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Abstract. The allochthonous complexes of Galicia—Tras-os-
Montes Zone (NW Iberia) are part of a rootless tectonic stack
which preserves part of a Variscan accretionary prism. They
are formed by individual tectonic slices marked by specific
tectonometamorphic evolutions, which were piled up in a
piggy-back mode onto its relative autochthon, the Central
Iberian Zone (CIZ). Allochthony decreases from the struc-
turally upper thrust sheets towards the lower ones. The low-
ermost unit of the stack is known as the Parautochthon or
Schistose Domain. It is characterized by a low metamorphic
grade in contrast with higher temperatures and/or pressures
estimated for the overlying allochthonous units and shares
the stratigraphic sequence with the underlying autochthon.
The Parautochthon is divided in two structural and strati-
graphic sub-units: (i) the Lower Parautochthon (LPa) is made
of synorogenic flysch-type sediments with varied turbiditic
units and olistostrome bodies, showing Upper Devonian—
lower Carboniferous age according to the youngest zircon
populations and fossiliferous content; (ii) the Upper Pa-
rautochthon (UPa) is composed of highly deformed pre-
orogenic upper Cambrian—Silurian volcano-sedimentary se-
quence comparable with the nearby autochthon and to some
extent, also with the high-P and low-T Lower Allochthon
laying structurally above. The UPa was emplaced onto the
LPa along the Main-Tras-os-Montes Thrust, and the LPa
became detached from the CIZ relative autochthon by a
regional-scale structure, the Basal Lower Parautochthon De-

tachment, which follows a weak horizon of Silurian carbona-
ceous slates.

A review on the detrital zircon studies on the synorogenic
LPa complemented by zircon dating of 17 new samples is
presented here. The results support the extension of the LPa
underneath the NW Iberian allochthonous complexes, from
Cabo Ortegal, to Braganca and Morais massifs. Its current
exposure follows the lowermost tectonic boundary between
the Galicia—Tras-os-Montes (allochthon) and Central Iberian
(autochthon) zones. The youngest zircon age populations
point to a maximum sedimentation age for the LPa forma-
tions ranging from Famennian to Serpukhovian and supports
the piggy-back mode of emplacement of the Galicia—Tr4s-
os-Montes Zone, of which it represents the latest imbricate.

The zircon age populations in the LPa allow the sedimen-
tary provenance areas to be constrained, showing the inter-
vention of nearby sources (mostly the UPa) and/or multi-
ply recycled and long-transport sediments with a typically
north-central Gondwana age fingerprint, also found in the
Lower Allochthon, UPa and Autochthon. Complementary
geochronology of volcanic olistoliths trapped in the LPa sed-
iments and of late Cambrian to Upper Ordovician rhyolites
from the UPa is also presented. It shows a direct relationship
between the major blocks source area (UPa) and the setting
place (LPa). Old zircon age patterns show that the LPa sed-
imentary rocks were recycled from detrital rocks of the al-
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lochthon (advancing wedge) and the nearby autochthon (pe-
ripheral bulge).

1 Introduction

Synorogenic marine basins encompass most of the known
marine geodynamic settings, from active to passive
earthquake-prone margins (Dickinson and Valloni, 1980;
Garzanti et al., 2007; DeCelles, 2012). They are found to be
associated with Archean to Phanerozoic orogens (e.g., Liang
and Li, 2005; Wilmsen et al., 2009; Mulder et al., 2017;
Kusky et al., 2020) and hold key evidence to understand the
geographic and geodynamic evolution of modern and ancient
orogenic belts.

A common sedimentary feature of all synorogenic ma-
rine basins is the presence of earthquake-triggered turbiditic
flows that promote a variety of sedimentary facies, from
cohesive rhythmic flysch sequences to chaotic large-scale
mass-wasting bearing heterometric-sized blocks or olis-
toliths (Franke and Engel, 1986; Coleman and Prior, 1988;
Eyles, 1990; Festa et al., 2020), also denominated block-in-
matrix formations (hereafter referred as BIMFs) (Festa et al.,
2016). Because the most probable source areas of the sedi-
ments and olistoliths that fed these basins are in the surround-
ing orogenically active highs, their stratigraphy can provide
important clues on the orogen relief variation along space
and time (e.g., Ducassou et al., 2014; Chiocci and Casalbore,
2017).

The synorogenic basins formed during continental conver-
gence are gradually incorporated into the active orogenic ed-
ifice as tectonic slices in the accretionary complex, especially
at the base, forming a tectonic carpet (Festa et al., 2019;
Kusky et al., 2020, and references therein). The prograda-
tion of the tectonic front and the basin depocenter favors a
systematic intrabasinal sedimentary recycling (i.a. wild fly-
sch) and mixing of synorogenic sediments with other ex-
ternal sources (e.g., Franke and Engel, 1986; Biitler et al.,
2011) producing mixed signals of not straightforward pale-
ogeographic interpretation. The key to addressing this prob-
lem rests in the regional study of the basin stratigraphy, in-
cluding the flysch sequences, the mass-wasting deposits and
the petrography of the olistoliths (Festa et al., 2019, 2020).
Complementary, the detailed geological recognition of the
basement and surrounding areas of the synorogenic basins
is crucial to identify discriminatory aspects that can help to
constrain different variables, such as possible sources, sedi-
ment transport distance, regional and local tectonic settings,
and paleogeographic limitations (e.g., Alonso et al., 2015;
Festa et al., 2016; Krastel et al., 2019).

The sedimentological models can be refined using detrital
zircon geochronology. This tool is commonly used to trace
source-to-sink relationships, through different statistical ap-
proaches that compare the zircon age populations present in

Solid Earth, 12, 835-867, 2021

detrital rocks (e.g., Meinhold et al., 2011, 2013; Linnemann
et al., 2012, 2014). One of the most rigorous procedures
for zircon age populations similarity—dissimilarity analysis
is multidimensional scaling (MDS) (Vermeech, 2018), which
provides a graphic output of the Kolmogorov—Smirnov test
when using a large number of samples with individual zircon
age populations (Gutiérrez-Alonso et al., 2020; Pereira et al.,
2020a).

In the southwestern edge of the European Variscan Belt
(Fig. 1), the Iberian Massif preserves some of the best ex-
amples of Phanerozoic synorogenic marine basins, which
reflect different tectonic settings along the belt during the
Upper Devonian—late Carboniferous collision of Laurussia
and Gondwana to form Pangea (e.g., Pereira et al., 2012a,
b, 2017; Oliveira et al.,, 2019b). In SW Iberia, the Late
Devonian—late Carboniferous flysch basins appear on both
sides of the oceanic suture that separates Laurussia from
Gondwana (Silva et al., 1990; Braid et al., 2011; Pereira et
al., 2012a; Pérez-Caceres et al., 2017). On the Gondwana-
side, the Late Devonian—early Carboniferous marine sedi-
mentation had Gondwana-type sources with massive contri-
bution of intrabasinal volcanism in the Tournaisian—Visean
period (Pereira et al., 2012a, 2020a). On the Laurussian side,
sediments that filled the synorogenic marine basins resulted
from intrabasinal recycling processes and source areas lo-
cated on both continents. In this case, the sediments were
systematically imbricated at the base of the advancing oro-
genic front, towards inland Laurussia from the Late Devonian
(Pulo do Lobo Zone) to the upper Carboniferous (southwest-
ern South Portuguese Zone) (Pereira et al., 2012a, 2020a;
Pérez-Caceres et al., 2017; Braid et al., 2011; Jorge et al.,
2013; Rodrigues et al., 2015).

This study presents new data and analysis of synorogenic
rocks from marine basins located in the hinterland (inter-
nal zones) of the Variscan belt in NW Iberia. While synoro-
genic basins in the external zones of the orogen (the fore-
land fold and thrust belt) have been classically classified
as foreland basins laying on top of north Gondwana Cam-
brian to Upper Devonian passive margin sequences (Mar-
cos and Pulgar, 1982; Pastor-Galan et al., 2013; Gutiérrez-
Alonso et al., 2015), the basins studied in this work are lo-
cated in the hinterland and were deposited over rocks show-
ing pervasive strain and that were metamorphosed to dif-
ferent degrees (Martinez Catalan et al., 2004, 2008, 2016;
Dias da Silva et al., 2015). The sedimentary sources of the
synorogenic flysch and BIMF deposits are related to the de-
velopment and unrooting of a Variscan accretionary prism
(the Galicia—Tras-os-Montes Zone) onto Gondwana, and to
the development of a peripheral bulge affecting the exten-
sive passive margin of Gondwana (e.g., Gonzdlez Clavijo
and Martinez Catalan, 2002; Keller et al., 2008; Dias da
Silva et al., 2015). Some of the Variscan hinterland synoro-
genic basins have been incorporated into the base of the al-
lochthonous wedge as a parautochthonous unit and then em-
placed onto the autochthonous terrain of NW Iberia (Dias
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Figure 1. Map of the European Variscan belt at the end of the Carboniferous. Modified from Martinez Catalan et al. (2007). Acronyms: CZ
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da Silva et al., 2015, Gonzdlez Clavijo et al., 2016). The
basin depocenter migrated towards inland Gondwana from
the Late Devonian to the late Carboniferous following the
progression of the orogenic front, from the Galicia—Tras-os-
Montes Zone (GTMZ) to the Central Iberian Zone (CIZ),
where synorogenic deposits are preserved in the San Clodio
Series (Martinez Catalén et al., 2016), possibly following to
the West Asturian—Leonese zone (WALZ), although no syn-
orogenic deposits linked to this basin are preserved on it, and
finally to the foreland Cantabrian Zone (CZ) (Merino-Tomé
et al., 2017; Gutiérrez-Alonso et al., 2020).

In both NW and SW Iberian synorogenic basins, zir-
con geochronology has been used to constrain sedimentary
provenance based on the fingerprint of sources and basin
stratigraphic units (Braid et al., 2011; Pereira et al., 2012a;
2014; Jorge et al., 2013; Pastor-Galan et al., 2013; Rodrigues
et al., 2015; Martinez Catalan et al., 2016; Pérez-Caceres et
al., 2017). While in the southwest and in the CZ recent works
have demonstrated the importance of the MDS statistical ap-
proach in identifying the relationships between source and
sink (Gutiérrez-Alonso et al., 2020; Pereira et al., 2020b), in
NW Iberian Variscan hinterland this approach has not been
applied to date.

https://doi.org/10.5194/se-12-835-2021

In this work we present new field observations that re-
vise previous interpretations, supported by new structural
data and U-Pb geochronology of igneous and detrital zircon
grains, which enables a new vision of the parautochthonous
units of the GTMZ here referred to as Upper Parautochthon
(UPa; preorogenic) and Lower Parautochthon (LPa; synoro-
genic) (Dias da Silva et al., 2015). Our findings support the
extension of these units to different sectors of the GTMZ, ex-
tending beyond the area covered by the UPa and LPa to vir-
tually below all the allochthonous complexes of NW Iberia.
Field work has revealed the diverse types of flysch com-
plexes and mélanges present in the LPa, commonly obscured
by Variscan polyphasic and pervasive deformation. Tectonic
and sedimentary mélanges have been recognized; they com-
bine to produce polygenetic mélanges using the terminology
by Festa et al. (2019, 2020). Moreover, the detrital zircon
age fingerprinting offers a new general view of the LPa geo-
tectonic setting at Variscan times and sets new constrains on
the possible source areas of the synorogenic sediments, olis-
toliths and blocks. We consider that this review led to a better
understanding on the paleogeography and geodynamic set-
ting of the Late Devonian—lower Carboniferous flysch basins
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in NW Iberia and its incorporation into a general model for
the synorogenic basins of the Iberian Variscan Massif.

2 Geological setting

Within the rootless Variscan accretionary wedge which forms
the Variscan Massif of NW Iberia — the so-called GTMZ
(Figs. 2 and 3) (Ribeiro, 1974; Schermmeron and Kotsch,
1984; Martinez Catalan et al., 2009; Ballevre et al., 2014,
Martinez Catalan et al., 2014; Azor et al., 2019) — a signif-
icantly distinct structural unit has been identified and inter-
preted as a remnant of former oceanic realms (Lower Ordovi-
cian Rheic Ocean and an Early Devonian suprasubduction
ophiolite). This tectonic unit marks the putative suture zone
of the Laurussia—Gondwana continental collision that par-
tially led to the formation of Pangea; this unit is known as a
Middle Allochthon (MA) or Ophiolitic unit (Gémez Barreiro
et al., 2007; Martinez Catalan et al., 2009; Stampfli et al.,
2013; Ballevre et al., 2014; Arenas and Sanchez-Martinez,
2015; Azor et al., 2019) and currently separates the so-called
Upper Allochthon (upper units) and the Lower Allochthon
(basal units). The Upper Allochthon (UA) is considered a far-
traveled ribbon-shaped terrane that drifted away in the Lower
Ordovician from the Gondwanan margin during the opening
of the Rheic Ocean and accreted to Laurussia in the Silurian
(Goémez-Barreiro et al., 2007). It includes two tectonically
stacked units, presenting early-Variscan (ca. 390-380 Ma)
HP/HT and Cambro-Ordovician IP/M to HT metamorphism
respectively (Martinez Catalén et al., 2019). The Lower Al-
lochthon (LA) is made of a set of nappe folds and tectonic
slices (Farias et al., 1987; Diez Fernandez et al., 2010; Dias
da Silva et al., 2014, 2015) considered to represent the most
seaward rim of continental Gondwana (Murphy et al., 2008)
which underwent continental subduction (HP/L to MT meta-
morphism) and obduction (retrogression to amphibolite and
greenschist facies) recording the inception of Variscan conti-
nental collision at ca. 370-360 Ma (Munha et al., 1984; Gil
Ibarguchi and Dallmeyer, 1991; Arenas et al., 1995, 1997;
Gil Ibarguchi, 1995; Rubio Pascual et al., 2002; Rodriguez
et al., 2003; Lopez-Carmona et al., 2010, 2014). This latter
unit, (LA) despite being interpreted as part of the Gondwanan
passive margin ensemble, and being part of the lower plate
in the collisional edifice, is classically considered as part of
the allochthonous realm in the region but not belonging to
the exotic terrains (Ribeiro, 2013; Ribeiro and Sanderson,
1996; Ribeiro et al., 2007). Structurally below the LA, a tec-
tonic unit displaying low metamorphic grade separates the
above-mentioned allochthons from their relative autochthon,
the Central Iberian Zone (CIZ). This unit, named Schistose
Domain (Farias et al., 1987) or Parautochthon (Pa) (Ribeiro
et al., 1990; Martinez Catalan et al., 1997), was considered
as a thick Silurian sequence, lacking correlation with the con-
densed Silurian graphite-rich sequences of the underlying au-
tochthon (CIZ). Nevertheless, the paleogeographic affinity
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of both domains was highlighted by identical north Gond-
wana Silurian graptolite and conodont faunas (Sarmiento
et al., 1998; Picarra et al., 2003, 2006a, b). However, the
stratigraphy and structural features of the lowermost tectonic
sheets of the Pa, directly above the CIZ, were interpreted as
a synorogenic basin with possible (Middle-Late) Devonian
age (Antona and Martinez Catalan, 1990; Gonzélez Clavijo
and Martinez Catalan, 2002; Martinez Catalan et al., 2004;
Pereira et al., 2009; Rodrigues et al., 2013).

The attempt to better understand the tectonostratigraphy
of the Pa led to a later division in two tectonically stacked
units, Upper and Lower Parautochthon (UPa and LPa), in
the sense firstly proposed by Rodrigues et al. (2006, 2013)
and updated by Dias da Silva et al. (2014, 2015, 2016). This
division limits the UPa to a pre-Variscan upper Cambrian—
Silurian sequence comparable with the CIZ and LA that was
affected by Variscan recumbent folds and thrusts, and it de-
fines the LPa as an imbricated thrust sequence bearing slices
of a foreland synorogenic basin, with the younger slices in
the transition to the CIZ (Martinez Catalén et al., 2016). The
thrust fault structures bounding the lower tectonic sheets of
the GTMZ are as follows (Figs. 2 and 3):

i. The LA Basal Thrust (LABT, Figs. 3 and 4) or basal
thrust of the Centro-Transmontano thrust complex (in
the meaning of Ribeiro et al., 1990) represents the roof-
ing thrust of the Parautochthon.

ii. The UPa-LPa thrust system (Main Tras-os-Montes
Thrust, MTMT; Ribeiro, 1974; Ribeiro and Ribeiro,
2004; Meireles et al., 2006; Pereira et al., 2006) is
a gently dipping low-grade shear-zone up to 1000 m
thick, interpreted to be caused by the thrusting of the
upper Cambrian—Silurian (preorogenic UPa) sequence
onto the synorogenic LPa, producing significant crustal
thickening during the Tournaisian—Visean stage (Dias
da Silva et al., 2014, 2015, 2016, 2021; Azor et al.,
2019).

iii. At the base of the LPa another major bedding-parallel
fault named the Basal Lower Parautochthon Detach-
ment (BLPD), also gently dipping, is the sole fault sepa-
rating the synorogenic imbricated slices from the struc-
turally underlying nonimbricated autochthon (Dias da
Silva et al., 2014). The BLPD was developed using a
slip-favorable stratigraphic unit, the autochthonous Sil-
urian carbonaceous—siliceous slates (SCSSs) (Gonzélez
Clavijo and Martinez Catalan, 2002; Dias da Silva et al.,
2014).

The northern CIZ autochthonous domain consists of an Edi-
acaran to Lower Devonian preorogenic sequence, disturbed
by two regional unconformities, and including ca. 490 to
460 Ma felsic to intermediate, locally mafic magmatism;
Floian Armorican-type quartzites; a Middle—Upper Ordovi-
cian mostly detrital sequence; and the SCSSs (e.g., Sousa,

https://doi.org/10.5194/se-12-835-2021
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1984; Valladares et al., 2000; Gutiérrez-Marco et al., 2019;
Séanchez Garcfa et al., 2019). In the autochthon laying im-
mediately below the BLPD, tectonic overburden mainly oc-
curred due to the action of thin-skinned imbricated thrust-
duplexes rooted in the BLPD, developed in the LPa tectonic
units (Fig. 2 and sections 4 and 5 in Fig. 3) (Dias da Silva et
al., 2021). In the sectors where the LPa is present, thickening
in both CIZ and LPa was rapidly attenuated by the succeed-
ing synorogenic extensional processes (Dias da Silva et al.,
2021).

In the area studied, the UPa and CIZ underwent regional
Barrovian metamorphism (M) through the early Variscan
compressive events (Ci + Cy on the Martinez-Catalan et al.,

Solid Earth, 12, 835-867, 2021

2014 proposal; ca. 360-330 Ma) which were followed by a
complex extensional (E; — Mj; ca. 340-320Ma) and com-
pressional (Cz —Ms; ca. 318-300 Ma) tectonothermal his-
tory (Dallmeyer et al., 1997; Azor et al., 2019; Dias da Silva
et al., 2021, and references therein).

The LPa synorogenic ensemble was also affected by an-
chizone to low-grade (chlorite zone) metamorphism. At-
tempts to discriminate if the metamorphic grade was lower
in the synorogenic units than in the preorogenic units us-
ing illite crystallinity (Antona and Martinez Cataldn, 1990)
and the Colour Alteration Index in conodonts (Sarmiento and
Garcia-Lopez, 1996; Sarmiento et al., 1997) were inconclu-
sive. Petrographic observations made by Matte (1968) in the

https://doi.org/10.5194/se-12-835-2021
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Figure 4. Regional correlation of the NW Iberian LPa stratigraphic units, and their structural relationship with the tectonically overlying
(UPa and allocthonous units) and underlying geologic domains (autochthon, CIZ). See Fig. 5 for more information.

synorogenic deposits of the San Clodio in the CIZ to the
southeast of Monforte (Fig. 2) and in the underlying Ordovi-
cian sequence, and by Dias da Silva et al. (2020) in the LPa
and CIZ in the eastern rim of Morais Complex, show similar
low-grade epizone metamorphism in both pre- and synoro-
genic sequences. However, the San Clodio flysch rests un-
conformably above the reverse limb of a large C; recumbent
syncline whose axial planar cleavage is more evolved than
that of the flysch above (Martinez Catalan et al., 2016). And
it is also older: ca. 360 Ma (Dallmeyer et al., 1997), while
detrital zircons are as young as 324 Ma in the San Clodio
Series and 340 Ma in the synorogenic deposits of Tras-os-
Montes (Martinez Cataldn et al., 2004, 2008, 2016), the age
of emplacement of the allochthonous complexes during C,.
The first foliation in the preorogenic metasediments of the

https://doi.org/10.5194/se-12-835-2021

UPa and CIZ is axially planar to recumbent folds of the C;
event and predates the main foliation in the synorogenic de-
posits. But a second, low-grade penetrative foliation was de-
veloped in the UPa, LPa and CIZ during the emplacement of
the Allochthon (C»). This second regional foliation is the one
showing similar aspect and metamorphic conditions in both
UPa and LPa ensembles, but in the latter it represents the first
tectonic fabric.

3 Review of the synorogenic marine sequences in NW
Iberian Variscan hinterland

The internal zones of the orogenic belts are considered areas
with scarcely preserved related synorogenic sequences be-
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cause of the subsequent denudation caused by the orogenic
relief (Martinez Cataldn et al., 2008), but they might be pre-
served in the core of synclines or below post-depositional
thrust. In other parts of the Variscan belt, Franke and En-
gel (1986) described tectonic slices carrying synorogenic
sedimentary units from more internal areas. In NW Iberia,
while there is a complete record of the synorogenic deposits
in the foreland fold and thrust belt (CZ; e.g., Marcos and Pul-
gar, 1982; Merino-Tomé et al., 2017), in the deeply eroded
internal part of the chain, the first identified synorogenic se-
quence was the San Clodio Series (Matte, 1968), which is
preserved at the core of the late-Variscan Sil Syncline in
northern Iberia (Figs. 2, 4 and 5, and cross section 2 in
Fig. 3). It consists of a rhythmic turbiditic sequence of pelite
and greywacke (Riemer, 1966; Pérez-Estain, 1974) includ-
ing Upper Devonian or even older fossil plant fragments
(Pérez-Estaun, 1974). Previous detrital zircon studies (sam-
ples SO-1 and SO-2; location of all samples from previous
studies are plotted in the map of Fig. SF1.1 of the Supple-
ment) have reinforced the synorogenic character and sup-
ported an Upper Mississippian maximum depositional age
(Martinez Cataldn et al., 2004) according to the youngest
ages found in the detrital zircon population of ca. 324 Ma.
Towards the base it displays exotic lithic blocks and peb-
bles, that is, extrabasinal rocks derived from the basement
exposed in the basin surrounding highs. These include car-
bonaceous chert, quartzite, slate, gneiss and granite. Intra-
basinal (“native”) lithified intraclasts and soft pebbles also
occur (Riemer, 1966). The San Clodio Series is often sepa-
rated from the underlying Ordovician formations by a few
meters of Silurian black shales (SCSSs) which were my-
lonitized forming a basal detachment (Barrera Morate et al.,
1989). However, the unconformity was preserved from reac-
tivation at a few places (Martinez Catalan et al., 2016). Fol-
lowing Festa et al. (2019, 2020) terminology, the San Clodio
Series represents a coherent primary succession above a sed-
imentary block-in-matrix unit (olistostrome).

The presence of a variably deformed SCSS unit below
the synorogenic lithostratigraphic units in the LPa, as de-
scribed for the Sil Syncline, is a constant feature in all the
areas incorporated into this study. The BLPD is a first-order
structure that forms a complex arrangement of stacked tec-
tonic slices depicting diverse patterns. Locally, this shear
band only deforms the lower part of the SCSSs, preserving
the sedimentary unconformity at the base of the synorogenic
unit (Alcafiices syncline; Gonzdlez Clavijo, 2006). In other
places the BLPD involves the entire SCSSs with upper and
lower shear bands that limit lower-order shear band struc-
tures merging to create a first-order S/C structure (eastern
Morais Complex; Dias da Silva, 2014). In many sections,
deformation along the BLPD involves the BIMF deposits
placed at the base of the LPa, thus resulting in a polyge-
netic mélange in the Festa et al. (2019) meaning. Also com-
mon is the presence of lower-order thrust duplexes within
the LPa that are rooted in the BLPD. In these cases (San
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Vitero Formation in the Alcafiices Syncline, described in this
section) the LPa is internally repeated by a stack of imbri-
cated tectonic slices each with the SCSSs at the base. The
lensoid shape of the SCSSs along the BLPD and associated
structures also suggests that it was submitted to a strong
tectonic pinching (thinning) and swelling (thickening) dur-
ing thrusting. However, deformation is not always pervasive,
as several size lenses of comparatively undeformed SCSS
preserved fossiliferous content at many localities (Romariz,
1962, 1969; Quiroga de la Vega, 1981; Gonzélez Clavijo et
al., 1997; Pigarra et al., 2006b), defining all the Silurian grap-
tolite biozones but lower Rhuddanian and upper Ludfordian
stages as well as the Pridoli series (Gonzalez Clavijo, 2006;
Pigarra et al., 2006D).

The most extensive outcrop of the synorogenic rocks stud-
ied occurs in the periphery (structurally below) of the Bra-
ganca Complex (Figs. 2 and 4). To the east of this al-
lochthonous complex, the core of the Late Variscan Al-
cafices Synform (Figs. 2, 4 and 5; cross sections 4 and 5
in Fig. 3) is formed by several LPa synorogenic units tec-
tonically piled up in a number of imbricated thrust units
(Cy) folded by a train of NW-SE-trending upright folds
(C3 —M3) (Gonzilez Clavijo and Martinez Catalan, 2002;
Gonzdlez-Clavijo et al., 2012). From the top (more inter-
nal) structural position to the bottom (more external) the
synorogenic units are named: Gimonde, Rébano, San Vitero
and Almendra formations. According to the maximum de-
positional age (MDA) obtained through detrital zircon U-
Pb geochronology (Upper Devonian to uppermost Mississip-
pian), these formations include progressively younger rocks
from the more internal to the more external ones, thus sug-
gesting migration of the depocenter toward the relative au-
tochthon coeval to the Parautochthon stacking (Gonzilez-
Clavijo et al., 2012; Martinez Catalan et al., 2016).

The structurally highest Gimonde Formation (Pereira et
al., 1999; Meireles et al., 1999a, b) is formed by finely bed-
ded phyllites and metagreywackes, and scarce polymictic mi-
croconglomerate lenses containing exotic clasts and native
intraclasts. Its age has been considered Upper Devonian on
base of fossil plant debris (Teixeira and Pais, 1973) and paly-
nomorphs (Pereira et al., 1999). However, detrital zircon ages
(samples SO-7, SO-8, SO-9, SO-12; Martinez Catalan et al.,
2016) imply an early Carboniferous (Tournaisian—Visean)
MDA.

The structurally underlying Radbano Formation (Gonzailez
Clavijo and Martinez Cataldn, 2002), also called Exter-
nal Gimonde in Martinez-Cataldn et al. (2016), comprises
diverse lithologies being the most abundant a BIMF se-
quence displaying large exotic olistoliths of deformed rhy-
olites and dacites, felsic metatuffs, epiclastic rocks, white
and grey quartzite, Silurian lydite (black radiolarite) and am-
pelite (carbonaceous shale), greywacke, phyllite, and lime-
stone (Fig. 6a). The ages of these blocks (sometimes hun-
dreds of meters in length) based on fossils and U-Pb zircon
ages range from Furongian to Emsian (Gonzdlez Clavijo et
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Figure 5. Synorogenic lithostratigraphic units of the Lower Parautochthon at the different sectors studied in this work. The sketch displays
a simplified structure avoiding the minor tectonic slices repeating every stratigraphic unit. The sequences have been prepared considering all
the data referred in the text and Fig. 4 for every sector and using the division and names that better fit with our field survey.
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al., 2016). At the uppermost Rabano Formation a flyschoid
sequence made of phyllite, quartzlitharenite, and local poly-
genic microconglomerate holds deformed exotic clasts and
lithified intraclasts (Fig. 7a, b, and c), including plagioclase
and volcanic quartz mineraloclasts and quartz shards indi-
cating a nearby volcanic source (Gonzalez Clavijo, 2006).
Detrital zircon ages performed in this wild flysch (sample
SO-6) support a synorogenic nature and point to a Visean
MDA (Gonzilez Clavijo et al., 2016; Martinez Catalén et al.,
2016).

The San Vitero Formation (Martinez Garcia, 1972) is a
flysch made of up to meter-thick phyllite and quartzlitharen-
ite rhythms and local lenses of polygenic microconglomer-
ates holding exotic clasts and lithified intraclasts (Figs. 7d, e
and 8a, b) (Gonzdlez Clavijo and Martinez Cataldn, 2002).
This unit was considered Upper Devonian or younger based
on fossil plant debris (Teixeira and Pais, 1973) but detrital
zircon studies (samples SO-4, SO-5 and SO-13) support a
Tournaisian MDA (Martinez Catalan et al., 2016).

The structurally lower imbricated thrust system hosts the
Almendra Formation (Vacas and Martinez Cataldn, 1987)
which is a calciturbidite made of phyllite and calcarenite
rhythms up to several meters thick (Gonzalez Clavijo, 2006).
Local lenses of polygenic conglomerates and microconglom-
erates holding exotic clasts and pebbles, and lithified intra-
clasts were firstly described by Aldaya et al. (1976). Their
lithologies include phyllite, sandstone, litharenite, quartzite,
limestone, orthogneiss, rhyolite and felsic volcanic tuff
(Fig. 7f, g and h). Major blocks of lydite with Silurian grapto-
lites and limestones (Fig. 6b and c) containing abundant fos-
sils (bioclasts of corals, sciphocrinoides, bivalves, gastropods
and tentaculites) have been identified (Gonzélez Clavijo and
Martinez Catalan, 2002; Gonzalez Clavijo et al., 2016 and
references therein). Conodonts found in calcarenite yielded a
Lower Devonian age (Sarmiento et al., 1997). Detrital zircon
studies in the Almendra Formation indicated a Visean MDA
(sample SO-14), thus supporting the Variscan synorogenic
origin of this unit (Martinez Catalan et al., 2016).

The LPa emplaced at the eastern rim of the Morais Com-
plex (Figs. 2, 4 and 5; cross section 6 in Fig. 3) was described
by Dias da Silva (2014) as a turbiditic synorogenic sequence
comprising two stratigraphic units (Travanca and Vila Cha
Formations). They consist of coherent primary units, bro-
ken bed units and lenses of block-in-matrix units displaying
hectometer-sized olistoliths. Clasts include native intraclasts
and soft clasts as well as exotic deformed lydite, ampelite and
quartzite. These units lack fossil-based ages. A palynomorph
study performed by Gil Machado (in Dias da Silva, 2014)
was unfruitful because of poor pollen preservation owing to
a Variscan thermal imprint. Detrital zircon studies (samples
VC-21ZIR, VC-45ZIR and VC-57ZIR) suggest a Devonian
MDA (ca. 390 Ma; Dias da Silva et al., 2015).

In the Mardo Range, west of Vila Real (Fig. 2), the
westernmost extent of the rocks studied, tectonic slices ap-
pertaining to the Pa comprise several turbiditic sequences
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(Mouquim, Canadelo and Santos Formations) displaying
rhythms of phyllite and greywacke with some intercalations
of volcanic tuffs towards the top (Pereira, 1987). As they lie
concordantly above the SCSSs dated by graptolites (Pigarra
et al., 2006b), a Devonian age for the flyschoid units was pro-
posed, without fossiliferous evidence (Pereira et al., 2006).
Gonzélez Clavijo (2006) supported a correlation between
these units and the San Vitero flysch, in the Alcafiices syn-
form, on the basis of the lithologies and the stratigraphic po-
sition, and for that reason here a possible Tournaisian MDA
is proposed. According to our proposal of a tectonostrati-
graphic scheme, all the stacked pile must be considered as
belonging to the LPa.

4 LPa synorogenic units: youngest detrital zircon age
populations of the LPa units

The known existence of synorogenic LPa units, partially en-
circling the GTMZ to the east, fostered the present research
and aimed to recognize their possible extension to other areas
of the GTMZ (Fig. 2). In this work 17 samples from areas
surrounding the Braganca, Morais and Cabo Ortegal com-
plexes were used for zircon U-Pb geochronology (location
of all samples in the map of Fig. SF1.1; coordinates in Ta-
ble SF1).

The detailed description of the new zircon geochronology
study is presented in the Supplement and in Figs. SI-1 to
SI-9. The complete dataset with the new U—Pb isotopic anal-
yses is given in Tables S1-S17 in the Supplement. The ref-
erence and complementary U-Pb zircon age datasets used in
the multidimensional scaling (MDS) process and other sta-
tistical procedures are in Tables S18 and S19.

In this section, the youngest zircon grain and zircon popu-
lation ages of our new results are discussed for the different
parts of the synorogenic carpet and compared with published
data.

The Meirinhos area, to south of the Morais Complex
(Figs. 2, 4 and 5; cross section 4 in Fig. 3), was divided in
two stratigraphic units: Meirinhos and Casal do Rato follow-
ing Pereira et al. (2009) and Rodrigues et al. (2003). They
were considered synorogenic flyschoid deposits bearing olis-
toliths of quartzite, phyllite, greywacke, felsic and mafic
volcanic tuffs, limestone, ampelite and lydite by Pereira et
al. (2009). However, different age, stratigraphic features and
structure were proposed (S4 et al., 2014) based on the reap-
praisal of the Lower Ordovician trilobite Cruziana ichno-
fossils in Armorican-type quartzites originally described by
Ribeiro (1974) in this sector. Field data allow us to con-
firm the earlier proposal and the recognition of new syn-
orogenic features as slump folds, disrupted beds, and olis-
tostromes including hectometer-sized lydite and quartzite
olistoliths (Fig. 6d and e). In both stratigraphic units, blocks,
cobbles and pebbles of native (lithified intraclasts, soft peb-
bles) and exotic (quartzites, ampelite and lydite, felsic and
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Figure 6. Field aspects of the synorogenic sediments of the LPa: (a) Lower Ordovician white quartzite olistoliths (arrows) in Rdbano
Formation; (b) centimeter-sized foliated rhyolite in an Almendra Formation microconglomerate; (¢) metric glided block of limestone in an
Almendra Formation grey phyllite bed; (d) slump folds in flyschoid facies at the Meirinhos synorogenic LPa; (e) broken beds in a flyschoid
facies of the Meirinhos Formation; (f) centimeter-thick flysch facies in the LPa unit exposed in the tectonic window western Mirandela;
(g) quartzite, lydite and rhyolitic tuff olistoliths in the LPa northern Braganga Complex; (h) blocks of quartzite (under the hammer) and
lydite (above) in the LPa northern Braganca Complex.

https://doi.org/10.5194/se-12-835-2021 Solid Earth, 12, 835-867, 2021



846 E. Gonzalez Clavijo et al.: A tectonic carpet of Variscan flysch in NW Iberia

Figure 7. Microphotographs of the sedimentary textures in the LPa formations, surrounding clasts of different natures. (a) Bioclast in a
Rébano Formation quartzlitharenite; (b) plagioclase mineraloclast in a Rdbano Formation quartzlitharenite; (¢) broken up volcanic quartz
crystals in a Rdbano Formation quartzlitharenite; (d) lithoclast made of black phyllite in a San Vitero Formation litharenite; (e) rounded clast
displaying tectonic foliation almost normal to the surrounding external C; foliation (San Vitero Formation); (f) partial view of a rounded clast
displaying mylonitic banding in an Almendra Formation microconglomerate; (g) randomly oriented clasts bearing previous foliation in an
Almendra Formation microconglomerate; (h) rounded foliated clast displaying a microfold in an Almendra Formation microconglomerate.
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mafic volcanic rocks, limestone) sources have been identi-
fied. Biostratigraphic ages of the olistoliths range from early
Ordovician (trilobite tracks, Ribeiro, 1974; Sa et al., 2014)
to Silurian (graptolites, Pereira et al., 2009). Two samples
of medium-grained greenish greywacke belonging to the tur-
biditic sequence (CR-ZR-01 and MEI-ZR-01; see location,
coordinates and geochronology of all geochronology sam-
ples in the Supplement) were collected in this area with
a youngest single zircon (YZ) with Upper Ordovician age
(439 4+ 8 Ma for CR-ZR-01 and 443 + 6 Ma for MEI-ZR-01)
and MDA (i.e., concordant age given by the youngest zir-
con population in the 90 % or 95 % concordance interval;
it may not include the YZ) of 467 =4 Ma (CR-ZR-01) and
486 &3 Ma (MEI-ZR-01) (Supplement; Fig. SI-1A and B).
These ages do not support a synorogenic character nor a
Lower Ordovician age for these siliciclastic rocks. However,
the sedimentary features and the cartographic and structural
continuity and correlation with the previously described LPa
unit east of the Morais Complex (i.e., Travanca Formation
in Dias da Silva et al., 2015) make it possible to propose a
Mississippian MDA for these synorogenic siliciclastic rocks,
with contribution of early Silurian, Middle Ordovician and
Tremadocian (possibly magmatic) zircon sources.

West of Mirandela, around the village of Sucaes, there
is a tectonic window (Rodrigues et al., 2010) partially
controlled by late- or post-Variscan NNE-SSW subver-
tical faults (Figs. 2, 4 and 5; cross sections 3 and 6 in
Fig. 3) which displays a turbiditic sequence attributed
to the Devonian (Ribeiro, 1974) or to the Silurian with
small patches of Lower Devonian siliciclastic rocks in the
upper stratigraphic positions (Rodrigues et al., 2010). The
MTMT was firstly mapped in this area by Rodrigues et
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al. (2010), tectonically separating the UPa overturned fold
sequence from the LPa imbricated thrust complex. The
proposed Silurian—Devonian age was based on graptolite
assemblages preserved in the Silurian lydites (Picarra et al,
2006b). Field and geochronological data allow us to infer
that the LPa in this sector is also a synorogenic sequence,
presenting the classical flyschoid features (Fig. 6f) (made
of centimeter to meter beds of pelite and greywacke;
Rodrigues, 2008). Scarce Variscan detrital zircon grains
(Famennian) were found in the greywacke layers of the
flysch sequence, in the Upper Schists Formation (MIR-41:
YZ =369 +7Ma, MDA =497 4 5 Ma, Fig. SI-4A; AD-PO-
49: YZ=468 £39Ma, MDA =494 +27Ma, Fig. SI-4B;
AD-PO-55: YZ=4444+26Ma, MDA =488+ 16Ma,
Fig. SI-5A) and in the culminating slate and greywacke
formation  (sample = AD-PO-57: YZ=372+6Ma,
MDA=488 £ 16 Ma, Fig. SI-5B). The combination of
field and geochronology data suggest that the graptolite-rich
lydites belong to exotic olistoliths or to the SCSSs at the base
of the synorogenic tectonic slices. Detrital zircon ages and
the lithostratigraphy of these stratigraphic units enable us
to consider them as coherent primary units with olistoliths,
overlying a tectonic mélange developed in the SCSSs.

To the west, in the Vila Pouca de Aguiar area (Fig. 2),
the LPa comprise several tectonically stacked flysch units
limited by thrust planes (Ribeiro, 1974; Ribeiro et al.,
1993; Noronha et al., 1998; Ribeiro, 1998; Rodrigues,
2008). All units are formed by turbidite sequences,
with millimeter- to meter-thick interbedded pelites and
greywackes (quartzwacke towards the base). The coarse-
grained layers are very rich in plagioclase, thus suggest-
ing a near-source (felsic) volcanic input into the basin (Ro-
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drigues, 2008). Differently sized lens-shaped bodies of grey
quartzite, black limestone, felsic metavolcanic rocks and
highly sheared SCSSs are described within these units (Ro-
drigues, 2008). Our field research permitted us to define
these LPa formations as coherent primary units with block-
in-matrix deposits exposing exotic fragments in a synoro-
genic convolute sediment tectonically repeated by imbri-
cated thrust faults. These units are currently considered as
Silurian—Devonian based on Silurian graptolites preserved
in the lydites (Picarra et al., 2006b) and by lithological
comparison with similar formations to the east of the Bra-
ganca and Morais Complexes (Ribeiro, 1974; Noronha et
al., 1998; Ribeiro, 1998; Pereira et al., 2000). The de-
trital zircon geochronology of one sample of lithoclastic
coarse-grained arkose (AD-PO-48B) returned a Famennian—
Tournaisian youngest single zircon and maximum deposi-
tional age (YZ: 355 £ 34 Ma; MDA: 364 + 22 Ma; Fig. SI-
3B).

At the northern edge of the Braganca Complex (Figs. 2,
4, 5 and 9; cross section 3 in Fig. 3), the Upper Allochthon
high P/high T rocks tectonically overlay the LPa. Field work
confirmed the absence of the UPa stratigraphic units and the
discontinuous cartographic outline of the Middle and Lower
Allochthon (Meireles et al., 1999a, b). These units were tec-
tonically thinned by an extensional shear zone or truncated
by an out-of-sequence thrust system. In the upper structural
part of the LPa, Ribeiro and Ribeiro (1974) noticed the pres-
ence of differently sized rock fragments in the stratigraphic
sequence. They describe (i) epizonal fragments such as
phyllite, quartz-phyllite, quartzite, felsic tuffs and rhyolites,
ampelite, and lydite, and (ii) meso-catazonal fragments of
paragneiss (albite, chlorite and K feldspar), blastomylonite,
and biotite—garnet gneiss. We have verified that these rocks
appear as centimeter- to hectometer-sized olistoliths, being
dispersed in a wider area than previously estimated (Figs. 6g,
h and 10a). The olistoliths usually cluster within large mass-
wasting deposits (BIMFs) or occur as isolated bodies in
the flysch sequence. The native rock blocks consist of frag-
ments of consolidated fine- to coarse-grained greywacke
beds among other siltstone—sandstone intraclasts and pelitic
soft pebbles. The exotic blocks include highly deformed ly-
dites and ampelites, rhyolites, felsic tuffs, quartzites, and
limestones. Regional work in this area (Meireles, 2013) di-
vides this sector LPa in four formations: Coroto, Rio de Onor,
Soutelo and Gimonde, all of them bearing flyschoid charac-
teristics and olistoliths (Figs. 4 and 5). In some of these units
(Coroto and Soutelo) the limestone blocks yield upper Sil-
urian to Lower Devonian crinoids (Meireles, 2013). Inherited
Cambrian—-Middle Ordovician acritarchs and lower—middle
Silurian palynomorphs were also found in the Rio de Onor
Formation (Pereira et al., 1999). In the Soutelo Formation,
we also report the presence of a sandy—quartzitic olistolith
with poorly preserved brachiopods of the “Lingula” genus
(Sofia Pereira and Jorge Colmenar, personal communication,
2017), which are particularly common in the Lower Ordovi-
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cian Armorican quartzite of the CIZ (Marao Range; Coke et
al., 2001). Three samples collected in the Gimonde Forma-
tion (Meireles et al., 1999a, b) were used for geochronology
of detrital zircon grains: GIM-ZR-01 (microconglomerate),
EC-PO-293 and AD-PO-66 (quartz-lithic sandstones). Al-
though two of these samples have yielded Silurian (EC-PO-
293: YZ =426 44 Ma and MDA =435 + 29 Ma; Fig. SI-
2B) and Furongian (AD-PO-66: YZ=431431Ma and
MDA =483 + 18 Ma; Fig. SI-3A) youngest zircon ages,
one sample has Variscan detrital zircon ages (GIM-ZR-01:
YZ=327 + 9 Ma and MDA =354 &+ 3 Ma; Fig. SI-2A) con-
firming the results obtained in previous studies (samples SO-
9 and SO-12 in Martinez Catalan et al., 2016), which al-
lowed the characterization of the Gimonde Formation as a
Tournaisian—Visean synorogenic stratigraphic unit.

The Pic6n Beach at Cabo Ortegal Complex is placed east
of the Ortigueira locality, in the Galicia northern coastline
(Figs. 2, 4 and 5; cross section 1 in Fig. 3). There, the Loiba
unit of the Rio Baio thrust sheet (Marcos et al., 2002) is struc-
turally on top of the tectonically sheared (autochthonous)
SCSSs that define the BLPD. This tectonic unit is formed by
low metamorphic grade flysch sequences and discontinuous
lens-shaped BIMFs. Its field aspects and structural relation-
ships with the overlying and underlying tectonostratigraphic
units led us to consider this unit as part of the Variscan
synorogenic marine basin. The detrital geochronology of a
fine-grained quartzite sample (PICON-2) has yielded a Tour-
naisian maximum depositional age (YZ: 350 £ 7 Ma; MDA:
357 £ 4 Ma; Fig. SI-6) thus supporting the extent of the LPa
from northeast Portugal to the northern Spanish coast.

5 Magmatic zircon ages of the LPa olistoliths

In all lithostratigraphic units of the LPa exotic (extrabasi-
nal) and native (intrabasinal) grains, clasts, pebbles and large
olistoliths have been identified. Exotic rock fragments show
presedimentary mild to high deformation and metamorphic
aspects, contrasting with the usually poorly deformed, low-
metamorphic flyschoid sequence. The native fragments in-
clude soft pebbles and intraclasts, often showing synsedi-
mentary deformation features (slump folds, boudinage, bed-
ding disruption and convolute bedding of turbiditic aspect:
Fig. 6d and e). The most consolidated sedimentary frag-
ments suggest that they were recycled within the basin, as a
wild flysch (Ribeiro and Ribeiro, 1974; Aldaya et al., 1976;
Gonzdlez Clavijo and Martinez Cataldn, 2002; Martinez
Catalén et., 2016). These fragments were considered a proof
of its synorogenic character, and also evidence that the basin
was fed from areas of the Variscan belt already deformed
and metamorphosed (Antona and Martinez Cataldn, 1990;
Gonzdlez Clavijo and Martinez Cataldn, 2002; Martinez
Cataldn et al., 2004, 2008). Complementarily, the fossil
flora, fauna, and ichnofossil findings in the exotic olistoliths
display ages from Lower Ordovician to Middle Devonian
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(Fig. 5). This wide range of biostratigraphic ages seems to
indicate that fossil findings belong to rock blocks within
a synorogenic turbiditic unit, which is confirmed by strati-
graphic features and detrital zircon ages (Gonzélez Clavijo et
al., 2016). Trying to confirm this hypothesis, a U-Pb zircon
geochronology study on volcanic rocks considered to rep-
resent olistoliths from the LPa was performed (Fig. SF1.1).
We have complemented our study with the integration of al-
ready published U-Pb zircon age data from other volcanic
olistoliths in the LPa (Farias et al., 2014; Gonzalez Clavijo
et al., 2016). The complete description of the samples, their
location and their geochronology is presented in the Supple-
ment.

5.1 New ages from magmatic olistoliths

As a complementary study of the detrital zircon research in
the LPa flyschoid sequences, four volcanic rock olistoliths
from the LPa in the Alcadices synform and in the north-
ern edge of the Braganca Complex were sampled for U-Pb
geochronology.

Sample EC-PO-337 was picked northeast of Braganca in
an olistolith made of low-metamorphic-grade foliated green
metadacitic pyroclastic tuff from the Rabano Formation. This
rock consists of volcanic quartz crystals and plagioclase frag-
ments surrounded by a recrystallized tuffaceous matrix com-
posed of fine-grained quartz, sericite and white micas defin-
ing the tectonic foliation in the olistolith. The youngest sin-
gle zircon age is ca. 435 =40 Ma (Telychian), and the mag-
matic concordia age is 442 422 Ma (three ages, 95 % con-
cordant; Fig. SI-8A) with important age populations defin-
ing inherited concordia ages at 471 + 14 Ma (eight ages),
484 + 16 Ma (six ages) and 494 4 13 Ma (nine ages) (Floian
to Furongian).

Sample EC-PO-419 was collected in the northern limb of
the Verin—Alcaiiices Synform, to NW of the Braganca Com-
plex in a low-grade foliated medium-grained felsic metatuff
representing an olistolith associated with others made of
rhyolite, quartzite, lydite, quartzlitharenite and limestone
(Fig. 6g) in a mass-wasting slide within the siliciclastic syn-
orogenic sequence (Soutelo Formation in Meireles, 2013).
This sample presents a porphyritic texture composed of
a highly foliated recrystallized aphanitic matrix made of
sericite, fine-grained quartz, white micas, chlorite, biotite,
surrounding volcanic quartz and plagioclase phenocrysts and
shard fragments. The youngest single zircon age is 439 &8
Ma and the magmatic concordia age is 442 £ 12 Ma (five
ages, 95 % concordant). Other age populations are Darriwil-
ian (465 + 11 Ma, six ages) and Floian (474 & 13 Ma, five
ages) (Supplement; Fig. SI-8B).

Sample PET-01 was grabbed at the Spanish—Portuguese
border in the Rabano Formation, in an olistolith cluster ex-
tending from the northern edge of the Braganga Complex to
the northern limb of the Alcaiiices Syncline. The sampled
volcanic body is a grey rhyolitic tuff with disseminated sul-
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fides, which dye the rock with reddish color when weathered.
It shows a porphyritic texture made of a roughly foliated re-
crystallized matrix of sericite, fine-grained quartz, white mi-
cas, chlorite retrogressed from biotite and irregular and cu-
bic opaques. The phenocrystals are of sericitized plagioclase
and volcanic quartz crystals showing embayments, broken
crystals and shards. A concordia age of 494.1 + 1.1 Ma was
attained (lower Furongian) (Fig. SI-9A), supporting an olis-
tolithic nature of this sample, as it was collected in an olis-
tostrome of the synorogenic Rdbano Formation (Gonzélez
Clavijo, 2006).

Sample RAB-01, located at the north of the Alcaiiices vil-
lage, was hand-picked in a meter-sized block of a weath-
ered intensely foliated rhyolitic tuff representing an olis-
tolith from the lower part of the synorogenic San Vitero For-
mation. Phenocrysts of plagioclase, sometimes fragmented,
and volcanic quartz crystals and shards are surrounded by
a fine-grained recrystallized matrix of quartz, sercite, white
mica and opaques. Structurally it belongs to a horse with
the sheared SCSSs at the base (Fig. 8a). This sample yields
a magmatic concordia age of 476.0 1.5 Ma (Floian)
(Fig. SI-9B). Its position within an olistostrome stratigraphi-
cally higher than the graptolite-rich SCSSs (Fig. 8a) excludes
other plausible explanations as an interlayered pyroclastic
flow, or a sill (Gonzdlez Clavijo, 2006; Juan Carlos Gutiér-
rez Marco, Artur S4, and José Picarra, personal communica-
tion, 2008).

5.2 Published ages from magmatic olistoliths

In the Alcafiices synform several olistoliths of felsic vol-
canic rocks have been identified, all of them of rhyolite to
dacite composition, and often forming large clusters elon-
gated NW-SE.

Previous research (Gonzélez Clavijo et al., 2016) obtained
an age of the Nuez olistolith (NUEZ; see location of all sam-
ples in the Supplement), one of the major blocks forming
a cluster several kilometers long included in an olistostrome
inside the synorogenic Rdbano Formation, towards the south-
ern limb of the Alcaiiices synform. This block contains two
volcanic facies: dacite lava and dacitic quartz-eyed tuff (An-
cochea et al., 1988). The LA-ICP-MS U-Pb isotope analysis
of magmatic zircons of a dacitic tuff sample returned a con-
cordant magmatic age of 497 + 2 Ma (lowermost Furongian).

In the northern limb of the same synform, the Figueru-
ela dacite (COS-8) was dated by SHRIMP-II U-Pb analysis
(Farias et al., 2014) yielding a magmatic concordia age of
488.7£3.7Ma (around the limit Furongian/Tremadocian).
This igneous rock was interpreted as a dacitic lava flow in-
terlayered in the Parafio Group of the Schistose Domain or
Parautochthon sensu lato. Our field work in the area has re-
vealed that the Figueruela dacite belongs to a major cluster
of olistoliths in a large mass wasting deposit, mainly com-
posed of blocks of felsic lavas (dacite and rhyolite) and tuffs,
also containing large quartzite and lydite lenses. In our rein-

Solid Earth, 12, 835-867, 2021



850 E. Gonzalez Clavijo et al.: A tectonic carpet of Variscan flysch in NW Iberia

terpretation the Figueruela dacite is an olistolith contained in
a basal block-in-matrix unit placed below the San Vitero For-
mation coherent primary unit and above the sheared SCSSs.
Thus, here we support that the Figueruela dacite belongs to
the synorogenic LPa as previously stated by Gonzalez Clav-
ijo et al. (2016).

At the northern edge of the Braganca Complex, another
significant volcanic body, the Soutelo rhyolite (COS-7), was
dated by SHRIMP-II U-Pb analysis (Farias et al., 2014)
yielding a 499.8 £3.7Ma (upper Miaolingian) concordia
age. The aforementioned authors have included the Soutelo
rhyolitic lava in the so-called Parafio Group and considered
it as volcanic event in the preorogenic sedimentary sequence
of the (Upper) Parautochthon. Our field study disclosed the
existence of an important cluster of olistoliths of diverse
lithologies such as lydite, grey quartzite, greywacke, lime-
stone, rhyolitic lavas and acidic pyroclastic tuffs, the last two
being the most abundant types. Complementarily, this ma-
jor block-in-matrix unit is placed on top of the mylonitized
SCSSs that defines the BLPD. For all these reasons we con-
sider that the Soutelo rhyolite is also an olistolith inside the
synorogenic LPa.

5.3 The possible sources of the magmatic olistoliths are
in the UPa

The UPa unit, structurally below the Lower Allochthon as
defined by Dias da Silva et al. (2014) in the eastern rim of
the Morais Complex (Figs. 2 and 3), contains a late Cam-
brian to Silurian detrital sequence with minor limestones and
voluminous volcanism (Pereira et al., 2000, 2006). The main
volcanic events are, from bottom to top, the Mora felsic to
mafic volcanic rocks (Mora Volcanics; Dias da Silva, 2014,
Diez-Montes et al., 2015); the Saldanha gneiss (Ribeiro,
1974; Ribeiro and Ribeiro, 2004; Pereira et al., 2006, 2008);
and a large felsic and mafic volcanic—sedimentary complex
(Volcano Siliceous Complex of Ribeiro, 1974 and Pereira
et al., 2006), latterly renamed to Peso Formation (Dias
da Silva et al., 2016; Diez-Montes et al., 2015). The Sal-
danha gneiss is a rhyolitic dome composed of fine- to
coarse-grained porphyritic lavas and tuffs, intercalated in the
Cambro-Ordovician terrigenous succession below the Ar-
morican Quartzite (Algoso Formation; Dias da Silva et al.,
2014), while the Peso Formation lays above it, in the highest
stratigraphic positions of the UPa (Dias da Silva et al., 2016).

Previous zircon U-Pb geochronology of some represen-
tative bodies of those volcanic rocks (MOR-18ZIR; SAL-
1ZIR; PR-1; PR-2, location given in the Supplement) at
the eastern fringe of Morais Complex yielded Furongian
(Mora Volcanics, 493.54+2Ma), Tremadocian (Saldanha
Volcanics, 484 +2.5Ma) and Upper Ordovician (Peso For-
mation, 455-460 Ma) magmatic ages (Dias da Silva et al.,
2014; 2016), evidencing episodic voluminous vulcanism
along the stratigraphic record of the UPa. These ages are co-
herent with their stratigraphic position, thus supporting that
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the polyphasic pervasive deformation undergone by the UPa
has not disrupted the original sedimentary architecture as
the interlayered volcanic rocks keep the putatively primary
chronological order (Diez-Montes et al., 2015; Dias da Silva
etal., 2016). Although none of these U-Pb analyses included
a study of the inherited zircon ages in these rocks, their mag-
matic ages were crucial to confirm the presence of rocks
with ages similar to those found in the olistoliths, pointing to
the UPa as the likely source of the Cambro-Ordovician vol-
canic olistoliths in the LPa (Gonzdlez Clavijo et al., 2016),
such as the Nuez, Soutelo (COS-7) and Figueruela (COS-8)
hectometer-sized magmatic olistoliths.

The two new samples from the NW Morais Complex UPa
(P-381 and P-385, location in the Supplement) were ana-
lyzed for magmatic and inherited zircon ages (Supplement;
Fig. SI-7). Sample P-381 is an intensely folded rhyolite with
quartz phenocrysts in a foliated sericite and white mica ma-
trix. Its youngest single zircon age is 456 +£9Ma and the
youngest concordia (magmatic) age is 461 + 4 Ma (Darriwil-
ian; six ages, 95 % interval; Fig. SI-7A). Although it was col-
lected in a similar structural or stratigraphic position, sample
P-385 (foliated dacite with quartz, feldspar and plagioclase
phenocrysts in a micaceous highly foliated matrix) seems to
be older, with the youngest single zircon at 468 + 13 Ma and
a concordia magmatic age of 475 &= 5 Ma (Floian—Arenigian;
five ages, 95 % concordant; Fig. SI-7B). Both samples have
inherited Tremadocian (ca. 477-485 Ma) and Furongian (ca.
485-497 Ma) concordia ages, which are the main zircon age
populations in these rocks. Ages of both rocks confirm the re-
sults obtained in previous studies, which attribute a Middle—
Upper Ordovician age for the Peso Formation of the UPa
(Dias da Silva et al., 2016). These new results also show that
the UPa is likely the major source of the 440—475 Ma mag-
matic olistoliths and of Cambro-Ordovician—Silurian detrital
zircons in the LPa synorogenic basin, also supported by the
age distribution plots and the MDS diagrams presented be-
low (see also the Supplement).

6 Discussion

6.1 Structural and stratigraphic meaning of the Lower
Parautochthon synorogenic basins

The samples studied contain detrital zircons coeval with
the Variscan orogeny time span (400-320Ma). These re-
sults permit us to extend the LPa to areas with flyschoid
sequences, some of them with broken beds, slump folds,
BIMFs, olistostromes and olistoliths, previously not recog-
nized as Variscan synorogenic deposits. From rocks under-
lying eastern parts of the Braganca and Morais complexes,
where the LPa was described by Dias da Silva et al. (2014,
2015, 2020), it may be continued to the south following
the GTMZ boundary through the Meirinhos (MEI-ZR-01
and CR-ZR-01) and western Mirandela (MIR-41, AD-PO-
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49, AD-PO-5 and AD-PO-57) zones to end in the Vila Pouca
de Aguiar imbricated thrust system (AD-PO-48B) as shown
in Figs. 2, 4 and 5. Farther south, west of Vila Real, in the
Marao Range (Fig. 2) some structurally staked units con-
tain sequences described by Pereira (1987, 1989) as likely
to be correlated with the LPa, with a lower SCSS unit (Cam-
panhé Formation) overlain by turbiditic sequences (Santos,
Canadelo and Mouquim Formations) which have been litho-
logically correlated to some of the LPa stratigraphic units in
the Alcafiices Syncline area (Gonzélez Clavijo, 2006).

To the west of the Alcaiiices synform, north of the Bra-
ganca Complex, three samples of the flyschoid sequence
(EC-PO-293, GIM-ZR-01 and AD-PO-66), two new vol-
canic olistoliths ages (EC-PO-337 and EC-PO-419) and data
from another olistolith (COS-7, Farias et al., 2014) support
the interpretation of the LPa rocks in several stacked slices
as the Variscan synorogenic sequence (Tournaisian age or
younger). These slices contain glided blocks of upper Cam-
brian to Ordovician—Silurian volcanic rocks (Fig. 10a), and
also graptolite-rich Silurian lydites (Meireles et al., 1999a,
b; Picarra et al., 2006a, b) which preclude an in situ in-
terpretation for the volcanic rocks. A similar arrangement
was unveiled in the Alcafiices Synform from two new sam-
ples picked in olistoliths (PET-01 and RAB-01) plus two
more from the literature (NUEZ, Gonzéilez Clavijo et al.,
2016 and COS-8, Farias et al., 2014) yielding upper Cam-
brian to Ordovician magmatic ages. These rock blocks ap-
pear among other Lower Ordovician—Lower Devonian fossil-
bearing (meta)sedimentary olistoliths, which occur in a sedi-
mentary unit of turbiditic nature containing Upper Devonian
to Mississippian detrital zircon grains.

The Gimonde Formation exposed in the Alcafiices Syn-
form and in the northern edge of the Braganca Complex (to-
gether some other local names: Soutelo, Rio de Onor and
Coroto in Meireles, 2013) has cartographic continuity with
the Nogueira Group at the Verin Synform and, according to
our field observations, also with the lower tectonic unit of
the Parafio Group underlying a thrust structure positioned at
the base of the “Quartzitic” middle unit of the Parafio Group
(Marquinez, 1984; Farias, 1990) as displayed in Fig. 2. Also,
a coherent primary unit of decimeter-scale interbedded phyl-
lites and greywackes was newly identified in several zones
(Fig. 10b), including the presence of thick beds of green-
ish fine-grained lithic sandstone close to the town of Verin.
Block-in-matrix phacoid bodies enclosing native and exotic
blocks were also observed (Fig. 10c and d), some of them
large enough to be considered olistoliths (mainly made of
quartzite, lydite, black limestone, and felsic lava and tuffs).
Towards the base, Silurian lydite and ampelite beds are fre-
quent and strongly sheared, thus forming a tectonic mélange
involving synorogenic sediments and the SCSSs (Fig. 10e).
As in the other nearby sectors, the Verin Synform area can be
also envisaged as a complex imbricated thrust system, where
the horses repeat the SCSSs and the Nogueira Group. In the
eastern part of the SW limb of the Verin Synform in Portugal
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Figure 9. Geological sketch of one area north of the Braganca
Complex showing slices of synorogenic units bounded by tectonics
mélanges involving the synorogenic and the black Silurian rocks.
The multiplex was openly folded during the Late Variscan event
(C3). Coordinates system: UTM-WGS84.

(Fig. 2 and cross section 3 in Fig. 3), the Nogueira Group is
correlated with the Lower Schists Formation (Pereira et al.,
2000), which maintains the sedimentary aspects described
above, but with coarser-grained (meta)sandstones very rich
in angular quartz and plagioclase grains, thus supporting a
more proximal volcanic-rich source area. Also, the olistoliths
identified in this area within the synorogenic sequence are
made of UPa rocks, as they present polyphasic pervasive de-
formation characteristic of the tectonically overlaying unit
(Fig. 10f, g and h), contrasting with the low deformation
observed in the rest of the LPa sequence. According to the
terminology adopted in this work (Festa et al., 2019, 2020)
the basal detachment zone of this stratigraphic unit (possibly
the BLPD) is made of imbricated tectonic slices mixing the
BIMF deposits and the mylonitized SCSSs, forming a poly-
genetic mélange.

The revision of the stratigraphy of the Nogueira Group and
the lower unit of the Parafio Group in the Verin Synform al-
low us to propose a new interpretation for rest of the Parafio
Group (Quartzitic and Upper units), which occupies the core
of the synform. It may be correlated with the UPa according
to the following points:

i. There is cartographic continuity with the UPa exposures
that surround the Braganga Complex (Figs. 2, 3 and 4).

ii. A thrust fault underlying the Quartzitic Middle unit
of the Parafio Group has been identified in this work
in coincidence with places where Farias (1990) iden-
tified protomylonites and crenulation cleavage, which
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Figure 10. Field aspects of the block in matrix formations and olistoliths in the LPa. (a) Rhyolite block in the LPa northern Braganca
Complex inside a quartzlitharenite; (b) flyschoid sequence in the Verin synform SW limb; (¢) thrust band involving black Silurian ampelite,
and rhyolite (whitish) and lydite (black) blocks in the NE limb of the Verin synform; (d) thrust band deforming rhyolite (yellowish and
whitish), quartzlitharenite (brown in the right side) and ampelite (black) at the NE limb of the Verin synform; (e) black Silurian condensed
facies in a tectonic slice inside a tectonic mélange at the NE limb of the Verin synform; (f) flyschoid sequence with sedimentary and load
structures in the LPa at the easternmost part of the Verin synform SW limb; (g) olistolith made of UPa rocks displaying the characteristic
arrangement of tectonic foliations in the LPa of the easternmost part of the Verin synform SW limb; (h) tectonic foliation array of the UPa
lower part at the southwest of the Morais Complex.
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is here interpreted as the MTMT following Dias da
Silva (2014).

iii. The upper and quartzitic units of the Parafio Group are
made of low-grade pervasively deformed detrital rocks
like the sequence forming the UPa under the Morais and
Braganga complexes (Nufio Ortea et al., 1981; Alonso
Alonso et al., 1981; Farias, 1990), and they contain
volcanic interbedded bodies with similar geochemistry
and U-Pb zircon ages (Nuifio Ortea et al., 1981; Alonso
Alonso et al., 1981; Farias, 1990; Valverde Vaquero et
al., 2007).

iv. The Parafio quartzitic unit (Farias, 1990), which delin-
eates the hinge zone and limbs of the Verin Synform
(Fig. 2), shows spatial continuity and can be lithologi-
cally correlated with the Algoso Formation in Portugal,
which is considered an Armorican-type early Ordovi-
cian quartzite in the UPa (Dias da Silva, 2014; Dias da
Silva et al., 2016).

v. A volcanic body placed above the Lower Ordovician
quartzite in the Verin Synform, the Navallo trachyte,
has a radiometric age of 439.6 £ 5 Ma (uppermost Or-
dovician to Llandovery; Valverde Vaquero et al., 2007),
younger but coherent with that of felsic metavolcanic
rocks in the Peso Formation of the UPa around the east-
ern and northern rim sections of the Morais Complex.

To the north, in the Cabo Ortegal Complex, the Rio Baio
thrust sheet (Marcos et al., 2002) is structurally located under
the allochthonous units and has been correlated to the Schis-
tose Domain (Pa) below the Ordenes, Braganga and Morais
complexes (Farias et al., 1987; Ribeiro et al., 1990; Martinez
Catalan et al., 1997). The internal structure of the Rio Baio
thrust sheet is complex, deforming a greenschist facies de-
trital sequence which includes quartzites and volcanic rocks
(Arce Duarte and Ferndndez Tomas, 1976; Arce Duarte et
al., 1977; Fernandez Pompa and Piera Rodriguez, 1975; Fer-
nandez Pompa and Monteserin Lépez, 1976; Marcos and
Farias, 1999). Among the latter, the main bodies are the
Loiba dacites, Costa Xuncos rhyolites and Queiroga rhyo-
lites (Arenas, 1984, 1988; Ancochea et al., 1988). The strati-
graphic sequence of the Rio Baio thrust sheet was considered
Silurian by the fossiliferous content of some beds (Matte,
1968; Romariz, 1969; Iglesias and Robardet, 1980; Picarra
et al., 2006b). Nevertheless, a field reappraisal considered
those Silurian levels to be placed at the base of the Rio Baio
thrust sheet (Valverde Vaquero et al., 2005), following the
basal tectonic contact of the Schistose Domain in the Cabo
Ortegal Complex. The base of the Rio Baio thrust sheet was
detached from the autochthonous CIZ by a fault developed
preferably in the SCSSs (here interpreted as the BLPD). Im-
mediately above the BLPD, a low-grade turbiditic sequence
is exposed at the coastline, where the PICON-2 sample was
collected (Figs. 2, 3, 4 and 5 and the Supplement) giving
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support for a Variscan synorogenic origin of this sequence
and the ascription of the lower part of the Rio Baio thrust
sheet to the LPa. Thus, under the Cabo Ortegal Complex a
Parautochthon comparable with that of the Morais and Bra-
ganca areas exists, with a small deformed thin LPa unit over-
lying a tectonic mélange developed in the SCSSs, and the
upper part of the Rio Baio thrust sheet above, representing
the preorogenic UPa. An isotopic age obtained by Valverde
Vaquero et al. (2005) in the Queiroga alkaline rhyolite (U-
Pb TIMS, 475 £ 2, Ma — Floian) supports this ascription by
comparison with felsic volcanic rocks of the UPa around the
Morais Complex (Dias da Silva, 2014; Dias da Silva et al.,
2014, 2016; this work).

Based on the geochronology results of the 17 magmatic
and detrital rock samples presented here and previously pub-
lished zircon age data we interpret that the LPa Variscan syn-
orogenic sedimentary and structural unit forms a continuous
tectonic carpet underlying the GTMZ separating it from the
CIZ. The LPa is not observed in some reaches of the limit
between the two zones because if it exists, it has been hid-
den by late Variscan transcurrent faults or due to the intru-
sion of Variscan granitoids. Between the Cabo Ortegal and
the Braganga complexes and in the northern Porto sector the
available data from the literature does not conclusively sup-
port the existence of synorogenic sequences which could be
endorsed to the LPa, and no detrital zircon studies have been
performed until now. Only the San Clodio Series may rep-
resent a link between the LPa of Cabo Ortegal and Tréas-os-
Montes, although it is younger and, although imbricated, it is
not fully allochthon.

The strongly deformed SCSSs present at the base of every
LPa tectonic slice and frequently separated from the synoro-
genic sequence by a thrust fault rooted in the BLPD must
be considered a tectonic mélange in the meaning proposed
by Festa et al. (2019, 2020), as it also incorporates tectonic
blocks and olistoliths from the base of the synorogenic se-
quences. So, when the related shear zone incorporates glided
blocks (Figs. 8a, b and 9) it could be considered as a poly-
genetic mélange (Festa et al., 2019, 2020). We envisage the
SCSSs as a mixing unit sharing rocks of the LPa and the
Autochthon, where the Silurian components were scraped
off from the CIZ local uppermost sequence during the em-
placement, a mechanism suggested by Ogata et al. (2019),
Smeraglia et al. (2019) and Hajna et al. (2019) for mélange
formation. This offscraping mechanism is supported by the
presence of Silurian rocks in the Autochthon (CIZ) at the
eastern part of the Alcafices Synform (Gonzéilez Clavijo,
2006) and at the Sil Syncline area (Martinez Catalan et al.,
2016).

6.2 Provenance of the siliciclastic rocks and olistoliths
in the Lower Parautochthon

We have used multidimensional scaling (MDS) (ISOPLOT-
R by Vermeech, 2018) to compare the new and the already
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published data on the zircon age populations of the NW
Iberian synorogenic basins, with potential sources within the
Iberian Massif terranes (see the Supplement for more de-
tails, and complete U-Pb age datasets in Tables S18 and
S19). This approach has proven successful in the improve-
ment of paleogeographic reconstruction models in the SW
Iberian Variscan belt (Pereira et al., 2020a, b) where the zir-
con age fingerprinting of possible sedimentary sources feed-
ing the Devono-Carboniferous synorogenic marine basins
indicate that sediments were derived from the continental
margins of Laurussia and Gondwana, and from a “missing”
Variscan volcanic arc (Pereira et al., 2012a). In contrast to
the SW Iberian case, the potential source areas of sediments
and olistoliths of the NW Iberian synorogenic basin can be
easily found in the nearby tectonostratigraphic domains (Au-
tochthon and Allochthon). Because synorogenic basins are
usually fed from the neighboring surrounding (orogenically
active) highs, there is no need to recur to other more distant
Variscan sectors like the Laurussian domains of Meguma,
Avalonia or Baltica, to accurately determine sedimentary
provenance.

In this study, the zircon age data used for estimating pos-
sible source areas of NW Iberian synorogenic marine basins
are a selection of published detrital zircon U-Pb ages of pre-
Upper Devonian siliciclastic rocks of the NW Iberian Au-
tochthon and Allochthon. The data compiled by Puetz (2018)
and Stephan et al. (2018) were combined with other more
recent literature (Abati et al., 2007; Albert et al., 2015;
Diez Fernandez et al., 2010, 2012, 2013; Dinis et al., 2012;
Fernandez-Suarez et al., 2000, 2002, 2003, 2014; Gutiérrez-
Alonso et al., 2003, 2015; Linnemann et al., 2008, 2018;
Martinez Catalan et al., 2004; Naidoo et al., 2018; Pastor-
Galan et al., 2013; Pereira et al., 2011, 2012a, b; Shaw et
al., 2014; Talavera et al., 2012, 2015; Teixeira et al., 2011;
Zimmermann et al., 2015) (reference samples in Table S18).
We have performed a quality test to the U-Pb isotopic data
in each sample, recalculating all the zircon ages following
the procedure used in our samples (see the Supplement for
complete description of the quality test and data selection).
This dataset is used to fingerprint the zircon ages in the
source areas using MDS and compare them with the exten-
sive data collection of the synorogenic siliciclastic rock sam-
ples, which was expanded in this work from 13 to a total
of 24 samples. We have also included new zircon age data
on volcanic rocks from the UPa (two samples: P-381 and
P-385) and from large olistoliths in the LPa (four samples:
EC-PO-337; EC-PO-419; PET-1; RAB-1) to compare their
age spectra with the detrital zircon samples, thus tracing the
source areas for some of the large olistoliths and the flysch
sequence.

The age data of the possible source areas were selected ac-
cording to a conceptual paleogeographic model for the Up-
per Devonian—early Carboniferous (as provided in Dias da
Silva et al., 2015 and Martinez Catalan et al., 2016). Fol-
lowing the reasoning explained in the Supplement, we de-
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fine Source A samples as representative of the sources erod-
ing from the peripheral bulge developed in the Autochthon
(CIZ, WALZ-CZ and OMZ), but also including the UPa
slice as one of the most distal section of north-central Gond-
wana passive margin. Source B reflects the NW Iberian Al-
lochthon (GTMZ), defined as an accretionary complex built
along the Devonian and emplaced onto the Autochthon dur-
ing the early Carboniferous, forming the Parautochthon (UPa
and LPa) as the lowermost tectonic sheet. The UPa is in-
cluded in Source A because it was part of the Autochthon
at the beginning of emplacement, although it was later incor-
porated into the Allochthon. So, Source A could have been
at either side of the synorogenic basin margins, belonging to
the peripheral bulge in early Variscan times (Late Devonian),
and forming the GTMZ basal thrust sheet in the early Car-
boniferous, as the thrust front moved towards inland Gond-
wana. Source A samples were grouped by stratigraphic age,
considering that the general stratigraphy of the Autochthon
and UPa was not substantially imbricated by major Variscan
thrust zones at time of its erosion. Opposingly, in Source B,
the GTMZ allochthonous complexes were separated accord-
ing to their tectonometamorphic unit or domain (UA, MA or
LA) with all samples ranging from not fully constrained Edi-
acaran to Lower Ordovician stratigraphic ages and belonging
to the Galician allochthonous units (Malpica-Tui, Ordenes
and Cabo Ortegal complexes).

Using the MDS diagram with both potential sources as the
base of our provenance interpretation, we have plotted the
new and published zircon age populations of the synorogenic
siliciclastic rocks, adding the new magmatic and inherited
ages of the Middle Ordovician—Silurian volcanic rocks col-
lected as olistoliths in the LPa and in the upper stratigraphic
units of the UPa.

The final MDS plot (Fig. 11; Supplement for detailed in-
formation) shows two main age clusters: Cluster 1 — “Upper
Parautochthon Middle Ordovician—Silurian volcanism” char-
acterized by synorogenic sediments with abundant Cambrian
and Ordovician zircon grains, a high concentration of Middle
to Upper Ordovician ages, and minor amounts of Silurian and
Devonian ages (Fig. 12); Cluster 2 — “Multiple Gondwana-
derived sources” characterized by populations with a wide
variety of sub-clusters (Groups 1 to 7, Figs. 11 and 13; Sup-
plement), including the Autochthon and the UPa (Source A),
and the allochthonous complexes (Source B). The defined
groups show direct relation with the most probable sources
(A and/or B), but they also represent different grades of sed-
iment mixing and recycling (Fig. 11).

The MDS diagram (Fig. 11) and age distribution plots
(Figs. 12 and 13) suggest that there is not a decipherable
pattern in the provenance of sediments, both in time and
space. It is possible to recognize provenance changes along
and across the same stratigraphic units, sometimes sampled
in different beds that are a few centimeters apart (samples
MIR-41 and AD-PO-49). Our analysis evidence that zircon
provenance varies, with sediments coming from both A and
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B sources at the same time and/or arriving to different sec-
tors of the synorogenic basin. Mixing patterns between age
groups can also be noted, with sediment recycling leading to
dilution of sources towards those more typical of Gondwana
as, for instance, Group 7 and Cluster 1 showing a trend to
Group 5. Reversely, younger samples plot closer to sources
attributable to the allochthonous complexes, as shown by
the trend of Group 7, from samples SO-14, SO-1 and SO-2
towards the Upper Allochthon reference population, appar-
ently marking the progradation of the allochthonous wedge
onto the NW Iberian Autochthon from the Tournaisian to the
upper Visean.

These fluctuations suggest variations on the topographic
highs surrounding the synorogenic basin at both margins
(accretionary complex and peripheral bulge) in the Upper
Devonian—early Carboniferous (Fig. 14). The tectonic activ-
ity that controls the basin shape and sedimentation was the
cause of highly erosive, large-scale mass-wasting processes
leading to the large olistolith-bearing BIMF deposits. The
synorogenic marine sediments (cohesive flysch and BIMFs)
were gradually incorporated at the base of the accretionary
wedge as a tectonic carpet, forming polygenic mélanges.
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The rapid frontal accretion of trench turbidites (Kusky et al.,
2020) allowed their fast exhumation, leading to their recy-
cling within the basin (wild flysch).

6.3 Origin of Variscan detrital zircon grains

A contrasting aspect of NW Iberian synorogenic deposits
with their equivalents in SW Iberia (e.g., Pereira et al., 2014,
2020a, b; Rodrigues et al., 2015; Pérez-Caceres et al., 2017)
is the scarcity of Variscan ages in the detrital zircon age pop-
ulations in our study case. Only 14 detrital zircon samples
out of 24 (11 new + 13 from previous works) have a minor
population of Variscan zircons, compared with the predomi-
nant Variscan zircon populations in most of the synorogenic
formations in SW Iberia.

Notwithstanding, synorogenic Variscan zircon grains are
represented in all studied formations of the LPa, indepen-
dently of the MDS age cluster they belong to (the clus-
ters mostly define the “old” zircon age population patterns;
Figs. 12 and 13). Because there is no evidence of volcanic
activity associated with the synorogenic marine deposits of
the LPa, the source of the rare Variscan detrital zircons must
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be located elsewhere. A possibility is the Upper Devonian—
Carboniferous volcanism coeval with the development of
the SW Iberian synorogenic basins (Oliveira et al., 2019a,
b; Pereira et al., 2020b) or in the Visean ash deposits lay-
ing within the CZ condensed marine synorogenic sediments
(Merino-Tomé et al., 2017). But because zircon age popu-
lations of synorogenic sediments include those identified in
the volcanic and sedimentary olistoliths (Figs. 12 and 13), a
more local derivation seems reasonable.
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To identify the sources for the Variscan zircon grains we
must check the main zircon forming events represented in the
allochthonous complexes of the GTMZ, and in the under-
lying Autochthon (CIZ, WALZ, and less probably CZ and
OMZ). The oldest Variscan zircon populations in the LPa
range from ca. 400 to 380 Ma, which can be related to the
Lower-Middle Devonian high-P and high-T metamorphism
in the Upper Allochthon (Gémez-Barreiro et al., 2006, 2007;
Gomez-Barreiro, 2007). An alternative contribution could be
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Emsian volcanism in the Autochthon, such as that identi-
fied in the CIZ to the south of Tras-os-Montes, in the core
of the Tamames Syncline (ca. 395 Ma; Gutiérrez-Alonso et
al., 2008). A younger group, between ca. 380-370 Ma may
have its origin in metamorphic zircons growth during ex-
humation of the Upper Allochthon (Martinez Catalan et al.,
2016, 2019) and to a small extent in prograde metamor-
phism of the Middle Allochthon (Pin et al., 2006; Arenas et
al., 2007; Arenas and Sanchez-Martinez, 2015; Santos Zal-
duegui et al., 1996, and references therein). The age group
in the range ca. 370-360 Ma may derive from the high-P and
high-T metamorphic rocks of the Lower Allochthon (Abati
et al., 2010; Diez Fernandez et al., 2011; Santos Zalduegui
et al., 1995). These early Variscan ages are found only in the
allochthonous complexes and never in the CIZ (Source A).
Younger zircon sources with ages of ca. 340-320 Ma are as-
sociated with low-P and high-T regional tectonometamor-
phic events and to magmatic pulses at ca. 340, 335 and
320 Ma (Martinez Catalan et al., 2003; Diez Férnandez and
Pereira, 2016; Diez Ferndndez et al., 2017; Lopez-Moro et
al., 2017; Gutiérrez-Alonso et al., 2018; Dias da Silva et al.,
2018). But zircons of this age interval have been found only
in the Almendra Formation, the most external imbricate of
the synorogenic deposits of the LPa, and in the San Clodio
Series.

7 Conclusions

New results from field and geochronology studies on the
Variscan (ca. 400-320 Ma) hinterland synorogenic marine
deposits of the Parautochthon in NW Iberia are presented.
They surround large parts of the Galicia—Trds-os-Montes
Zone (GTMZ), separating the Allochthon and Parautochthon
from the structurally underlying Autochthon of the Central
Iberian Zone (CIZ). The new data are useful for better un-
derstanding the relationship of the NW Iberian Variscan hin-
terland marine basin with the structurally underlying and
overlying units. We show that the two units defined in the
Parautochthon at the eastern rim of the Morais and Bra-
ganca complexes cover an area larger than previously es-
timated, being exposed from Cabo Ortegal (NW Spain) to
Tras-os-Montes (NE Portugal). The existence of a preoro-
genic highly folded Upper Parautochthon (UPa) and an im-
bricated Lower Parautochthon (LPa) composed of slices of
Devono-Carboniferous turbidites and tectonically scrapped
autochthonous Silurian carbonaceous—siliceous slates (SC-
SSs) is a general attribute of the whole NW Iberian Pa-
rautochthon. Regional tectonic and stratigraphic features
show that the LPa represents a synorogenic basin that was
gradually incorporated into the base of the allochthonous
accretionary wedge while it was being emplaced onto the
northern Gondwana margin, forming a continuous tectonic
carpet at the base of the GTMZ.
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Analysis of the stratigraphic and tectonic features of the
synorogenic flysch in the LPa highlights the relevance of
large-scale mass wasting deposits in the sequence. Block-in-
matrix formations (BIMFs) represent sedimentary mélanges
including large olistoliths derived from the accretionary
wedge and probably the Autochthon exposed in a forebulge
in front of the wedge. They appear surrounded by a chaotic
matrix with slump folds and broken beds of the flysch se-
quence. The BIMFs formed due to gravitational instability
triggered by tectonic activity within and at both margins of
the basin. These deposits are frequently tectonized, forming
imbricated thrust complexes with polygenic mélanges and
tectonically scrapped autochthonous SCSSs at the base.

Zircon geochronology of the LPa siliciclastic rocks and
of magmatic olistoliths derived from the UPa and the Au-
tochthon constrains the provenance of the sediments and
blocks in the LPa. Our study confirms the synorogenic nature
of the LPa stratigraphic units, which include Emsian to Ser-
pukhovian detrital zircon grains. These Variscan grains prob-
ably derive from nearby sources located in the allochthonous
complexes (metamorphic ages of 400-360Ma), and from
Variscan granitoids and migmatites (ca. 340-320Ma). A
comparison of the detrital zircon populations of the NW
Iberian synorogenic marine deposits, including the magmatic
and inherited ages now obtained in the Middle Ordovician—
Silurian volcanic rocks of the UPa (source) and LPa (olis-
toliths), with a compilation of reference samples from pos-
sible source areas, showed evidence of direct source-to-sink
relationships of the Variscan hinterland basin with the ac-
cretionary complex (GTMZ) and the peripheral bulge in the
Autochthon. Multidimensional scaling analysis showed evi-
dence intrabasinal sediment recycling and mixing of sources
in time and space. These are explained by (i) the tectonic in-
stabilities within the basin and in its margins, (ii) the migra-
tion of the depocenter towards inland Gondwana, and (iii) the
gradual incorporation of the synorogenic basin into the ac-
cretionary wedge leading to its denudation and recycling.
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