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Abstract: In this article, we present a dataset that comprises different physical rehabilitation move-
ments. The dataset was captured as part of a research project intended to provide automatic feedback
on the execution of rehabilitation exercises, even in the absence of a physiotherapist. A Kinect
motion sensor camera was used to record gestures. The dataset contains repetitions of nine gestures
performed by 29 subjects, out of which 15 were patients and 14 were healthy controls. The data are
presented in an easily accessible format, provided as 3D coordinates of 25 body joints along with the
corresponding depth map for each frame. Each movement was annotated with the gesture type, the
position of the person performing the gesture (sitting or standing) as well as a correctness label. The
data are publicly available and were released with to provide a comprehensive dataset that can be
used for assessing the performance of different patients while performing simple movements in a
rehabilitation setting and for comparing these movements with a control group of healthy individuals.

Dataset: https://doi.org/10.5281/zenodo.4610859.

Dataset License: Creative Commons Attribution 4.0 International

Keywords: movement dataset; human gesture dataset; physical rehabilitation; motion capturing;
physical therapy exercises

1. Introduction

The assessment of human motion quality has applications in several domains: sports
movement optimisation, range-of-motion estimation, and movement quality assessment
in order to make a diagnostic assessment or for use as a tool in physical therapy and
rehabilitation settings. Experts, such as coaches, physiotherapists and doctors, have been
trained extensively to recognise what makes a certain motion correct. Building an automatic
system for this task is not an easy endeavour, having to deal with a wide diversity of
movements, human body capabilities and a certain degree of subjectivity. Kinect [1] (or
other similar devices) camera-based sensor exercises are very common nowadays as they
do not require any physical interaction with the subject [2–4].

With this in mind and with (still) the lack of available datasets containing gestures
recorded from a correctness perspective, we created a platform and implemented it in a
rehab centre. It was there that we collected real data from patients undergoing rehabilitation.
Most of the existing datasets were built using healthy subjects who were asked to perform
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both correct and incorrect (on purpose) executions [5–7]. The incorrect executions are often
simulated by healthy people. In contrast, the data from our patients contain both correct
and incorrect executions of gestures, both performed in a natural and free way.

We believe that the repository we made available is an excellent resource for the
research community, especially for those working on software methods for motion quality
assessment. In particular, the machine learning community will directly benefit from
it as a platform for developing, improving and applying methods not only for gesture
classification but also for gesture quality assessment (in terms of correctness) [8–10].

2. Related Work

There have been few initiatives about how to approach the problem of automatically
assessing the level of correctness of a movement. Some of the ideas rely on using sensors
attached to the body. In [11], the authors gathered a dataset using five sensor devices
attached to the ankles, wrists and chest in order to record six exercises performed by
27 athletes and to label the data with a qualitative rating from one to five.

The Toronto Rehab Stroke Pose (TRSP) dataset [12] consists of 3D human pose esti-
mates of stroke patients and healthy subjects who performed a set of movements using
a stroke rehabilitation robot. The data recorded were annotated with four labels on a
per frame basis: no compensation, lean-forward, shoulder elevation and trunk rotation.
The stroke survivor patients performed two types of exercises, which were recorded with
both the left and right hands: Reach-Forward-Backward and Reach-Side-to-Side. Healthy
subjects completed the same scripted motions, but in addition, they simulated common
compensatory movements performed by stroke survivor patients. The disadvantage of
this dataset is the limited number of movements that can be performed using the rehabili-
tation robot.

The disadvantages of these non-image-based sensors are that they can be cumbersome
for patients to wear or they require extensive resources and dedicated spaces to perform the
motions. Some approaches rely on image-based sensors in order to track human motion,
such as colour or depth cameras. Most of the available image-based datasets rely on a
depth camera, in particular the Kinect sensor [13].

The work in [6] proposes a framework to evaluate the quality of movement recorded
using a Kinect sensor. In this study, the gait of 12 healthy subjects climbing stairs was
recorded along with the gait of a qualified physiotherapist simulating three scenarios of
knee injury.

The dataset proposed by [7] was recorded at the Kinesiology Institute of the University
of Hamburg using again a Kinect sensor. The dataset consists of 17 athletes performing
three power-lifting exercises. For each routine, the athletes executed the motions both
correctly and with a few typical mistakes.

The University of Idaho-Physical Rehabilitation Movement Data (UI-PRMD)
dataset [5] consists of ten common physical rehabilitation exercises performed by ten
healthy individuals. Each person performed ten correct and ten incorrect (nonoptimal)
repetitions of the exercises. The movements were recorded using two types of sensors: a
Vicon optical tracker and a Kinect sensor.

A recent collection is the KIMORE dataset reported in [14]. This dataset contains
recordings of 78 subjects (44 controls and 34 patients) performing rehabilitation exercises.
The collected data includes joint positions as well as RGB and depth videos. Although the
dataset is a good addition to freely available resources and the authors reported how a
score can be computed from the data to reflect the performance of subjects (i.e., the level
of gesture correctness), the number of gestures is small and it is limited to low back pain
physical exercises (the number of reported gestures is five).

The dataset presented in this article was created by recording 15 real patients with
no simulated (or artificial) movements along with 14 healthy individuals, all performing
repetitions of nine gestures. In comparison to our dataset, existing datasets suffer from
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other limitations such as a small number of gestures or exercises restricted to specific
health problems.

3. Methods
3.1. Data Acquisition

The dataset was collected using a Microsoft Kinect One sensor to record the body
skeleton joints at 30 frames per second. A visual representation of the joints considered
is shown in Figure 1. The dataset was acquired at Pusat Rehabilitasi Perkeso Melaka, a
rehabilitation centre in Malaysia, with the help of patients and physiotherapists in the
space where patients typically perform regular physiotherapy exercises. We recorded over
4.7 h of video over several days.
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Figure 1. Visual representation of the 3D joints extracted by Kinect.

The gestures performed by 29 subjects were captured. Out of these, 15 were patients,
who were allocated IDs in the range from 201 to 216. In addition, 14 healthy individuals
were recorded, out of which 7 were physiotherapists with IDs from 101 to 107 and another
7 were physiotherapy students with IDs from 301 to 307. In what follows, we refer to these
14 persons as our control group. The study was conducted ethically, conformed to the local
protocol for clinical trials and obtained approval from the local ethics committee.

The patients performed the exercises in the position that was the most comfortable for
them: some of them stood, while others sat in a chair or a wheelchair. To account for this
variability, all of the subjects in the control group were asked to perform all of the gestures
both standing and sitting in a chair.

The choice of movements was not selected for specific medical conditions but rather
general simple and common movements that might be used by physiotherapists as part
of a movement range assessment and rehabilitation programme. The gesture labels are
represented by numbers from zero to eight, and the gesture names and brief descriptions
can be found in Table 1 while a visual representation of the gestures is shown in Figure 2.
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Table 1. Gesture types and description.

Gesture Index. Gesture Name Description

0 Elbow Flexion Left Flexion and extension movement of the left elbow joint
1 Elbow Flexion Right Flexion and extension movement of the right elbow joint
2 Shoulder Flexion Left Flexion and extension movement of left shoulder while

keeping the arm straight in front of the body
3 Shoulder Flexion Right Flexion and extension movement of right shoulder while

keeping the arm straight in front of the body
4 Shoulder Abduction Left The left arm is raised away from the side of the body while

keeping the arm straight
5 Shoulder Abduction Right The right arm is raised away from the side of the body

while keeping the arm straight
6 Shoulder Forward Elevation With hands clap together, the arms are kept straight and

raised above the head, keeping the elbows straight
7 Side tap Left The left leg is moved to the left side and back while keeping

the balance
8 Side tap Right The right leg is moved to the right side and back while

maintaining balance

(a) Elbow
Flexion Left

(b) Elbow
Flexion Right

(c) Shoulder
Flexion Left

(d) Shoulder
Flexion Right

(e) Shoulder Ab-
duction Left

(f) Shoulder Ab-
duction Right

(g) Shoulder
Forward
Elevation

(h) Side Tap
Left

(i) Side Tap
Right

Figure 2. Examples of the nine movements.

3.2. Information about the Subjects

Table 2 contains the demographic information about the 15 patients we recorded,
while Table 3 contains information about the healthy subjects. The average age for the
patients is 43 years, while the average age for the healthy subjects is approximately 26 years.
The health condition and the diagnostic of the patients is diverse, with different parts of
the body being affected. The wheelchair column only refers to the fact that the patient
used or did not use a wheelchair during the data collection stage and does not represent a
permanent condition. Five of the patients suffered a spinal cord injury, five of them suffered
strokes, one of them suffered a brain injury, another one had a neurological condition, one
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suffered from arm injury, one had a fractured femur and one had a knee-level amputation
(the patient wore a prosthetic leg).

Table 2. Patient information.

Patient ID Age-Group Sex Body Side Affected Wheelchair

201 50–59 male Lower body Yes
202 50–59 male Left No
203 20–29 male Lower body Yes
204 60+ male n/a No
205 30–39 female Left No
206 30–39 female Right No
207 40–49 male Right No
209 20–29 male Right Yes
210 60+ male Upper and lower limb weakness No
211 50–59 female Left No
212 40–49 male Upper and lower limb weakness Yes
213 50–59 male Right No
214 20–29 male n/a No
215 30–39 female Right Sometimes
216 30–39 male n/a Yes

Table 3. Healthy persons information.

Person ID Age-Group Sex

101 30–39 male
102 30–39 female
103 20–29 male
104 30–39 female
105 20–29 female
106 20–29 male
107 20–29 male
301 20–29 male
302 20–29 male
303 20–29 female
304 20–29 female
305 20–29 male
306 20–29 female
307 20–29 female

4. Data Records

The dataset released contains 2589 files, with each file corresponding to one gesture.
The nomenclature of the files is as follows:

SubjectID_DateID_GestureLabel_RepetitionNo_CorrectLabel_Position.txt

For example, the file 303_18_4_10_1_stand.txt refers to the gesture performed by
the person with ID 303, on the date labelled with ID 18, on the 10th repetition of the
gesture labelled 4, and performed correctly while standing. Each file has an associated
CorrectLabel that can have the values 1, for a correct gesture, 2, for an incorrect gesture,
and 3 for gestures that are incorrect but poorly executed and, based only on the recording,
would be impossible to assign a gesture label. For the analysis that follows, we ignore
the files with CorrectLabel 3 (there are only 12 files with this label); however, because all of
these movements were performed by patients, they might be useful for certain types of
movement modelling and transfer learning, so we left them in the final dataset. The rest of
the analysis in this article refers only to the 2577 files with correctness labels 1 and 2. It is
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worth mentioning that the correctness labelling is binary (the gesture is either correct or
incorrect) and not discrete (measuring the level of correctness).

Out of a total of 2577 gesture sequences, 1215 were performed standing, 952 were
performed sitting on a chair, 359 were performed sitting on a wheelchair, and 51 were
performed using a stand frame for support.

We provide the data in two formats. The first one is a simplified comma-separated
value format with each line containing the 3D coordinates of the 25 joints. The second
format is a raw data file where, in addition to the 3D coordinates, we include a timestamp
for every frame, information for every joint mentioning whether the joint is tracked, and
the 2D projections of the 3D coordinates.

The data contents can be described as follows: (i) each clip contains n frames, (ii)
each frame contains spatial information of m joints (in our case 25), and (iii) each joint is
represented by three axes (x, y, z). Hence, the total number of features is 75.

Along with the 3D coordinates of the 25 joints, we provide also the raw depth map
images with the same nomenclature as the corresponding .csv file.

Data Variations

As the data were collected from real patients, a significant degree of variability is
expected. We refer to the variability within the same move repeated by the same subject
multiple times as the within variability. In addition, we refer to the variability between
different subjects repeating a particular move as the between variability.

An example of the within variability is shown in Figure 3, where the x-axis of the right
wrist of subject 103 (a physiotherapist) performing gesture 5 (right shoulder abduction)
correctly while standing is plotted (please notice that the data were normalised by sub-
tracting the spine-base’s x-axis). As it can be seen, the data vary not only in length (i.e., the
number of frames) but also in position (coordinates) values.
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Figure 3. Example of right wrist variations in gesture number 5 performed correctly by the same
person (6 repetitions).

Five physiotherapists performed gesture 5 correctly several times. In order to examine
their variability, we normalised all of their data for this move to the same number of frames
(i.e., 100 frames) using cubic interpolation. We then averaged the x-axis values for each
repetition per subject (after subtracting the spine-base’s x-axis) and plotted the results in
Figure 4. As can be seen, it is obvious from the figure that, indeed, there is a large degree in
variation between subjects. Nevertheless, there is an overall trend in how the movement is
performed: the right wrist starts from a low position, moves upwards, and returns to the
original position.
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Figure 4. Example of right wrist variations in gesture number 5 performed correctly by 5 different
persons (average of repetitions).

5. Data Distribution and Augmentation

As mentioned in Section 3.1, we recorded 14 healthy individuals as our controls
(most of whom are physiotherapists) performing the same gestures. Because patients
have various physical limitations, not all of them completed the same number of gesture
repetitions (i.e., episodes). The same applies for controls as they were not all available for
the same amount of time. Each subject attempted to perform gestures a number of times.
It is these repetitions that are labelled as correct or incorrect. The number of correct and
incorrect repetitions for each gesture is shown in Figure 5.

0 1 2 3 4 5 6 7 8
Gesture

0

50

100

150

200

250

Ho
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M
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Re

pe
tit
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Correct
Incorrect

Figure 5. Number of repetitions for each gesture.

In these recordings, the correct repetitions were mostly performed by the controls,
although many patients were able to perform some of the repetitions correctly. Therefore,
the distribution of correct vs. incorrect repetitions can differ from one gesture to another,
as shown in Figure 6.
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(a) Gesture 0: elbow flexion left
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(b) Gesture 6: frontal both hands
Figure 6. Distribution of repetition counts per subjects in two gestures.

The data are highly unbalanced. That is, the distribution of different classes and
categories is different (e.g., the number of correct and incorrect moves is unequal). The
distribution of repetitions for each gesture is shown in Figure 5. As it can be seen, there are
far more correct moves than incorrect ones. Hence, to balance the data, either some correct
moves can be removed or more incorrect moves can be recorded. The first option means
that we lose data, and therefore, it should be avoided. The second option is costly as it
is not always easy to find real patients who are willing to perform movements and to be
recorded. Based on this, a third option would be to generate synthetic data that belongs to
the incorrect moves (i.e., data that have similar characteristics to the incorrect move data).

A number of time-series data augmentation techniques is reported in the literature.
For example, various architectures of generative adversarial networks (GANs) were used
in [15] to augment and classify gesture data as correct or incorrect. Another set of techniques
is provided in [16]. These techniques are based on geometric and affine transformations
such as rotation and time warping. They also include simple methods such as adding
random noise, scaling, and jittering. Please observe that, because the code to generate new
augmentation data is freely available and easy to use, we do not provide any augmentation
data. Another reason is that each time the code is run, slightly different data are generated.

6. Technical Validation

In the proposed dataset, the minimum length of a gesture sequence (measured as the
number of frames) is 13, while the maximum length is 1586. On average, a gesture has
84 frames and 75% of the data has a length below 89 frames. There is a strong tendency for
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incorrect gestures (on average, 148 frames) to be longer than the correct ones (on average,
68 frames; see Figure 7).

Using the sensor recording speed of 30 frames per second, on average, the minimum
length of a gesture is 0.3 s and the maximum one is 52 s. The length of the correct
gestures is no longer than 13 s, while a total number of 25 incorrect gestures (4.7% of total
incorrect gestures) have a length longer than this value. This is most likely due to either the
patient struggling to perform the gesture or taking a long time to prepare for the gesture.
Although these situations can be considered outliers, we decided to keep these recordings
in the dataset.

As seen in Figure 8, most of the incorrect gestures have a duration significantly longer
than the correct executions, with gestures 2 and 3 being the most obvious ones.
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Figure 7. Visualisation of gesture length with respect to gesture correctness label.
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Figure 8. Visualisation of gesture length with respect to gesture correctness label and gesture type.

Each healthy subject repeated most of the gestures at least five times. In what concerns
the patients, some of them were not able to perform some of the gestures. For example,
the subject with ID 205 could not perform shoulder forward elevation due to a left arm
injury. Overall, the patients repeated the gestures to the best of their ability. Figure 9
displays an overall visualisation of the number of repetitions for each gesture by each
subject. As it can be observed, some patients repeated the exercises for much longer than



Data 2021, 6, 46 10 of 13

they were instructed or wanted to come back for several recording sessions. In Figure 10,
the distribution of the incorrect execution of different gestures is presented. As it can be
expected, the majority of the incorrect gestures (98% of them) were performed by patients
while the control group had very few incorrect gesture executions.
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Figure 9. Heat map of number of gestures performed by every subject.

Figure 10. Heat map of number of incorrect gestures performed by every subject and overall counts
of incorrect movements per subject.

Correctness, especially when referring to how well a gesture is performed, can be a
highly subjective measure. Two annotators reviewed each recording and independently
annotated each gesture as being correct or not. The inner-annotator agreement is 88%. In
total, 290 recordings were revisited by both annotators, and a final decision was made
regarding the correctness label.

In Figure 11, we present a few examples of correct and incorrect executions for the
shoulder flexion left exercise. A correct execution, in this case, involves flexion and
extension of the left shoulder while keeping the arm straight in front of the body. The arm



Data 2021, 6, 46 11 of 13

should be raised straight above the head. An incorrect execution is considered when the
elbow is bent, the arm is not raised high enough or the movement was compensating by
swinging the arm. In Figure 11, we show an overlaid skeleton representation in time of the
recorded 3D joint points for an individual gesture repetition. To represent movement, the
skeleton is drawn using shades of green for up to half of the movement and shades of red
for the second half of the movement.

Figure 11. Examples of the correct (first row) and incorrect (second row) left shoulder flexion executions.

7. Discussion and Conclusions

The contribution of this paper is the presentation of a dataset of movements related
to nine physical rehabilitation exercises. The gestures were performed by 29 subjects,
out of which 15 patients and 14 healthy control were annotated by gesture type, position
and a correctness label. As with all datasets, there are some limitations. The gestures
are not associated with a particular condition, with the patients experiencing a variety of
conditions, from stroke to spinal cord injury. Although we strove to collect as much data
as possible, we only collected data from 15 patients. This is still larger than other existing
datasets such as [5], where 10 healthy people were recorded, and [12], where they had
10 stroke patients, but the size of the dataset may be a shortcoming in the context of using
machine learning methods. Another possible limitation is the discontinuity of the Kinect
sensor, although other similar depth cameras are still available (Intel Depth Cameras [17]
and Orbec Astra [18]). In the context of limited availability of gesture-related datasets that
contain real patient movements, we envision this dataset to be used either on its own or in
combination with other datasets, especially with the rapid expansion of the field of transfer
learning [19].
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