends can offload into existing HLS infrastructure for further synthesis.

This observation serves as a motivation for this work; while it is acknowledged that C++ is a highly

capable programming language, using it as a de-facto intermediate representation forces high-level

programming models to lower their basic units of computations (tensors, actors, ...) into structures that

are identifiable by a C++ compiler—all while trying to coerce the tool into understanding the existence

of any inherent parallelism clearly identified by the front-end tool. Such information is communicated

through pragma insertion at places in the C++ code where a front-end can hope that the HLS tool will

understand the intentions, but no guarantees are provided that the knowledge of the front-end is properly

communicated to the HLS tool. While this work focuses on, as we shall see, implementing a C/C++ based

HLS flow, building end-to-end HLS flows based on domain-specific IRs is ongoing research and highly

related to this work [57].

11

2.2 MLIR

The growing importance of domain-specific accelerators requires a new approach to the design

of compiler infrastructure. In this new space, with mixtures of high-level and low-level program

representations, operations, target-specific and target-independent optimizations, different models

of parallelism, and different levels of abstraction, the need for compilers that allow for code and concept

reuse across different domains is evident. One such approach is the MLIR compiler infrastructure [36].

To understand MLIR, let us first consider its historical predecessor, LLVM. The LLVM project [35] is

an open-source compiler infrastructure that has, over the past two decades, grown into not only one

of the most popular infrastructures for implementing programming languages but also an essential

resource for compiler research. Traditionally, LLVM has been used in conjunction with the C-family

languages such as C and C++, targeting all commonly used CPU architectures. Over time, however, the

computing landscape itself has seen a shift. At the time of the projects’ inception (2004), computing

was still CPU-dominated, albeit with the slowdown of Moore’s law looming around the corner. In the

following years, we saw increasing reliance on parallelization and specialization through the emergence

of multi-core CPU and GPU architectures—a shift that the LLVM project has been able to accommodate.

Within the past decade, however, the slowdown in the capabilities of traditional compute has been

noticeable, and the need for highly specialized architectures has become increasingly crucial through the

introduction of new workloads, most notably the increasing importance of AI. Specialized architectures,

such as AI accelerators, are motivated by the need to accelerate a specific programming model [33, 44],

and the instruction set of such accelerators is typically expressed at a higher level of abstraction than the

unstructured TAC3-based IR typical of many compiler infrastructures, LLVM including.

define i32 @gcd(i32 %m, i32 %n) {
entry:
 %cmp5 = icmp sgt i32 %n, 0
 br i1 %cmp5, label %wh.body, label %wh.end

wh.body: ; preds = %entry, %wh.body
 %m7 = phi i32 [%n6, %wh.body], [%m, %entry]
 %n6 = phi i32 [%rem, %wh.body], [%n, %entry]
 %rem = srem i32 %m7, %n6
 %cmp = icmp sgt i32 %rem, 0
 br i1 %cmp, label %wh.body, label %wh.end

wh.end: ; preds = %wh.body, %entry
 %m0 = phi i32 [%m, %entry], [%n6, %wh.body]
 ret i32 %m0
}

int gcd(int m, int n) {
 while (n > 0) {
 int r = m % n;
 m = n;
 n = r;
 }
 return m;
}

clang -cc1 gcd.c -emit-llvm

Figure 2.7: gcd function lowered to LLVM IR through Clang.

Figure 2.7 shows how a example C function is represented in LLVM IR. LLVM IR expresses control

flow through a control-flow graph (CFG) of labeled basic blocks and branches as CFG edges. φ-functions

are used to select control-flow dependent values, defined in predecessor basic blocks. Internally within

each basic block, a dataflow graph (DFG) is realized by the operations and values defined and referenced.

3Three Address Code, a RISC-like IR representation with operators taking two operands and returning a single result.

12

LLVM IR is a static single assignment IR, requiring that each value (SSA operand) defined is assigned

exactly once. Information regarding the structure of the source code has largely been lost at the point of

lowering to LLVM IR4.

An issue arises when considering how novel, domain-specific programming models target LLVM.

Due to the need for domain-specific optimizations and analysis, many LLVM-targeting projects

implement their own AST or IR, which later lowers to LLVM IR. Each comes with a considerable cost to

implement, especially when considering that identical concepts may be reimplemented for each source

representation. This also means that an opportunity to benefit from the gains made by other projects on

shared infrastructure is missed. This is one of the primary motivations of MLIR - to provide a compiler

infrastructure for facilitating the creation of domain-specific IRs, while abstracting away that which is

needed for all IRs, such as parsing, printing, pass management, SSA construction, and optimization.

2.2.1 Dialects and Operations

In compiler and IR design, we seek to define explicit abstractions for capturing concepts of software

systems. When designed correctly, such abstractions can be complementary, mutually exclusive in their

scope, and composable, ensuring maximal reuse and modularity.

In MLIR, a domain-specific IR can be captured by a dialect. At the syntactical level, dialects are a

collection of operations, attributes, and types that describe a particular domain, which together make

up the domain-specific IR of the dialect. At the semantical level, dialects and operations can specify

things such as verifiers—determining the legality of an operation based on its input operands and types,

and canonicalizations—specifying rules for transforming an operation to a canonical form (peephole

optimizations). By adding such capabilities to the IR itself, MLIR ensures that it is not just a ”JSON of

compiler IRs” but also able to define IRs that can reason about themselves, their structure, and validity.

Let us now consider how textual MLIR is represented.

%2 = arith.addi %0, %1 : i32

SSA operands

Dialect name Op mnemonic

SSA result

Type

The above shows an operation from the arith dialect, a dialect intended to capture the semantics

of integer and floating-point arithmetic. On the left-hand side of the operation, any results defined by

the operation are written (%2) - this is the point of definition for SSA values. Next, a dialect operation

is prefixed with the dialect name (arith), followed by the mnemonic of the operation (addi). In the

case of integer addition, two SSA values are required as operands, and the operation takes a single type

parameter. For any operation, all types of its operands and results must be resolvable based solely on the

4It is possible for the front-end that generates LLVM IR to annotate the IR with metadata such as annotations on CFG back
edges to indicate loops, and in other cases, IR may be raised to a higher level of abstraction if specific patterns can be inferred
from the CDFG. However, in general, information will inevitably be lost when lowering from a high-level AST into LLVM IR.

13

types made available when parsing the operation in isolation. In other words, types cannot be deduced

contextually. In the case of arith.addi, all operands and results of the operation have an equivalent

type (i32).

The arith dialect operations are easily understood due to the nature of the concepts which are

represented. However, it is important to realize that MLIR operations and dialects are at heart, constructs

that capture a concept which may have structure, and it exists within a typed and SSA context. To

emphasize this, consider the following operation:

%0:2 = foo.op(%0, %1) {anAttribute = 42} : (i1, i2) -> (i3, i3)

SSA operandsSSA results

Dialect name Op mnemonic

Arg types Res types

Attribute list

Here we have a made-up operation op from a made-up dialect foo. In this case, the operation

defines multiple results (%0:2). This is a shorthand notation for a list of SSA values - other operations

can reference the individual values of this list through references to %0#0 and %0#1. For this operation,

we have also specified an attribute list. Inside an attribute list, any combination of named (key-value)

or unnamed (unary) attributes can be specified, providing a mechanism for attaching statically known

information to an operation. Finally, the type of this operation has been specified using a function-like

type declaration () → (). While this operation does not have any semantics attached, it is a fully valid

operation in MLIR.

%0 = scf.for %iv = %lb to %ub step %step iter_args(%loopv = %arg0) -> (i32) {
 %1 = arith.addi %loopv, %loopv : i32

 scf.yield %1 : i32
}

Custom assembly format

The final example that we will consider is the scf.for operation. The SCF (structured control

flow) dialect captures concepts such as for, while and if statements, which can be further lowered

to unstructured control flow–a CFG. The scf.for operation makes heavy use of the ability to specify

custom assembly formats for an operation. In this case, %lb,%ub reference SSA values dominating the

scf.for operation, specifying the lower and upper bound of the loop. %iv is the induction variable of

the loop, which may be referenced inside the body of the loop. %step defines the incrementation of %iv
on each iteration. iter_args specifies a list of loop-carried values (%loopv), each of which must have an

initial value (%arg0) and a type to guide type resolution (i32). Types are not specified for %lb, %ub, %step,

%iv since these are all defined as being of type index, an integer-like type with a platform-dependent

bit-width, typically used in cases such as iteration or memory indexing.

This operation also gives insight into how operation verifiers work. scf.for implements a verifier

requiring that its body is terminated by an scf.yield operation, an operation that specifies the values

to be forwarded to the next loop iteration (or, upon exiting the loop, to be written as the loop result %0).

14

This operation must have an identical type signature to the iter_args, and if not, the operation verifier

will fail.

2.2.2 IR Semantics

Semantics shared by all dialect operations, i.e. those defined by the infrastructure itself, are: all values are

SSA. Values can only be defined as either the result of an operation or as a block argument. Structure is

added to the IR in two ways: through blocks (grouping structure), defined as sets of operations nested

within the scope of a parent region, and through regions (hierarchical structure), which can be defined by

an operation, and themselves contain blocks. Each block may have a list of values as arguments. Values

may be referenced whenever defined in a block dominating the parent block of the use location or those

defined in a parent region if the operation that defines the region does not have the property of being

isolated from above. This property also allows the infrastructure to schedule transformations in parallel.

int gcd(int m, int n) {
 while (n > 0) {
 int r = m % n;
 m = n;
 n = r;
 }
 return m;
}

func @gcd(%arg0: i32, %arg1: i32) -> i32 {
 %c0_i32 = arith.constant 0 : i32
 br ^bb1(%arg1, %arg0 : i32, i32)
^bb1(%0: i32, %1: i32): // 2 preds: ^bb0, ^bb2
 %2 = arith.cmpi sgt, %0, %c0_i32 : i32
 cond_br %2, ^bb2(%1, %0 : i32, i32), ^bb3
^bb2(%3: i32, %4: i32): // pred: ^bb1
 %5 = arith.remsi %3, %4 : i32
 br ^bb1(%5, %3 : i32, i32)
^bb3: // pred: ^bb1
 return %1 : i32
}

Convert C to MLIR SCF

Lower MLIR SCF to MLIR Standard

C

MLIR Standard

(i)

(ii)

(iii)

MLIR SCF

func @gcd(%arg0: i32, %arg1: i32) -> i32 {
 %c0_i32 = arith.constant 0 : i32
 %0:2 = scf.while (%arg2 = %arg1, %arg3 = %arg0)
 : (i32, i32) -> (i32, i32) {
 %1 = arith.cmpi sgt, %arg2, %c0_i32 : i32
 scf.condition(%1) %arg3, %arg2 : i32, i32
 } do {
 ^bb0(%arg2: i32, %arg3: i32):
 %1 = arith.remsi %arg2, %arg3 : i32
 scf.yield %1, %arg2 : i32, i32
 }
 return %0#0 : i32
}

Figure 2.8: A gcd function at C, scf (structured control flow), and standard (CDFG) levels of abstraction.

Consider Figure 2.8. We here see two different representations of the gcd function in MLIR. The first,

MLIR SCF, represents an IR where structured control flow is maintained. This structure is defined through

the scf.while operation. The scf.while operation defines two regions, a conditional region (ii) and

a body region (iii). In the conditional region, a continuation condition is computed as a boolean value

(%1) and passed to the scf.condition operation. The variables passed after the condition value (%arg3,

%arg2) represent arguments to the body region of the for loop. In region (ii), we see that the arith.cmpi
operation is able to reference an SSA value defined in the parent region (%c0_i32).

The second, MLIR Standard, represents an IR where control flow is unstructured. Such IR abstraction

closely resembles LLVM IR, with blocks being used identically as basic blocks in LLVM IR, and branches

are used for control flow.

In both representations, we see a %c0_i32 = arith.constant 0 : i32 operation. This contrasts

with the LLVM IR, wherein constant literals can be provided as operands to an operation. In MLIR, we

represent integer comparison through the arith.cmpi operation. This operation is defined as taking

two integer-type SSA values as operands and, since the operands are values due to the semantics of

the IR, they must be defined by either an operation or a block argument—hence, the inclusion of the

arith.constant operation.

15

Having multiple representations of the same program provides multiple benefits:

• The SCF operations maintain structured information that can be analyzed and inform

transformations. Compared to LLVM, such structure would exist internally in the AST of a front-end

that produces LLVM IR, and most likely only exists as a data structure (in contrast to a textual

representation, allowing for storage, manual modification, and interchange between tools).

• Furthermore, we have the option of lowering the structured control flow to unstructured control

flow and continue our compilation flow from there, possibly into LLVM IR to leverage an existing

CPU-targeting flow.

This means that we are free to perform transformations at a level of abstraction which suits our

needs—if compiling to a GPU target, it might be relevant to parallelize and desynchronize a loop body.

Alternatively, in the case of HLS, we may want to transform the structure of nested loops or transform the

loop body into a pipelined datapath. This illustrates a cornerstone of MLIR, i.e., clearly defined concepts

are abstracted away into separate dialects. The power of the compilation flow that one defines is then

based on the transformations of target dialect operations.

Until now, we have only considered SSACFG regions—regions where use-def chains are defined by

the dominance relationship between blocks and their operations. While such representation applies to

most sequential software, in hardware, we often work with abstractions that represent cyclical graphs,

something which is cumbersome to represent in an SSACFG. To address this, a region can be defined as a

graph region. In a graph region, SSA dominance now considers all operations within a block (as opposed

to only the sequential predecessors in SSACFG), allowing operations to reference values defined at a

point succeeding the point of reference.

2.2.3 On Executability

When considering MLIR IR such as that shown in Figure 2.8, due to the resemblance to programming

languages, a common misconception is to assume that IR operations are CPU executable. In practice, the

constraints here are identical to those of regular programming languages; there needs to exist either an

interpreter capable of executing the operations of a language or a compilation path capable of lowering

operations to something executable. In MLIR, the main goal for dialects and operations is to facilitate

transformation—this does not necessarily imply that CPU executability is required or prioritized. This

is especially true for operations in dialects that start to diverge from being CPU-facing, such as the

hardware-related dialects we will consider in this work.

In practice, for many operations in MLIR that model mathematical and software concepts, lowering

paths do exist to make such IR executable. Operations in the linalg and vector dialects lowers to

loops in the scf or affine dialects. These operations may themselves lower to the standard dialect

(Figure 2.9(i)). From here, operations can lower to the MLIR LLVM dialect (Figure 2.9(iii)). Note that this is

is not LLVM IR but a separate dialect in MLIR which models LLVM IR. The MLIR LLVM dialect can then be

exported to LLVM IR (Figure 2.9(iv)), which the LLVM infrastructure ingests and can be either compiled

16

func @max(%a : i32, %b : i32) -> (i32) {
 %0 = arith.cmpi sgt, %a, %b : i32
 cond_br %0, ^bb1, ^bb2
^bb1:
 return %a : i32
^bb2:
 return %b : i32
}

func @max(%arg0: i32, %arg1: i32) -> i32 {
 %0 = llvm.icmp "sgt" %arg0, %arg1 : i32
 cond_br %0, ^bb1, ^bb2
^bb1:
 return %arg0 : i32
^bb2:
 return %arg1 : i32
}

llvm.func @max(%arg0: i32, %arg1: i32) -> i32 {
 %0 = llvm.icmp "sgt" %arg0, %arg1 : i32
 llvm.cond_br %0, ^bb1, ^bb2
^bb1:
 llvm.return %arg0 : i32
^bb2:
 llvm.return %arg1 : i32
}

define i32 @max(i32 %0, i32 %1) {
 %3 = icmp sgt i32 %0, %1
 br i1 %3, label %4, label %5
4:
 ret i32 %0
5:
 ret i32 %1
}

ml
ir

-o
pt

 -
-c

on
ve

rt
-s

td
-t

o-
ll

vm

mlir-opt --convert-arith-to-llvm mlir-translate --mlir-to-llvmir

(i)

(ii)

(iii)

(iv)

Figure 2.9: Operations from different dialects (arith (i) and std (ii)) are progressively lowered to MLIR
LLVM (iii), which eventually gets exported as LLVM IR (iv).

or JIT executed. The mlir-cpu-runner tool is provided to facilitate execution of MLIR LLVM programs.

This tool is a wrapper around the LLVM just-in-time (JIT) compiler. The use of the mlir-cpu-runner
tool is revisited in chapter 4. Finally, we note that building IR interpreters is also a popular option for

providing execution semantics to dialect operations.

17

2.3 CIRCT

Comb Seq HW

LLHDSV

ExportVerilog

Handshake

FIRRTL

StaticLogic

Chisel

Moore

.sv

.sv

Calyx

Native

Standard
Upstream MLIR

Dialect

Tool

Proposed

RTL Dialects

CIRCT

Affine SCF

Calyx

FSM

LLHD Sim

Figure 2.10: Overview of the dialects in CIRCT, how they interconnect, as well as relevant tools for
producing inputs to and transforming outputs from CIRCT.

CIRCT is an LLVM incubator project for developing open-source MLIR-based electronic design

automation (EDA) tools. The open-source EDA tool space has become increasingly capable in recent

years, allowing for an end-to-end synthesis and programming flow without the use of vendor tools. An

example of a Xilinx-targeting flow is that of Symbiflow [40] wherein Yosys [60] is used for hardware

synthesis, NextPNR [51] for place-and-route, and Project X-Ray for bitstream generation [46]. However,

an issue with the current space is much like that which faced LLVM regarding fragmentation across

front-end tooling. Open-source hardware tooling generally does not use a library-based approach for

infrastructure shared across all tools, thus suffering from having to reimplement logic in projects. The

design of hardware systems is inherently hierarchical, and existing tools already leverage a variety of

intermediate representations to represent such hierarchy. However, these are not necessarily explicit,

and different abstractions may be highly coupled within the tools. Finally, shared IRs, allowing for

interchangeability between the different tools, do not exist. Verilog/SystemVerilog is generally used as

the de-facto netlist standard in the open-source EDA community, for pragmatic reasons. Verilog and

SystemVerilog were never intended to be IRs and as such have broad-ranging specs that make them hard

to parse, analyze, and generate. In contrast, having hardware abstractions as real IRs, which are designed

to be analyzed and transformed, enables us to build hardware tools in a cheap and scalable manner. It is

in this context that CIRCT exists. Using MLIR, CIRCT seeks to define explicit abstractions for hardware

synthesis, transformations on these, and lowerings to synthesizable HDL. At the time of writing, CIRCT

concerns itself mainly with the behavioral and structural aspects of hardware synthesis. External tools

are still expected to be leveraged for the physical domain, with Verilog as the output format. This may

18

then be piped to some of the above-mentioned EDA tools or proprietary vendor tools.

2.3.1 A Tour of CIRCT

Figure 2.10 shows an overview of the dialects in CIRCT, how they interconnect, as well as various tools for

producing inputs to and transforming outputs from CIRCT. The core of CIRCT is the collection of RTL

dialects. These dialects express structural and behavioral aspects of synchronous hardware, each with

different passes to transform, optimize, and canonicalize the IR of the respective dialect.

The hw dialect represents hierarchical concepts such as hardware modules, module ports, and module

instantiation. The remainder of the RTL dialects implement operations that can exist within hw modules.

A hw module implements a graph region instead of an SSACFG region. Below, we see an empty hw that

connects its input directly to its output:

hw.module @foo(%in: i32, %clk: i1, %rst: i1) -> (out: i32) {
 hw.output %in : i32
}

module foo(
 input [31:0] in,
 input clk, rst,
 output [31:0] out);
 assign out = in;
endmodule

Lowers to

The comb dialect represents combinational concepts such as addition, subtraction, and multiplexers.

Below, we now place an adder that adds the input with itself and outputs the sum:

hw.module @foo(%in: i32, %clk: i1, %rst: i1) -> (out: i32) {
 %0 = comb.add %in, %in : i32
 hw.output %0 : i32
}

module foo(
 input [31:0] in,
 input clk, rst,
 output [31:0] out);
 assign out = in + in;
endmodule

Lowers to

The seq dialect represents sequential concepts such as registers. Below, we now have a register after the

adder which breaks a combinational path between the input and output ports of the module:

hw.module @foo(%in: i32, %clk: i1, %rst: i1)
 -> (out: i32) {
 %c0 = hw.constant 0 : i32
 %reg.out = seq.compreg %in, %clk, %rst, %c0 : i32
 hw.output %reg.out : i32
}

hw.module @foo(%in: i32, %clk: i1, %rst: i1)
 -> (out: i32) {
 %c0_i32 = hw.constant 0 : i32
 %reg.out = sv.reg
 {hw.verilogName = "reg_out"} : !hw.inout<i32>
 %0 = sv.read_inout %reg.out : !hw.inout<i32>
 sv.alwaysff(posedge %clk) {
 sv.passign %reg.out, %in : i32
 }(syncreset : posedge %rst) {
 sv.passign %reg.out, %c0_i32 : i32
 }
 hw.output %0 : i32
}

module foo(
 input [31:0] in,
 input clk, rst,
 output [31:0] out);
 reg [31:0] reg_out;
 localparam [31:0] _T = 32'h0;
 always_ff @(posedge clk) begin
 if (rst)
 reg_out <= _T;
 else
 reg_out <= in;
 end
 assign out = reg_out;
endmodule

Figure 2.11: Lowering registers to SystemVerilog through the sv dialect.

The SV dialect is responsible for managing SystemVerilog specific constructs, many of which target

19

either behavioral, verification, or textual related aspects of the language—SystemVerilog is used as a

tool interchange output format for CIRCT. Some example operations are sv.alwaysff, used to enforce

inference of registers (used in Figure 2.11 when lowering seq.compreg). sv.bind, allowing for indirect

instantiation of hardware modules—often used in verification contexts to insert verification modules

into existing RTL designs. And sv.ifdef, inserting conditionally compiled regions, giving existing HDL

tooling control over various synthesis parameters of the generated HDL.

LLHD [50] is a low-level hardware dialect that, when used in conjunction with the remainder of the

RTL dialects, can model and simulate hardware systems. As an example, LLHD extends the capabilities

of the RTL dialects by being able to capture timing information from SystemVerilog, allowing for timing-

accurate simulation using the llhd-sim tool. LLHD is also the target of the Moore compiler [50], a

compiler front-end for HDLs which can parse Verilog/SystemVerilog. Further developments on the

Moore compiler and LLHD will ensure that CIRCT applies to a wide range of existing HDL codebases.

FIRRTL [29] is a hardware IR that was created based on the observation that a one-shot lowering

from the Chisel [2] HDL all the way to Verilog was needlessly complicated, and did not facilitate circuit

transformations. The development of FIRRTL in CIRCT has been one of the main driving forces for the

maturation of the CIRCT project. Currently, FIRRTL is actively developed by SiFive, and the CIRCT FIRRTL

based compiler can be used as a drop-in replacement for the native FIRRTL compiler. The FIRRTL dialect

models many existing concepts of the RTL dialects, with the addition of handling Chisel-specifics and

oddities.

Given an input program described in a mixture of RTL dialects, the ExportVerilog tool can emit a

synthesizable SystemVerilog description. The tool allows for the specification of lowering options to

ensure that the generated HDL is compatible with the tool that one is targeting—an example being

indexing into multidimensional arrays, something which may be trivially described in an IR, but which

is not necessarily supported by all tools. In such cases, lowering options can guide Verilog emission

to either emit multidimensional array indexing or emission of temporary wires representing subarray

indexing, thus factoring away the complexities of Verilog emission from the RTL dialects themselves.

2.3.2 HLS in CIRCT

Next, we consider the current state of HLS in CIRCT. It is important to note that prior to this work,

significant work has already gone into developing critical parts of an HLS flow in CIRCT. In this section,

we shed light on the current state of HLS in CIRCT, both in terms of statically and dynamically scheduled

HLS, as well as supporting libraries.

The Handshake dialect represents dataflow programs where producers and consumers transact

values through a handshaking mechanism. The dialect is designed based on the operators described in

subsection 2.1.1. Dynamically scheduled HLS is achieved through the std-to-handshake pass, a pass

that converts Standard dialect programs into Handshake IR. Handshake programs can then be lowered to

a FIRRTL representation through handshake-to-firrtl - which can then be lowered to HDL through

the existing FIRRTL path. The operations of the dialect and related lowerings are explained in detail in

20

chapter 3.

The Calyx dialect models the Calyx intermediate language (IL) [43], a hardware IL for accelerator

design. Calyx works by splitting the representation of an accelerator into three parts: instantiations

of structural components, the definition of interconnect groups, defining connectivity between

components, and a control schedule for defining the order in which interconnect groups are activated.

With this separation of concerns, each part of the design can be transformed and optimized separately

before being lowered to an FSMD representation. In CIRCT, Calyx is being developed as a core abstraction

for statically scheduled HLS designs. Support for generating Calyx programs in CIRCT exists for

both standard (branch-based control flow) and SCF (structured control flow) operations through the

scf-to-calyx pass. At the time of writing, Calyx cannot be lowered to the RTL dialects, but support is

expected in the future. Instead, a Calyx MLIR program can be exported to native Calyx IR, which then

may be compiled to SystemVerilog through the native Calyx compiler.

The StaticLogic dialect represents ongoing research into the development of abstractions and

lowerings for representing statically scheduled pipelines. The generation of a StaticLogic pipeline

expects loops with complete information on inter-loop and memory dependencies. In the MLIR case, this

style of loops is represented by the affine.for operation, describing loops adhering to the polyhedral

model [21]. By using this, the StaticLogic dialect can leverage existing dependency analysis tooling

available in MLIR. To assist pipeline scheduling, a scheduling library is being developed within CIRCT.

The scheduling library is based on modulo scheduling [47] and can solve both resource-free and

resource-constrained scheduling problems [18]. affine.for loops, and their accompanying dependency

information, are used to build scheduling problems which are solved for optimal initiation intervals

under the given constraints. Scheduling results are then used to build a staticlogic.pipeline.while
operation, which describes a set of stages, loop registers, and a loop continuation criteria. Such

representation can then be further lowered to Calyx, which turns the resulting pipeline into an FSMD

representation.

21

Chapter 3

An End-To-End Dynamically Scheduled HLS
Flow in MLIR

IRSource
program IR RTL backendFront end

HLS transformations

RTL

Testbench Testing infrastructure

1 2

3

4

5

Figure 3.1: Core components of an HLS flow.

In subsection 2.1.2 we provided an overview of the components needed for an LLVM-based HLS flow.

To build an MLIR-based flow, we need to consider which components and transformations we need, and

the ordering thereof, to have an end-to-end HLS flow. The components and interconnections which we

need to resolve, shown in Figure 3.1, are as follows:

1. At what level of abstraction do we describe an accelerator? Alongside that, we will also want the

ability to describe testbenches at the same level of abstraction.

2. What front-end will we use to convert the source representation into an MLIR representation?

3. Once in MLIR, how do we lower from a sequential software program into something with hardware

semantics? What representations (IRs) and transformations do we need to do so?

4. How do we lower our HLS IRs to RTL?

5. How do we verify and validate the generated RTL-level accelerators using the source-level

testbenches?

This chapter concerns itself with points 1 through 4. In chapter 4, we will cover point 5 by introducing

tools for cosimulation and debugging.

22

3.1 Source Abstraction and Front-End

When designing a high-level synthesis flow, one of the first things that must be considered is the level

of abstraction at which we expect inputs to the flow to be at. As explained in subsection 2.1.2, both

domain-specific and general-purpose HLS flows are viable source abstractions for a modern HLS flow.

However, due to the prevalence of domain-specific tools that generate C/C++ code, as well as when

considering existing code-bases that target vendor HLS tools, we deem it prudent to design a flow able to

ingest C/C++.

At the time of writing, the number of front-ends available for generating high-level MLIR are limited.

We desire to use C/C++, given their prevalence in both existing vendor HLS tools and open-source

alternatives. With a C/C++-based flow, we can compare and interchange with existing tooling while

establishing the basic capabilities of our CIRCT HLS flow. In this respect, a C/C++ front-end is needed,

capable of generating MLIR from C/C++ source code. We consider ScaleHLS and Polygeist, two Clang-

based projects that seek to ingest C/C++ code to perform MLIR-based transformations. ScaleHLS [62]

is a tool for exploring HLS concepts in MLIR, mainly focusing on loop and graph-level analysis and

transformations. To facilitate this, ScaleHLS implements a C front-end to extract affine loops from C

code. The focus of ScaleHLS is to perform source-level transformations which can be emitted to existing

HLS tools through a C/C++ emitter.

Polygeist [39] is a tool designed to connect existing polyhedral compilation infrastructure with MLIR.

As with ScaleHLS, this project uses a Clang-based front-end and can extract affine loops from C/C++

code. Both ScaleHLS and Polygeist convert C code into a combination of Standard, Affine, and SCF dialect

operations, which are suitable sources for further HLS lowerings.

While the transformations in ScaleHLS are specifically targeting HLS flows, Polygeist is chosen as

the front-end for this project. We seek to ingest and correctly synthesize a large set of programs, and

less so to investigate the effects of high-level program transformations, such as those found in ScaleHLS.

Polygeist is seen as more applicable to our case due to its maturity and given its focus on the ability to

parse as large a subset of C/C++ programs as possible into an MLIR representation. Furthermore, affine

transformations for HLS such as those performed by ScaleHLS have equally been demonstrated for a

Polygeist-based flow in the Phism project [64].

Memory Flattening

With Polygeist, we can ingest a broad range of C/C++ programs into our flow. However, various software-

level transformations must be performed to meet preconditions of the dataflow lowering, which will be

presented in the following section.

In MLIR, a value of memref type represents a reference to an N-dimensional memory

(memref<2x3x4xi32>) with optionally dynamic dimensions (memref<2x?x4xi32>). For the hardware

lowerings that are presented in later sections, only unidimensional memories are supported. While there

are no technical limitations to support multidimensional memories in hardware abstractions, supporting

23

only unidimensional memories reduces the complexity of the abstraction. Furthermore, performing

such conversion is trivial at the software level, where use-def relations on memories are easily analyzed

via memref.load/store operations. We implement a pass –flatten-memref, which, given a program

will transform any memref with multiple static dimensions into a memref with a single dimension. The

pass inserts a combination of multiplication and addition operations, combining the original dimension

indexing arguments with the static dimensions of the memory to calculate a flattened index. An example

is shown below, where a memref<10x10xi32> is flattened into a memref<100xi32>.

func @msum(%arg0: memref<10x10xi32>) -> i32 {
 %0:2 = scf.for %arg1 = 0 to 10 step 1
 iter_args(%arg2 = 0, %arg3 = 0) -> (i32, i32) {
 %1:2 = scf.for %arg4 = 0 to 10 step 1
 iter_args(%arg5 = %arg2, %arg6 = %arg2) -> (i32, i32) {
 %2 = memref.load %arg0[%arg1, %arg4] : memref<10x10xi32>
 ...

func @msum(%arg0: memref<100xi32>) -> i32 {
 %0:2 = scf.for %arg1 = 0 to 10 step 1
 iter_args(%arg2 = 0, %arg3 = 0) -> (i32, i32) {
 %1:2 = scf.for %arg4 = 0 to 10 step 1
 iter_args(%arg5 = %arg2, %arg6 = %arg2) -> (i32, i32) {
 %2 = arith.muli %arg4, 10 : index
 %3 = arith.addi %arg1, %2 : index
 %4 = memref.load %arg0[%3] : memref<100xi32>
 ...

--flatten-memref

Figure 3.2: A memref<10x10xi32> and related accesses are flatten to a unidimensional
memref<100xi32>.

Note that the function signature has also been converted. This poses a problem to callers who

expect an API of the kernel similar to that of the C source function. To handle this, a companion pass

–flatten-memref-calls has been implemented, which modifies builtin.call operations to match

the converted function signature. We make this a separate pass from –flatten-memref, such that we

can transform only the builtin.call to the modified function, while still allowing for multidimensional

memrefs in the remainder of the caller IR.

The dataflow lowering presented in the following section requires an input program to be specified by

a CDFG. At our current level of abstraction, control flow may be structured, defined through affine/scf
dialect operations. We achieve a CDFG by applying existing lowering passes for these dialects. The loop

lowering performed follows the well-known technique [16] of inserting basic blocks for the loop header,

body, latch code, and branch operations to jump between these.

3.2 Dataflow IR & Dataflow Lowering

3.2.1 The Handshake Dialect

The concepts of dataflow circuits have been captured in a distinct dialect, the handshake dialect. The

operations of the dialect are based on those presented in subsection 2.1.1. We seek to make the Handshake

IR applicable to dataflow compilation in general, and not just for HLS flows targeting FPGAs. An example

alternative use-case is the mapping of dataflow graphs onto coarse-grained reconfigurable arrays

(CGRAs)1. These are reconfigurable devices that trade the single bit flip-flop, LUT, or wire flexibility

1Academic work on CGRAs is often centered around an FPGA implementation combined with a coarse-grained overlay, due
to practical reasons. However, we here consider the potential for hardened CGRAs.

24

of FPGAs for blocks hardened at a higher level of abstraction. The use of dataflow CGRAs is an active area

of research [41, 59]. An example of a design choice made to keep such generality has been to i.e., not define

IR validity on SSA value-use-counts, or whether the graph contains unbuffered (combinational) loops.

While such conditions must hold for the lowering we present in section 3.3, we see it as better design

to have a less restrictive IR and instead provide passes to transform an IR to meet any target-specific

requirements.

% = buffer [#] % {sequential = (true|false)} : T

% = fork [#] % : T
%:# = lazy_fork [#] % : T
% = merge %... : T
% = mux %select [%...] : T
%data, %idx = control_merge %... : T
%... = instance @sym(%...) : (T..., none)->(T..., none)
handshake.func @sym(%..., %ctrl) : (T..., none)->(T..., none)

% = br % : T
%true, %false = cond_br %cond, %data : T

sink % : T
% = source : T
% = constant %ctrl {value = # : T} : T
%dOut, %addrToMem = load [%addrIn] %dataFromMem, %ctrl : Td, Ta
%dToMem, %addrToMem = store [%addrIn] %dIn, %ctrl : Td, Ta
% = join %... : T

Figure 3.3: Syntax of the operations in the Handshake dialect.

The operations defined within the Handshake dialect are shown in Figure 3.3. ’%’ represents a single

SSA value, ’%...’ a variable number of SSA values, ’T’ a type parameter, ’T...’ a variable number of Type

parameters, and ’#’ an integer literal. For fork/lazy_fork, # denotes the number of replications (outputs)

of the input variable. For buffer, # denotes the number of buffer slots. [#] fields are implemented as

custom assembly formats for the operations, wherein the # value is stored as an attribute of the operation.

The handshake.func operation represents handshake modules. Apart from regular arguments, they

always have a none-typed argument and result. These represent the data-less input and output control

signals used to signal function initiation and function completion. Hierarchy is achieved through the

instance operation which instantiates a referenced handshake.function.

As explained in subsection 2.2.1, MLIR uses the index type for integer-like platform-dependent bit-

width operations. Examples where index-typed values occur are whenever a memref value is indexed, or

for the induction variable in scf loops. On software platforms, index values will typically be interpreted

as being of CPU register width. At the time of writing, neither Handshake, nor CIRCT/MLIR in general,

implement any general form of bit-width inference which could be used to assign a fixed bit width to

index signals. As such, we keep the notion of index values in the Handshake dialect for things such as

memory address signals.

Many of the core properties of Handshake IR are described either declaratively (through TableGen)

or explicitly. This may be canonicalization rules defining a canonical IR form, or operation verifiers

that define the legality of the IR. MLIR provides an infrastructure for defining pattern-based graph

rewrites to drive IR canonicalization. Using these, canonicalization is performed by folding the set of

canonicalization patterns on the IR until a fixed-point is reached, similar to how peephole optimizations

are applied. At the time of writing, a canonical form of the handshake dialect is derived from a set of

rewrite rules which:

• Eliminate simple merges/control merges/branches/muxes—operations with a single input.

• Eliminate simple forks—fork operations with a single output.

25

• Reduce forks—modify fork operations with a subset of its results that are unused.

• Eliminate simple muxes—mux operations with identical data inputs.

In defining peephole optimizations we use a notion of dematerialized values. A dematerialized value

in Handshake IR is the SSA value that was the input for a sequence of fork or buffer operations—this is in

line with the passes that materialize or dematerialize forks, buffers and sinks. Through this, we are able

to apply peephole optimizations on both materialized and dematerialized code, and let either dead code

elimination (DCE) or other canonicalization patterns fold to bring IR into a legal state.

%arg

%out1
%out0

(a) Mux canonicalization
opportunity; green arrows
represent dematerialized SSA
values.

%arg

%out1

%out0

(b) With the mux removed, both
the buffer and its fork input are
canonicalized away.

%arg

%out1
%out0

(c) Resulting circuit after
canonicalization.

Figure 3.4: Mux canonicalization example.

An example of a canonicalization using dematerialized values are mux canonicalizations, shown in

Figure 3.4. This canonicalization tries to eliminate multiplexers where both values originate from the

same source.

3.2.2 From Standard to Handshake IR

In this section, we will cover how a standard-dialect program is converted into Handshake IR. Since

standard models a CDFG, this conversion is follows closely to the approach taken in Dynamatic [30].

First, we will consider standard-level transformations that will fulfill preconditions of dataflow

lowering. Afterwards, we will consider the actual dataflow conversion.

Constant Pushing

In MLIR, canonicalization of constant operations will move any operation in a nested block to the entry

block. This makes sense in a software context since it allows operations within all blocks of a region to

reference the same constant definition, i.e. CSE. However, in a dataflow context, this presents a potential

performance problem. As we shall see later, each live-in value to a block must be propagated along

26

with a control signal, when control is transferred to a block. This therefore requires that each live-in

and live-out in a block is made explicit, instead of implicit (through SSA domination). Hence, placing

constant operations at the entry block and referencing these deep within the CFG is undesired since

unnecessary circuitry will have to be emitted to carry constant values along control flow edges. Instead,

we seek to push constant operations into the blocks where they are referenced.

To do this, we implement a pass –push-constants which, through a dataflow analysis, creates

constant operations within the blocks wherein constants are referenced. An example pass execution is

shown in Figure 3.5.

func @foo(%arg0: i32, %arg1: i32) -> i32 {
 %c42_i32 = arith.constant 42 : i32
 %c5_i32 = arith.constant 5 : i32
 %0 = arith.cmpi sgt, %arg0, %c42_i32 : i32
 cond_br %0, ^bb1, ^bb2(%arg0 : i32)
^bb1:
 %1 = arith.addi %arg0, %c5_i32 : i32
 br ^bb2(%1 : i32)
^bb2(%2: i32):
 %3 = arith.muli %arg1, %2 : i32
 %4 = arith.muli %3, %c42_i32 : i32
 return %4 : i32
}

func @foo(%arg0: i32, %arg1: i32) -> i32 {
 %c42_i32 = arith.constant 42 : i32
 %0 = arith.cmpi sgt, %arg0, %c42_i32 : i32
 cond_br %0, ^bb1, ^bb2(%arg0 : i32)
^bb1:
 %c5_i32 = arith.constant 5 : i32
 %1 = arith.addi %arg0, %c5_i32 : i32
 br ^bb2(%1 : i32)
^bb2(%2: i32):
 %c42_i32_0 = arith.constant 42 : i32
 %3 = arith.muli %arg1, %2 : i32
 %4 = arith.muli %3, %c42_i32_0 : i32
 return %4 : i32
}

hl
s-

op
t

--
pu

sh
-c

on
st

an
ts

(i)
(ii)

Figure 3.5: Run of the constant pushing pass. Since %5_i32 is referenced in ˆbb1, its definition will be
moved from ˆbb0 to ˆbb1.

SSA Maximization

As explained above, every live-in and -out of a block has to be made explicit when converting a sequential

program to a dataflow program. An example where this is not the case is shown in Figure 3.6(i); %arg1
is not referenced in ˆbb1 but referenced in ˆbb2 through SSA dominance. So, when control flows from

ˆbb0→ˆbb1→ˆbb2 we must ensure that a handshake signal for %arg1 is carried along this control flow

path. A solution to this is to convert the program into maximal SSA form. Contrary to minimal SSA form,

wherein SSA value definitions are moved to dominating basic blocks in order to minimize the number of

φ-functions (or, in MLIR, the number of block arguments), maximal SSA form ensures that any value used

within a block is also defined within the block, through the addition of new block arguments. In essence,

this ensures that data flow is made explicit, through block arguments, rather than implicit, through block

dominance.

In Figure 3.6(ii), we transformed the program into a state where any value referenced within a block

is also defined within that block.

Having standard-dialect code in maximal SSA form is made a precondition for further dataflow

conversion. The motivation for this is to make dataflow conversion less monolithic—if we can transform

source programs to adhere to a precondition, then, in most cases, performing transformations on higher-

level IR will be easier than at a lower level, allowing the dataflow conversion pass to be simplified in

scope.

27

func @foo(%arg0: i32, %arg1: i32) -> i32 {
 %c42_i32 = arith.constant 42 : i32
 %0 = arith.cmpi sgt, %arg0, %c42_i32 : i32
 cond_br %0, ^bb1, ^bb2(%arg0 : i32)
^bb1:
 %c5_i32 = arith.constant 5 : i32
 %1 = arith.addi %arg0, %c5_i32 : i32
 br ^bb2(%1 : i32)
^bb2(%2: i32):
 %c42_i32_0 = arith.constant 42 : i32
 %3 = arith.muli %arg1, %2 : i32
 %4 = arith.muli %3, %c42_i32_0 : i32
 return %4 : i32
}

func @foo(%arg0: i32, %arg1: i32) -> i32 {
 %c42_i32 = arith.constant 42 : i32
 %0 = arith.cmpi sgt, %arg0, %c42_i32 : i32
 cond_br %0, ^bb1(%arg0, %arg1 : i32, i32), ^bb2(%arg0, %arg1 : i32, i32)
^bb1(%1: i32, %2: i32):
 %c5_i32 = arith.constant 5 : i32
 %3 = arith.addi %1, %c5_i32 : i32
 br ^bb2(%3, %2 : i32, i32)
^bb2(%4: i32, %5: i32):
 %c42_i32_0 = arith.constant 42 : i32
 %6 = arith.muli %5, %4 : i32
 %7 = arith.muli %6, %c42_i32_0 : i32
 return %7 : i32
}

mlir-opt --max-ssa

(i) Min. SSA (ii) Max. SSA

Figure 3.6: Run of the SSA maximization pass. Post execution, any value referenced within a block will
also be defined within that block, through either operations or block arguments.

Our algorithm for transforming a CDFG into maximal SSA form is as follows; for each produced value

v in the program, gather the set of blocks B wherein the variable is referenced. Then, ∀b ∈ B , add a block

argument v ′ to b of type(v) and within b replace all uses of v with v ′. Then, ∀bpr ed ∈ pred(B), recurse

to bpr ed , performing an equivalent block argument transformation as what occurred for b, having the

added block argument in bpr ed being v ′
pr ed . Rewrite control flow from bpr ed → b, passing v ′

pr ed mapping

to v ′. Each time a block is visited and its block arguments are rewritten, store this in a mapping; this

mapping is used to ensure that the v replacement argument is only added once to each block for each

live-in. This is relevant due to a block potentially being visited multiple times in cases of branching

control flow. Recursion stops upon visiting the defining block of v .

28

Dataflow Conversion

handshake.func @foo(%arg0: i32, %arg1: i32, %arg2: none, ...)
 -> (i32, none) {
 %0 = merge %arg0 : i32
 %1 = merge %arg1 : i32
 %2 = constant %arg2 {value = 42 : i32} : i32
 %3 = arith.cmpi sgt, %0, %2 : i32
 %trueResult, %falseResult = cond_br %3, %0 : i32
 %trueResult_0, %falseResult_1 = cond_br %3, %1 : i32
 %trueResult_2, %falseResult_3 = cond_br %3, %arg2 : none
// ^bb1:
 %result, %index = control_merge %trueResult_2 : none
 %4 = merge %trueResult : i32
 %5 = merge %trueResult_0 : i32
 %6 = constant %result {value = 5 : i32} : i32
 %7 = arith.addi %4, %6 : i32
 %8 = br %result : none
 %9 = br %5 : i32
 %10 = br %7 : i32
// ^bb2:
 %result_4, %index_5 = control_merge %8, %falseResult_3 : none
 %11 = mux %index_5 [%10, %falseResult] : index, i32
 %12 = mux %index_5 [%9, %falseResult_1] : index, i32
 %13 = constant %result_4 {value = 42 : i32} : i32
 %14 = arith.muli %12, %11 : i32
 %15 = arith.muli %14, %13 : i32
 return %15, %result_4 : i32, none
}

func @foo(%arg0: i32, %arg1: i32) -> i32 {
 %c42_i32 = arith.constant 42 : i32
 %0 = arith.cmpi sgt, %arg0, %c42_i32 : i32
 cond_br %0, ^bb1(%arg0, %arg1 : i32, i32),
 ^bb2(%arg0, %arg1 : i32, i32)
^bb1(%1: i32, %2: i32):
 %c5_i32 = arith.constant 5 : i32
 %3 = arith.addi %1, %c5_i32 : i32
 br ^bb2(%3, %2 : i32, i32)
^bb2(%4: i32, %5: i32):
 %c42_i32_0 = arith.constant 42 : i32
 %6 = arith.muli %5, %4 : i32
 %7 = arith.muli %6, %c42_i32_0 : i32
 return %7 : i32
}

circt-opt --lower-std-to-handshake

1

2
2

2
2

2

2
2

2

3
3

3

3
3
3

Figure 3.7: Dataflow conversion, from a standard-level CDFG to Handshake IR.

At this point, the standard level code has been optimized for minimizing live in/outs, and

dataflow has been made explicit through SSA maximization. We now consider dataflow conversion.

Dataflow conversion is performed through the following steps. Numbers in Figure 3.7 highlights the

transformations applied by each step.

CMerge

Mux

^bbz(%0 : i32):
 ...

Merge insertion

%0

(a) Merge insertion; data inputs to a block are selected
by the control merge of a block.

^bby(%a : i32):
 ...
^bbz(%b : i32):
 ...

Branch Insertion

BranchBranch

%b%a

(b) Branch insertion; data outputs are sent to
predecessor blocks based on the result of a conditional
value.

Figure 3.8: Merge and branch insertion.

29

1. Function conversion: (1) The builtin.func operation is converted to a handshake.func
operation. In doing so, we add a none-typed argument and result, representing the control input

and output signals of dataflow functions.

2. Merge insertion: (2) Each incoming value to a block is fed through a merge-like operation (merge,

mux, or control merge, respectively). For block arguments, we insert a merge operation if a block

has only a single predecessor and a mux operation in case of multiple predecessors. For each

block, apart from the entry block, we add a control merge operation. Merge-like operation inputs

are connected to values defined in the predecessor blocks of a given block. The select value for a

mux operation is connected to the control merge operation within the block. This is illustrated in

Figure 3.8a. In short, control will transform from a predecessor block, the control merge will accept

this transfer and output an index signal, indicating the block that transferred control. This index

signal is then used in the mux operators to select operands coming from the same block. Merge

insertion is made simple by the maximum-SSA precondition - any live-in to a block is ensured to

be defined in the predecessor of the block.

3. Branch insertion: (3) Branch insertion is complimentary to merge insertion. In the standard
dialect, block-based control flow is either through the br (unconditional branch) or cond_br
operation (conditional branch). In either case, we insert a (handshake dialect) branch/conditional

branch operation for each live-out variable and control transfer. These are the values which will be

referenced by the merge-like operations mentioned above. This is illustrated in Figure 3.8b.

Constant-defining operations (arith.constant) will be emitted as a pair of (handshake dialect)

constant and source operations. Optionally, constants can be emitted as connected to the control network

(i.e., the entry control value of a block), ensuring that they only generate a single value for any control

entry into the block. An argument for this method is that, if source operations are not used in a circuit,

we know, that for any correct execution of a kernel, all buffers within the design are expected to be empty

post-execution. This property can therefore help in debugging. In our flow, a flag can be set to enable

this form of constant emission. Emitting constants as source-connected is motivated by the possibility of

improving the resulting hardware size. This is due to the reduction in fan-out of the input-control fork of

the block and by the fact that the structure of a source-connected constant operation will reduce to a

tiny circuit in hardware.

At this point, only arithmetic operations remain to be considered. In Handshake IR, we use the arith
dialect as a representation for dataflow arithmetic operators. This is possible since the Handshake IR

assumes that any SSA use-def relation implicitly has Handshake semantics. Therefore, for an operation %0
= arith.addi %arg0, %arg1 : i32, it is implicit that values %0,%arg0,%arg1 all represent handshake

bundles of data, ready, and valid signals.

At this point, we have now described dataflow conversion in the absence of memory operations. A

promise of dynamically scheduled dataflow circuits is the ability to, at runtime, resolve data dependencies

through memory which might occur when e.g. executing a loop body that accesses memory. In

Dynamatic, this is resolved by the use of a load-store queue (LSQ). This LSQ connects to the memory

operations and block input controls of the lowered dataflow circuit. Through this, the LSQ will stall the

30

execution of memory operations in the circuit in order to resolve memory hazards. Through such an

LSQ, we are then able to pipeline such loops without having subsequent loop iterations dependent on

the finishing of prior iterations.

In this flow, we do not implement support for such LSQs, but instead implement a simpler scheme

that ensures correctness of execution of memory operations, but prevents pipelining.

Let us now see how memory operations are converted; consider Figure 3.9:

func @load(%mem: memref<100xi32>, %addr: index) -> i32 {
 %ldData = memref.load %mem[%addr] : memref<100xi32>
 return %ldData : i32
}

handshake.func @load(%mem: memref<100xi32>, %addr: index, %ctrl: none, ...)
 -> (i32, none) {
 %ldData, %ldDone = extmemory[ld = 1, st = 0] (%mem : memref<100xi32>)
 (%addrToMem) {id = 0 : i32} : (index) -> (i32, none)
 %1 = merge %addr : index
 %2 = join %ctrl, %ldDone : none
 %dataResult, %addrToMem = load [%addr] %ldData, %ctrl : index, i32
 return %dataResult, %2 : i32, none
}

circt-opt --lower-std-to-handshake

1

2
3

4

Figure 3.9: Dataflow conversion with memory operations.

This program takes a memref argument %mem, an index %addr, loads a value from %mem and returns

this value. In the memory-accessing case, two additional steps are performed:

1. Memory insertion (1): For each memory accessing operation in the IR, we count up the number of

load and store operations to the memref which they reference. Then, we insert a memory operation

with the given number of load and store ports. In the case of referencing a memref value defined as

a function argument (i.e. a pointer argument in C), we emit an extmemory operation. In the case

of referencing a memref value created by a memref.alloc, we insert a memory operation (internal

memory). Both of these operations have a similar interface regarding the order of input and output

operands.

2. Memory-accessing operation conversion (2): For any memory accessing operation, we connect

it to the memory operation that was created from the memref value that it referenced. Given the

absence of an LSQ, ensuring correct execution requires the assumption that all memory accessing

operations may alias. A simple method of ensuring correct execution is therefore to guarantee

that any memory accessing operation has to complete before control can be transferred. Each

load/store port of a memory will have a done signal, which indicates completion of the memory

operation. In the order which they appear in the source program, we connect such done signals to

the go inputs of subsequent memory operations. For the first memory operation in a block, we

connect it to the entry control value of the block (%ctrl in Figure 3.9).

3. Join insertion (3): To coordinate control exit from a block, we insert a join operation with operands

being the incoming control value of the block (%ctrl)—checking that control flow has entered the

block—and the done signal of the final memory operation—checking that all memory operations

finished. Note that this implicitly prevents loop pipelining when memory operations exist in the

body of a loop, since control transfer to subsequent loop iterations is dependent on memory

operation completion.

31

4. Block exit control: (4): The above join insertion modified which control value that defines the

finishing condition of a block. As seen in Figure 3.9(4), we then rewrite the program to use %2 to

signal kernel completion. Block output control values are in Figure 3.7 defined as e.g. the %8 = br
%result : none operation.

Fork/Sink Materialization

In preparing Handshake IR for hardware lowering, we must make the IR adhere to a constraint of every

SSA value being used exactly once. By doing so, the hardware lowering does not need to consider, in the

never-used case, how to tie off unused signals (which, if not done, could result in undriven wires), and, in

the used-more-than-once case, the possibility for wires with multiple drivers. To fulfill this constraint,

we implement a fork and sink materialization pass –handshake-materialize-forks-sinks. For every

value defined in the IR, if it is used exactly 0 times, a sink operation is inserted, referencing the value.

For every value referenced N times, N > 1, a fork operation is inserted with N outputs, and each use is

replaced with a different fork output.

Buffer Insertion

In general, the dataflow components used in this flow are implemented as combinational logic. For

correctness, it is therefore required that loops in the dataflow network are broken by sequential buffers,

to avoid combinational loops in the generated hardware [20].

The –handshake-insert-buffers pass will place a buffer on every merge-like operation in the

dataflow graph. If the operation is within an unbuffered loop, a sequential buffer is inserted, breaking

combinational loops. Else, the operation will be buffered by a transparent FIFO. Thus, we still ensure

buffering, but avoid a possible latency increase due to the non-transparency of sequential buffers.

Our buffer placement strategy only concerns itself with correctness of execution. For increased

performance, advanced buffer placement techniques such as ILP (integer linear programming)-based

methods, for placement and sizing of buffers [32], can be used. In this, sequential buffers are placed to

cut critical paths to both increase fmax as well as pipeline the circuit, and transparent FIFO buffers can

be used for managing backpressure.

32

in0

merge

cbranch

in1

merge

inCtrl

42

cbranch

out0outCtrl

>

cbranch

merge

mux

merge

mux

cmerge

cmerge

5 br

+ br

br

42

*

*

(a) IR of Figure 3.7

in0

merge

fork

in1

merge

inCtrl

fork

out0outCtrl

42

cbranch

fork

>

cbranch

cbranch

merge

mux

merge

mux

cmerge

cmerge

sinkfork

5br

+

brbrforkfork

42 *

*

(b) Fork/sink
materialization

in0

fork

cbranch

in1inCtrl

fork

out0 outCtrl

42

cbranch

>

cbranch

fork

+

mux mux

fork

cmerge5

fork fork

42*

*

(c) Canonicalization

in0

fork

cmerge

in1

cbranch

inCtrl

fork

out0outCtrl

42

cbranch

>

cbranch

fork

+

mux mux

fork

5

buffer FIFObuffer FIFO

forkfork

42

buffer FIFO

*

buffer FIFO

*

(d) Buffer insertion

Figure 3.10: Progressive dataflow lowering. Dotted edges represent control-only signals.

Figure 3.10 shows how the handshake IR of Figure 3.7 is progressively lowered. Figure 3.10a is a

visualization of the source IR. Figure 3.10b materializes forks and sinks. Figure 3.10c runs handshake

canonicalization, removing redundant merge and branch operations. Figure 3.10d inserts buffers.

3.3 Progressive Hardware Lowering

Having a dataflow representation of a program, we now turn to converting it into a hardware

representation. Prior to this work, significant progress has been made on converting a large portion of the

Handshake operations into FIRRTL. However, these conversions remained largely untested at the RTL

level. This work has contributed to the Handshake-to-FIRRTL hardware conversion through rewriting of

various component lowerings, guided by RTL simulations, adding support for new components, and

reworking name generation for components, ports, and internal signals to facilitate debugging. The

choice of the Handshake dialect lowering to FIRRTL—as opposed to the CIRCT RTL dialects—is partially

historic. During the inception of the Handshake dialect, the RTL dialects of CIRCT were still in their

infancy and did not provide a level of abstraction equal to that of FIRRTL. Specifically, when lowering

the Handshake representation into hardware, having features such as bundle and flippable types greatly

simplifies how to specify component interfaces. Furthermore, FIRRTL provided a memory abstraction

suitable for lowering Handshake memories, which can have an unbounded amount of load and store

ports. We lower Handshake operations to FIRRTL by programmatically building a FIRRTL module for an

operation, instantiating it in a top-level module, and connecting these based on the use-def chains of

33

the source Handshake IR. Every such FIRRTL module is specialized based on operand and result widths

of the source Handshake operation, and whether the operation is control-only. In CIRCT, FIRRTL is a

monomorphic IR, meaning that we do not have the option of describing a generic FIRRTL component in

textual IR and then instantiating a specialization of it based on the data width(s) of its input and output

signals. This is a possible weak point of our implementation and possibly the current capabilities of

MLIR. We wish to do a form of ”template” lowering, meaning that we do not have a 1:1 mapping from one

operation in dialect A to one operation in dialect B, but instead require emitting a large, but well-defined,

set of operators from dialect B. What is needed is a method for writing textual IR with generic values,

which can be referenced inside a lowering pass to specialize the templated IR. We will return to this point

in section 7.1.

An alternative to our current approach is to map Handshake operations directly to instantiations of

existing RTL designs—this is the approach taken in Dynamatic. A benefit of this is the ability to write

generic implementations of the dataflow components, which most HDLs support, and specialize at the

point of instantiation. However, by doing so, we create a dependency on an RTL design external to the

CIRCT flow, making us unable to benefit from optimizations within the FIRRTL dialect and the RTL

dialects that FIRRTL lowers to.

Lowering index Types

As explained in subsection 3.2.1 the Handshake dialect uses index typed values in places such as

memory operation addresses and multiplexer select signals. While FIRRTL provides bitwidth inference,

initial experiments with using this for deducing the width of index typed values in lowered Handshake

components have proven unsuccessful. Instead, we conservatively emit all index-typed values with a

fixed-width. We find that synthesis tools can properly identify and narrow index-typed signals when

connected to internal memories—memories that are contained within the design and described as a

FIRRTL memory. However, when these index-typed signals are involved in arithmetic or to external

memories, width-narrowing is less successful. In evaluating our flow, we investigate the influence of the

width of these index-typed signals, see chapter 5.

Example: A Dataflow Multiplexer

To provide insight into the implementation of dataflow components, below we present how a dataflow

mux is implemented in FIRRTL. For any other component, our implementation follows directly from

those of Edwards et al. [10, 20] and Dynamatic [31]. Any remaining operations (e.g., arith operations),

are implemented as unit-rate actors.

Figure 3.11 shows how a kernel df_mux in Handshake IR is lowered into a FIRRTL module.

First, we consider the FIRRTL module that encapsulated the mux component. Figure 3.11(ii)

shows the signature of a two-input 32-bit mux. Note that each input and output port are defined

as FIRRTL bundles. In FIRRTL IR, this allows us to emit firrtl.connect operations on flip-

34

handshake.func @df_mux(%arg0: i1, %arg1 : i32, %arg2 : i32, %arg3: none)
 -> (i32, none) {
 %0 = mux %arg0 [%arg1, %arg2] : i1, i32
 return %0, %arg3 : i32, none
}

firrtl.module @handshake_mux_in_ui1_ui32_ui32_out_ui32(
 in %select: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>, data: uint<i1>>,
 in %in0: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>, data: uint<32>>,
 in %in1: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>, data: uint<32>>,
 out %out0: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>, data: uint<32>>) {
 ...
}
firrtl.module @df_mux(
 in %arg0: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>, data: uint<32>>,
 in %arg1: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>, data: uint<32>>,
 in %arg2: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>, data: uint<32>>,
 in %arg3: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>>,
 out %out0: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>, data: uint<32>>,
 out %outCtrl: !firrtl.bundle<valid: uint<1>, ready flip: uint<1>>,
 in %clock: !firrtl.clock, in %reset: !firrtl.uint<1>) {
 %mux0_select, %mux0_in0, %mux0_in1, %mux0_out0 = firrtl.instance
 mux0 @mux_in_ui1_ui32_ui32_out_ui32 : ...
 firrtl.connect %mux0_select, %arg0 : ...
 firrtl.connect %mux0_in0, %arg1 : ...
 firrtl.connect %mux0_in1, %arg2 : ...
 firrtl.connect %out0, %mux0_out0 : ...
 firrtl.connect %outCtrl, %arg3 : ...
}

--lower-handshake-to-firrtl

(ii)

(i)

(iii)

Figure 3.11: Handshake to FIRRTL lowering of a kernel containing a 2-input multiplexer.

compatible types, instead of having to connect each sub-signal within each bundle. The module name

(handshake_mux_in_ui1_ui32_ui32_out_ui32) serves as a de-facto type specifier for the component.

During lowering, we create module names for each dataflow component that includes the operator name,

input and output port widths, and if the component is control-only. Given this unique module name, in

cases where other operators require an equivalently specialized mux component, we perform a symbol

lookup in the symbol table of the FIRRTL program for the component name, and in the matching case,

instantiate the module. Figure 3.11(iii) shows how the top-level module firrtl.module @df_mux is

defined. Each input and output argument is specified as a bundle of ready, valid and data signals,

with the none-typed arguments being only a ready,valid signal pair. Additionally, clock and reset
input signals are added. The body of the module consists of dataflow component instantiations and

connectivity. Here, we see how bundle types allow us to directly connect the input and output arguments

of the top-level module and the instantiated @df_mux module.

Consider Figure 3.12, showing the internal structure of the mux component - the FIRRTL IR of this

has been omitted for brevity. For a multiplexer, the output is valid whenever the select signal is valid and

the selected input is valid:

outv = selv ∧ in[seld]v (3.1)

The readiness of the select signal and selected input signal is asserted whenever the output is transacting:

selr , in[seld]r = outv ∧outr (3.2)

This therefore synchronizes the validity state of the multiplexer inputs with the readiness of its output.

35

Mux Mux Decoder

in0in1in2in3in4

out

Se
le
ct

in0in1in2in3in4
2

select
0

out

Figure 3.12: Implementation of a 5-input dataflow mux.

HDL Emission

module handshake_mux_in_ui1_ui32_ui32_out_ui32(
 input select_valid, select_data, in0_valid,
 input [31:0] in0_data,
 input in1_valid,
 input [31:0] in1_data,
 input out0_ready,
 output select_ready, in0_ready, in1_ready, out0_valid,
 output [31:0] out0_data);

 wire _T = (select_data ? in1_valid : in0_valid)
	 & select_valid;
 wire _T_0 = _T & out0_ready;
 assign select_ready = _T_0;
 assign in0_ready = ~select_data & _T_0;
 assign in1_ready = select_data & _T_0;
 assign out0_valid = _T;
 assign out0_data = select_data ? in1_data : in0_data;
endmodule

module df_mux(
 input arg0_valid, arg0_data, arg1_valid,
 input [31:0] arg1_data,
 input arg2_valid,
 input [31:0] arg2_data,
 input arg3_valid, out0_ready, outCtrl_ready, clock, reset,
 output arg0_ready, arg1_ready, arg2_ready, arg3_ready,
 output out0_valid,

 output [31:0] out0_data,
 output outCtrl_valid);

 handshake_mux_in_ui1_ui32_ui32_out_ui32 handshake_mux0 (
 .select_valid(arg0_valid), .select_data(arg0_data),
 .in0_data(arg1_data), .in1_valid(arg2_valid),
 .in1_data(arg2_data), .out0_ready(out0_ready),
 .select_ready (arg0_ready), .in0_ready(arg1_ready),
 .in1_ready(arg2_ready), .out0_valid(out0_valid),
 .out0_data(out0_data)
);
 assign arg3_ready = outCtrl_ready;
 assign outCtrl_valid = arg3_valid;
endmodule

Figure 3.13: SystemVerilog lowering of a kernel containing a 2-input multiplexer.

After FIRRTL lowering, we rely exclusively on existing hardware lowering infrastructure within CIRCT,

and no modifications to this have been performed through this work. Progressively lowering from FIRRTL

to SystemVerilog takes the following steps:

1. Type lowering: Complex types, such as bundle and flipped types, are lowered to ground types. In

the case of module ports, flipped subtypes will be added to the module outputs and non-flipped to

the module inputs. The inverse is done in the case of output bundles.

2. Module inlining: Modules annotated for inlining are inlined at the point of instantiation, and

dead module elimination is performed. This pass can greatly increase the number of peephole

optimizations that may apply.

36

3. Inter-module constant propagation: Constant propagation into module instantiations, as well as

DCE cleanup.

4. HW lowering: Lowering to a combination of the RTL dialects; comb is used for combinational logic,

SV for sequential logic, and HW for module definitions and instantiations.

CSE and canonicalizations are run in between all the above steps, given that new opportunities for

optimization may have been exposed after an IR transformation. At this point, the program is in a state

suitable for ingestion by the ExportVerilog tool (see subsection 2.3.1), which translates the program into

SystemVerilog.

Considering the df_mux FIRRTL module shown in Figure 3.11, Figure 3.13 shows this module lowered

to its SystemVerilog representation.

37

Chapter 4

A Testable and Debuggable HLS
Infrastructure

With the ability to generate Handshake circuits, we now turn to the question of how to test and debug

these circuits.

The goal of HLS is to raise the level of abstraction at which hardware is described, increase the

productivity of a designer, and transfer the burden of RTL-level correctness onto the HLS tool. However,

just as it is desired to describe behavior at a high level of abstraction, it is equally desired to verify that

behavior through high-level tests. Writing RTL testbenches can be cumbersome and requires specialized

hardware knowledge. As such, what we are looking for is a method of cosimulation—running a high-

level test against an RTL-level simulation. Work on cosimulation generally takes the approach of using

transactors [3, 58]. A transactor is a component that facilitates domain crossing. In our case, between a

testbench, with sequential software semantics and an RTL simulation, with hardware and handshake

semantics. Such a transactor will translate the concept of a function call (in the software world) into

exercising the RTL interface of a kernel. This includes things such as asserting input signals (passing

arguments), enable signals (calling a function), as well as accepting kernel outputs (return values).

When designing a cosimulation infrastructure, we need to consider how an RTL simulation will be

called from the software world and how the software itself will perform validation of the RTL simulation.

A cosimulation testing infrastructure is a convenient tool for figuring out when things go wrong.

However, since such a tool primarily considers interactions at the interface between the software and

the RTL simulation, we rarely gain insight into what went wrong. This is where debugging tools come in

handy. In section 4.4 we describe HSdbg, a tool for debugging RTL simulations of Handshake accelerators,

which has been used extensively throughout this project.

38

4.1 Transaction-based RTL Simulation

To use a software testbench with a hardware implementation of a kernel, we must consider how to

translate between the software domain of the testbench, and the hardware domain of the kernel.

Furthermore, just as an application binary interface (ABI) defines a calling convention in software,

in hardware we use interfaces and interface properties to define how to interact with a hardware module.

In our case, a handshake interface. A transactor will therefore provide compatability between any given

calling interface. The use of transactors and transaction level modelling [8] is well explored in both HLS

and SoC co-design.

Semantically speaking, when progressively lowering to hardware, function call and return semantics

will be made increasingly more explicit in the IR and kernel interfaces. In this, we also consider the fact

that a kernel may exist at multiple levels of abstraction, and not only at the hardware level. For instance,

for the developer who only cares about a subset of an HLS flow, having the ability to simulate at a higher

level abstraction can significantly reduce overall time spent on simulation and debugging. For this, we

provide the handshake-runner tool which is an interpreter for Handshake IR. This concept is shown in

Figure 4.1. Each level of abstraction can have a different simulation style which influences how a call

to that kernel is performed. In our work, we also implement a transactor for the handshake-runner,

allowing for C-to-Handshake interpreter cosimulation. However, we will here focus on the C-to-RTL
case.

HLS IR

SW kernel

(.c, .c++, ..)

IR

HLS lowering

Source level

Testbench IRTransactor

Interpreter

Testbench SW kernel

RTL

RTL emission

Testbench Transactor
 - HW sim.,

- FPGA Impl

IR level

RTL level

Abstraction Simulation style

Figure 4.1: Transactors enable simulation using a single high-level testbench against kernels at different
levels of abstraction.

Transactor Style

Below, we consider three design options for implementing transactors.

The first option is to encapsulate transactors in a class construct, with logic and state as member

functions and values. This method is relatively simple to implement in cases where the target simulator

is defined in the same language as the transactor, simplifying compilation and execution. In our use case,

we perform RTL simulations through Verilator [53]. Verilator generates the RTL simulator as a C++ class,

which is natively interfaced with when implementing transactors in C++.

39

A second option is to implicitly generate transactors through HLS compiling the testbench itself

and instantiating the kernel as a submodule of the testbench. An advantage of this method is that no

additional components need to perform the domain translation. The translation is implicit, in part by

the lowering process, in part by the simulator itself. However, some drawbacks are that the programming

constructs we would like to use in a testbench program do not necessarily make sense in HLS, and

therefore make it difficult or impossible to HLS lower the testbench–an example could be dynamic

memory allocation. Secondly, this style may be unusable for a tool developer in cases where the HLS flow

itself may be faulty, implying that bugs can manifest themselves in both the kernel and the testbench.

Finally, transforming the testbench to an RTL abstraction will inevitably slow down the execution of

that testbench by possibly orders of magnitude since we are trading a software execution for an RTL

simulation.

A third option is to describe the transactional domain as an MLIR dialect. A transactional dialect

would allow for a scalable method of composing all kinds of execution styles, whether being software

execution, hardware simulators, or interfacing with real hardware. We return to this point in section 7.1.

We implemented the first option because it is the most suitable given the scope of this work—we will

only consider the case of C-to-Verilator. However, we believe that this work can provide insights into how

a transactional dialect may be defined in the future.

4.1.1 Generating Transactors

Model
Handshake

transactor

wrapgen Verilator

void call(...)

... await()

Verilated model

Th
re

ad
s

Testbench thread Simulator thread

Te
st

be
nc

h

MLIR

std

MLIR

HS

MLIR

FIRRTL

Generated

.sv

Lowering

Tool

Input buffer

Output buffer

Figure 4.2: HLT overview. Call/await and a transactor specialization is generated from different
abstractions of the kernel. This constitutes a wrapper around a verilated model.

Our class-based transactor approach consists of two main parts: the wrapgen tool and the simulator

library.

The simulator library contains all logic for driving the RTL simulator. This includes concepts such

as transactor interfaces, how ports are modeled and transacted, and interactions with the input and

output buffers shown in Figure 4.2. This library is heavily templated, allowing for the library logic to

40

SimInterface VerilatorSimInterface HandshakeSimInterface addSimInterface addSim

Simulator library Generated

Verilator model management

(clocking, resetting, tracing)

handshake bundle

transaction logic.

In/out type specialization SIgnal resolution - verilator

model I/O to handshake bundles

Transactor interface,

logical port management

Figure 4.3: Class hierarchy of a transactor.

be specialized solely by a set of types defining the software interface of a simulator. The input and

output buffers used to communicate between the transactor and testbench are thread-safe queues,

and the transactor lives in a separate thread to the testbench. By doing so, we allow for concurrency

between the testbench and simulator execution, for speeding up overall execution time. Transactors

are implemented in a hierarchical fashion, as shown in Figure 4.3. Starting from the SimInterface,

we incrementally specialize the transactor for the domain that it is targeting. To define a Handshake

transactor implementation, first the VerilatorSimInterface will handle instantiation, clocking, and

resetting of an RTL model. Then, the HandshakeSimInterface implements all logic for pushing and

popping values to and from the I/O buffers to the verilated model ports by performing handshake

transactions.

wrapgen is used for generating a kernel-specific specialization of the generic transactors exposed by

the simulator library. In our case, in order to generate the transactor, wrapgen requires an MLIR standard

representation of a kernel as well as its FIRRTL representation. The standard representation determines

the software interface of the transactor, and the FIRRTL representation determines the port names and

handshake bundles of the verilated model. From this, we can infer the variable names of the top-level

verilator model, and hook into these from the transactor.

Let us consider how such a generated transactor may look. All code snippets shown are generated.

Given function with signature add(i32, i32) -> i32, we run our HLS flow to generate the MLIR files

required for wrapgen, shown in Figure 4.2. Figure 4.3 shows the transactor class hierarchy.

// add_wrapgen.cpp
using TArg0 = IData; // IData is a Verilator-compatible i32
using TArg1 = IData;
using TInput = std::tuple<TArg0, TArg1>; // Defines an input transaction

using TRes0 = IData;
using TOutput = std::tuple<TRes0>; // Defines an output transaction

using TModel = Vadd; // Vadd is the name of the Verilated C++ class
using addSimInterface = HandshakeSimInterface<TInput, TOutput, TModel>;

Figure 4.4: Input and output types are specified corresponding to that of the source (software)
representation of a kernel. Using these, we define types for input (TInput) and output (TOutput)
transactions.

Figure 4.4 shows how the input and output transactions (TInput, TOutput) are defined. By

41

defining these in a std::tuple we are able to use template metaprogramming to iterate across the

subtypes of the tuple from within the simulator library. addSimInterface defines a specialization

of the HandshakeSimInterface based on the input types (i32, i32) and output types (i32) of

the source function. We also provide the type of the verilated model class (Vadd), required by the

VerilatorSimInterface.

// add_wrapgen.cpp
class addSim : public addSimInterface {
public:
 // 'dut' is a member variable instance of the verilated class TModel
 addSim() : addSimInterface() {
 // --- Generic Verilator interface
 interface.clock = &dut->clock; interface.reset = &dut->reset;
 // --- Handshake interface
 inCtrl->readySig = &dut->inCtrl_ready; inCtrl->validSig = &dut->inCtrl_valid;
 outCtrl->readySig = &dut->outCtrl_ready; outCtrl->validSig = &dut->outCtrl_valid;
 // --- Software interface
 // - Input ports
 addInputPort<HandshakeDataInPort<TArg0>>("in0", &dut->in0_ready, &dut->in0_valid, &dut->in0_data);
 addInputPort<HandshakeDataInPort<TArg1>>("in1", &dut->in1_ready, &dut->in1_valid, &dut->in1_data);
 // - Output ports
 addOutputPort<HandshakeDataOutPort<TRes0>>("out0", &dut->out0_ready, &dut->out0_valid, &dut->out0_data);
 };
};

1

2

3

4

Figure 4.5: In the transactor constructor, interface ports (such as clock, reset, and handshake control
signals) are resolved to those of the verilated model. Furthermore, we create the logical input and output
ports that will be used for transactions.

Next, we need to create a coupling between the top-level I/O of the verilated model and the transactor,

as shown in Figure 4.5. This coupling is performed within the constructor body of a specialization of the

addSimInterface just defined, called addSim. For the handshake transactor, two levels of abstraction

must be set up. First, VerilatorSimInterface needs to be informed of the clock and reset variables

of the verilated model (Figure 4.5(1)). Next, the HandshakeSimInterface needs access to the input

and output control ports of a Handshake kernel (Figure 4.5(2)). Finally, we must provide logical port

definitions to fulfill the software interface of the kernel. For each input and output argument of the source

function, an input or output logical port must exist in the transactor. In the handshake transactor case,

for non-pointer arguments, this constitutes a bundle of data, ready, and valid variables. For pointers, this

constitutes all load, store, and control ports of a memory, as seen in Figure 2.5. An input port is defined

for each of the i32 arguments to the kernel in Figure 4.5(3) and a single output port is defined for the

return i32 value in Figure 4.5(4).

42

using TSim = addSim;

using TSimDriver = SimDriver<TInput, TOutput, TSim>;
static TSimDriver *driver = nullptr
void init_sim() { driver = new TSimDriver(); }

extern "C" int32_t add_await(){

 TOutput output = driver->pop(); // blocking
 return std::get<0>(output);
}

extern "C" void add_call(int32_t in0, int32_t in1) {
 if (driver == nullptr)
 init_sim();
 TInput input;
 std::get<0>(input) = static_cast<TArg0>(in0);
 std::get<1>(input) = static_cast<TArg1>(in1);
 driver->push(input); // non-blocking
}

Figure 4.6: The simulator is allocated in static scope, and definitions of the call and await function
are emitted, comprising the asynchronous kernel interface.

Finally, we need to specify a software interface for the transactor. This interface can be called

from anything that links against the transactor’s compilation unit. Since our transactor infrastructure

decouples input and output values to a transactor via the input and output buffers, the software interface

of a transactor is conveniently specified as a decoupled interface. Figure 4.6 shows the software interface

of the simulator. A class SimDriver is introduced to handle interactions with the input and output buffers

and the transactor (TSim = addSim). The add_call and add_await functions presents the decoupled

interface to the simulator, which when combined has an equivalent interface as the source add(i32,
i32) -> i32 function. Inside these functions, input and output transactions will be assembled or

disassembled and forwarded to the SimDriver. Calls to driver->pop() are blocking, meaning that

add_await will only return once the transactor has pushed a value into the output queue. Note, therefore,

that this infrastructure assumes an in-order constraint in terms of calls to the call/await functions and

the ordering of values written by the kernel to the input and output buffers. An instance of the SimDriver
is allocated in static scope, ensuring that the transactor (and therefore the verilated model) remains live

between calls to the call/await functions.

Having now specialized the HandshakeSimInterfacewith respect to the types of the source function

and hooked it up to the top-level I/O of the verilated model, we now describe how the Handshake

transactor works. For each simulation step:

1. The clock is asserted (rising edge).

2. If a value is present in the input buffer and if the logical ports of the transactor are ready to accept

an input, the input transaction is unwrapped, and each subvalue is pushed onto its corresponding

logical input port. Input ports define validity and readiness based on the transactor. In our

handshake case, this means that each logical port will inspect the ready/valid state of its associated

handshake control signals.

3. The transactor then enters an evaluation loop, where the verilated model and the logical ports

are continuously evaluated until a steady-state is reached. Each logical port contains propagation

functions that indicate whether changes to the verilated model interface were made. If such change

occurs, looping continues. This behavior is necessary because handshake hardware modules

represent a Mealy machine [6], meaning that its output depends on both its current state as well as

its inputs. These propagation functions are also responsible for pushing inputs to and popping

43

outputs from the I/O buffers.

4. We perform a check on whether an output transaction can occur. This is possible when the output

control port has transacted and all logical output ports have transacted a value—these are stored

in an intermediate buffer. If this is the case, we write the intermediate buffer to the output buffer,

thus performing an output transaction.

5. Once a fixed point is reached, the clock is de-asserted (falling edge).

Upon a call to driver->pop(), the SimDriver will continuously request the transactor to step its

simulation until an output is available in the output buffer. If no meaningful state change has occurred

in the simulator within a fixed number of steps, an assert is thrown to indicate deadlock.

4.2 Source-Level Testbench Transformations

In the following sections, we consider the implementation of MLIR transformations to support the

transactor interface defined in the previous section and abstractions for covalidating our RTL simulation

with a software reference model.

4.2.1 Testbench Cosimulation

For any given testing infrastructure, we seek to verify the functionality of some function or device under

test (DUT). This can be done either by the test writer explicitly defining test and verification vectors and

comparing expected to actual behavior or through generating test vectors automatically by cosimulating

against a golden model. In the case of HLS, the high-level source code from which an accelerator was

generated can be such a golden model.

The proposed testing infrastructure has been implemented to support automatic cosimulation. In

doing so, we seek to execute a testbench against both the golden model and the RTL simulation and

verify that whatever side effects the golden model had, the RTL simulation will exhibit equivalent side

effects. We define side effects of any given function call as the modifications made to mutable input

arguments and the output arguments.

To facilitate program cosimulation-related program transformation, we capture this in a new MLIR

dialect called cosim. In cosim we define two operations, cosim.call and cosim.compare.

cosim.call may replace any normal function call but with the ability of targeting multiple

implementations of the same function. This is done to perform calls to a reference function, and

an arbitrary number of target functions, at an exact point in the source program.1. The cosim.call
operation is used in Figure 4.7(i), where a function foo will be used as a reference function and foo2 as a

target function.

1Or, more generally, any other function with an identical signature.

44

func @test_foo() {
 %0 = memref.alloc() : memref<10x10xi32>
 // Mutable argument allocation and copy
 %1 = memref.alloc() : memref<10x10xi32>
 memref.copy %0, %1 : memref<10x10xi32> to memref<10x10xi32>

 %2 = call @foo(%0) : (memref<10x10xi32>) -> i32
 %3 = call @foo2(%1) : (memref<10x10xi32>) -> i32
 // Return value verification
 cosim.compare %2, %3 : i32
 // Mutable argument verification
 cosim.compare %0, %1 : memref<10x10xi32>
 return
}

func @test_foo() {
 %0 = memref.alloc() : memref<10x10xi32>
 %1 = cosim.call @foo(%0) : (memref<10x10xi32>) -> i32
 {ref = "foo", targets = ["foo2"]}
 return
}

func @test_foo() {
 %0 = memref.alloc() : memref<10x10xi32>
 %1 = memref.alloc() : memref<10x10xi32>
 memref.copy %0, %1 : memref<10x10xi32> to memref<10x10xi32>
 %2 = call @foo(%0) : (memref<10x10xi32>) -> i32
 %3 = call @foo2(%1) : (memref<10x10xi32>) -> i32
 // Return value verification
 %4 = arith.cmpi ne, %2, %3 : i32
 scf.if %4 {
 %8 = llvm.call @printf(... // print error message
 }
 // Memory verification
 scf.for %arg0 = 0 to 10 step 1 {
 scf.for %arg1 = 0 to 10 step 1 {
 %5 = memref.load %0[%arg0, %arg1] : memref<10x10xi32>
 %6 = memref.load %1[%arg0, %arg1] : memref<10x10xi32>
 %7 = arith.cmpi ne, %5, %6 : i32
 scf.if %7 {
 %11 = llvm.call @printf(... // print error message
 }
 }
 }
}

(i)

(ii)

(iii)

hlt-opt --cosim-lower-call

hlt-opt --cosim-lower-compare

Figure 4.7: Lowering of cosim dialect operations. A cosim.call operation (i) is lowered into two function
calls (ii), mutable argument copying and side-effect comparison (iii) using cosim.compare operations.
cosim.compare operations are lowered into verification code in (iii), which can be further lowered to
executable LLVM IR.

Having this, we then implement a lowering pass to do the following:

1. Any mutable input operand is copied for each target. Here, we only consider the case of memref-

typed values.

2. builtin.call operations are inserted for each target and the reference function.

3. cosim.compare operations are inserted to compare the side effects of the reference function call

with the side effects of the target function calls.

To illustrate this, consider Figure 4.7(ii). The cosim.call operation has been lowered to calls to

both foo and foo2, as well as an allocation and copy of the memory that was an input argument to the

original function. Furthermore, two cosim.compare operations have been emitted; one for comparing

the mutable input argument as well as one for the output results.

Each cosim.compare operation will be based on the type of its input argument and will be lowered to

a set of operations comparing the argument values. We choose to implement these comparisons directly

as MLIR operations, but a viable alternative is a runtime library for performing the comparisons and

error reporting.

4.2.2 Desynchronizing RTL Simulator Invocations

A desirable property of a cosimulation infrastructure is the ability to stimulate the interface of an RTL

simulation in such a way that mimics how the kernel would be used in hardware.

45

int out[3];
for(int i = 0; i < 3; ++i)
 out[i] = add(i, i);
check(out);

(a) Testbench calling a kernel
add.

i+1+2

i

i

i

+1+2

+1+2

+1+2

for(...) add(...) out[i]=...

+1+2 i

(b) Synchronous value flow
through add.

i+1+2

i

+1 i

+2+1 i

+1+2

+1

for(...) add(...) out[i]=...

+1 i+2

(c) Asynchronous value flow
through add.

Figure 4.8: Synchronous versus asynchronous value flow through a kernel add.

As a motivating example, consider the testbench shown in Figure 4.8a, wherein a function add is

called within a loop. If the testbench is executed as-is, invocations of add in subsequent loop iterations

will be blocking, due to the dependency between the call of add and the write to out[i]. Next, imagine

that add is an RTL model containing three pipeline stages. Given a sequentially executing testbench, this

results in simulation semantics shown in Figure 4.8b. For each loop iteration, add must ingest the set of

input parameters and execute until a value is available on its output. This presents multiple problems:

First, by having only a single stage active within the hardware model at any given time, inter-stage

semantics such as forwarding or stalling remain untested. Secondly, total simulation time will increase

due to not exploiting pipelining within the simulated model.

If we instead consider breaking the dependency between returning from add and issuing subsequent

loop iterations, add calls within the loop are asynchronous. In such case, invocations of add are now only

dependent on the simulation model being ready to accept inputs, and multiple invocations of add may

be active at once (Figure 4.8c). Not only does this mimic how the pipelined kernel would be used in

hardware, but it may also significantly speed up overall test execution due to the overlapping of testbench

and simulation execution.

The testing infrastructure proposed in this work is designed under the assumption that a designer,

from their testbench, expects to call a kernel synchronously. An alternative to this could be to require the

designer to write a testbench with asynchronous behavior. In such a model, separate function calls for

invoking an RTL model and waiting for its results would have to be made. We see this style as unfavorable

due to it introducing an API and behavioral mismatch between the kernel’s source code, which we

expect to be a normal synchronous C function. As a practical consideration, this would also require the

rewriting of existing designs, benchmarks, and test suites with which we might want to use our HLS

infrastructure. This, therefore, poses the problem of wanting to call an RTL simulation asynchronously

but simultaneously wanting to write synchronous testbench code.

The process of desynchronization—converting synchronous programs into asynchronous—is a

complex problem [4] but highly relevant in the world of modern compute, since efficient use of (task-

46

pipelined) hardware accelerators relies on communicating through decoupled interfaces. Maintaining

program semantics while decoupling a function invocation from the use of function results is difficult

given the complexities of disambiguating runtime memory dependencies and tracking side effects

between the caller and callee. In practice, we observe that many modern programming languages

implement asynchronous features through concepts such as subroutines, futures, or channels, but still

leaving it up to the user to apply these rather than the compiler.

Due to the problem presented above, we do not intend to solve the general problem of

desynchronization within MLIR. Instead, we seek to implement a restricted form of desynchronization

that can be used for most testbench-like programs. We observe that most testbenches follow simple

programming patterns, with computation split into the generation of test stimulus data, calling a kernel,

and verifying the side-effects of a kernel.

We implemented a desynchronization pass based on the above assumptions. These properties are

assumed true for the testbench program, and we only implement non-exhaustive checks to verify them,

catching the most blatant violations. If necessary, these assumptions could be verified through more

elaborate program analysis.

func @testbench() {
 %0 = memref.alloc() : memref<10xi32>
 %1 = memref.alloc() : memref<10xi32>
 scf.for %arg0 = 0 to 10 step 1 {
 %2 = memref.load %0[%arg0] : memref<10xi32>
 %3 = call @add(%2, %2) : (i32, i32) -> i32
 memref.store %3, %1[%arg0] : memref<10xi32>
 }
 return
}

func @testbench() {
 %0 = memref.alloc() : memref<10xi32>
 %1 = memref.alloc() : memref<10xi32>
 scf.for %arg0 = 0 to 10 step 1 {
 %2 = memref.load %0[%arg0] : memref<10xi32>
 call @add_call(%2, %2) : (i32, i32) -> ()
 }
 scf.for %arg0 = 0 to 10 step 1 {
 %2 = call @add_await() : () -> i32
 memref.store %2, %1[%arg0] : memref<10xi32>
 }
 return
}

hls-opt --desynchronize-calls

(ii)

(i)

Figure 4.9: (i) shows a function with a call to add. (ii) shows the desynchronized version, with loops
emitted for the up- and downstream operations of the function call. Note that add_call returns no
results and add_await takes no arguments.

Figure 4.9 shows how the call @add operation has been desynchronized. The pass supports function

calls being either nested directly within the top-level function or within a loop, like the one shown in

Figure 4.9(i).

To desynchronize an operation of we first generate two new function declarations ocall, oawait within

the current module. Given a function signature func @add(i32, i32)→i32, func @add_call(i32,
i32)→() declares the asynchronous invocation, and func @add_await()→(i32) the (blocking) await.

These operations define symbols that are referenced by the asynchronous function calls. Importantly,

these are only declarations, given that the actual function implementations are external to the MLIR

module, being defined through the C-functions generated by wrapgen. When desynchronizing an

operation of within a loop lsrc, we first create two new loop operations, lcall and lawait. Then, we perform

the following dataflow analysis to copy any upstream dependencies of of to lcall and any downstream

dependencies (along with their upstream dependencies) to lawait:

47

• copydeps(o): for each operand σ of o, if σ is defined by an operation oσ within lsrc then copy oσ
to lcall and run copyDeps on oσ.

• For each result σ of of, for each user ouser of σ, if ouser is defined within lsrc then copy ouser to lawait

and call copyDeps on ouser, with operations being copied to lawait.

Having these, we then add ocall to the end of lcall. For the await loop, we add oawait to lawait, at the

point after all operations which produces one of its operands.

The result of this transformation is shown in Figure 4.9(ii). Relative to the originalcall @add function,

the upstream memref.load operation has moved with the call to @add_call, and the downstream

memref.store has moved with the call to @add_await.

4.3 An End-to-End Example

In section 4.1 we saw how transactors could be implemented, creating a software interface to an RTL

simulation. Section 4.2 then showed how to do source-level rewriting of a testbench in order to perform

cosimulation, validation, and asynchronous execution. This section presents an end-to-end example of

how these flows compose and execute.

kernel.c

tst_kernel.c

kernel.so
kernel_hlt.ckernel.mlir

kernel.sv
hlstool

wrapgen

verilator Vkernel.h/.c

cc

Polygeist tst.mlir --cosim,

--desync. tst_cd.mlir

mlir-cpu-runner
stdout

.vcd
--lower-to-llvm* tst_llvm.mlir

Figure 4.10: End-to-end flow for the creation of an executable, testbench driven simulation. The upper
row shows kernel lowering, the bottom row the testbench lowering.

Figure 4.10 illustrates the overall flow starting from a C kernel and testbench to an executable

simulation. The upper half illustrates the lowering flow for the kernel. The hlstool box represents the

flow presented in chapter 3. From the SystemVerilog representation of the kernel, verilator creates the

core of the RTL simulator, and wrapgen generates the transactor. This is compiled into a shared library,

containing definitions for the kernel_call/_await functions.

The bottom half of Figure 4.10 illustrates the testbench lowering flow. We first convert the testbench

into MLIR through Polygeist. Then, we run the cosim conversion pass—this pass must be run before

desynchronization, since we only want to desynchronize the call to the transactor-implemented function,

and not the reference function. After cosim conversion, we finally run desynchronization. As covered in

subsection 2.2.3, many of the upstream MLIR dialects can lower to an MLIR LLVM dialect representation.

The operations of the cosim dialect all lower to a combination of arith operations for comparison logic

48

and scf operations for control flow. These dialects both have existing lowering paths to LLVM, so at this

point, the entire testbench can lower to LLVM.

Finally, we pass the lowered testbench (now in MLIR LLVM form) and the kernel .so library to

mlir-cpu-runner. mlir-cpu-runner will JIT compile and execute the testbench while resolving the

kernel call and await symbols to those provided in the .so library. Execution is then verified through a

combination of the stdout of the run, the return code, and VCD files.

kernel calls

Kernel await returns

Figure 4.11: Example test execution of a kernel performing integer exponentiation. Note that kernel calls
are decoupled from kernel returns.

Figure 4.11 shows one example execution of a kernel taking two 32-bit inputs and returning a single

32-bit output. The kernel is called ten times. Note the decoupling of calling the kernel from the kernel

returning values. Each output value will generate a token in the output buffer, which in turn wakes up a

testbench currently blocking on an await call.

4.4 HSdbg

Hardware debugging can be a difficult task even for designers writing their own RTL code—and debugging

generated circuits maybe even more difficult. One reason is the highly hierarchical structure typically

found in generated circuits. This makes sense for a tool but may make it difficult to understand what

a circuit is doing due to the use of intermediate signals and components. This generally applies when

generating design patterns that diverge from humanly-written designs. Secondly, generated circuits often

struggle to carry meaningful names that are traceable back to the source code. This, coupled with the

fact that different levels of abstraction of the circuit may have inferred signals other than one would

immediately expect when providing the source program. In an HLS case, structured control flow, such as

loops, is first reduced to a CDFG. Then, at the handshake level, control components will be inserted to

transfer control between blocks in this CFG, and finally, at the FIRRTL level, all handshake signals are

49

elaborated into bundles of ready, valid, and data signals. These transformations add new information to

the kernel that does not necessarily trace back to the source program.

A result is that even C programs of just a few lines of code containing control flow may elaborate to

thousands of signals in a simulated VCD trace. Moreover, if VCD trace inspection is the only available

debugging method, debugging becomes a tedious and challenging task.

To aid in debugging the circuits generated by our HLS flow, we have developed a tool that can be

used to debug handshake circuits visually. The premise of this tool builds on the idea that debugging

representations should be provided at the highest level of abstraction where a problem can be detected.

In software, this is analogous to source-level debugging with the ability to step through a program

line-by-line, even though the underlying system is executing machine code2.

handshake.mlir

circt-opt .dot

cba

.v
cd

 fi
le

ba

.d
ot

 fi
le

c Si
gn

al
 re

so
lu

tio
n

b

c

a

.vcd

.dot

sim. step #

>_

HSdbg--handshake-add-ids |
--handshake-print-dot

Figure 4.12: HSdbg flow.

HSdbg is a tool that can provide a visual representation of an execution trace of an RTL simulation,

the overall flow of which is shown in Figure 4.12. HSdbg uses GraphViz .dot files to visualize a Handshake

IR dataflow graph. This graph is then modified based on values read from a VCD trace to reflect the

underlying state of the RTL simulation.

To do this, we first add unique IDs to the Handshake IR through a CIRCT pass. Having unique IDs

allows for dataflow hardware instances to be given a unique and deterministic name. These names are

then reflected in both the .dot file as well as the module names present in the VCD trace. The .dot
file and VCD trace are then provided to HSdbg, wherein nodes in the graph are resolved to modules

and signals in the trace. To visualize handshake state, we resolve the ${signal}_(valid/ready/data)
signals in the VCD file to the nodes and edges of our GraphViz graph. Once resolved, for any simulation

step, we can then read signal values from the trace and adjust attributes of the .dot graph to reflect the

state of the simulation.

The visual semantics of the representation are shown in Figure 4.13. Each square node represents

a handshake component, circular nodes represent any other operation, and rhombus-shaped nodes

represent input and output variables. Each edge in the diagram represents a handshake bundle (ready,

valid, and an optional data signal for non-control connections). An edge terminates in a symbol

(arrowhead, empty or full circle). The source of the edge is the component providing the valid and data
2Going further, stepping through assembly code is but a high-level debugging abstraction for a hardware designer who

implements a processor.

50

Data Control Handshake Other

Figure 4.13: Visual semantics of an HSdbg visualization. Lines represent bundles of valid (v), ready (r)
and optionally a data component.

signals. Dotted edges represent control connections. Red edges indicate that a signal is neither ready nor

valid, yellow indicates ready or valid, and green indicates ready and valid. The terminating symbol of the

edge indicates, on an empty circle, that the bundle is ready, and full circle, that the bundle is valid. Data

signals will display the current value near the edge. Values can be shown in either hex, decimal, or binary.

The debugger is controlled via a command-line interface, with right and left arrow presses, stepping

back and forward in simulation time in the VCD, as well as a goto option, jumping to a specific simulation

time. Figure 4.14 shows how HSdbg visualizes subsequent clock cycles in a handshake circuit.

Throughout this work, experience with the tool has been highly positive, and it has been a go-

to for identifying issues related to the circuits themselves, such as deadlocks and issues with the

implementation of dataflow components. This has, in large part, made VCD inspection obsolete. Such a

tool may also be applicable in an educational context. Prior work has shown that employing visualization

at the level of abstraction of design is a valuable tool for teaching computer architecture concepts [45]—

we believe that visualizing handshake circuits at the handshake level of abstraction will help people new

to dataflow circuits to get a sense for the execution model.

51

in0

extmemory [0]

fork [10]

in1

arith.index_cast [0]

0x64

inCtrl

fork [0]

out0 outCtrl

join [1]

load

0x1

memory [0]

join [0]join [2]join [3]

load

0x0

1 [0]

0 [1]

10 [2]

0 [3]

5 [4]

store

cmerge [0]

mux [1]

0x1

fork [1]

0x0

0x0

mux [0]

0x0

mux [2]

0x0

mux [3]

0xa

0x0

mux [4]

0x5

0x00x0

mux [5]

0x64

buffer seq [0]

0x0

buffer seq [1]

fork [2]

0x1

cbranch [0]

0x1

0x1

0x1

0x1 0x10x1

buffer seq [2]

0x2

fork [3]

0x1

< [0]

0x1

cbranch [1]

0x1

buffer seq [3]

0x1

cbranch [2]

0x1

buffer seq [4]

0x0

cbranch [3]

0x0

buffer seq [5]

0xa

cbranch [4]

0xa

buffer seq [6]

0x5

cbranch [5]

0x5

buffer seq [7]

0x64

fork [4]

0x64

0x64

cbranch [6]

0x64

fork [5]

0x1

0x10x1

0x1

0x1

0x1 0x1

0x1

fork [6]

fork [15]

sink [0]

0x1

fork [7]

0x1

sink [1]

0x1

fork [8]

0x1

cbranch [9]

0x0

0x0

sink [2]

0xa

fork [9]

0xa

sink [3]

0x50x5

sink [4]

0x64

cbranch [12]

0x64

cbranch [7]

+ [0]

0x1

0x1

0x1

cbranch [8]

0x1

> [1]

0xa

cbranch [10]

0xa

* [0]

0x5cbranch [11]

0x5

cbranch [13]

0x2

0x1

buffer FIFO [8]

0x1

0x1

fork [11]

0x5

0x5

cbranch [14]

0x5

fork [12]

0x0

0x0

0x0 0x00x0 0x00x0

0x0

0x0

fork [13]

0x10x1

0x0 fork [14]

0x00xa 0xa 0x5 0x50x64 0x64

0x20x2

sink [5]

0x5

store

0x5

0x0 0x0

0x5 0x0

0x0

buffer FIFO [9]

0x0

0x0

(a) Cycle 1

in0

extmemory [0]

fork [10]

in1

arith.index_cast [0]

0x64

inCtrl

fork [0]

out0 outCtrl

join [1]

load

0x1

memory [0]

join [0]join [2]join [3]

load

0x0

1 [0]

0 [1]

10 [2]

0 [3]

5 [4]

store

cmerge [0]

mux [1]

0x1

fork [1]

0x0

0x0

mux [0]

0x0

mux [2]

0x0

mux [3]

0xa

0x0

mux [4]

0x5

0x00x0

mux [5]

0x64

buffer seq [0]

0x0

buffer seq [1]

fork [2]

0x0

cbranch [0]

0x0

0x0

0x0

0x0 0x00x0

buffer seq [2]

0x3

fork [3]

0x2

< [0]

0x2

cbranch [1]

0x2

buffer seq [3]

0x1

cbranch [2]

0x1

buffer seq [4]

0x0

cbranch [3]

0x0

buffer seq [5]

0xa

cbranch [4]

0xa

buffer seq [6]

0x5

cbranch [5]

0x5

buffer seq [7]

0x64

fork [4]

0x64

0x64

cbranch [6]

0x64

fork [5]

0x1

0x10x1

0x1

0x1

0x1 0x1

0x1

fork [6]

fork [15]

sink [0]

0x2

fork [7]

0x2

sink [1]

0x1

fork [8]

0x1

cbranch [9]

0x0

0x0

sink [2]

0xa

fork [9]

0xa

sink [3]

0x50x5

sink [4]

0x64

cbranch [12]

0x64

cbranch [7]

+ [0]

0x2

0x2

0x1

cbranch [8]

0x1

> [1]

0xa

cbranch [10]

0xa

* [0]

0x5cbranch [11]

0x5

cbranch [13]

0x3

0x2

buffer FIFO [8]

0x1

0x1

fork [11]

0x5

0x5

cbranch [14]

0x5

fork [12]

0x0

0x0

0x0 0x00x0 0x00x0

0x0

0x0

fork [13]

0x10x1

0x0 fork [14]

0x00xa 0xa 0x5 0x50x64 0x64

0x30x3

sink [5]

0x5

store

0x5

0x0 0x0

0x5 0x0

0x0

buffer FIFO [9]

0x0

0x0

(b) Cycle 2

in0

extmemory [0]

fork [10]

in1

arith.index_cast [0]

0x64

inCtrl

fork [0]

out0 outCtrl

join [1]

load

0x1

memory [0]

join [0]join [2]join [3]

load

0x0

1 [0]

0 [1]

10 [2]

0 [3]

5 [4]

store

cmerge [0]

mux [1]

0x1

fork [1]

0x0

0x0

mux [0]

0x0

mux [2]

0x0

mux [3]

0xa

0x0

mux [4]

0x5

0x00x0

mux [5]

0x64

buffer seq [0]

0x0

buffer seq [1]

fork [2]

0x0

cbranch [0]

0x0

0x0

0x0

0x0 0x00x0

buffer seq [2]

0x3

fork [3]

0x2

< [0]

0x2

cbranch [1]

0x2

buffer seq [3]

0x1

cbranch [2]

0x1

buffer seq [4]

0x0

cbranch [3]

0x0

buffer seq [5]

0xa

cbranch [4]

0xa

buffer seq [6]

0x5

cbranch [5]

0x5

buffer seq [7]

0x64

fork [4]

0x64

0x64

cbranch [6]

0x64

fork [5]

0x1

0x10x1

0x1

0x1

0x1 0x1

0x1

fork [6]

fork [15]

sink [0]

0x2

fork [7]

0x2

sink [1]

0x1

fork [8]

0x1

cbranch [9]

0x0

0x0

sink [2]

0xa

fork [9]

0xa

sink [3]

0x50x5

sink [4]

0x64

cbranch [12]

0x64

cbranch [7]

+ [0]

0x2

0x2

0x1

cbranch [8]

0x1

> [1]

0xa

cbranch [10]

0xa

* [0]

0x5cbranch [11]

0x5

cbranch [13]

0x3

0x2

buffer FIFO [8]

0x1

0x1

fork [11]

0x5

0x5

cbranch [14]

0x5

fork [12]

0x0

0x0

0x0 0x00x0 0x00x0

0x0

0x0

fork [13]

0x10x1

0x0 fork [14]

0x00xa 0xa 0x5 0x50x64 0x64

0x30x3

sink [5]

0x5

store

0x5

0x0 0x0

0x5 0x0

0x0

buffer FIFO [9]

0x0

0x0

(c) Cycle 3

Figure 4.14: Example HSdbg visualization, showing token flow across three subsequent cycles. In cycle 1,
the sequential buffer both accepts and emits a token. In cycle 2, the circuit remains idle while the value
flows throught the buffer. In cycle 3, the value written to the buffer in cycle 1 is now valid on the output
of the buffer.

52

Chapter 5

Evaluating the Dynamically Scheduled Flow

We evaluate our proposed flow, CIRCT-HLS, against Dynamatic at three levels:

First, at the front-end level, comparing Polygeist to Clang. Through this, we seek to determine whether

one front-end can generate input programs more suitable for HLS than the other.

Then, at the dataflow IR level by comparing the Handshake IR generated by our flow against Dynamatics

intermediate representation. Through this, we seek to gain insight into the efficacy of our dataflow

lowering, as well as the impact of canonicalization.

Finally, we compare at the hardware level by comparing resource usage between the two flows.

All tests shown in this chapter have been verified to work through the proposed cosimulation

infrastructure.

5.1 Front-end Evaluation

To evaluate the Polygeist front-end, we compare against Clang (LLVM 6.0-based), used by Dynamatic.

The scf/affine/standard IR generated by Polygeist will be optimized by MLIR through the

canonicalizations available for each dialect. The LLVM IR generated by Clang will be optimized by

LLVM passes. We run each flow on our set of benchmarks and gather arithmetic operation and basic

block counts, shown in Figure 5.1.

Figure 5.1 (top) shows the relative amount of operations emitted by Polygeist+MLIR compared to

that of Clang+LLVM. Bars hitting the horizontal line indicate that both front-ends emit the same number

of operations (i.e., relative amount of operations are equal), whereas bars below this line indicate that

Polygeist+MLIR emitted fewer operations.

In general, we see that the two front-ends are comparable when considering arithmetic operations.

Outliers here are gaussian and pivot, where Polygeist performs poorly. In the case of gaussian, Clang

generates three sub operations with Polygeist generating one. For pivot, Clang generates one add and

one sub instruction with Polygeist generating four and two, respectively. Upon inspection, we find

53

0

1

2

3

4

5

Pg
+M

LI
R

/C
l+

LL
V

M Add
Mul
Sub
Cmp
Ext/Sh

bicg fir

ga
ussi

an

ge
m

ver

hist
ogr

am

if_
loop_1

if_
loop_2 iir

im
age

_r
es

ize

in
se

rti
on_so

rt

ker
nel_

2m
m

loop_a
rr

ay

m
atri

x

m
atri

x_p
ower

m
atv

ec
pivot

ste
ncil

_2
d

th
re

sh
old

vec
to

r_
re

sc
ale

vid
eo

_fi
lte

r
0

5

10

15

20

B
B

s

Polygeist+MLIR
Clang+LLVM

Figure 5.1: Front-end comparison. Upper graph shows arithmetic operations generated by
Polygeist+MLIR relative to that generated by Clang+LLVM. Lower graph shows number of basic blocks
generated by Polygeist+MLIR and Clang+LLVM.

that Clang+LLVM can reduce the number of arithmetic operations in conjunction with control flow

simplifications; for instance, gaussian in clang uses eight basic blocks, whereas the Polygeist generated

code uses ten.

Figure 5.1 (bottom) shows the number of basic blocks generated by either front-end after

optimizations have been applied. Here we see that Clang+LLVM consistently performs better. Results in

favor of Clang are expected due to the many years of work going into optimizing both control and dataflow

in LLVM IR. For our CDFG-level code in MLIR, we have comparatively few optimizations available. In

general, we seek to reduce the size of the CFG of a program since that reduces the size of the resulting

control network of the dataflow circuit.

We find that each front-end produces an identical amount of memory operations (allocation, load,

and store) for each program. This is important for HLS since memories are both expensive and hard to

analyze.

54

5.2 Handshake IR Evaluation

Given a program in CDFG form, we now turn to the dataflow representation of the kernel. In evaluating

this, we will consider how the dataflow lowerings and IR optimizations for our flow compares to

Dynamatic. Since we do not use the same front-end for both flows, and by the fact that each front-

end produces different programs as identified in the previous section, this analysis should only be

seen as a first-order approximation for determining the efficacy of the flows’ dataflow lowering and IR

optimization.

Dynamatic circuits have been generated using its simple buffer strategy (-simple-buffers=true)

and without LSQs (-use-lsq=false). By doing so, the dataflow lowering style mimics that of our flow.

Dynamatic uses GraphViz .dot files as an IR, to specify dataflow graphs. The Dynamatic IR is in

large part identical to that of Handshake IR. A major exception is the use of getelementptr as an IR

instruction in Dynamatic, used to model the LLVM getelementptr operation. This operation will be

emitted in cases of access to multidimensional memories. In hardware,Dynamatic will instantiate such

an operation as a flattened memory access. I.e., a three dimensional access array[dimX][dimY][dimZ]
expands to [i*dimY*dimZ+j*dimZ+k] thus contributing three multiplications and two additions. Once

encountered, we therefore countgetelementptr operations as the sequence of operators they eventually

expand to.

First, we compare the number of dataflow operations used in either flow. Initially, we disable

canonicalizations (peephole optimizations) of CIRCT-HLS. Neither Dynamatic nor CIRCT-HLS reduces

the number of arithmetic operations during optimization; thus, these remain as shown in Figure 5.1.

55

0
1
2
3
4
5
6
7

CH
LS

/D
M

Fork
Sink
Branch
CntrlMerge
Buffer
Source
Constant

bicg fir

ga
ussi

an

ge
m

ver

hist
ogr

am

if_
loop_1

if_
loop_2 iir

im
age

_r
es

ize

in
se

rti
on_so

rt

ker
nel_

2m
m

loop_a
rr

ay

m
atri

x

m
atri

x_p
ower

m
atv

ec
pivot

ste
ncil

_2
d

th
re

sh
old

vec
to

r_
re

sc
ale

vid
eo

_fi
lte

r
0

10

20

30

40

N

Mux (DM)
Merge (DM)
Mux (CHLS)
Merge (CHLS)

Figure 5.2: Dataflow operation usage in CIRCT-HLS and Dynamatic, with canonicalizations disabled
in CIRCT-HLS. Top shows CIRCT-HLS usage relative to Dynamatic. Bottom shows total number of
mux/merge operations for either flow.

Figure 5.2 (top) shows relative dataflow operation usage between CIRCT-HLS and Dynamatic. Each

flow emits a comparable amount of fork and sink operations. The CIRCT-HLS flow is seen to emit on

average close to 2x more branch operations than the Dynamatic flow. Note that this number contains

both conditional and unconditional branch operations. Unconditional branch operations are used

in CIRCT-HLS to indicate value transfer across an unconditional control flow boundary. As we shall

see, these can be canonicalized away—we expect the Dynamatic flow to have omitted such branch

operations. This is also true for ”simple” control merge operations, i.e. control merges with only a single

predecessor. We see significantly more buffering in CIRCT-HLS as compared to Dynamatic. As described

in subsection 3.2.2, our buffer placement method places buffers on any merge-like output. Hence, the

large number of merge-like operations will lead to an equally large number of buffer operations. In

general, the CIRCT-HLS flow emits fewer constants than the Dynamatic flow. We assume this is due to

constants being specified as literal values in LLVM IR, which makes Dynamatic emit a constant operation

for each constant literal. In MLIR, constants are SSA values and must be defined by operations. Moreover,

due to our constant pushing pass, constants are CSE’d within each block, with fork operations used to

distribute constant values. Note that Figure 5.3 does not capture the fan-in/fan-out of the operations.

For instance, CIRCT-HLS programs emit constant operations that are triggered exclusively by source

operations. In Dynamatic, constants are triggered by either source operations or through the control

network. By the fact that both methods use an equivalent amount of forks, and that CIRCT-HLS on

56

average uses fewer constants, we can deduce that a substantial amount of fork fan-out in Dynamatic

must be used to trigger constants.

Figure 5.2 (bottom) shows mux and merge operation usage between the two flows. Due to SSA

maximization, CIRCT-HLS mainly relies on mux operations for data transfer across control boundaries.

In cases of unconditional branches in the CFG, a simple merge will be emitted for the input values of

a block. Such simple merge operations may then later be canonicalized away. In Dynamatic, we see a

mixture of mux and merge operations used for the prior case.

We now enable canonicalization of the Handshake IR, resulting in the operation usage shown in

Figure 5.3.

0

1

2

CH
LS

/D
M

Fork
Sink
Branch
CntrlMerge
Buffer
Source
Constant

bicg fir

ga
ussi

an

ge
m

ver

hist
ogr

am

if_
loop_1

if_
loop_2 iir

im
age

_r
es

ize

in
se

rti
on_so

rt

ker
nel_

2m
m

loop_a
rr

ay

m
atri

x

m
atri

x_p
ower

m
atv

ec
pivot

ste
ncil

_2
d

th
re

sh
old

vec
to

r_
re

sc
ale

vid
eo

_fi
lte

r
0

10

20

30

40

N

Mux (DM)
Merge (DM)
Mux (CHLS)

Figure 5.3: Dataflow operation usage in CIRCT-HLS and Dynamatic, with canonicalizations enabled
in CIRCT-HLS. Top shows CIRCT-HLS usage relative to Dynamatic. Bottom shows total number of
mux/merge operations for either flow.

Compared to the uncanonicalized case, Figure 5.3 (top) shows a drastic reduction in sink, branch,

control merge, and merge operations. These optimization opportunities most frequently occur due to

unconditional branches in the CFG—that is, blocks with a single predecessor. The reduction in merge-like

operations also leads to a reduction in buffering. The uncanonicalized case showed an average of ≈5x

more buffers, and we now see an average of ≈1.5x buffers compared to Dynamatic. In case of loops in the

source program, which are due to the use of loop networks in CIRCT-HLS, our tool will at least replace a

control merge with a mux+buffer operation in such circuits. This may also contribute to the increased

57

amount of buffering and reduced control merge usage that we observe.

In Figure 5.3 (bottom), we see, as expected, see that all merge operations in CIRCT-HLS have been

canonicalized away. We also see that some circuits have a reduced mux usage, such as stencil_2d.

From this, we can conclude that CIRCT-HLS consistently uses fewer merge-like operations for handling

dataflow across control boundaries, than Dynamatic.

Note that join operations have been left out of the analysis. Join operations are not seen in any

Dynamatic circuit. However, join logic is used internally for implementing operations such as unit-rate

actors.

Considering Figure 5.3, we conclude that even with an inferior front-end, we can produce dataflow IR

with substantially fewer operations. We again emphasize that these plots do not capture the fan-in/fan-

out of the operations. This means that optimizations such as fork size reduction may have been applied,

which can have a significant impact on the final circuit size.

5.3 Hardware Evaluation

Given a kernel in a dataflow IR, we now evaluate its hardware representation. RTL generated by

either project is synthesized by the same tcl script, using the Xilinx device xczu3eg, and with

-flatten-hierarchy=full, through Xilinx Vivado 2020.1. CIRCT-HLS will, at the FIRRTL level, inline

all of its dataflow operator instances into the top-level module. By doing so, we allow FIRRTL to use its

canonicalization passes to their full extent.

By using the simple buffering strategy in Dynamatic, neither of the flows performs any performance

optimizations (latency, throughput, fmax). Since no technical restrictions hinder the implementation of

such optimizations in CIRCT-HLS, like the advanced buffer placement techniques found in Dynamatic,

we instead focus on comparing resource utilization. Resource utilization values are gathered from

post-routing reports.

In section 3.3, we described how index-typed values will lower to a fixed width. For the sake of

fair comparison, we set this fixed width to 32 bits. This is comparable to Dynamatic, which defines a

maximum bit-width of 32 in its bit-width minimization pass. This, therefore, still leaves Dynamatic at

a slight advantage given the existence of a bit-width minimization pass—something which is not yet

available in CIRCT-HLS.

Running hardware lowering and synthesizing the generated RTL, we produce the results of Table 5.1.

Clock period: We generally observe a shorter clock period for Dynamatic circuits. However, due to

using the simple buffering strategy—that does not consider where a combinational path is broken nor

pipelining of combinational paths—we do not consider one flow to be superior to the other in this aspect.

DSPs: The number of DSP slices used are, identical. Considering that both flows showed comparable

use of arithmetic operations—many of which map to DSP slices—at the CDFG and dataflow level, we

58

Benchmark CP (ns) DSPs LUTs FFs CLBs
CHLS DM CHLS DM CHLS DM CHLS DM CHLS DM

bicg 4.43 6.29 6 6 819 822 740 894 171 181
fir 4 3.69 3 3 348 460 297 548 71 93
gaussian 4.62 3.33 3 3 949 599 1287 564 205 142
gemver 8.94 4.06 18 18 2727 2916 3535 3533 639 660
histogram 4.29 4.08 0 0 265 588 295 696 52 128
if_loop_1 5.48 4.35 0 3 526 572 453 707 100 132
if_loop_2 5.69 5.28 0 0 489 579 453 669 102 127
iir 6.41 3.93 6 6 485 726 575 920 110 153
image_resize 4.34 3.51 0 0 649 490 716 555 150 111
insertion_sort 5.75 5.04 0 0 1056 1530 918 1788 214 318
kernel_2mm 5.17 4.44 12 12 2407 2156 2975 2449 543 488
loop_array 3.96 4.49 0 0 348 542 431 701 86 115
matrix 4.93 3.86 3 3 1061 667 1019 596 223 138
matrix_power 4.25 3.51 3 3 620 598 593 630 125 125
matvec 5.43 3.16 3 3 799 562 601 566 153 118
pivot 4.97 4.43 3 3 584 882 713 945 141 173
stencil_2d 6.50 3.83 3 4 1760 1039 1875 972 364 203
threshold 5.66 5.99 0 0 417 719 325 851 86 150
vector_rescale 3.93 2.87 3 3 213 330 291 409 51 71
video_filter 5.04 3.99 9 9 900 1165 1010 1250 187 253

Table 5.1: CIRCT-HLS results compared to Dynamatic. CIRCT-HLS results are with 32-bit index-type
values.

expect to see comparable DSP slice usage. Due to the existence of a bit-width minimization pass in

Dynamatic, Dynamatic should theoretically be able to narrow signals in the datapath around functional

units, which may then map better to DSP slices. However, due to the similar results observed, we conclude

that the bit-width minimization passes in Dynamatic are either not very effective or that the minimization

achieved is not enough to impact DSP usage. We here note that the exceptions in if_loop_1 and

stencil_2d wherein Dynamatic uses more DSPs that CIRCT-HLS are due to the bit-width minimized

operations of Dynamatic fitting into the DSPs, wherein the unminimized operations of CIRCT-HLS do

not.

In comparing LUT and FF usage, we plot the CIRCT-HLS usage relative to Dynamatic, shown in

Figure 5.4. Here we also plot resource usage with index types having a fixed width of 16 instead of 32 bits.

On average, we see that CIRCT-HLS (32-bit mode) is comparable with Dynamatic in terms of FF and

LUT usage, and in many cases generate smaller circuits. However, a few outliers exist, such as matrix,

gaussian, and stencil_2d.

For these, CIRCT-HLS performs worse due to the width of index signals. This can be attributed to

the following: each program contains multiple nested loops (3 for gaussian, matrix, 4 in stencil_2d)

with every loop induction variable being of index type. Each of these kernels perform multidimensional

memory accesses using the induction variables. As such, the final datapath will use multiply-and-add

59

0

1

2

FF

CIRCT-HLS (32-bit)
CIRCT-HLS (16-bit)

0

1

2

LU
T

bicg fir

ga
ussi

an

ge
m

ver

hist
ogr

am

if_
loop_1

if_
loop_2 iir

im
age

_r
es

ize

in
se

rti
on_so

rt

ker
nel_

2m
m

loop_a
rr

ay

m
atri

x

m
atri

x_p
ower

m
atv

ec
pivot

ste
ncil

_2
d

th
re

sh
old

vec
to

r_
re

sc
ale

vid
eo

_fi
lte

r
0

1

2

D
SP

Figure 5.4: CIRCT-HLS resource usage relative to Dynamatic, with 32- and 16-bit index-typed signals.

arithmetic (to calculate the memory index) in the width of the index type. Naturally, having a significant

part of the datapath being 32 bits wide will substantially contribute to overall resource utilization.

To verify that this indeed is the cause for the discrepancy, we run our tests using 16-bit index types,

the results of which are shown in Figure 5.4 (blue). Indeed, we see a significant reduction in both FF and

LUT usage compared to the 32-bit case. Furthermore, we observe an increase in DSP usage, presumably

due to the now narrower index-based arithmetic being a better fit for the DSP slices of the target FPGA.

These results would mimic those expected if we were to have a proper bit-width minimization pass in

CIRCT-HLS. Note also that the chosen width of 16-bits is more than sufficient to represent the maximum

bit-width required by all of the tests. Across all tests, the largest value that must be represented by an

index-typed signal is 900, thus only requiring
⌈

log2(900)
⌉= 10 bits to represent. Since all memory sizes

and loop bounds are statically known, we expect a bit-minimization pass to be able to come close to this

optimal width. If so, it is reasonable to expect that the results of Figure 5.4 could improve even further.

5.4 On MLIR as an Infrastructure for HLS

While the results presented in the previous section are promising, we stress that the primary goal of

this work is not strictly to provide a tool that—in its presented state—is competitive with other HLS

60

tools. We expect our infrastructure to evolve naturally and to eventually support many well-known HLS

transformations. This will inevitably improve the performance and resource usage of the generated

circuits.

Instead, we hope that a lasting impact of this work will be to provide insight into whether MLIR

applies to the creation of HLS compilers. The following section attempts an opinionated review of this.

We believe the primary reason that MLIR is a good fit for HLS is the fact that MLIR IRs are not restricted

to following the properties of a software IR. In broad terms, this can be defined as the requirement to

represent the stored-program concept of Von Neumann architectures. Instead, MLIR diverges from this

by providing features such as graph-based SSA representations and arbitrary structuring and hierarchy

of domain-specific IRs. In this, we get a compiler infrastructure that is able to embrace stored-program

representations when needed, but also one that fully embraces and trusts the IR to define its own structure,

validity, and semantics.

The implications of this are first felt by the compiler engineer. By our IRs now being considered

first-class citizens of the infrastructure, the ergonomics of defining analysis and transformation passes

are significantly improved, compared to similar experiences with an LLVM based approach.

We also stress the ease at which our work has seamlessly integrated with the upstream MLIR dialects—

for software concepts—and dialects in CIRCT—for hardware concepts. One can fear that in the process

of HLS, where domain crossing is necessary, we will inevitably have to shoehorn the semantics of such

domain crossing into the representations understood by the compiler. Again, this is what we see for

LLVM based approaches—we either stick to LLVM IR, and thus be restricted by a software-like IR, or we

diverge, write a custom IR, and in the process of doing so, lose the capabilities of the infrastructure. In

our work, no tricks or hacks are needed to describe abstractions and transformations that perform this

domain crossing. Contrary to when doing HLS as part of a software compiler infrastructure, MLIR allows

us to focus strictly on solving HLS problems without worrying about the details of how to get inputs into

the flow and how to generate HDL as an output.

61

Chapter 6

Task Pipelining in Dataflow Circuits

An important class of pipelining is that of task pipelining. In a task-pipelined kernel, multiple invocations

of the kernel can be live at once, which can significantly increase the temporal use of kernel resource as

well as increase throughput through a reduction of the kernel’s initiation interval. Efficient task pipelining

of an accelerator is important for a broad class of programs, such as filters, feedforward neural networks,

and cryptographic functions.

As an example, consider the code in Figure 6.1.

unsigned serial_loop(unsigned v) {
L1:for (int i = 0; i < 3; ++i)
 v = (v ^ 0x1234) ^ (v >> 16);
L2:for (int i = 0; i < 3; ++i)
 v = (v ^ 0x1234) ^ (v >> 16);
L3:for (int i = 0; i < 3; ++i)
 v = (v ^ 0x1234) ^ (v >> 16);
 return v;
}

Figure 6.1: The serial_loop function contains three loops with feed-foward dependencies (each loop
and loop iteration depends on v).

serial_loop represents three loops connected in series. A feedforward dependency exists between

each loop, as well as internally within each cycle of every loop. The body of the loop may be emitted as

combinational logic. Therefore, given appropriate buffer placement, loops L1, L2, L3 will have an II=1

and take 3 cycles to execute, thus giving serial_loop a latency of 9 cycles.

62

L1

Cycle
K

er
ne

l

in

vo
ca

tio
n 1

2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L2 L3

L1 L2

17 18

L3

(a) Non task-pipelined schedule.

L1

Cycle

K
er

ne
l

in
vo

ca
tio

n 1
2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L2 L3

L1 L2

17 18

L3

L1 L2 L3

(b) Task-pipelined schedule.

Figure 6.2: serial_loop execution schedules.

Figure 6.2 shows possible execution schedules for serial_loop. If a kernel does not support task

pipelining, only a single control token may be live within the kernel, i.e. a single kernel invocation. This

equates to the schedule shown in Figure 6.2a, with I Iker nel = 9. However, if task pipelining is supported,

the loops may execute in parallel, as shown in Figure 6.2b. For this we observe I Iker nel = 3, thus greatly

improving throughput and temporal utilization of the kernel.

However, the dataflow conversion shown thus far, as well as that of Dynamatic, cannot guarantee

correct execution under task pipelining. This is due to control merge operations being non-deterministic

with respect to the input that they selected. As such, if multiple kernel invocations are live concurrently—

implying that multiple control tokens are flowing in the circuit—control merge operations may select

control tokens out-of-order with respect to the order of kernel invocations.

In this chapter, we show an improved handshake architecture that can support task pipelining by

replacing control merges with deterministic structures. First, we will present an example wherein our

current lowering method fails to ensure correctness under task pipelining. Then, we present a model for

making looping (feedback) and branching (feedforward) circuits correct under task pipelining. Finally,

we qualitatively evaluate our proposed model by comparing the performance and hardware of our

task-pipeline safe model with its unsafe counterpart.

63

6.1 A Case for Task Pipelining

We now demonstrate a case where the use of control merges renders a circuit unsafe for task pipelining.

Consider the CFG in Figure 6.3a. With the conversion method presented thus far, a dataflow control

network will be created as that of Figure 6.5a. The loop is initiated by control passing from a block I

to a control merge that will accept and forward this control token into the loop header block 1—this is

represented by the green control token (Figure 6.5a). The token flows through the loop (Figure 6.3c) and

eventually traverses block 2, which will either transfer control back to the loop header (looping case) or

block E (exiting case) through the control branch operation.

A case like Figure 6.3d may then occur; here, the red control token represents a second kernel

initiation. At this point, due to the non-determinism of control merge operations, either of the two control

tokens may be executed. Continuing from here, neither deterministic control flow nor the ordering of

which the kernel will return results, can be guaranteed.

(a) A CFG with a loop. (b) Loop is initiated from
I .

(c) Control flows through
the loop body.

!

(d) The loop backedge
is traversed. At the
same time, another loop
initiation occurs from I .

Figure 6.3: Example CFG and control token sequence, representing an unsafe execution. Figures b-d
represent the control network of the corresponding dataflow program. In Figure 6.3d, the control merge
will non-deterministically select between either of the incoming control tokens, stemming from two
separate kernel invocations.

The core of the issue stems from control merge operations and their non-deterministic behavior.

To solve this, control flow determinism must be restored. As a solution for the simple case shown in

Figure 6.3, consider the dataflow circuit of Figure 6.4.

64

Figure 6.4: Loop control network safe for task-pipelining.

Here, the control merge has been replaced by a loop control mux (lcm) and a loop priming register (lpr).

The mux has two inputs—one for external initiation (I) and one for the loop backedge initiation. The job

of the lpr is to add determinism to loop initiation, allowing us to control from where loop iterations can

be started. The lpr is a buffer that is initialized such that the external control input will be accepted upon

circuit reset. The loop exit condition of block 2 will drive the next-state value of the lpr. Therefore, any

time the condition value is transacting, the lpr will be re-primed.

(a) l pr is initialized to
allow external control.

(b) l pr is empty, no
control allowed.

(c) cond branches back to
loop header; l pr now only
allows internal control.
External control cannot
transact, and must wait.

(d) Eventually, the current
iteration finishes; cond
sets l pr to allow external
control.

Figure 6.5: Task-pipelining safe execution of the token sequence shown in Figure 6.3.

65

To demonstrate how this structure enables deterministic loop execution, we consider the same

sequence of control tokens as the ones shown in Figure 6.3, wherein we use our loop protection

mechanism.

In Figure 6.5a, the lpr is initialized to only allow for external input. Once this control input transacts,

neither of the mux inputs can accept a new input due to the lpr being empty (Figure 6.5b). In Figure 6.5c,

the green control token traverses the conditional branch, which reprimes the lpr. Now, the next control

input of the mux must arrive from the loop backedge. Eventually, the first control token will exit the loop,

thus repriming the lpr to again allow for an external control transaction (Figure 6.5d).

6.2 Making Loops Safe Under Task Pipelining

Figure 6.4 showed the simplest form of a loop, wherein the loop header had only a single backedge and a

single external invocation. We now consider the general case and how block arguments (data inputs) to

the loop header are handled.

...

Loop body

(a) Loop CFG structure.

0 1

...

...

(i)

(ii)(iii)

(iv)

(v)

Loop body

Control network

Block arg.

(b) Loop input network.

(i)

(ii)

Lo
op

 b
od

y

(c) Loop priming network.

Figure 6.6: Task pipelining of outer loops. e0, . . . ,eN−1 represent external predecessor blocks, l the loop
latch block, and o the exit block..

The general structure that we consider is shown in Figure 6.6a. In identifying loops, we state that an

outer loop is any set of maximal strongly connected components (SCC) S within a CFG G , that is, a set of

blocks S ⊆G s.t. ∀q,r ∈ S | ∃path(q,r)∧path(r, q) and |S| > 1[1]. S is maximal if no more blocks can be

included while remaining an SCC. Furthermore, we only consider reducible loops [25], restricting our

class of loops to those with only a single loop header block blh , that is ∀b ∈ S |blh dom b.

66

We detect loops as follows: Starting from the entry block, we traverse the CFG in a breadth-first

manner, and for each block visited, we check if it is a loop header. A block b is a loop header bl h if

∃p, p ∈ predecessors(b) |b dom p (p is a backedge to b and p can only be reached through b). In general,

programming languages with structured control flow (if, for, while, ...) will generate reducible CFGs.

Irreducible CFGs can be the result of either goto statements (unstructured control flow) or compiler

optimizations.

Then, to build S, we run a strongly-connected components analysis starting from the loop header blh ,

blh ∈ S. From this, we can determine a set of blocks {E = e0 . . .eN−1} ,E ∩S = ; which are the external

predecessor blocks of blh , and l , l ∈ S which is the bl h predecessors originating from within the loop (the

loop backedge).

Given this description, to perform safe task pipelining, we seek to identify an outermost loop and

”protect” this loop from having the control tokens of multiple kernel invocations live concurrently. Nested

loops may exist within the outer loop, which still allows for loop-pipelining based on the control token of

a single invocation.

We assume that an outer loop has only a single backedge, i.e., only a single loop latch block. This

restriction may be met by transforming the CFG to unify loop latches.

Next, we consider the construction of the loop input network—responsible for deterministically

selecting control and data inputs to a block—and the loop priming network—responsible for resetting

the loop priming register.

Loop Input Network

Figure 6.6b shows the general dataflow structure of a task-pipelining safe loop header. Two muxes are

added, the lcm (loop control mux) and ldm (loop data mux), both driven by the lpr. The lcm is responsible

for deterministically selecting control flow tokens, and the ldm for selecting a data input originating

from the predecessor block where control originated from. A control merge is added with the inputs of

E (i). We use a control merge to determine which external predecessor block transferred control to the

loop header, thereby providing an index signal (iii) that can drive a mux to select a data input from the

corresponding block in E . In a later section, we will see that this control merge will eventually also be

replaced.

The control merge (collating external input triggers) and the control output of l (the loop latch block)

are connected to the lcm.

Next, we consider incoming dataflow to the loop header (Figure 6.6b (block arg.)). The ldm will

select between a data input coming from either the external predecessor blocks (Figure 6.6b(iv)) or the

loop latch block l (Figure 6.6b(v)). Note that this structure is repeated NB A times, where NB A equals the

number of block arguments of the loop header.

67

Loop Priming Network

Finally, we again consider the assignment of the loop priming register (Figure 6.6c). We detect the exit

block of the loop (Figure 6.6c(ii)), and within this, the conditional branch operation. The argument

provided to the conditional branch operation will thus be our cond value to drive the l pr . If there is a

mismatch between the taken/not-taken parity of the cond value and the convention used in the loop

priming register, an inverter is inserted to correct this (Figure 6.6c(iv)).

Finally, we note that for both the input and loop priming network, in cases where |E | = 1 or |L| = 1,

the generated hardware will be simplified due to the canonical form of the IR. In such cases, both the

input control merge and input data muxes will be redundant and removed automatically.

6.3 Feedforward and Feedback Task Pipelining

For the conversion presented in subsection 3.2.2, a control merge will be anywhere where a block has

multiple predecessors. The looping case discussed so far can capture situations where control merges are

used in the existence of backedges in the CFG—we define the kind of graphs captured by this as feedback

graphs. What remains to be accounted for is the use of control merge operations in subgraphs of the CFG

that are directed acyclical graphs (DAGs).

Consider the CFG in Figure 6.7a. Similar to the looping case presented in Figure 6.3, control tokens

from different kernel initiations may be live within this circuit at once, e.g. tokens in block 3 and 5. If

the circuit of Figure 6.7b is used, the control merge preceding block 6 will non-deterministically select

between either of the two tokens, thus making task pipelining unsafe.

68

(a) CFG with two levels of
divergent control flow. Bracket
pairs represent control flow
divergence and convergence
points.

(b) Unsafe dataflow
representation of Figure 6.7a.
The control merge may non-
deterministically mix control
tokens from the two branch
scopes.

(c) Safe dataflow representation of
Figure 6.7a. In-order control flow
is now guaranteed for each control
scope.

Figure 6.7: A CFG with divergent control flow, and corresponding dataflow representations.

Figure 6.7c shows our mechanism for deterministic execution of feedforward graphs. This mechanism

revolves around the detection of control flow divergence and convergence points (bracket pairs in

Figure 6.7a)—we denote this as a control scope. We seek to ensure that the order in which control flow

passes through a divergence point will be maintained at the convergence point.

At every convergence point, we insert a mux. This mux will be driven by a buffered value of the

cond signal of the control branch at the divergence point. By doing so, the convergence mux will

deterministically accept control flow in the order of transactions made by the control branch. Due

to the feedforward nature of the circuit, this buffer can be implemented as a transparent FIFO. The buffer

size N determines the number of tasks that may be live, concurrently, in between the convergence and

divergence points. The lazy fork may be swapped for a regular fork, in which case N +1 tasks may be live

within the kernel at once. The size of this buffer should always be less than or equal to the size of the

buffer of an enclosing control scope, i.e., M ≤ N . Figure 6.7c also shows how the control merge has been

broken up into a mux tree, called CMT (control mux tree). The output of the CMT will feed into block 6,

wherein execution continues from.

This accounts for the control input to block 6, but we must also consider the idx signal provided by

the control mux, as seen in Figure 6.7b. This must be resolved to be able to select data inputs to block 6,

based on predecessor control flow.

69

To demonstrate how the index signal is defined, we create a modified version of the loop input

network that was shown in Figure 6.6b. In that case, we demonstrated that a loop header may have

e0, . . . ,eN−1 predecessors—these predecessors must originate from a situation such as that shown in

Figure 6.7.

0 1

...

... (v)

Loop body

Control network

Block arg.

...

...

...
...

Figure 6.8: Feedback graph entry structure with control merges removed. The CMT (control mux tree) and
DMT (data mux tree) are driven by the buffered conditionals (c0, . . . ,cN−1) of the preceding feedforward
network.

The modified structure is shown in Figure 6.8. Now, the control merge has been replaced by the CMT

of Figure 6.7c, and the mux for selecting predecessor data inputs have been replaced by a DMT (data

mux tree). Both the CMT and DMT will be driven by the buffered conditional values of the predecessor

control scopes.

6.3.1 CFG Structure for Task Pipelineable Circuits

We have presented two schemes that allow for deterministic execution under task pipelining of

feedforward and feedback subgraphs of a CFG. Therefore, this implies that if we can partition a graph

into a set of feedforward and feedback subgraphs, we may convert it to a dataflow circuit safe for task

pipelining.

Formally, G must be partitionable into two collections of sets F and B, with F containing the

feedforward subgraphs of G and B the feedback regions of G , wherein all sets in F,B are disjoint. Any

B ∈ B will be a maximal SSC and any F ∈ F will be polar, meaning that there exists exactly one source

vertex (deg−(source) = 0) and exactly one sink vertex (deg+(sink) = 0) in the graph.

70

Feedback CFG

Feedforward CFG

(a) Source CFG with sub-CFGs classified as
feedforward and feedback.

Feedforward CFG

(b) Reduced version of Figure 6.9a, which is now a
DAG.

Figure 6.9: Recursive reduction of a CFG based on classifying sub-CFGs as feedforward or feedback (a).
Matching sub-CFGs are considered as a single vertex when recursion returns (b).

If directly considering G , we do not define feedforward graphs as DAGs. Consider the case of

Figure 6.9a. Here, a CFG has two sub-CFGs that adhere to the properties of being a feedforward and a

feedback graph. In detecting feedforward regions, we may recursively reduce a CFG based on whether

feedforward or feedback subgraphs exist within it. If so, these may be considered a single node, in the

parent node, due to the polar nature of the parent graph. After such recursive reduction, we say that a

feedforward graph is a DAG.

(a) CFG with unclosed
control scopes.

(b) Return unification closes outer
control scope.

(c) The remaining control scopes are closed
through intermediate blocks.

Figure 6.10: Control scope unification in a tree-like CFG. Blue edges represent function returns, red
vertices represent convergence nodes.

Finally, we consider how to maximize task pipelining in feedforward graphs. To apply our lowering

scheme, we must detect control flow divergence and convergence points, i.e. the control scopes shown in

Figure 6.7a. This can be reduced to a problem of rewriting the CFG itself such that all divergence points

(blocks with a conditional branch) eventually have an explicit convergence block, thus forming the polar

structure required for a feedforward graph. In general, we can say that in a (reduced, Figure 6.9b) DAG,

two control flow paths are created wherever a conditional branch is used. Paths leading from these must

eventually either converge or return.

Consider Figure 6.10a. This is a CFG of tree-like structure with fully unclosed control scopes. Initially,

we may perform return unification, thus having only a single return block and closing the outer control

71

scope (Figure 6.10b). Then, convergence points are identified, such as to close the remaining inner

control scopes (Figure 6.10c). At this point, all control scopes have been made explicit, facilitating

dataflow conversion.

This form of scope closing follows the same motivation as that of the SSA maximization pass presented

earlier; we can define properties that must be true for an input CFG to our dataflow lowering pass, which

in turn simplifies dataflow lowering. Furthermore, such properties may be easily fulfilled by CFG-level

transformations. And by doing so, we avoid having a monolithic dataflow conversion pass.

6.4 Task Pipelining Example

Consider again the serial_loop code shown in Figure 6.1. We run Dynamatic and our flow on this

kernel. In both, we ensure that buffers are placed optimally, such that loops L1, L2, L3 all have an II of 1.

Through simulation, we indeed find that our solution is able to achieve a kernel II=3, whereas Dynamatic

shows a kernel II=9.

CMerge

Branch

Merge

Fork
0x1234 16

Branch

Fork

1
Merge

0

3

Fork

L1

L2

L3

(a) Unsafe for task pipelining.

Mux

Branch

Mux

Fork
0x1234 16

Branch

Fork

1
Merge

0

3

Fork

Fork
L1

L2

L3

(b) Safe for task pipelining.

Figure 6.11: Dataflow representations of serial_loop. L1, L2, and L3 are identical.

Next, we consider the hardware implications of our conversion. Figure 6.11a shows the unsafe

dataflow representation of serial_loop. Through applying the loop transformation, we build the circuit

of Figure 6.11b. Since only modifying the control network, no additional buffering is needed.

We have for all programs evaluated in chapter 5 verified correct execution using our task pipelining

conversion method. This has been done through our proposed cosimulation infrastructure. Note also,

that this makes significant use of the testbench desynchronization methods developed in subsection 4.2.2,

wherein the decoupled interface of a task-pipelineable kernel is being exercised through the kernel call
and await functions.

72

6.4.1 Limitations

Task pipelining is still subject to the constraints of memory data hazards, and would require an LSQ to

connect to every memory operation of the circuit. The proposed method for protecting feedback graphs

has been tested and verified in CIRCT-HLS. Implementing the feedforward mechanism is considered

future work. No program of those evaluated in chapter 5 contains any feedforward graphs; instead they

all result in a CFG containing an entry block plus a loop structure.

73

Chapter 7

Conclusions and Future Work

This work described an end-to-end HLS flow in MLIR and evaluated it against a similar LLVM-based

flow. Through this, we have first shown that HLS is possible in MLIR. We find that MLIR, a compiler

infrastructure centered around domain-specific IRs, is highly applicable to the creation of HLS compilers.

Using MLIR, HLS flows are no longer tied to traditional software compilation infrastructure, whose

utility decreases once a program representation diverges from the sequential semantics expected by the

infrastructure. Instead, through MLIR, our HLS abstractions are treated as first-class citizens, simplifying

aspects such as static analysis, optimization, verification, and transformation. Ultimately, we believe that

this will lead to more capable compilers, faster compilation times, and better use of target resources.

This work focused on implementing a dynamically scheduled HLS flow in MLIR. Even with an

experimental front-end and a limited set of CDFG optimizations, we can generate hardware with a

smaller footprint than a comparable LLVM-based flow. This is primarily due to the ecosystem of IRs that

our HLS flow exists within—the RTL dialects of CIRCT. Whereas Dynamatic generates RTL directly from

its dataflow IR, in CIRCT, our Handshake IR is but a step in a chain of abstractions. Each with its own set

of optimizations and canonicalizations.

Furthermore, we also presented a model for task pipelining of dynamically scheduled circuits, a

critical feature for having high-performance kernels in real-world code. Initial experiments show that we,

through this model, indeed achieve improved kernel II and better spatial utilization of kernel resources.

While much remains to be done to make MLIR-based HLS competitive against commercial tools, we

believe that the path forward is clear and promising, both in terms of research and engineering efforts.

We believe that our flow is highly applicable as a basis of future research, in part due to the existence

of cosimulation and debugging tools, allowing the researcher to focus on extending the capabilities of

the compiler instead of how to drive, test, and debug it, and in part through MLIR itself, allowing for the

development of new HLS abstractions and transformation. We also see a clear path forward for improving

the generated circuits based on the results observed. Techniques such as advanced buffer placement and

bit-width optimization are well explored, and it is now only a matter of engineering effort to unlock their

benefits.

74

7.1 Future Work

The following list of future work is extensive and in no particular order. It serves as a collection of ideas

that relate to shortcomings of this work, future research directions, as well as work which we think is

relevant in order to create a truly useful, scalable, and open HLS infrastructure.

Handshake IR Canonicalizations

In subsection 3.2.1 we saw the definition of various canonicalization patterns. These are generally simple

patterns, and most likely only scratches the surface of what is possible for a canonical form of dataflow

IR. Having a well defined canonical form may not only result in better circuits, but can also be a strong

argument for why other dataflow projects should be based on Handshake IR.

One example optimization could be the detection of redundant conditional branch-to-mux

constructs, such as the one seen in Figure 3.10. Here, a mux operation will always receive the same

input, regardless of control flow, and as such it should be valid to remove the mux and cbranch operation

generating the mux inputs.

Handling Runtime Data Hazards in Handshake IR

While this work lays the foundations for a dynamically scheduled HLS flow, there are still some key issues

that must be addressed for the tool to produce performant circuits. One such issue is the detection and

handling of run-time memory dependencies. In Dynamatic, this task is delegated to an LSQ. But, LSQ

are complex pieces of hardware that may result in excess resource consumption. Possible avenues for

handling runtime memory dependencies without relying on an explicit LSQ can be e.g. insertion of

alias-checking circuitry that stalls memory operators upon a potential data hazard, or the insertion of

shift registers and forwarding paths around a memory to handle the aliasing case.

Structured Handshake IR

Currently, operations in Handshake IR are all placed at the same level of hierarchy. In other words,

there is no hierarchy in Handshake IR. However, when we take a CDFG and lower it to Handshake IR,

the hierarchy of the source program manifests itself by having clearly denominated input and output

control networks based on the source basic blocks. This could be reflected in, e.g. a handshake.region
operation, wherein all operations originating from a basic block would be nested within it. Such operation

could also formalize the use of input and output control signals representing the activation of a set of

dataflow operations. At a pragmatic level, this will be beneficial for the programmer that is trying to figure

out the semantics of the Handshake program. But we also believe that such a structured representation

might open the door for new transformations and program analysis.

75

Advanced Buffer Placement

As demonstrated in [32], buffer placement and sizing in dynamically scheduled circuits is key to

ensure that the generated hardware is performant. Through this work, we implemented a simple buffer

placement strategy with the goal of generating correct circuits. This has now been proven to be possible,

and we therefore believe that implementing such advanced buffer placement techniques would be a

promising avenue for generating more capable hardware.

Coarse-grained Pipelines and Streams

Latency insensitive interfaces allow us to both scale our hardware systems more easily as well as interface

with other tools and programming models, one such model being the Handshake kernels generated

through this flow. Having a well-defined notion of streams, latency insensitive interfaces with buffers,

will be crucial in coupling together e.g. statically and dynamically scheduled HLS circuits generated in

CIRCT, in a performant way. Currently in CIRCT, the elastic silicon interconnect (ESI) [17] dialect provides

operations and types for streams. We believe that Handshake could easily fit into the view of the world

provided by ESI, and ESI could be a point of convergence for mixing dynamically and statically scheduled

HLS in CIRCT.

Better Source Tracing

While MLIR provides location tracking, this is a fairly rudimentary style of tracking wherein each location

is tied to an input line/character in a source program. In other words, this location does not track how

operations may recursively depend on the location of other operations when being built during lowering.

As a result, when an error is thrown deep inside a long compilation pipeline, the error will be associated

with a location in the source file, and not a location relating to some intermediate step in the compilation

pipeline. We believe that a great contribution to MLIR will be to improve location tracking in such a way

that information is added each time a new operation references the location of another. Such tracing

would be helpful not only for improving compiler debugging, but could also be the foundations for a

Compiler Explorer [24]-like visualization of MLIR pipelines.

Bit Width Minimization for Dataflow Circuits

Currently, index types in Handshake IR will be lowered to signals of a fixed width. In section 5.3, we

saw how resource utilization of the generated circuits reduced dramatically in response to reducing

this fixed width. One solution to this could be to implement a general infrastructure for path-sensitive

dataflow analysis [55] in MLIR, on top of which a bit width inference pass could be built upon. This would

undoubtedly be a significant contribution that is useful not only to CIRCT, but MLIR in general.

76

Lowering Through Metaprogramming

In lowering Handshake IR to FIRRTL, we rely on programmatically describing modules that correspond

to Handshake IR operations. However, this is fairly cumbersome, since we do not need the full power

of MLIR but rather just the ability to specialize a known circuit that implements an operator. In Verilog,

we would do this through modules with generic parameters. Having a method of writing template-able

MLIR programs and using these in lowering could greatly simplify the specification of a lowering pass.

A Transactional Dialect

In section 4.1, we saw how transactors and interactions between them could be based on a C++-centric

flow. For a more scalable approach, a transactional dialect could allow for the composition of all kinds of

execution styles. This would be a significant step towards cosimulation and heterogeneous execution in

MLIR. A transactional dialect could be the glue that binds together the runtime aspects of heterogeneous

compute, being software execution, hardware simulators, or interfacing with hardware accelerators.

Call-like Operations in Handshake IR

In our current HLS flow, we lower function calls in a source program to handshake.instance
functions. It is then expected that the callee is implemented as a Handshake IR function, such that

the handshake.instance function can instantiate the other function as a hardware module. In practice,

an HLS system is heterogeneous, and we can easily imagine designs where a function can be implemented

in a number of ways; whether being system peripherals, hard IP, or perhaps a processor. In such cases,

we would like to have an operation in Handshake IR which can represent the concept of function calls,

allowing for calling hardware that does not necessarily have handshake semantics. We could also imagine

that such an operation could lower into those of the transactional dialect mentioned above, which will

capture the concept of how to compose heterogeneous execution styles.

Front-end Improvements

Currently, an issue with leveraging a tool such as Polygeist is that its main purpose is not just to be a C/C++

front-end for MLIR, but rather a tool facilitating polyhedral research in MLIR. As seen during evaluation,

this frontend still has a lot of room for improvement when compared to Clang. We therefore believe that

what is needed is a community-managed C/C++ front-end for MLIR, much like the Clang project. We also

find it pertinent to consider how specific dialects can be targeted directly from C/C++ code. An example

could be to allow for the mapping of C++ attributes/intrinsics directly to MLIR operations and attributes.

With this, users of the front-end can design domain-specific C++ libraries mapping to a domain-specific

dialect. An example could be a programming model such as SYCL [49].

77

Scalable HLS Infrastructure

One of the key properties of a good HLS compiler is the ability to scale to very large and complex input

programs, and through this work we have so far only considered relatively small programs. To avoid an

explosion in runtime when HLS’ing large programs, the HLS infrastructure itself must therefore also be

scalable. An example avenue to improve scalability could be to focus on module reuse across a large HLS

project. By doing so, methods must be developed for module identification, partitioning, and how such

can be managed through a module library that acts as a cache for the HLS flow.

Concurrent Function and Loop Pipelining

In section 6.2 we saw how a protection mechanism was implemented to ensure the correctness of loop

execution in cases of function pipelining. For any loop with an II> 1, a subset of the functional units used

in the loop body will inevitably remain idle during execution, making for poor temporal utilization of the

generated hardware. Looking to the CPU world, a similar issue is faced in superscalar processors. In that

domain, to increase spatial utilization of pipeline stages, simultaneous multithreading [26] is used to

allow for instructions from different threads to be live concurrently within a pipelined functional unit. In

our model, a thread could be similar to a kernel invocation, and an instruction could represent a control

transfer token, such as that occurring on a loop backedge. We theorize a link between the amount of

buffering available within a loop body and the number of separate invocations that may be live at once

in the loop. In the future, we may investigate a modification to our proposed method for safe function

pipelining, wherein we allow for out-of-order execution within pipelined loops.

78

Appendix

A.1 Tooling Overview

The following sections provides a brief overview of the set of tools used throughout this project. Since

most of these are actively being developed, APIs are subject to change and the contents of this guide may

be outdated. For up-to-date information, please refer to the web page and source code of each tool, to

get the most up-to-date information on usage.

The set of tools used in this project consists of circt-opt, hls-opt, mlir-opt, mlir-clang and

hlstool. hlstool is described separately in appendix A.2.

mlir-opt

MLIR opt tools are optimization driver tools. These are used to drive individual passes available within

the parent project, and to drive canonicalizations. In CIRCT-HLS, mlir-opt is mainly used during

testbench lowering to convert high level dialects such as affine/scf to standard and LLVM. The tool is

available in the build/bin directory of an LLVM build, where the MLIR subproject has been enabled.

Example uses:

$ mlir-opt --canonicalize // Runs canonicalizations (peephole opts.)
$ mlir-opt --convert-scf-to-std // Converts scf dialect to standard dialect
$ mlir-opt --convert-std-to-llvm // Converts standard dialect to LLVM dialect

circt-opt

The CIRCT optimization driver. Drives passes and canonicalizations on dialects defined within CIRCT

(handshake,comb,firrtl,...). The tool is available in the build/bin directory of a CIRCT build.

Example uses:

$ circt-opt --canonicalize // Runs canonicalizations (peephole opts.)
$ circt-opt --lower-std-to-handshake // Converts std dialect to handshake dialect

79

$ circt-opt --handshake-insert-buffers // Inserts buffers in handshake IR
$ circt-opt --handshake-add-ids // Adds unique IDs to handshake IR operations
$ circt-opt --handshake-print-dot // Prints a .dot file of the handshake IR
$ circt-opt --flatten-memref-calls // Flattens multidim. memrefs to unidim. memrefs

hls-opt

The CIRCT-HLS optimization driver. This tool is used to apply the testbench conversion passes. The tool

is available in the build/bin directory of a CIRCT-HLS build.

Example uses:

$ hls-opt --cosim-convert-call // Converts builtin.call ops to cosim.call ops
$ hls-opt --cosim-lower-call // Lowers cosim.call operations
$ hls-opt --cosim-lower-compare // Lowers cosim.compare operations
$ hls-opt --asyncify-calls // desynchronizes builtin.call ops

mlir-clang

mlir-clang is the front end tool exposed by Polygeist used to convert C/C++ code to MLIR. The tool is

available in the build/bin directory of a Polygeist build. In our usecase, all calls have the format:

$ mlir-clang --function=* --memref-fullrank -S ${input file}

–function=* instructs the tool to convert all functions within the source file. –memref-fullrank
instructs the tool to emit memref operations with static indexes (e.g. memref<10xi32>) instead of with

dynamic indexes (e.g. memref<?xi32>). Statically sized memrefs are required for the Handshake lowering

to work. -S instructs the tool to emit assembly code - in this case, assembly code is MLIR code.

Polygeist contains a number of canonicalization passes to both optimize and convert the Polygeist

dialect operations. These must be run before passing the MLIR code to CIRCT tools, since any Polygeist

dialect operations must be converted fully to a combination of standard/scf/affine/memref/arith
operations. Polygeist canonicalizations can be driven from the polygeist-opt tool:

$ polygeist-opt --canonicalize // Runs canonicalizations (peephole opts.)

80

A.2 HLSTool Tutorial

The following document details hlstool. hlstool is the main driver of CIRCT-HLS, used to compose

the various internal and external tools which encompasses the HLS flow.

While the main goal of hlstool is to expose commands that allows the synthesis of C programs

to HDL in a single, simple call, a secondary goal is to create a tool that helps the development of the

toolchain itself.

Some features of the tool are:

• Each command executed is printed verbatum to the executing terminal. Given this, a tool user can

inspect the sequence of commands that was executed and easily copy/paste from the terminal, to

reproduce any of the commands. All this, without a cryptic shell script in sight!

• Automatically generates CMakeLists.txt files for compiling simulator libraries.

• Iteratively CMakes a simulator library to achieve the maximum possible Verilator model parallelism.

hlstool is also used to drive the CIRCT-HLS regression test suite. As developers, we want to be able to

inspect, adjust, and rerun regression tests either when debugging failures or implementing new features.

To facilitate this, the tool implements a simple checkpointing mechanism. This tutorial is structured as a

sequence of common use-cases of hlstool, each building on top of the prior.

In general, tool arguments are provided at two levels; the general level and the mode level:

hlstool [general arguments] {mode} [mode arguments]

The mode is intended to adjust hlstool behaviour to a specific HLS flow. At time of writing, only the

dynamic-polygeist mode has been implemented. Since the tool is ever evolving, please reference the

hlstool –help output for a complete and up-to-date description on the full set of capabilities of the

tool. The following tutorial assumes that you have the hlstool available in your path. The tool will be

located in circt-hls/build/bin.

Disclaimer: Since CIRCT, and by extension CIRCT-HLS, is an evolving and actively developed project,

tool APIs are highly volatile and subject to change. While it is hoped that the following tutorial will be a

useful reference for the foreseeable future, the most surefire way of seeing how the hlstool is currently

being used is to reference the CIRCT-HLS regression tests.

A.2.1 Setup

Clone the CIRCT1 and CIRCT-HLS2 repositories, and follow the most up-to-date setup guide provided for

each repository. After this, add the binary output directory of CIRCT-HLS to your $PATH variable:

1<https://github.com/llvm/circt>
2<https://github.com/circt-hls/circt-hls>

81

https://github.com/llvm/circt
https://github.com/circt-hls/circt-hls

$ export PATH=some/path/to/circt-hls/build/bin:$PATH

Optionally to your .bash_rc/.profile file to make the change persistent.

A.2.2 Usecase 1: An example kernel

Create a new file triangle.c containing the following C program:

int triangle(int n) {
int sum = 0;
for (int i = 1; i <= n; i++)

sum += i;
return sum;

}

as well as a directory for hlstool to output to:

$ mkdir triangle_out
$ cd triangle_out

The hlstool may also be provided an optional –outdir argument to specify the output (working)

directory of the tool.

To convert our triangle function to a DHLS Verilog program, we will need to specify:

• A path to the C file to convert

• The name of the function to convert within this kernel. The provided function name is interpreted

as the top-level function of the kernel

• The HLS mode of the tool

$ hlstool --kernel_file ../triangle.c --kernel_name triangle dynamic-polygeist

Executing this command, you should now see a triangle.sv file containing a SystemVerilog

implementation of the kernel. Alongside this, a number of intermediate files is available in the output

directory. If you are a developer of hlstool or CIRCT-HLS, it is recommended to familiarize yourself

with the output of hlstool which indicates both the order of as well as the commands that resulted in

the generation of each of the intermediate files.

82

A.2.3 Usecase 2: Testbenches and cosimulation

Create a testbench file tst_triangle.c in the same directory where you created the triangle.c file:

int triangle(int);
int main(void) {

printf("Triangle(%d) = %d\n", 42, triangle(42));
return 0;

}

In testbench mode, hlstool is able to infer the kernel name and kernel file based on the assumption

that the testbench file is named tst_{kernel_name}.c with the kernel file being {kernel_name}.c
and the kernel name within the kernel file being {kernel_name}.

Next, we will build the testbench and simulator library. We also pass –rebuild to ensure that all steps

in the HLS flow are repeated. Internally, hlstool has most of its commands guarded by a check on the

existence of the output file, which it generates. This is used to avoid recompilation in cases where we

haven’t made any significant changes to the input program, such as when running tests.

$ hlstool --rebuild --tb_file ../tst_triangle.c dynamic-polygeist

On the testbench side, this will convert the testbench to MLIR using Polygeist

(triangle_affine.mlir), desynchronize any invocations of the RTL model to _call/_await
functions (triangle_tb.mlir) and lower the testbench to MLIR LLVM (triangle_tb_llvm.mlir).

On the kernel side, it is at this point where the simulator library is built. A file triangle.cpp should

now be present, which is the hlt wrapper around the verilated model. A CMakeLists.txt file is copied

into the output directory. This file contains a call to Verilator, which will verilate the model upon executing

CMake. Then, the hlt wrapper and the verilated model is compiled and linked together to produces

libhlt_triangle.so—a shared library which implements the triangle_call/triangle_await
functions used by the desynchronized.

Next, we will use hlstool to run the simulation:

$ hlstool --tb_file ../tst_triangle.c dynamic-polygeist --run_sim

Inspecting the output of hlstool, we see that mlir-cpu-runner is invoked to execute the testbench

(paths minimized for brevity):

$ mlir-cpu-runner -e main -entry-point-result=i32 -O3 \
-shared-libs=libmlir_c_runner_utils.so -shared-libs=libmlir_runner_utils.so \
-shared-libs=libhlt_triangle.so triangle_tb_llvm.mlir \
> triangle_tb_output.txt

83

Here we see that triangle_tb_llvm.mlir is used as the main MLIR file to execute, and

-shared-libs=libmlir_runner_utils.so ensures that the simulator library functions are linkable.

After simulation finishes, three additional files will be available in the output directory:

• triangle_tb_output.txt: stdout output generated during execution will be streamed to this

file. Within this file, you should be able to see 0, indicating the return code of the execution, as well

as Triangle(42) = 903.

• logs/vlt_dump.vcd: VCD output of the verilated model. You can inspect this using tools such as

gtkwave.

• sim.log: A log printed by the hlt infrastructure. This can be used to debug at which steps inputs

were pushed and popped to the hlt queues that communicates with the transactor interface of

the RTL model.

Note: In case the Handshake model deadlocks during simulation, an assert will be triggered in the hlt
infrastructure that is triggered after a fixed number of steps has been performed without any noticeable

change in simulator state.

Going one step further, we may want to cosimulate the RTL simulation with a software implementation

of the kernel. Passing –cosim will enable cosimulation transformation of the testbench.

$ hlstool --rebuild --cosim --tb_file ../tst_triangle.c dynamic-polygeist

Inspecting triangle_tb.mlir, we now see calls to the triangle_call/await functions and a call

to triangle_ref. The implementation of triangle_ref should have been inlined within the module

in triangle_tb.mlir.

The testbench can then be executed as before:

$ hlstool --cosim --tb_file ../tst_triangle.c dynamic-polygeist --run_sim

Currently, cosimulation failure is indicated through printf calls. Given this, failing cases can be

identified in the testbench output file triangle_tb_output.txt.

A.2.4 Usecase 3: HSdbg Visualization and Checkpointing

In cases where VCD inspection make be inconclusive in determining the behaviour of a Handshake circuit,

HSdbg can be used to provide a visualization of a testbench run. HSdbg can be run within a directory

after a simulation has been executed. By default, hlstool will look for a VCD file logs/vlt_dump.vcd.

To point hlstool to a custom VCD file, use the –vcd argument. Starting hsdbg through hlstool is just a

small convenience wrapper to ensure that the necessary files are available (Handshake MLIR version

of the kernel and a Grapviz .dot file of this handshake kernel), and to pass them to hsdbg. hsdbg is

available in circt-hls/build/bin and can be invoked separately, if needed.

In the triangle_out directory, run:

84

$ hlstool --checkpoint dynamic-polygeist --hsdbg

In this commandline, we used the –checkpoint option. When the hlstool is run, a

.hlstool_checkpoint file is generated in the working directory of the run. This contains information

that can be used to restore the tool arguments at a later point in time. The files loaded from a checkpoint

are printed at the start of a run. Executing the above command, hlstool will output (path names

shortened):

INFO: Using input files from .hlstool_checkpoint
INFO: Using kernel file: ../triangle.c
INFO: Using kernel name: triangle
INFO: Using testbench file: ../tst_triangle.c
INFO: Stored checkpoint to .hlstool_checkpoint. You can rerun HLSTool in

this directory and pass the --checkpoint flag instead of providing
paths and kernel names.

On executing the command, a new terminal window will be opened with hsdbg, executing and ready

to accept commands. hsdbg will start a server, defaulting to localhost:8080 where the visualization

will be hosted. Navigate to this page in a browser.

The webpage will show the current step in the simulation. hsdbg does not (yet) have a notion of cycles—

the simulation grannularity is identical to that of the timesteps used in the VCD file. In the terminal

window executing hsdbg, simulation time can be increase by pressing right-arrow, and decreased by

pressing left-arrow. A specific step in the simulation can be navigated to by pressing g followed by the

step number. It may be helpful to use this tool in conjunction with viewing the VCD trace, wherein

the VCD trace is used to find situations of interest, and hsdbg to get a sense for what is going on at the

handshake-level.

A.2.5 Usecase 4: Modifying kernels at the MLIR level

When developing the HLS flow, we oftentimes want to make precise changes to the MLIR representation

of a kernel—changes, which may not be directly possible when writing the kernel in C. hlstool has

support for running only a subset of its lowering based on type of the input kernel. In these case, we can

provide the –mlir_kernel flag.

For instance, to run the tool starting from the Standard dialect representation of the triangle kernel we

can run:

$ cd triangle_out
$ hlstool --rebuild --mlir_kernel --kernel_name triangle \

--kernel_file triangle_std.mlir dynamic-polygeist

hlstool should now inform you that the Polygeist step was skipped:

85

INFO: Skipping Polygeist lowering due to using an MLIR kernel

Or with a Handshake IR kernel; in this case we pass the mode argument –hs_kernel to direct the

Handshake-specific part of hlstool to skip lowering:

$ hlstool --rebuild --mlir_kernel --kernel_name triangle \
--kernel_file triangle_handshake.mlir dynamic-polygeist --hs_kernel

hlstool should now inform you that both the Polygeist and handshake steps were skipped:

INFO: Skipping Polygeist lowering due to using an MLIR kernel
INFO: Skipping handshake lowering due to using a handshake kernel

Tip: After building CIRCT-HLS and running the cosim test suite:

$ cd build
$ ninja check-circt-hls-cosim

You can easily rerun the hlstool invocation by navigating to the output directory of the tests

(e.g. circt-hls/build/cosim_test/suites/Dynamatic/simple_example_1). This is useful when

you want to make slight modifications to the test runs or to reproduce a failing test.

A.2.6 Usecase 5: Creating a Binary Executable Testbench

It may happen that we want to write a C/C++ program to directly drive the call/await functions of the

hlt wrapper - this is often the case when developing and debugging the simulation infrastructure

itself. When compiled into a regular executable (as opposed to executing testbenches through

mlir-cpu-runner) This also gives us the ability to easily step through the code while debugging the

executable in an IDE.

To illustrate this, we write a testbench tst_triangle_manual.c similar to the one shown previously.

However, we explicitly reference the call and await functions exposed by the hlt transactor interface.

Note that we must have predeclarations available for the call/await functions. These are available in

the triangle.h file in the output directory, and generated alongside the triangle.cpp file.

#include "triangle.h"
int main() {

triangle_call(42);
int res = triangle_await();

86

printf("Triangle(%d) = %d\n", 42, res);
return 0;

}

The CMakeLists.txt file in the output directory contains variables that can be used to create a

standalone executable instead of a shared library. To build the above testbench alongside our simulator,

we run cmake with:

$ cmake -DHLT_EXEC=1 -DHLT_TESTNAME=triangle -DHLT_EXEC_TB=tst_triangle_manual.c

HLT_EXEC will trigger an executable build instead of a shared library. By default, a file main.cpp is

expected to be present in the directory. If this is not the case, you can provide a path to a testbench file

with the -DHLT_EXEC_TB=${path} variable. The testbench file must contain a main function - if not,

compilation will fail.

Then, run ninja, and you should have an exectuable hlt_triangle in the output directory which you

can execute/debug like any other CMake project:

$ ninja
$./hlt_triangle
Triangle(42) = 903

87

Bibliography

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. “Compilers, principles, techniques”. In: Addison

wesley 7.8 (1986), p. 9.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John

Wawrzynek, and Krste Asanović. “Chisel: constructing hardware in a scala embedded language”.

In: DAC Design Automation Conference 2012. IEEE. 2012, pp. 1212–1221.

[3] B Bailey, F Balarin, M McNamara, G Mosenson, M Stellfox, and Y Watanabe. TLM-Driven Design

and Verification Methodology. Cadence Design Systems, June 2010.

[4] Albert Benveniste, Benoit Caillaud, and Paul Le Guernic. “From synchrony to asynchrony”. In:

International Conference on Concurrency Theory. Springer. 1999, pp. 162–177.

[5] Endri Bezati, Mahyar Emami, Jörn Janneck, and James Larus. “StreamBlocks: A compiler for

heterogeneous dataflow computing (technical report)”. In: arXiv preprint arXiv:2107.09333 (2021).

[6] Stephen D Brown. Fundamentals of digital logic with Verilog design. Tata McGraw-Hill Education,

2007.

[7] Dmitry Bufistov, Jordi Cortadella, Mike Kishinevsky, and Sachin Sapatnekar. “A general model for

performance optimization of sequential systems”. In: 2007 IEEE/ACM International Conference on

Computer-Aided Design. IEEE. 2007, pp. 362–369.

[8] Lukai Cai and Daniel Gajski. “Transaction level modeling: an overview”. In: First IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and Systems Synthesis (IEEE Cat. No.

03TH8721). IEEE. 2003, pp. 19–24.

[9] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz Czajkowski,

Stephen D Brown, and Jason H Anderson. “LegUp: An open-source high-level synthesis tool for

FPGA-based processor/accelerator systems”. In: ACM Transactions on Embedded Computing

Systems (TECS) 13.2 (2013), pp. 1–27.

[10] Bingyi Cao, Kenneth A Ross, Martha A Kim, and Stephen A Edwards. “Implementing latency-

insensitive dataflow blocks”. In: 2015 ACM/IEEE International Conference on Formal Methods and

Models for Codesign (MEMOCODE). IEEE. 2015, pp. 179–187.

[11] Josep Carmona, Jordi Cortadella, Mike Kishinevsky, and Alexander Taubin. “Elastic circuits”. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 28.10 (2009),

pp. 1437–1455.

88

[12] Jianyi Cheng, Lana Josipović, George A Constantinides, Paolo Ienne, and John Wickerson. “DASS:

Combining Dynamic and Static Scheduling in High-level Synthesis”. In: IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (2021).

[13] Alessandro Cilardo and Luca Gallo. “Interplay of loop unrolling and multidimensional memory

partitioning in HLS”. In: 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE. 2015, pp. 163–168.

[14] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang. “Source-to-source

optimization for HLS”. In: FPGAs for Software Programmers. Springer, 2016, pp. 137–163.

[15] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang. “High-

level synthesis for FPGAs: From prototyping to deployment”. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 30.4 (2011), pp. 473–491.

[16] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2011.

[17] John Demme. “Elastic Silicon Interconnects”. In: Latte’21 (2021).

[18] Benoit Dupont de Dinechin. “Simplex scheduling: More than lifetime-sensitive instruction

scheduling”. In: Proceedings of the International Conference on Parallel Architecture and Compiler

Techniques. Citeseer. 1994.

[19] Stephen Director, A Parker, D Siewiorek, and D Thomas. “A design methodology and computer aids

for digital VLSI systems”. In: IEEE Transactions on Circuits and Systems 28.7 (1981), pp. 634–645.

[20] Stephen A Edwards, Richard Townsend, Martha Barker, and Martha A Kim. “Compositional

dataflow circuits”. In: ACM Transactions on Embedded Computing Systems (TECS) 18.1 (2019),

pp. 1–27.

[21] Paul Feautrier and Christian Lengauer. “Polyhedron Model.” In: Encyclopedia of parallel computing

1 (2011), pp. 1581–1592.

[22] Johannes de Fine Licht, Maciej Besta, Simon Meierhans, and Torsten Hoefler. “Transformations of

high-level synthesis codes for high-performance computing”. In: IEEE Transactions on Parallel

and Distributed Systems 32.5 (2020), pp. 1014–1029.

[23] Daniel D Gajski, Nikil D Dutt, Allen CH Wu, and Steve YL Lin. High—Level Synthesis: Introduction

to Chip and System Design. Springer Science & Business Media, 1992.

[24] Godbolt, M. Compiler Explorer [Online]. Available: https://godbolt.org/. 2012.

[25] Paul Havlak. “Nesting of reducible and irreducible loops”. In: ACM Transactions on Programming

Languages and Systems (TOPLAS) 19.4 (1997), pp. 557–567.

[26] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Elsevier,

2011.

[27] MA Ilgamov. “Static problems of hydroelasticity”. In: (1998).

[28] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis. UG902. Version v2018.3. Dec.

2018. U R L: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_
3/ug902-vivado-high-level-synthesis.pdf.

89

https://godbolt.org/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf

[29] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar, Donggyu

Kim, Colin Schmidt, Chick Markley, Jim Lawson, et al. “Reusability is FIRRTL ground: Hardware

construction languages, compiler frameworks, and transformations”. In: 2017 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD). IEEE. 2017, pp. 209–216.

[30] Lana Josipovic, Philip Brisk, and Paolo Ienne. “From C to elastic circuits”. In: 2017 51st Asilomar

Conference on Signals, Systems, and Computers. IEEE. 2017, pp. 121–125.

[31] Lana Josipović, Radhika Ghosal, and Paolo Ienne. “Dynamically scheduled high-level synthesis”.

In: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. 2018, pp. 127–136.

[32] Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and Jordi Cortadella. “Buffer

placement and sizing for high-performance dataflow circuits”. In: Proceedings of the 2020

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2020, pp. 186–196.

[33] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,

Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. “In-datacenter performance analysis of a

tensor processing unit”. In: Proceedings of the 44th annual international symposium on computer

architecture. 2017, pp. 1–12.

[34] R. Kastner, J. Matai, and S. Neuendorffer. “Parallel Programming for FPGAs”. In: ArXiv e-prints

(May 2018). arXiv: 1805.03648.

[35] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong program analysis &

transformation”. In: International Symposium on Code Generation and Optimization, 2004. CGO

2004. IEEE. 2004, pp. 75–86.

[36] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,

River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. “MLIR: A compiler

infrastructure for the end of Moore’s law”. In: arXiv preprint arXiv:2002.11054 (2020).

[37] Maysam Lavasani. “Generating irregular data-stream accelerators: methodology and applications”.

PhD thesis. 2015.

[38] Junyi Liu, John Wickerson, and George A Constantinides. “Loop splitting for efficient pipelining in

high-level synthesis”. In: 2016 IEEE 24th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM). IEEE. 2016, pp. 72–79.

[39] William S Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. “Polygeist: Raising C to

Polyhedral MLIR”. In: 2021 30th International Conference on Parallel Architectures and Compilation

Techniques (PACT). IEEE. 2021, pp. 45–59.

[40] Kevin E Murray, Mohamed A Elgammal, Vaughn Betz, Tim Ansell, Keith Rothman, and Alessandro

Comodi. “Symbiflow and vpr: An open-source design flow for commercial and novel fpgas”. In:

IEEE Micro 40.4 (2020), pp. 49–57.

[41] Chris Nicol. “A coarse grain reconfigurable array (CGRA) for statically scheduled data flow

computing”. In: Wave Computing White Paper (2017).

90

https://arxiv.org/abs/1805.03648

[42] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei Ye, Apurva

Koti, Adrian Sampson, and Zhiru Zhang. “Predictable accelerator design with time-sensitive affine

types”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation. 2020, pp. 393–407.

[43] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. “A compiler infrastructure for

accelerator generators”. In: Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems. 2021, pp. 804–817.

[44] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss, and Eric S Chung.

“Accelerating deep convolutional neural networks using specialized hardware”. In: Microsoft

Research Whitepaper 2.11 (2015), pp. 1–4.

[45] Morten Borup Petersen. Ripes. https://github.com/mortbopet/Ripes.

[46] Project X-ray [Online]. Available: https://github.com/SymbiFlow/prjxray/. 2020.

[47] B Ramakrishna Rau. “Iterative modulo scheduling: An algorithm for software pipelining loops”. In:

Proceedings of the 27th annual international symposium on Microarchitecture. 1994, pp. 63–74.

[48] S Ravi and M Joseph. “Open source HLS tools: A stepping stone for modern electronic CAD”.

In: 2016 IEEE International Conference on Computational Intelligence and Computing Research

(ICCIC). IEEE. 2016, pp. 1–8.

[49] Ruyman Reyes and Victor Lomüller. “SYCL: Single-source C++ accelerator programming”. In:

Parallel Computing: On the Road to Exascale. IOS Press, 2016, pp. 673–682.

[50] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. “LLHD: A multi-level intermediate

representation for hardware description languages”. In: Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation. 2020, pp. 258–271.

[51] David Shah, Eddie Hung, Clifford Wolf, Serge Bazanski, Dan Gisselquist, and Miodrag Milanovic.

“Yosys+ nextpnr: an open source framework from verilog to bitstream for commercial fpgas”. In:

2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM). IEEE. 2019, pp. 1–4.

[52] Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha, Tony Nowatzki, and

Arrvindh Shriraman. “µir-an intermediate representation for transforming and optimizing the

microarchitecture of application accelerators”. In: Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture. 2019, pp. 940–953.

[53] Wilson Snyder. “Verilator and systemperl”. In: North American SystemC Users’ Group, Design

Automation Conference. 2004.

[54] M Sussmann and T Hill. “Intel HLS Compiler: Fast Design, Coding, and Hardware”. In: White paper.

2017.

[55] Aditya Thakur and R Govindarajan. “Comprehensive path-sensitive data-flow analysis”. In:

Proceedings of the 6th annual IEEE/ACM international symposium on Code generation and

optimization. 2008, pp. 55–63.

91

https://github.com/mortbopet/Ripes
https://github.com/SymbiFlow/prjxray/

[56] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus

Jahre, and Kees Vissers. “Finn: A framework for fast, scalable binarized neural network inference”.

In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. 2017, pp. 65–74.

[57] Mike Urbach and Morten Borup Petersen. “HLS from PyTorch to System Verilog with MLIR and

CIRCT”. In: Latte’22 (2022).

[58] Devadas Varma, Duncan Mackay, and Pradeep Thiruchelvam. “Easing the verification bottleneck

using high level synthesis”. In: 2010 28th VLSI Test Symposium (VTS). IEEE. 2010, pp. 253–254.

[59] Maria Vieira, Michael Canesche, Lucas Bragança, Josué Campos, Mateus Silva, Ricardo Ferreira,

and Jose A Nacif. “RESHAPE: A Run-time Dataflow Hardware-based Mapping for CGRA Overlays”.

In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2021, pp. 1–5.

[60] Clifford Wolf. Yosys open synthesis suite. 2016.

[61] Xilinx. Vitis High-Level Synthesis User Guide UG1399. https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf.

[62] Hanchen Ye, Cong Hao, Hyunmin Jeong, Jack Huang, and Deming Chen. “ScaleHLS: Achieving

Scalable High-Level Synthesis through MLIR”. In: (2021).

[63] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong. “AutoPilot: A

platform-based ESL synthesis system”. In: High-Level Synthesis. Springer, 2008, pp. 99–112.

[64] Ruizhe Zhao and Jianyi Cheng. “Phism: Polyhedral High-Level Synthesis in MLIR”. In: arXiv

preprint arXiv:2103.15103 (2021).

92

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	High-Level Synthesis
	Dynamically Scheduled HLS
	HLS Infrastructure

	MLIR
	Dialects and Operations
	IR Semantics
	On Executability

	CIRCT
	A Tour of CIRCT
	HLS in CIRCT

	An End-To-End Dynamically Scheduled HLS Flow in MLIR
	Source Abstraction and Front-End
	Dataflow IR & Dataflow Lowering
	The Handshake Dialect
	From Standard to Handshake IR

	Progressive Hardware Lowering

	A Testable and Debuggable HLS Infrastructure
	Transaction-based RTL Simulation
	Generating Transactors

	Source-Level Testbench Transformations
	Testbench Cosimulation
	Desynchronizing RTL Simulator Invocations

	An End-to-End Example
	HSdbg

	Evaluating the Dynamically Scheduled Flow
	Front-end Evaluation
	Handshake IR Evaluation
	Hardware Evaluation
	On MLIR as an Infrastructure for HLS

	Task Pipelining in Dataflow Circuits
	A Case for Task Pipelining
	Making Loops Safe Under Task Pipelining
	Feedforward and Feedback Task Pipelining
	CFG Structure for Task Pipelineable Circuits

	Task Pipelining Example
	Limitations

	Conclusions and Future Work
	Future Work
	Tooling Overview
	HLSTool Tutorial
	Setup
	Usecase 1: An example kernel
	Usecase 2: Testbenches and cosimulation
	Usecase 3: HSdbg Visualization and Checkpointing
	Usecase 4: Modifying kernels at the MLIR level
	Usecase 5: Creating a Binary Executable Testbench

	Bibliography

