
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

A Study of Commonsense Reasoning with Language Models

Ruben Miguel Rosa Branco

Mestrado em Ciência de Dados

Dissertação orientada por:

Professor Doutor António Manuel Horta Branco

2021

“If a machine is expected to be infallible, it cannot also be intelligent.”

― Alan Turing, Lecture to the London Mathematical Society on 20 February 1947

I

Agradecimentos

O trabalho apresentado nesta dissertação é o resultado de cerca de cinco anos no Grupo NLX e na Facul
dade de Ciências da Universidade de Lisboa.

Ao meu orientador, Professor Doutor António Branco, agradeço o voto de confiança e a oportunidade
de integrar o grupo, os conselhos e a ajuda. É uma fonte de inspiração que ao longo destes anos foi essen
cial para o meu desenvolvimento como jovem investigador. Agradeçolhe a orientação, disponibilidade
para discussão e o grande esforço de revisão investido durante esta dissertação.

Agradeço a João Silva e a João Rodrigues por toda a disponibilidade para discutir vários proble
mas que surgiram durante a produção desta dissertação. Agradeço também a ajuda para ultrapassar as
dificuldades e melhorar o resultado final.

Ao Grupo NLX, que desde o primeiro dia me receberam de forma aberta. Obrigado por toda a
ajuda, as conversas, diversão e ensinamentos que me fizeram crescer em todos os aspetos como pes
soa. Agradeço também pelos recursos disponibilizados, sem os quais seria impossível realizar o trabalho
descrito nesta dissertação.

À FCT Fundação para a Ciência e Tecnologia, agradeço o financiamento através da infraestrutura
PORTULAN CLARIN (PINFRA/22117/2016).

Aos amigos, agradeço por todas as aventuras, conversas e apoio ao longo dos anos. Foram partic
ularmente importantes para me manterem motivado e concentrado para alcançar o objetivo de concluir
esta dissertação, produzida na sua totalidade durante uma pandemia global.

Agradeço aos meus pais e à minha família pelo apoio incondicional, paciência, sacrifício e motivação
durante estes anos. Sem sombra de dúvida que sem esse apoio, nunca teria tido as condições necessárias
para chegar aqui.

III

Abstract

Artificial Intelligence (AI) has gone through an increasing growth in the past decades, which in the present
day translates to its usage in almost every sector of society. From its inception, AI pursues the reproduc
tion of human intelligence. Currently, AIequipped devices are capable of solving particular problems
within specific domains with varying degrees of success. The goal and hope is that the combination of
these systems will eventually approximate human intelligence. This dissertation addresses a problem in
Natural Language Processing (NLP), a central subfield of AI that aims to produce devices capable of
handling human language for problems such as translation, parsing, commonsense reasoning, and others.

Deep learning has fueled stateoftheart NLP research. The current most prominent methodology
leverages large scale neural networks and large amounts of data to achieve outstanding performances.
Recent research has started to uncover how these neural networks obtain stateoftheart results. In some
cases the models appear to latch on to so called data artifacts, whether they sustain valid generalizations
or not, which happen to minimize loss w.r.t. the training dataset distribution. Although this is generally
the rationale behind a machine learning approach, it can be error inducing, as models can fail miserably
when the distribution of the input data differs from the training data.

Our work reported in this dissertation investigates whether models learn to perform commonsense
reasoning, a cognitively demanding task inherent to the human experience, by resorting to such short
cuts. Five stateoftheart models of different major types are trained to perform four most prominent
commonsense reasoning tasks. Models undergo stress testing with five additional tasks devised to pro
vide hints of possible shortcut learning and of memorization.

The results indicate that the models seem to be resorting to shortcut learning in three of the four
commonsense reasoning tasks; they seem to be learning a different task from the one the data is meant
to convey by relying on spurious patterns present in the dataset. For example, the trained models can
pick the answer from a set of options without even being supplied with the question they are meant to
answer. Further experimentation confirmed that this behavior could not be attributed to memorization.
This behavior is worrisome, as the field measures progress by the capabilities of these models to perform
these tasks, and show that their cognitive abilities are disappointingly still low, susceptible to simple
deceptions in spite of the overwhelming good scores obtained under mainstream performance metrics.

Parts of this work have passed peer review and were accepted for publication (Branco et al., 2021a,b).

Keywords: Artificial Intelligence, Natural Language Processing, Deep Learning, Commonsense
Reasoning, Shortcut Learning

V

Resumo Alargado

A Inteligência Artificial (IA) teve um enorme crescimento nas últimas décadas, que se traduziu hoje
em dia na sua utilização em quase todos os setores da sociedade. Por exemplo, está presente no sector
financeiro, onde modelos neuronais são utilizados para fazer previsões em mercados financeiros; está
presente na nossa vida social através das redes sociais, que utilizam modelos de IA para todo o tipo de
tarefas e análises; esta dissertação aborda um problema de Processamento de Linguagem Natural (PLN),
uma subárea da IA que visa produzir dispositivos capazes de usar e compreender a linguagem humana.

Desde o início, a IA visa reproduzir a inteligência humana. Atualmente, produzimos dispositivos
capazes de resolver problemas específicos, em domínios específicos, com algum grau de sucesso. A
esperança para o futuro é que, através da combinação desses sistemas, as suas capacidades cognitivas
conjuntas se aproximem da inteligência humana. Em PLN, os modelos são aplicados a vários problemas,
como tradução, análise sintática, argumentação, raciocínio de senso comum, entre outros.

Esta dissertação apresenta um estudo sobre consequências negativas da metodologia mais proemi
nente em PLN na sua aplicação ao raciocínio de senso comum, um desafio/tarefa central em IA. Essa
metodologia consiste em utilizar redes neuronais de grande escala, geralmente modelos Transformer, e
pré treinálos com grandes quantidades de texto através de modelação de linguagem. Dado este prétreino,
onde as redes aprendem as nuances da linguagem natural, os modelos quando aplicados a tarefas especí
ficas obtêm desempenhos excecionais, que podem em alguns casos rivalizar e até superar as capacidades
humanas.

O raciocínio de senso comum é uma tarefa clássica em IA, tendo sido objeto de estudo de um dos
pioneiros da IA, John McCarthy. É uma capacidade humana essencial, que está em constante utilização,
pois o conhecimento de senso comum emerge naturalmente da experiência humana: observar e atuar
no nosso ambiente. É necessário raciocinar com este conhecimento de base para tomar decisões, por
muito imediatas que sejam. Em PLN, as tarefas deste género geralmente são de pergunta & resposta
que necessitam de raciocínio de senso comum para serem respondidas. Ensinar uma máquina, que por
enquanto não consegue facilmente interagir com o ambiente e aprender dele, continua a ser um desafio
central.

A investigação recente começa a descobrir como as redes neuronais obtêm resultados que constituem
o estado da arte. Por meio de aprendizagem por atalhos, os modelos prendemse aos chamados artefactos
presentes nos dados, quer estes produzam generalizações válidas ou não, os quais procuram minimizar
perdas relativamente à distribuição do conjunto de dados. Um exemplo deste fenômeno foi descoberto

VII

numa tarefa de SemEval 2018, Argument Reasoning Comprehension Task, onde os modelos classifi
cavam texto através de palavraschave como “not”, “is”, “do” e “are”, que estavam altamente cor
relacionadas com o resultado desejado. Embora minimizar as perdas com base em padrões nos dados
seja a abordagem subjecente à aprendizagem automática, pode acabar por ser detrimental fazêlo, pois
os padrões podem não refletir uma generalização sobre a tarefa em questão, mas podem resultar fortuita
mente do processo de construção dos dados. Quando a distribuição dos dados muda, o que pode acontecer
quando, por exemplo, utilizamos dados de entrada que podem ser consideravelmente diferentes dos dados
de treino, os modelos exibem falhas aparatosas.

Este trabalho investiga se os modelos realmente aprendem raciocínio de senso comum, uma tarefa
cognitivamente exigente e inerentemente de cariz humano. Cinco modelos de Transformer de estado da
arte são aplicados a quatro tarefas diferentes de raciocínio de senso comum, de modo a perceber a sua
aptidão na tarefa e estabelecer dados comparativos. Dois modelos são escolhidos para serem submetidos
a um teste de pressão, com cinco tarefas concebidas para obter indícios de aprendizagem por atalhos e
memorização: (i) Treino com dados de entrada parciais (Partial Input Training), onde segmentos dos da
dos de entrada, essenciais para completar a tarefa, são retirados, e o efeito nos modelos é observado. Se
os modelos forem capazes de cumprir a tarefa igualmente bem, então é um indício que estarão a usar arte
factos nos dados. (ii) Ataque adversarial (Adversarial Attack), que consiste na utilização de algoritmos
que modificam a frase de entrada, de forma que a semântica é conservada, e que levam o modelo a mudar
a sua decisão para uma classificação errada. Se a degradação dos resultados for significativa, pode ser um
indício de uma aprendizagem superficial, potenciada por atalhos nos dados. (iii) Contaminação de dados
(Data Contamination), que procura descobrir se existe uma sobreposição entre os dados de teste de uma
tarefa com os dados de prétreino. Como previamente referido, a metodologia mais atual utiliza grandes
volumes de dados de texto para prétreinar modelos, que podem ser obtidos das mesmas fontes utilizadas
para construir dados para outras tarefas. Os modelos têm capacidade de reter informação, portanto, po
dem utilizar mais tarde durante a avaliação, quebrando princípios de senso comum de testes de modelos:
modelos devem ser testado em dados que não teram sido vistos previamente. (iv) Avaliação cruzada de
tarefas (CrossTask Evaluation), que consiste em pegar num modelo treinado numa certa tarefa e avaliar
noutra, sem que o modelo tivesse aprendendoa. Isto permite observar se há transferência de conheci
mento, que seria possível pois as tarefas têm o mesmo conceito comum subjacente, que é raciocínio de
senso comum. Caso haja degradação forte nos resultados, isto é indicativo que os modelos aprenderam
atalhos que não foram transferidos para as outras tarefas, pois eram específicos aos dados onde treinou.
(v) Exploração de atalhos (Shortcut Exploration), que investiga dois tipos de atalhos: desiquilíbrio de
classes e “sinais” (cues) lexicais, que são palavras que fornecem indícios da classe pertencente a cada
examplo. Modelos que são treinados com um conjunto de dados que tenha desiquilíbrio de classes con
seguem obter melhores resultados ao tirar proveito desse desquilíbrio, enquanto que “sinais” lexicais
providenciam um sinal útil para os modelos obterem uma boa prestação.

As experiências mostram que os modelos parecem recorrer a aprendizagem por atalho em três das
quatro tarefas. Na experiência (i), em três das quatro tarefas de raciocínio de senso comum, é possível
chegar perto dos resultados impressionantes retirando segmentos dos dados fundamentais, no ponto de
vista do raciocínio humano, para resolver a tarefa. Como exemplo, os modelos conseguem escolher

VIII

respostas corretas a perguntas que não são fornecidas. Na experiência (ii), as mesmas tarefas sofreram
uma degradação superior. No geral, a degradação é alta, mostrando que os modelos ainda são frágeis
perante ataques adversários. Com a experiência (iii) observase que embora existe diferentes níveis de
contaminação dos dados das tarefas, estes não conseguem explicar os resultados obtido nas experiências
anteriores, e, portanto, memorização não poderá ser o fenômeno conducente aos resultados obtidos. Na
experiência (iv), verificase que os modelos na sua maioria consegue transferir o seu conhecimento para
outras tarefas, sem serem treinados nelas. Finalmente, na experiência (v), descartase desiquilíbrio de
classes como um possível atalho e identificase alguns “sinais” lexicais presentes nos dados, embora que
não são abrangentes o suficiente para explicar os resultados obtidos nas experiências (i), (ii) e (iv).

Estes indícios mostram que os modelos não estarão a realizar a tarefa pretendida, em vez disso, estão
a aprender e realizar tarefas diferentes que acontece que maximizam as métricas da tarefa pretendida,
através de padrões encontrados nos dados. O facto de estes fenômenos se verificarem é preocupante
por vários motivos. A área (PLN) consegue medir o progresso através da capacidade destes modelos
realizarem tarefas, como as utilizadas nesta dissertação. Mas se os modelos conseguem obter bons re
sultados não através da tarefa pretendida, mas uma derivada, o progresso pode ser inflacionado. Outra
preocupação referese ao grande objetivo traçado desde o começo da área, a reprodução de inteligência
humana. Dado que os modelos não aprendem as tarefas supostas, talvez por falta de especificação, e são
suscetíveis a simples enganos como mudar apenas uma palavra para um sinónimo, é difícil de argumentar
a capacidade cognitiva que eles possuem, por muito impressionante que seja o desempenho e tamanho.
Investigação futura é necessária, através de uma revisão cuidadosa e comparação entre os métodos e
procedimentos usados no desenvolvimento de dados, modelos e metodologia de treino.

Partes deste trabalho foram alvo de revisão por pares e aceites para publicação (Branco et al., 2021a,b).

Palavras Chave: Inteligência Artificial, Processamento de Linguagem Natural, Aprendizagem Pro
funda, Raciocínio de Senso Comum, Aprendizagem por Atalhos

IX

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives and Contributions . 3
1.3 Dissertation Outline . 4

2 Related Work 5
2.1 Commonsense Knowledge & Reasoning . 7
2.2 Recurrent Neural Networks & Transformer . 10

2.2.1 EncoderDecoder Model . 12
2.2.2 The Attention Mechanism . 13
2.2.3 Sequence Encoding . 15
2.2.4 The Transformer . 16

2.3 PreTrained Language Models . 17
2.3.1 BERT . 17
2.3.2 Other Variants . 18

2.4 Commonsense Reasoning with Transformers . 19
2.5 Shortcut Learning . 20
2.6 Adversarial Attacks . 23
2.7 NeuroSymbolic Systems . 24
2.8 Summary . 26

3 Tasks 29
3.1 Argument Reasoning Comprehension Task . 29
3.2 AI2 Reasoning Challenge . 31
3.3 Physical Interaction: Question Answering . 33
3.4 CommonsenseQA . 34
3.5 Summary . 36

4 Implementation 39
4.1 Models . 39

4.1.1 RoBERTa . 40
4.1.2 GPT2 . 43

XI

4.1.3 T5 . 44
4.1.4 COMET(BART) . 47

4.2 Adversarial Attack . 50
4.3 Training Methodology . 52
4.4 Data Contamination Study . 54
4.5 Shortcut Exploration . 56
4.6 Summary . 57

5 Results 59
5.1 Neural Models . 59

5.1.1 Evaluation on Commonsense Reasoning Tasks 59
5.1.2 Retraining and Evaluation with Partial Input . 61

5.2 NeuroSymbolic Models . 62
5.2.1 Evaluation on Commonsense Reasoning Tasks 62
5.2.2 Retraining and Evaluation with Partial Input . 64

5.3 Adversarial Attack . 64
5.4 CrossTask Evaluation . 65
5.5 Data Contamination . 67
5.6 Shortcut Exploration . 69

5.6.1 Class Balance . 69
5.6.2 Lexical Cues . 69

5.7 Summary . 74

6 Conclusion 75
6.1 Summary . 75
6.2 Contributions . 77
6.3 Future Work . 78

References 81

Appendix A Training HyperParameters 99

XII

List of Figures

2.1 The Transformer architecture. The input embeddings are passed through N encoder
blocks (left section), the output of the encoder blocks is then used by the Decoder (right
section) to generate text. Figure is based on the architecture diagram presented in the
original paper (Vaswani et al., 2017). 12

2.2 Seq2Seq EncoderDecoder architectures. 13
2.3 BERT performing masked language modeling. The corrupted tokens are replaced with a

[MASK] token, and the model must guess the correct words. 17
2.4 Reproduced from (Jia and Liang, 2017). The addition of an unrelated fact in the paragraph

made the model change its original prediction, indicating a shallow understanding. . . . 22
2.5 Reproduced from (Szegedy et al., 2013). Left column: original image that was correctly

classified. Right column: adversarial example produced with small perturbations. Mid
dle column: difference between the two images. All the images on the right were wrongly
classified as an ostrich. 23

2.6 An adversarial example producedwith TextFooler (Jin et al., 2020) on theARC dataset (Clark
et al., 2018) (Section 3.2), targeting a finetuned RoBERTa on the task. Simply chang
ing ability to capacity in option A is enough to make the model predict A instead of its
original prediction B. 24

3.1 Three examples from the ARCT dataset. 30
3.2 Three examples from the ARC dataset. 32
3.3 Three examples from the PIQA dataset. 33
3.4 Reproduced from (Bisk et al., 2020b). Instructions provided to turkers on Amazon Me

chanical Turk. 34
3.5 Three examples from the CSQA dataset. 35
3.6 Adapted from (Talmor et al., 2019). Generation process for CommonsenseQA. Crowd

workers receive a subgraph from ConceptNet, and must produce questions using the con
cepts and the relations between them. 36

4.1 Two types of finetuning schemes for RoBERTa. 41
4.2 Layout of a classification head. Inbetween linear projections, dropout (Srivastava et al.,

2014) is employed. The final linear layer projects to an output space, whose dimension
equals the number of output classes. It is common to perform a softmax after. 42

XIII

4.3 The first part in the example is the name of the task (e.g. arct). For each section of the
input, a textual description is prepended (e.g. question: (...)). The output must also be
generated (text), which in this example, is choice 2. 45

4.4 Formatted example for the ARCT task input to a T5 model. The expected value in the
form of binary value (0 or 1) is converted to True or False. 45

4.5 Formatted example for the ARC Task input to a T5 model. 46
4.6 Formatted example for the PIQA task input to a T5 model. 46
4.7 Formatted example for the CSQA task input to a T5 model. 46
4.8 Example of the tailprediction task. PersonX and PersonY corresponds to two different

persons. The example features different types of relations, and their definitions are the
following. xWant: as a result, PersonX wants; xAttr: X is seen as; oEffect: as a result,
PersonY or others will. 47

4.9 Reproduced from (Hwang et al., 2020). Examples for each relation type and their respec
tive size in ATOMIC2020. 48

4.10 An example of how to use BART for classification problems. 49
4.11 Conceptual implementation of a multichoice BART model. In this example, the input

contains two examples (batch size of two), each example having two candidate answers
(binary classification). 51

XIV

List of Tables

3.1 Number of examples in each dataset partition. 31
3.2 Number of examples in each dataset partition. 32
3.3 Number of examples in each dataset partition. 35
3.4 Number of examples in each dataset partition. 35

5.1 Accuracy of models (rows) on the selected tasks (columns). Scores displayed are the
mean of the accuracy scores for 5 runs. A bold figure indicates the best result in that task.
Human benchmarks and state of the art (SOTA) for CSQA were taken from their pub
lic leaderboard; for ARCT, human benchmark from (Habernal et al., 2018a) and SOTA
from (Zhou et al., 2020); and for PIQA, human benchmark from (Bisk et al., 2020b) and
SOTA from their public leaderboard. ‘*’ indicates results that are statistically significant
with 𝛼 = 0.05. 60

5.2 Partial input training results (accuracy). Scores above random choice are in bold. 61
5.3 Accuracy of models (rows) on the selected tasks (columns). Scores displayed are the

mean from the scores obtained for 5 runs. A bold figure indicates the best result in
the task. Human benchmarks and state of the art (SOTA) for CSQA were taken from
their public leaderboard; for ARCT, human benchmark from (Habernal et al., 2018a)
and SOTA from (Zhou et al., 2020); and for PIQA, human benchmark from (Bisk et al.,
2020b) and SOTA from their public leaderboard.‘*’ indicates results that are statistically
significant with 𝛼 = 0.05. 63

5.4 Partial input training results (accuracy). Scores above random choice are in bold. 64
5.5 Results of the adversarial attack on RoBERTaLarge and COMET(BART), on each task. 65
5.6 Crosstask results for RoBERTa (in accuracy). The values in the diagonal are from Table 5.1. 66
5.7 Crosstask results for COMET(BART) (in accuracy). The values in the diagonal are from

Table 5.3. 66
5.8 Data contamination statistics for each task. An example is considered dirty if it has at least

a single Ngram (N Value in 3rd column) collision with any of the pretraining datasets. . 67
5.9 RoBERTa’s accuracy when tested on the full testset (Original Accuracy Score), on the

Dirty Set (contains only dirty examples) and Clean Set (contains only clean examples). . 68
5.10 COMET(BART)’s accuracy when tested on the full testset (Original Accuracy Score), on

the Dirty Set (contains only dirty examples) and Clean Set (contains only clean examples). 68

XV

5.11 Class balance for each task dataset split. Relative frequency in bold indicates a frequency
above random chance. 71

5.12 Top 10 unigram and bigram cues with regards to coverage, in descending order, for the
ARCT dataset. 72

5.13 Top 10 unigram and bigram cues with regards to coverage, in descending order, for the
ARC dataset. In bold are cues whose productivity 𝜋𝑘 > 1/4, indicating a useful cue. . . 72

5.14 Top 10 unigram and bigram cues with regards to coverage, in descending order, for the
PIQA dataset. In bold are cues whose productivity 𝜋𝑘 > 1/2, indicating a useful cue. . . 73

5.15 Top 10 unigram and bigram cues with regards to coverage, in descending order, for the
CSQA dataset. In bold are cues whose productivity 𝜋𝑘 > 1/5, indicating a useful cue. . 73

A.1 Hyperparameters found through a search used in each experiment. 99

XVI

Acronyms

ABox Assertional Box
AI Artificial Intelligence
ARCT Argument Reasoning Comprehension Task
ARC AI2 Reasoning Challenge
CNN Convolutional Neural Network
CSQA CommonsenseQA
DL Deep Learning
DNN Deep Neural Network
GRU Gated Recurrent Units
KG Knowledge Base
LM Language Model
LSTM Long ShortTerm Memory
MLM Masked Language Modeling
ML Machine Learning
MRC Machine Reading Comprehension
NLI Natural Language Inference
NLP Natural Language Processing
NLU Natural Language Understanding
NMT Neural Machine Translation
NSP Next Sentence Prediction
OWL Web Ontology Language
PIQA Physical Interaction Question Answering
PLL Pseudologlikelihood
PMI Pointwise Mutual Information
RNN Recurrent Neural Network
TBox Terminological Box

XVII

Chapter 1

Introduction
Natural Language Processing (NLP) is a subfield of Artificial Intelligence (AI), whose overall goal is
to endow devices with the capability to understand and use human language. Both AI and NLP have
received increased interest in academia, evidenced by the ever increasing rate of scientific publications
and the industry uptake, as the global market cap increases for such technologies. However, in parallel to
this interest and applicability, the uncovering of underlying pervasive problems related to the deep neural
models and datasets have raised justified concerns about their robustness and generalization capabilities.
In this dissertation, an investigation into these problems is performed when stateoftheart deep learning
models are applied to a classic NLP task: commonsense reasoning.

The present chapter introduces the contents of this dissertation. Context and motivation for this body
of work is presented below in Section 1.1. The scope, through objectives and contributions, is introduced
in Section 1.2. To close off the chapter, the outline of the structure of this dissertation is provided in
Section 1.3.

1.1 Context and Motivation

As a scientific field, Artificial Intelligence (AI) is considered to have its roots in a workshop organized
by the “Founding Fathers” of the field, famously known as the Dartmouth workshop, where a study was
to be carried out under a conjecture (McCarthy et al., 2006):

The study is to proceed on the basis of the conjecture that every aspect of learning or any
other feature of intelligence can in principle be so precisely described that a machine can be
made to simulate it. An attempt will be made to find how to make use of language, form
abstractions and concepts, solve kinds of problems now reserved for humans, and improve
themselves.

The grand challenge of AI, outlined in this seminal workshop, is to reproduce human intelligence in
computational devices. Furthermore, much like with humans, to a large extent, abstractions and concepts,

1

Chapter 1 Introduction

reasoning processes, and collaboration should be made resorting to (human) language, making NLP a core
subfield of AI.

Language is an outstanding communication channel throughwhich humans can share thoughts, wishes,
instructions and perform the most varied array of complex mental actions. It can thus be a distinctive lens
through which to evaluate the level of cognitive capabilities of AI models.

NLP has evolved into producing systems/models, usually neural networks, applied to specific tasks.
This produces taskspecific, highly capable models, that have even begun to be widely adopted for com
mercial exploitation by companies. These models are designed to maximize taskspecific performance
evaluation metrics, which can create a tunnel vision in research by focusing on a hillclimb approach for
metric performance. This can be counterproductive to the exercise itself and to one of the longterm
goals of AI: producing generally intelligent machines of the likes of human intelligence.

Recent research is beginning to uncover the downside of this hillclimbing race, as models are starting
to be analyzed more broadly regarding their behaviour and knowledge. Models are brittle and form
wrong generalizations by fixating on particular combinations of patterns from the input that happens to
maximize performance on that particular dataset but eventually do not reflect the nature of the task meant
to be conveyed or induced by that dataset.

More research into the drawbacks of stateoftheart NLP methodology is essential, as blindly pur
suing evaluation metrics does not seem to track the actual progress of the field with regards to 1) truly
intelligent machines and 2) task prowess. This originates from the fact that models, having learned wrong
generalizations induced by a greedy strategy, can fail when deployed in the real world and faced with
an inference regime with input data from a distribution different from the distribution of the data where
they were trained. This difference with the data from the real world appears to be far too large, as the
strategies learned to solve the task no longer apply (Geirhos et al., 2020; Geva et al., 2019; Gururangan
et al., 2018; Kaushik and Lipton, 2018; Niven and Kao, 2019; Poliak et al., 2018; Zech et al., 2018). As
such, the model cannot be considered to have mastered the task if such brittleness occurs.

The motivation for this work is not to produce a stateoftheart model that improves the capabilities
of solving a particular task. Instead, it is to implement and play with already existing stateoftheart
solutions and seek to understand to what extent they might be learning the task we meant for them to.
In this dissertation, to assess and understand whether models are generalizing well toward the effective
learning of the task, it required establishing a methodology to stress test the models in regards to their
learning, seeking to uncover possible hints of model brittleness caused by the model becoming attached
to spurious patterns in the data. The choice of task the kind of task is an important decision for our aim in
this dissertation, which seeks to show that despite the models’ capability to solve highly complex tasks,
such seems not to be a demonstration of its cognitive abilities. As such, a cognitively demanding task is
preferable.

One of the founding fathers of AI, John McCarthy, was interested in and worked on commonsense
reasoning. Commonsense reasoning is a quintessential human capacity as commonsense knowledge en
compasses intrinsic human experience: our values and needs. Moreover, reasoning with it makes up a

2

Chapter 1 Introduction

significant portion of our higherlevel cognition skills. Commonsense reasoning is thus an appropriate
task to perform experiments with in this dissertation, given that the model should have to acquire highest
level cognitive skills essential for humans. Commonsense reasoning, being an essential and innate human
capacity, can be performed with any natural language. In this dissertation, however, the tasks chosen to
evaluate the models with are in the English language.

This work is done in the hopes of contributing to an assessment of the current state of methodology
in NLP.

1.2 Objectives and Contributions

The objective of this dissertation is to pursue a deeper understanding of how well stateoftheart solu
tions generalize towards commonsense reasoning tasks. Achieving this requires performing exploratory
experiments to assess the capabilities of such solutions for commonsense reasoning, which offer insights
beyond what can be learned from mainstream performance metrics.

The extensive exploration for the assessment of the models provided the following contributions,
present in this dissertation:

1. Implementation of mainstream state of the art deep learning models of different major types with
the purpose of learning commonsense reasoning;

2. Application of the implemented models to four most prominent commonsense reasoning tasks;

3. Defining a set of stress tests that support the assessment of state of the art commonsense reasoning
deep learning models;

4. Application of the set of stress tests to the implemented deep learning models;

5. Implementation and release of an open source library that supports largescale, taskagnostic data
contamination assessment tests;

6. Performing a data contamination assessment test between the datasets of four commonsense rea
soning tasks and RoBERTa’s pretraining datasets;

7. Empiricallybased determination of the extent to which stateoftheart models for commonsense
reasoning benefit from inflated scores through shortcut learning;

8. Empiricallybased determination of some factors that can be excluded from being responsible for
such shortcut learning of commonsense reasoning by stateoftheart deep learning models.

Contributions 18 were compiled into a research paper which has passed peer review and was accepted
for publication (Branco et al., 2021a).

3

Chapter 1 Introduction

Contributions 1 and 2 were compiled into a separate research paper, which has also passed peer review
and was accepted for publication (Branco et al., 2021b).

Contributions 5 and 6 are being compiled into a research paper, unpublished at the time of writing
this dissertation.

The code and some of the data used for the experiments presented in this dissertation is provided
here: https://github.com/nlx-group/study-of-commonsense-reasoning.

1.3 Dissertation Outline

This dissertation is organized into six chapters (including the current chapter).
Chapter 2 extensively covers the related work done on NLP methodology, including when applied

to commonsense reasoning. In addition, research into interpretation and probing of NLP models is also
covered.

Chapter 3 presents the commonsense reasoning tasks to be handled by the models.
Chapter 4 describes the implementation of the models, the adversarial attack, the data contamination

package and the shortcut exploration methods.
Chapter 5 provides an analysis of the results obtained for the proposed experiments.
Chapter 6 offers concluding remarks of the previous chapters, and lays out future work.
Lastly, Appendix A provides additional information regarding training methodology.

4

https://github.com/nlx-group/study-of-commonsense-reasoning

Chapter 2

Related Work

Reasoning helps humans to cope with the world, whether when performing a complex task such as devis
ing a plan to solve a pandemic, or simple, intuitive inferences like what will happen to a coffee mug when
dropped to the ground. It helps us to infer new facts and beliefs and justify them to others. Reasoning
with knowledge shared by humans, most commonly labeled as commonsense, makes up a significant
portion of our experience.

Commonsense knowledge captures human values and needs. By reasoning with it, we can make
sensible arguments and actions: a chef would not want to serve spoiled food, despite still having precious
proteins that we require to survive, as spoiled food contains bacteria and fungi that make humans sick,
and being sick is not desirable.

Endowing machines with this knowledge and reasoning capabilities allows them to understand the
worldview of humans, their needs, capabilities, beliefs, and act according to that. This exercise, as exem
plified before, can be verbalized. Knowledge can be written, the inference chain of a reasoning process
can also be expressed in natural language. Thus, commonsense reasoning becomes an object of study for
AI, and more concretely in this dissertation, of natural language processing.

Automated commonsense reasoning tasks usually involve answering questions that require different
types of commonsense reasoning to be answered. In order for the model to obtain good performance and
generalization, ideally, it would have to acquire the knowledge and reasoning skills.

In the early days of AI, more specifically in the Knowledge Representation field, the formalization
power that logics had developed to formalize mathematical knowledge through formal languages, was
seen as a candidate to represent world knowledge and reason with it. Logic programming languages, as
they are called, can represent concepts and their relationships.

A popular formal language used is propositional logic, a subset of firstorder logic. Knowledge is
based on propositions, which evaluate to a boolean (true or false). We can have simple propositions,
such as “Water is wet”, which only have one symbol, called atomic propositions, but we can also create
complex propositions using logical connectives (AND, OR, IMPLIES, NEGATION): “Water is wet AND water
is a liquid”.

5

Chapter 2 Related Work

Another popular family of representation languages are description logics, which offer more expres
sive power than propositional logic. Description logics systems are separated into two parts, the termino
logical box (TBox) where the concepts and roles are stated, along with the relationships between them,
and the assertional box (ABox), where concrete instances/examples are created.

A nice example of a TBox descriptor with typical constructors is given in (Van Harmelen et al., 2008):
the concept of a “Happy Man” – “A man that is married to a doctor, and all of whose children are either
doctors or professors.”.

HappyHuman ≡ Human ⊓ ¬ Female ⊓ (∃married.Doctor) ⊓ (∀ hasChild.(Doctor ⊔ Professor))

Here we have used three binary/boolean operators that have been introduced before in propositional
logic. ⊓ is a conjunction of concepts, previously denoted as AND for propositional logic, where concept
A and B must be true. ⊔ is the disjunction of concepts, denoted as OR for propositional logic, which
returns true unless both concepts are false. ¬ is the negation of concepts (NEGATION), not A – every other
concept but A. Quantification was also used, ∃ indicates an existential quantification, by means of which
at least one married instance is said to exist in the denotation of Doctor. ∀ is a universal quantifier, every
successor of hasChild must either be a Doctor or a Professor.

ABox allows us to create the data part of the system. Let us imagine we want to say we definitely
know a man named John that fits our concept of a happy man, we can do it like so:

HappyMan(John)

Web Ontology Language (OWL),1 a language that powers the Semantic Web, is based on description
logics, one of the many impactful applications that are powered by description logics systems, whose
power of formalism enables robust representation and reasoning.

Declaring knowledge is a crucial step, and in order to extract conclusions, one must reason with it.
Solvers are algorithms that perform a search over the declared knowledge in the search for a solution to a
given query, which can be as simple as “What color is the sky”.2 Inference time using solvers increases
due to the expressiveness of the language, size of the domain and the variables/restrictions involved in the
query (Brachman and Levesque, 1984; Mitchell et al., 1992), which can quickly become unmanageable.
SAT solvers can, at their worst, have an exponential runtime. With optimizations performed, however,
runtimes become tractable for realworld use. Nonetheless, this is one of the problems associated with
this chapter of AI research.

The other main problem with logical systems is the declarative effort necessary. Knowledge must be
explicit, built carefully by humans. An undertaking to represent every domain of commonsense quickly

1https://www.w3.org/OWL/
2Query is written in natural language. The actual query would have to be written as a logical proposition in order for a solver

to infer.

6

https://www.w3.org/OWL/

Chapter 2 Related Work

becomes a difficult task, as such would require an insurmountable amount of experts. An ongoing project,
Cyc (Lenat et al., 1985), is attempting just that. There are mixed reactions regarding Cyc. It is seen as
a valiant effort that goes against the statistical learning statusquo. Marvin Minsky is a supporter of Cyc
and criticizes modern methods, calling them “braindead” (Baard, 2018). Cyc also has its fair share of
skepticism and criticism regarding its usefulness. It is unclear what advances for AI has been made due
to lack of public evaluation (Davis and Marcus, 2015). Pedro Domingos (Domingos, 2015) considers the
project “the most notorious failure in the history of AI”, stating that AI is not just a knowledge engineering
problem, it requires more, and the effort is nullified by the unending amount of data needed to represent
– furthermore with a system incapable of learning by itself.

Deep learning is a promising solution for the problems that plague the previous era of AI. It has
brought significant advancements to NLP across the board, and for commonsense reasoning, the learning
capabilities of deep learning systems means that the necessary knowledge and reasoning capabilities can
be implicitly learned from natural raw text, available in abundance on the web. Deep learning is already
able to outperform symbolic systems in some tasks, and a hybrid of the two, socalled neurosymbolic
systems, are also revealing to be very capable reasoners (D. Hwang et al., 2021; Bosselut et al., 2019;
Kapanipathi et al., 2020; Riegel et al., 2020).

In the remaining of this chapter, commonsense reasoning is characterized, along with the methodol
ogy that has been developed in AI to endow the machines with the capabilities to perform it. Section 2.1
presents the concept of commonsense knowledge & reasoning, along with methodology to computation
ally represent such knowledge, and how to reason with it. Section 2.2 and Section 2.3 introduce the deep
learning architectures and training methodologies that are used in this dissertation. Section 2.5 estab
lishes the notion of Shortcut Learning, a problem that can occur when using large neural networks. In
Section 2.6 methods to uncover the side effects of shortcut learning in models are presented. At last, in
Section 2.7 a brief overview of neurosymbolic systems is presented.

2.1 Commonsense Knowledge & Reasoning

Commonsense has been an object of study for almost three millennia. Philosophers in ancient Greece
contemplated how humans acquire knowledge about the world, through the use of senses, and their in
terpretation of the perceptions. In Meno, the socratic dialogue by Plato (Grube et al., 1980), the process
of learning is described as recollection, where knowledge is present at birth, common to all humans, and
one has to search for it to rescue it from oblivion. To illustrate this, Socrates draws geometrical figures
and questions a young slave, who is ignorant of formal geometry. Despite his ignorance, the slave is
able to understand some geometric problems related to areas of squares, in view of arguing that it hap
pened by recollecting knowledge already present in his mind from birth. There is two distinct concepts at
work here, one is the knowledge shared by humans, which we can entitle commonsense, the other is the
reasoning process. Reasoning over what we perceive of the world or our current knowledge in order to

7

Chapter 2 Related Work

justify actions or build new knowledge – this is what is called commonsense reasoning. Throughout time,
different philosophers provide different interpretations of commonsense, further developing the concept,
which became a powerful tool in philosophy.

Commonsense knowledge arises from naturally observing and thinking about the world, and to share
and discuss it with other humans. It is a set of beliefs, intuitions, principles, becoming an integral part of
the human experience. It covers different aspects of the world and the society, such as spatial, physical,
social, temporal, psychological and many more dimensions (Davis, 2014; Liu and Singh, 2004).

Commonsense knowledge can be shared by a large group of humans (most would agree that the sky
is blue) or by a more restricted group of individuals, as is the case of cultural knowledge. It can be passed
on from generation to generation, and can eventually change, making it temporary.

As previously mentioned, commonsense knowledge covers different aspects of the human experience
and environment. Physical knowledge such as knowing water is a liquid and unsupported things fall back
to Earth. Social knowledge such as knowing that if you bump into someone on the street, that person is
likely to be mad at you. Temporal knowledge such as knowing that going for a vacation takes longer than
going for a walk (Zhou et al., 2019). These nonexhaustive examples demonstrate the empirical nature
of the manner in which we develop commonsense knowledge, by interacting with the environment and
others.

We use this knowledge to reach new conclusions (new knowledge can be built through foundational
commonsense premises), to justify our actions and the actions of others (Mercier and Sperber, 2017), to
understand why and how things happen (Kintsch and Van Dijk, 1978), through reasoning processes. It is
essential then, for (general) intelligent machine that is to be inserted in our society to perform tasks that
require realworld knowledge (on the various complex domains), to be able to reason using commonsense
knowledge to make sensible inferences and decisions.

It is not enough for models to be capable of learning commonsense knowledge, they must reason with
them. It is not enough to know that placing your hands in a fire will burn you, but also to realize that
placing your hands in a fire will burn you because fire is hot and extreme heat burns you. This enables
the model to make decisions using facts that may not be explicitly present but that can be “computed” or
“reasoned” by combining known facts.

In Artificial Intelligence, commonsense reasoning has been identified as one of the greatest chal
lenges. Marvin Minsky, one of the greatest minds in AI, recalls that in 1959, when the MIT Artificial
Intelligence Project was founded along with John McCarthy, who was immensely important for AI and
commonsense reasoning as well, both agreed that the most critical problem was in fact how minds perform
commonsense reasoning (Minsky, 1988). Later that year McCarthy would release what is considered the
first paper that laid a theoretical framework, based on logic, to perform commonsense reasoning, a pro
gram that is named “Advice Taker” (McCarthy et al., 1960). Met with strong opposition at first, McCarthy
and others would follow down the line in the coming decades by formalizing logical frameworks (e.g.
situational calculus) to design commonsense reasoning capable agents.

How we might represent this knowledge in a way that allows us to build models that are able to use it

8

Chapter 2 Related Work

to reason remains a real challenge. There are different types of reasoning that naturally require different
types of representation. In an extensive overview of Commonsense Reasoning in AI (Davis and Marcus,
2015), different types of reasoning were identified as ongoing challenges:

1. Taxonomic reasoning, performed on taxonomies that cover different domains (e.g. WordNet (Miller,
1995)). It is useful to know that Dog is a subset of Mammal which in turn are subsets of Animals,
and if we know that ScoobyDo is a dog, we can infer that it is an animal (which might sound trivial
to humans, but how might machines do such inferences?);

2. Temporal reasoning, consisting of being able to correctly establish a timeline of events (and their
relations) from textual descriptions. This is nontrivial as the relations between events are often
times implicit (this problem is not exclusive to this type of reasoning, but a universal problem in
commonsense reasoning), making inferences difficult;

3. Action and change, or reasoning over the state of the world. We perform actions (events), and
these change the state of the world (bumping into someone on the street will result in that person
being annoyed). This can be applied in a multitude of scenarios and considering that these events
can happen simultaneously, they can be probabilistic, and that they can be made by multiple actors
makes this type of reasoning difficult;

4. Qualitative reasoning, comprising of reasoning about the direction of change in interrelated quan
tities, for example, one might expect that in an environment consisting of predators and prey, if the
number of predators goes down due to some event, then the death rate of the prey will go down
(and their population goes up). It can be even more difficult when doing qualitative reasoning with
physical processes, where representation (and thus reasoning) becomes very difficult due to the
complexity of the environment.

Strategies to build resources that represent this knowledge (that can later be used to reason with) can
be categorized into two groups: manual and automatic. Manually building these resources is a costly
effort, in terms of human resources, as experts are needed to build the resource. One such project that
has been active since 1985 is Cyc (Lenat et al., 1985).

Another strategy is to automatically build these resources, removing the need for human experts.
Algorithms to extract facts and relations from raw text or even graphs, such as NELL (Mitchell et al.,
2015) and TransOMCS (Zhang et al., 2020), enable large scale resources to be built, albeit at the cost of
lower resource quality.

Methods to perform reasoning can be arranged in three groups. 1) We can develop algorithms to
directly manipulate the symbolic structures, such as inference engines. 2) Other modern methods com
pletely disregard the use of these resources and rely instead on the hope that commonsense knowledge
can be acquired by using powerful neural models to consume large amounts of raw text in an automatic
manner (Section 2.3). The model can then reason with the acquired knowledge. 3) We can merge the two

9

Chapter 2 Related Work

approaches and create models (neuronal) that can learn not only from raw text, but also from the knowl
edge contained in these symbolic structures (Section 2.7). These symbolic structures bring additional
information, that may be otherwise difficult to grasp from raw text alone, enriching the model overall.

In this dissertation, methods belonging to the second and third groups will be explored. In the re
maining sections of this chapter, an introduction is given to the models to be used in this dissertation,
along with training methodology and examples of their application.

2.2 Recurrent Neural Networks & Transformer

In commonsense reasoning, or any other task in NLP, the objective is to present a model with a piece
of text (e.g. a sentence or a paragraph), which the model analyzes and makes a certain prediction. This
prediction depends on the task: in translation the model must predict the translated version of the original
piece of text, while for Question & Answer (Q&A) the model must pick the correct answer. The piece of
text (input to the model), can be thought of as a sequence of words:

𝑥 = [𝑤0, 𝑤1, … , 𝑤𝑛]
In the neural age of NLP, the models are, as suggested by the name, neural networks. The input to

neural networks must have a numerical representation, as opposed to the natural representation of words
as strings. The most common practice is to represent a word as a continuous Ndimensional vector, called
a word embedding. The first layer of the network is thus, usually, an Embedding Layer, which maps the
words of the sequence to a sequence of vectors representing them. As the network learns to perform the
task, the embedding layer is also adjusted (learned).

The input sequence, with the introduction of embeddings, becomes a matrix, where row vectors (size
𝑚) represent each word in the sequence (𝑥𝑖):

𝑋 =
⎡
⎢⎢⎢
⎣

𝑤0,0 𝑤0,1 … 𝑤0,𝑚
𝑤1,0 𝑤1,1 … 𝑤1,𝑚
… … … …

𝑤𝑛,0 𝑤𝑛,1 … 𝑤𝑛,𝑚

⎤
⎥⎥⎥
⎦

To obtain a representation for the sequence, we need to resort to a method that can process a matrix of
variable size as input, as sequences can come in various sizes. One popular neural network architecture
capable of doing it are the family of Recurrent Neural Networks (RNN). RNNs, such as long shortterm
memory networks (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent units (GRU) (Chung
et al., 2014) can handle inputs of variable sizes by processing one word at a time, updating its internal
state (which functions like an internal memory) at each time step. The memory unit present in RNNs
can capture longdistance dependencies in sentences. Dependencies/relationships between words in a
sentence or even a document is important in NLP, and as the distance between words becomes larger

10

Chapter 2 Related Work

(longdistance), the harder it is to capture the dependencies. An example of the need of longdistance
dependencies are anaphoras. Given a text that introduces an entity in the first sentence, a model should
be able to relate a pronoun, even if used much later on in the text, with that entity.

RNNs were the favored neural networks in NLP for some time, producing fantastical results in dif
ferent topics, such as in machine translation (Bahdanau et al., 2014; Sutskever et al., 2014; Wu et al.,
2016; Zhang et al., 2016; Zhou et al., 2016), text classification such as machine reading (Cheng et al.,
2016), sentiment analysis (Liu et al., 2016) and many other tasks (Minaee et al., 2020). RNNs pose two
practical problems that would motivate the emergence of new architectures.

Computationally Expensive. RNNs are computationally expensive, as they cannot be parallelized.
As previously noted, in order to compute the internal state at any given time step, it needs to have access to
the internal state of the previous step. If the sequence is small enough, training can be tolerable, however,
as sequence sizes grow, training becomes difficult. The sequential nature means the forward propagation
time increases as the sequence length increases, hurting inference time. During training, the network
activations must be kept in order to compute gradients, and with large sequence sizes, the computation
graph severely increases the time and memory requirements for training. Furthermore, as the computation
graph grows, vanishing gradients can become a problem even with LSTMs, requiring more training steps
to converge, possibly even diverging. Training algorithms for RNNs have been devised to ease these
problems (Pascanu et al., 2013; Williams and Peng, 1998; Williams and Zipser, 1989), however, they
still remain a difficult and demanding type of network to train.

Longdistance dependencies. Despite the theoretical capabilities of RNNs being able to learn long
distance dependencies, such is extremely difficult in practice. Due to the recurrent nature of the architec
ture, vanishing and exploding gradients can cause the network to become “myopic” (forgetting the past
easily) (Bengio et al., 1993, 1994). LSTM’s and GRU’s themselves solve this issue, however, it still falls
short of optimal and may require different types of training (Martens and Sutskever, 2011).

The Transformer (Vaswani et al., 2017) (Figure 2.1) is a feedforward model that attempts to ad
dress the shortcomings of RNNs. It can encode a variablesized input considerably more efficiently than
RNNs, and its architecture is designed so that scaling the model is straightforward. The Transformer
showed strong promise from the start, introducing new stateoftheart results in neural machine trans
lation (NMT) in its original paper (Vaswani et al., 2017), and on later work that expanded its capabili
ties (Edunov et al., 2018; Liu et al., 2020; Mehta et al., 2021). New methods using the architecture also
displayed brilliant performance in other Natural Language Understanding (NLU) tasks, such as Q&A,
sentiment analysis, linguistic acceptability, natural language inference, and many more (Brown et al.,
2020; Devlin et al., 2019; Khashabi et al., 2020; Liu et al., 2019b; Radford et al., 2018; Raffel et al.,
2020), becoming the mainstream NLP architecture.

Transformer is an extremely general architecture. The only requirement is that the input is represented
as continuous vectors. It has been applied to computer vision and produced stateoftheart results (Doso
vitskiy et al., 2020).

In the following subsections, key concepts necessary to understand the Transformer architecture are

11

Chapter 2 Related Work

introduced, namely (i) Transformer as an EncoderDecoder model; (ii) the multihead selfattention mech
anism and how it replaces recurrence; (iii) Positional encoding; and how an overview of how it all comes
together.

Output

Embedding(s)

+

Masked
Multi-Head

Attention

Add & Norm

Multi-Head

Attention

Add & Norm

Add & Norm

Feed

Forward

Linear

Softmax

Input

Embedding(s)

+

Multi-Head

Attention

Add & Norm

Add & Norm

Feed

Forward

Probabilities

Positional

Encoding

Figure 2.1: The Transformer architecture. The input embeddings are passed through N encoder blocks
(left section), the output of the encoder blocks is then used by the Decoder (right section) to generate text.
Figure is based on the architecture diagram presented in the original paper (Vaswani et al., 2017).

2.2.1 EncoderDecoder Model

The concept of EncoderDecoder models was introduced to handle the problem of variablesized outputs,
which can happen, for example, in any text generation task, such as translation, where the translated
sentence size depends on the size of the input sentence and the target language.

The method was introduced to tackle machine translation using RNNs, and it was labelled as Encoder

12

Chapter 2 Related Work

Decoder SequencetoSequence (seq2seq) (Sutskever et al., 2014). The reasoning behind the name lies in
the way it functions: the input sequence is encoded into a single representation using an RNN, called the
Encoder; the representation is then given to a separate RNN (the decoder), which will decode an output
sequence. The model thus maps an input sequence to an output sequence (sequencetosequence).

Figure 2.1 displays Transformers’ architecture, which is divided into two subsections: the encoder
blocks (on the left) and the decoder blocks (on the right). The input sequence is encoded through a
succession of encoder blocks, with the representation then feeding the decoder blocks, which will produce
an output prediction.

2.2.2 The Attention Mechanism

In an Seq2Seq EncoderDecoder architecture, as pictured in Figure 2.2a, the decoder receives the encoded
input sequence after the encoder has processed it, through a hidden state. This is rather demanding for
the Encoder, as it has to store the relevant information of the sequence in a single vector. The longer
the sequence of text, such as when encoding a whole document, the more difficult it becomes for the
information to be effectively stored and the easier it becomes to forget information from the past. This
problem is named the information compression problem, which plagued seq2seq models.

The attention mechanism (Bahdanau et al., 2014; Graves et al., 2014; Luong et al., 2015) was pro
posed as a way to alleviate the problem of information compression. The attention mechanism relies on
the Encoder making available all its intermediate hidden states, representing from the first token of the se
quence all the way to the last. A new vector named context vector (𝑐𝑖) is computed through the weighted
sum of all the hidden states. This allows the network to choose relevant information from different parts
of the sequence. This is pictured in Figure 2.2b.

Encoder Decoder

(a) EncoderDecoder architecture. The Decoder re
ceives the encoded input as the last hidden state of
the Encoder (ℎ𝑛).

Encoder DecoderAttention

(b) EncoderDecoder architecture with Attention Mecha
nism. A context vector 𝑐𝑖 is formed through all the Encoder
hidden states, received by the Decoder.

Figure 2.2: Seq2Seq EncoderDecoder architectures.

As previously mentioned, the idea was to decide which parts of the input should be given more
attention at that precise moment through a weighted sum of all the encoder states, forming the context
vector 𝑐𝑖 (at time step 𝑖). This is performed at each decoding time step.

Given a sequence of encoder states,

13

Chapter 2 Related Work

{ℎ1, ℎ2, … , ℎ𝑛}

The context vector is computed as the following,

𝑐𝑖 =
𝑛

∑
𝑗=1

𝛼𝑖𝑗ℎ𝑗 (2.1)

where the weight 𝛼𝑖𝑗 is the attention weight given to ℎ𝑗. The attention weight is computed by,

𝛼𝑖𝑗 = exp(𝑒𝑖𝑗)
∑𝑛

𝑘=1 exp(𝑒𝑖𝑘) (2.2)

where 𝑒𝑖𝑗 is the alignment score given by,

g(𝑠𝑖−1, ℎ𝑗) (2.3)

g is an alignment function, which can be learned through an MLP or can be a static function such as
dot product or cosine. 𝑠𝑖−1 is the decoder hidden state from the previous step. In other words, attention
will compute the relevance of each encoder hidden state with respect to the previous decoder hidden state.

The Attention box in Figure 2.2b thus calculates the alignment scores between the Encoder hidden
states and the previous decoder hidden state, then using the alignment scores to build a better contextu
alized representation of the input, for that precise decoding time step.

In the Transformer, the authors identify attention as a way to replace recurrence (RNNs). The recur
rent nature of RNNs enabled the representation of a sequence of word embeddings into a single, informa
tive representation. Attention is ultimately a weighted sum, meaning it can equally compact a sequence
of word embeddings, and it can be done in parallel, unlike recurrence, which is a sequential method.

Selfattention (see explanation below), in simple terms, changes the representation of each word by
computing how important the other words in the sequence are to it, altering that representation propor
tionally. This produces contextualized representations and allows for sequence representation without
the need for recurrence. In the attention mechanism defined in Equation 2.1, the alignment is done be
tween encoder and decoder states. Selfattention is a special case of attention, comprising an alignment
between any two sequences of vectors, and the sequences can be the same, hence the term “self”.

The attention for the Transformer receives as input three sequences of vectors: Queries (Q), Keys (K)
and Values (V). Queries and keys are used to compute the attention weights, and values are the sequence
of vectors to be combined. For example, in the case of the attention mechanism previously presented, the
queries would be the decoder states, and the keys and values would be the encoder states (same sequence).
The attention function is defined as follows,

Attention(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (2.4)

14

Chapter 2 Related Work

where the attention weights are given by,

softmax(𝑄𝐾𝑇

√𝑑𝑘
) (2.5)

and the alignment scores are computed using a static alignment function, the dot product between the
queries and keys 𝑄𝐾𝑇 , and are scaled with a scaling factor of 1

√𝑑𝑘
, where 𝑑𝑘 is the dimension of the key

vectors.
The alignment scores, much like in Equation 2.2, are normalized with a softmax.
Even after integrating the attention mechanism into the architecture, the burden of producing a con

textualized and informative representation for a sequence is now mainly on the shoulders of the attention
function, which can still be suboptimal. It would be beneficial if we could perform several attention
functions to represent a sequence, so as to relieve the “pressure” when using a single attention function.

A further innovation was introduced with the Transformer to attempt just that, which was the Multi
Head Attention. Instead of performing a single attention function in each attention layer, the authors opt
to compose an attention layer that performs an arbitrary amount of attention functions (each function
is called a Head). However, an adaptation must be done at the input level for each function, otherwise
the end product of each function will be the same, as the functions do not have any parameters which
could distinguish them. To solve this issue, first the queries, keys and values are linearly projected to a
learned subspace, different for each attention head. Each head will thus attend to information in different
representations, capturing different aspects of the sequence.

MultiHead Attention is formally defined as,

MultiHeadAttention(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑𝑛)
ℎ𝑒𝑎𝑑𝑖 = Attention(𝑄𝑊 𝑄

𝑖 , 𝐾𝑊 𝐾
𝑖 , 𝑉 𝑊 𝑉

𝑖)
(2.6)

which concatenates the output of each attention head ℎ𝑒𝑎𝑑𝑖. The linear projection is performed by
the learned matrices 𝑊 𝑄

𝑖 , 𝑊 𝐾
𝑖 and 𝑊 𝑉

𝑖 .

2.2.3 Sequence Encoding

The first step for sequence encoding is usually to tokenize the text at a wordlevel, such that a sequence of
words is obtained. The sequence can then be represented numerically by obtaining the representation for
each word from the embedding layer. The embedding layer, as previously explained, contains a matrix,
where each row represents a word.

A common problem with this approach are outofvocabulary words. The vocabulary represented in
the embedding layer is usually predetermined by choosing the most frequent words in large corpora. Due
to memory restraints, the vocabulary size is limited, usually in the low range of hundreds of thousands of

15

Chapter 2 Related Work

words. Inevitably during the learning process (or after), the input will contain a word which is not found
in the vocabulary. A usual solution for this was to reserve a row in the matrix for an “unknown” token.

To solve the outofvocabulary words problem, input text can be tokenized into subwords, instead of
words. Words are decomposed into smaller tokens, following certain rules that preserves original form,
depending on the technique (Kudo and Richardson, 2018; Sennrich et al., 2016; Wu et al., 2016). The
decomposition can go as far as the characterlevel, decomposing a word into letters, meaning outof
vocabulary words become very unlikely. In the paper that introduces the Transformer, text is tokenized
using subword tokenization, meaning the architecture leverages embeddings which represent subwords.

An additional component of the sequence encoding in the Transformer is positional encoding. Re
placing recurrence with selfattention has the downside that positional encoding is lost, as the position of
the embedding in the weighted sum is irrelevant. A positional embedding is added to the token embed
ding to produce the final representation to account for token position. The positional encoding method
in the Transformers’ original paper is absolute position static embeddings, calculated using the sine and
cosine functions. These embeddings can also be learned (Gehring et al., 2017) and relative instead of
absolute (now the most common) (Shaw et al., 2018).

2.2.4 The Transformer

Having introduced the concept of EncoderDecoder (Section 2.2.1), SelfAttention (Section 2.2.2) and
how sequence encoding works in the Transformer (Section 2.2.3), the inner workings of the Transformer
are almost all described.

The Transformer (Figure 2.1) is comprised of stacked encoder Transformer blocks that feed rep
resentations of the input to stacked decoder Transformer blocks that can then decode the output. The
difference between the encoder and decoder blocks is minimal. The Transformer block computes self
attention, with a MultiHead Attention layer, receiving the input sequence and producing contextualized
representations. These representations are then given onto a feedforward layer (FFN) that will perform
a linear transformation, which is passed along to the next block.

The difference between an encoder and decoder Transformer block is an additional MultiHead At
tention layer on the decoder block. The decoder first attends over the output that has been decoded so far,
and the resulting representation is then used in an EncoderDecoder MultiHead Attention layer, where
the queries are the decoder representations and the keys and values are the encoder representations.

Scaling with the Transformer means adjusting the number of Transformer blocks on each side, and
scaling up is less expensive as it is a feedforward model, unlike RNNs, due to their recurrent nature.

16

Chapter 2 Related Work

2.3 PreTrained Language Models

2.3.1 BERT

As Transformers continued to cement a strong position in NLP, further advances were made in a series of
papers that became known as “Sesame Street” papers (Devlin et al., 2019; Liu et al., 2019b). The first in
this series was the model entitled “Bidirectional Encoder Representations from Transformers” (Devlin
et al., 2019), or BERT. BERT makes use of the Transformer architecture, however, drops the decoder
stack, being left with the stack of encoders. The goal is to create a model that specifically excels at
classification tasks.

The training methodology used is named as the finetuning paradigm (Radford et al., 2018), which
comprises two stages: (i) pretraining stage; and (ii) finetuning stage.

Pretraining stage. In this stage, the model undergoes a number of tasks that serve the purpose of
endowing the model with some capacity to suitably process natural language (or at least a good amount
of linguistic phenomena). Usually these tasks are called denoising tasks, where the model is given a
corrupted input and it must recover the originally correct version. A commonly used denoising task is
known as Masked Language Modeling (MLM), where a number of tokens from the input are masked,
and the model must guess the masked tokens, relying on the information of the context (Figure 2.3).
To make BERT learn about intersentence dependencies, the second pretraining task is Next Sentence
Prediction (NSP), where given two sentences, BERT must predict whether the second follows from the
first. Sentences are separated by a special token, the separation token ([SEP]), and a segment embedding
(for each different segment of the input, in this case, segment A and B) is added to the representations of
tokens in their respective segments.

Cry

You

Curiosity

are

killed

beating around the

over milk spilled[MASK]

[MASK]the

[MASK]

cat

bush

Figure 2.3: BERT performing masked language modeling. The corrupted tokens are replaced with a
[MASK] token, and the model must guess the correct words.

MLM is a token classification task and NSP is a sentence classification task. For token classification
tasks, the hidden state representing the token is fed into a classification or MLM head (which is just a
classification head with the number of classes equaling the length of the vocabulary). A classification

17

Chapter 2 Related Work

head is composed of a dropout at the input, a linear layer and finally a softmax over the classes. For
sentence classification tasks, BERT prefixes the sentence with a special token, the classification ([CLS])
token, whose state is fed to a classification head to classify the given sentence(s).

Finetuning stage. After the pretraining procedure, the model is then used to learn a specific task, in
what is called the finetune stage. Here, the model already possesses a vast amount of knowledge, learning
the downstream task more effectively when compared to a random initialization with no pretraining. At
the time of its release, BERT was the stateoftheart model for text classification.

BERT models, and other variants, are pretrained with large amounts of raw text, making it computa
tionally costly. Pretrained models are usually openly available, making them a tool that can be reused by
the community. The parameters in the model retain knowledge from pretraining (Roberts et al., 2020)
that is later used during finetuning and inference.

2.3.2 Other Variants

Transformers can be grouped as follows: encoderonly, decoderonly and encoderdecoder. BERT (Sec
tion 2.3.1) is an encoderonly architecture. GPT (Radford et al., 2018), and its subsequent iterations, are
decoderonly architectures. Pretrained also with large amounts of text, the excellence of GPT lies on
its generational power, able to generate humanlike text. Its most recent version, GPT3 (Brown et al.,
2020), is one of the known largest neural networks trained, with an impressive 175B parameters. It pro
duces inspiring results in a multitude of tasks with no finetuning (strictly incontext learning). Its text
generation capabilities also improved.

The impressive size and performance of the GPT “series” has motivated research on the scaling power
of the Transformer. Recent studies suggest that the scaling power follows a power law (Kaplan et al.,
2020; Henighan et al., 2020) (optimum size with respect to compute power), with no asymptote in sight,
motivating larger scale models and the use of larger computer networks.

Another encoderonly Transformer, derivative of BERT, is the RoBERTa (Robustly optimizedBERT
approach) (Liu et al., 2019b) model, that was conceptualized from a study of optimization of BERT
models. RoBERTa is pretrained with an MLM task only, removing the NSP task from the pretraining
phase. Other optimizations are implemented, such as removing the segment embeddings from the input
embeddings composition. RoBERTa is pretrained on five raw text corpora, totaling around 160GB of
text. The authors evaluate both RoBERTa and BERT on all GLUE (Wang et al., 2018) (General Language
Understanding Evaluation) tasks, and found that RoBERTa surpasses BERT in all of them. The changes
performed resulted in a much more capable classification model compared to BERT. A more complete
description of RoBERTa is given in Section 4.1.1.

The remaining category is the encoderdecoder, in which T5 (Raffel et al., 2020) (TexttoText
Transfer Transformer) belongs to. Given that it is a texttotext framework, it requires no special to
kens. The input should be as natural as possible, and the output is also generated text, possible due to the
decoder. This flexibility, due to both the input and output being text, facilitates its usability, as T5 can

18

Chapter 2 Related Work

accommodate different tasks with no additional changes to the network itself. In fact, in its introductory
paper, T5 performs multitask learning of all GLUE tasks, obtaining stateoftheart results in each.

T5 is pretrained with a denoising task called span prediction. Instead of masking single tokens,
contiguous spans are masked, and the model must predict the tokens that were masked. It is shown that
this leads to a better performing model on downstream tasks (Raffel et al., 2020). The model was pre
trained with C4 (Colossal Clean Crawled Corpus), which after undergoing filtering (for quality reasons)
totals around 745GB of raw text. More details about T5 are given in Section 4.1.3.

2.4 Commonsense Reasoning with Transformers

In a previous study (Zhou et al., 2020), the knowledge and reasoning capabilities of different pretrained
Transformerbased language models (LM), including RoBERTa, were studied on different commonsense
reasoning tasks, some of them adopted in the present dissertation. The tasks are framed as sentence
scoring tasks. So, for a given example (e.g. a question and several possible answers), the perplexity
of the LM when presented a pair of (question, answer) is measured, and the pair with the lowest
perplexity (thus being the one that makes the most sense) is the response of the model. This allows the
authors to “probe” the knowledge contained in the model without finetuning on the task.

This can be realized by summing the loglikelihood of each word in the context (what can be called the
pseudologlikelihood (PLL) of the input). To do this, each word is iteratively masked and the probability
for the original word as perceived by the model is retrieved. The authors define this procedure as the
sentence score:

𝑆𝑐𝑜𝑟𝑒(𝑆) = ∑𝑛
𝑘=1 𝑙𝑜𝑔(𝑃𝜃(𝑤𝑘|𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑘))

𝑛 (2.7)

The sum of loglikelihoods is normalized by the sequence length, denoted as 𝑛.
They found that the models consistently performed better than random (despite being close to random

in some tasks), however, well below human performance. After devising a robustness test, they found
that the models are brittle and show no consistency, likely relying on spurious correlations to perform
these tasks instead of performing the actual task.

The evaluation methodology with sentence scoring can be extended and used as an alternative to the
conventional method of finetuning. (Tamborrino et al., 2020) frame the problem as a plausibility ranking
problem, where from one premise and several hypotheses, we aim to pick the most plausible premise
hypothesis pair (this might also be described as an entailment task). Here the score of a given (premise,
hypothesis) is given by the following:

𝑆𝑃
𝑖 =

𝐿𝑝

∑
𝑘=1

𝑙𝑜𝑔[𝑃(𝑝(𝑘)|𝑠𝑝(𝑘)

𝑖)] (2.8)

19

Chapter 2 Related Work

Where 𝑠𝑝(𝑘)

𝑖 is the sentence with the token 𝑝(𝑘) masked, and 𝐿𝑝 is the sequence length of the premise.
There is no need for normalization as the sequence length will be constant for all hypotheses. In this
method, only the tokens belonging to the premise are masked, to lessen the effect of statistical cues in the
data, as it was observed by the authors.

This method is computationally expensive, as the computation graph must be stored for the forward
passes of each example, which may have M hypotheses, and each hypothesis may have N forward passes.
There are other ways to approximate the PLL score, which can prove to be effective and cheaper alterna
tives (Salazar et al., 2020).

Ranking task formulation has also been found to help in tasks such as natural language inference.
In (Liu et al., 2019a), each (question, answer) pair is separately passed through the model. The state
of each [CLS] token is passed through a linear layer, producing a relevance score for each pair. The pair
with the maximum relevance score is the candidate answer. This is a cheaper alternative to the previous
ranking methods and produces near stateoftheart results with RoBERTa. This method is denoted as a
pairwise ranking task.

2.5 Shortcut Learning

For as much as the newest NLP techniques, such as the ones shown in Section 2.3, bring about better
performance on downstream tasks unlike any others that we had previously seen, the manner in which
they do has been called into question. This questioning trend has spanned across different topics in deep
learning, such as Computer Vision, DecisionMaking Algorithms, Medical Imaging, Clinical Predictions,
and many more (Geirhos et al., 2020; D’Amour et al., 2020).

Complex neural networks that rule deep learning, and NLP, are difficult to interpret, appearing as a
blackbox. This has motivated research into their interpretability (Rogers et al., 2020; Chakraborty et al.,
2017). For example, establishing a relationship between specific input features and specific output is
not attainable. There are techniques that rely on gradient information (Han et al., 2020; Simonyan et al.,
2013; Smilkov et al., 2017; Sundararajan et al., 2017), attention information (Clark et al., 2019; Lee et al.,
2017; Vig and Belinkov, 2019; Wu et al., 2020; Xu et al., 2015) to infer some connection, but the topic
still remains in its infancy.

This opacity leaves researchers unsatisfied, but also curious. Some hints have started to appear that
sheds light on some (unwanted) learning patterns, which has been regarded as Shortcut Learning (Geirhos
et al., 2020). Loss functions (crossentropy), DNN architectures and optimizers are biased towards simple
functions (De Palma et al., 2018; Jacobsen et al., 2018; Sun and Nielsen, 2019; VallePérez et al., 2018;
Wu et al., 2017), and those functions can rely on features and patterns that are superficial or even spurious,
which fails spectacularly when tested on outofdistribution (o.o.d) data.

Examples of shortcut learning can be found across modalities (vision, language, ...). A study (Zech
et al., 2018) found that in a Convolutional Neural Network (CNN) trained to identify pneumonia in pa

20

Chapter 2 Related Work

tients’ chest radiographs, such spurious patterns were used to achieve high performance. The shortcut
taken was the following: pneumonia had more incidence in certain hospitals, so the model learned to
identify hospitals from metal tokens present in the radiography, instead of learning patterns associated
with the disease itself. By identifying hospitals, the model can then abuse the unbalance to obtain bet
ter performance. When tested on o.o.d data, the model performed bad. More recently, CNN’s were
applied to radiographs of patients to aid the detection of COVID19 (Wang et al., 2020; Hemdan et al.,
2020; Ozturk et al., 2020), achieving high performance. A new study found that these models are only
required to look at the borders of the radiography to achieve high performance, completely disregarding
the pathology of COVID19 (DeGrave et al., 2021).

In NLP, studies have been conducted to probe for this phenomenon. The Argument Reasoning Com
prehension Task (ARCT) (Habernal et al., 2018a) is one such task where pretrained language models
shined, obtaining 77% test accuracy, slightly below untrained humans, with 80% test accuracy. This
task was one of the tasks in SemEval 2018. A subsequent study (Niven and Kao, 2019) found that the
presence of “not” and other high frequency words such as “is”, “do” and “are” was highly correlated with
the output, obtaining above random performance with just “not”. By adding adversarial examples in a
way that balanced this correlation, the strong signal disappeared and the performance dropped to random
chance (50%).

In another paper, an adversarial attack (Section 2.6) is done in a machine reading comprehension task
by introducing unrelated sentences in the input, such that it confuses the models but do not contradict the
correct answer (Figure 2.4). Through this exercise, a new adversarial test set is generated. The accuracy
on the adversarial test set was about a half that of the accuracy on the original test set.

Machine reading comprehension (MRC) models appear not to do much reading (Kaushik and Lipton,
2018), as models can perform reasonably well when given only a passage (without the question) or a
passage with a randomly assigned question. This demonstrates that the models are not performing the
task intended to be conveyed by the datasets; instead, they pick up on some signal present in the data to
optimize performance.

Largescale natural language inference (NLI) datasets also exhibit these problems. NLI is a classic
NLP task, where given a premise, the model must determine whether a hypothesis is true (entailment),
false (contradiction), or undetermined (neutral). NLI datasets possess linguistic phenomena that correlate
well with certain classes, whereby even simple classifier models can perform well by only looking at the
hypothesis (Gururangan et al., 2018; Poliak et al., 2018).

A study (Geva et al., 2019) on the annotator bias on natural language understanding datasets (in
cluding CommonsenseQA – Section 3.4) has found that annotator bias is evident and models did not
generalize well across annotators. Moreover, a model can exploit those biases to inflate its performance
if the same annotator is present in the training and testset.

The use of nonrobust features (or shortcuts) naturally arise from the training methodology of neural
networks, which are optimized to maximize the performance in a given dataset distribution. A good
description of this is given in (Ilyas et al., 2019) (more on adversarial perturbations in Section 2.6):

21

Chapter 2 Related Work

Figure 2.4: Reproduced from (Jia and Liang, 2017). The addition of an unrelated fact in the paragraph
made the model change its original prediction, indicating a shallow understanding.

Recall that we usually train classifiers to solely maximize (distributional) accuracy. Con
sequently, classifiers tend to use any available signal to do so, even those that look incom
prehensible to humans. After all, the presence of “a tail” or “ears” is no more natural to a
classifier than any other equally predictive feature. In fact, we find that standard ML datasets
do admit highly predictive yet imperceptible features. We posit that our models learn to rely
on these “nonrobust” features, leading to adversarial perturbations that exploit this depen
dence.

Despite the theoretical ability to learn any arbitrary function, in practice the concepts that determine
a correct label are just as valid to the model as any other pattern present in the data.

Note that humans are not immune to using shortcuts and shallow understanding to perform tasks.
Students oftentimes try to memorize (fully or partially) the contents of a class ahead of exams, which can
fail when faced with questions that require a deeper understanding or have different framing from the
ones they saw during practice (NAP, 1999).

Addressing this issue, not only in this dissertation but in the field overall, is important in two aspects.
On a more practical note, when applying NLP methods to solve real world problems, the potential shift
in the distribution of inputs may cause the model to fail, reducing its usefulness. On a more scientific
aspect, more relevant for the goal of this dissertation, models that rely on nonrobust features and spurious
generalizations defeat the longterm purpose of AI – which is to produce a general intelligence machine,
rational enough to avoid making such surface level mistakes.

22

Chapter 2 Related Work

2.6 Adversarial Attacks

In Section 2.5, the problem of shortcut learning is introduced, but also the notion that perturbation in the
network (e.g. in the form of hiding or altering features) can significantly diminish the capabilities of these
models. The practice of minimally perturbing the input examples, while preserving their “semantics”, to
lead models to change their prediction is called adversarial attacks, which produce adversarial examples.

Early work (Goodfellow et al., 2015; Szegedy et al., 2013) in adversarial attacks against DNN’s
focused on computer vision. They found that tiny nonrandom (and semantic preserving) perturbations
in the image, imperceptible to the human eye, could alter the predictions of the network (Figure 2.5).

Figure 2.5: Reproduced from (Szegedy et al., 2013). Left column: original image that was correctly
classified. Right column: adversarial example produced with small perturbations. Middle column: dif
ference between the two images. All the images on the right were wrongly classified as an ostrich.

Adversarial attacks (with adversarial examples) can be shown to be possible due to the presence of
nonrobust features, directly targeting them (Ilyas et al., 2019). As such, they can be a valuable tool to
show brittleness in models, which can (or not) be attributed to shortcuts found during learning. While the
decrease in performance is evidence of frailty, it is not definitive proof of shortcut learning.

The input perturbation approach applied to images can also be transferred to NLP. Inserting, deleting
or replacing spans of text in the input, in a manner that preserves the semantics of the original input, is
the ultimate goal of any algorithm that performs adversarial attacks.

It is difficult to devise automatic methods that produce semantic preserving adversarial examples with
low error rates. Even stateoftheart techniques struggle to preserve semantics (Morris et al., 2020a).
Most algorithms focus on replacing important words with synonyms, each differing in the way that they

23

Chapter 2 Related Work

Question: Ira had to make up a lab investigation after school. He obtained the materials, chemicals,
equipment, and protective gear from his teacher. Quickly, but cautiously, he conducted the steps in
the written experiment procedure. To save time, he decided to record his observations and results
later. Which will most likely be negatively affected by his decision?

perturbation

Correct choice: B

Model’s choice: B

Model’s choice after : A

abilityA: the to follow directions

B: the ability to write a valid report

C: the ability to follow the safety guidelines

D: the ability to come up with a conclusion

capacityA: the to follow directions

B: the ability to write a valid report

C: the ability to follow the safety guidelines

D: the ability to come up with a conclusion

Before After

Figure 2.6: An adversarial example produced with TextFooler (Jin et al., 2020) on the ARC dataset (Clark
et al., 2018) (Section 3.2), targeting a finetuned RoBERTa on the task. Simply changing ability to ca
pacity in option A is enough to make the model predict A instead of its original prediction B.

select candidate words/spans.
Use of lexical ontologies such as WordNet (Ren et al., 2019) and HowNet (Zang et al., 2020) have been

succesfully used to find synonym words to produce adversarial examples. Other popular methods (Alzan
tot et al., 2018; Kuleshov et al., 2018; Li et al., 2018) utilize the semantics encoded in pretrained word
embeddings to find substitute words (e.g. the words with above a certain threshold for cosine similar
ity). Both of these methods can fail to find words that fit in the context, as the comparisons are done at
word level. To address this, some of these methods introduce a threshold on sentence semantic similarity
between the original sentence and the adversarial sentence, calculated using a sentence encoder, such as
Universal Sentence Encoder (Cer et al., 2018). One such method that uses word embeddings and sen
tence encoders is TextFooler (Jin et al., 2020), which will later be used in this dissertation. An adversarial
example produced by this system is given in Figure 2.6.

To produce more contextaware adversarial examples, methods have been devised (Garg and Ra
makrishnan, 2020; Li et al., 2020a,b) to take advantage of the contextual power of pretrained language
models, such as BERT and RoBERTa, to find word replacements.

2.7 NeuroSymbolic Systems

Neurosymbolic systems, alluded to Section 2.1, seek to combine neural networks with symbolic systems,
with the latter containing rich knowledge represented in knowledge bases (KB).

Interest in neurosymbolic systems for NLU has been slow but steady. In the neural era, early attempts
at transferring this knowledge made use of Graph Embedding techniques to represent concepts from
these knowledge bases as vectors, which could then be used to initialize the embedding layer of a neural

24

Chapter 2 Related Work

network. Techniques such as Node2Vec (Grover and Leskovec, 2016), TransE (Bordes et al., 2013) and
WordNet Embeddings (Branco et al., 2019; Saedi et al., 2018) can leverage the nature of graph structures
to produce embeddings for the nodes through the strength of the relations between them. Rich lexical
knowledge coming from ontologies such as WordNet can then be used as a way to enrich neural networks
in a neurosymbolic system (Salawa et al., 2019).

Earlier attempts to integrate KB’s with the Transformer made use of the selfattention system to merge
embeddings from external KB’s with the internal state from the Transformer block (Peters et al., 2019;
Yang et al., 2019; Zhang et al., 2019). This usually requires the addition of a module that selects relevant
entities, fetches their embeddings and includes them in a selfattention operation with the sentence word
states.

These approaches are limited in three ways. For one, we have additional parameters to be learned
in order to merge the KG entity embeddings, making the search space for optimum performance rather
expensive.

Second, after training the model, if we want to insert an additional entity because the KG has been
extended, retraining may prove costly.

Lastly, holding the embedding matrix of entities quickly becomes a problem, especially as some
popular and extensive KB’s can encode millions of entities, being prohibitively expensive to hold in
memory.

In an interesting new wave of commonsense reasoning (inspired by GOFAI3), more complex knowl
edge bases and methods are being developed to tackle the problem. Open resources for commonsense rea
soning, whether manually built or automatically retrieved, tend to encode taxonomic knowledge, which
is a subset of the types of commonsense knowledge.

In ATOMIC (Hwang et al., 2020; Sap et al., 2019), we find an approach that seeks to improve rea
soning by encoding causal and inferential knowledge. It is important for an agent/model to reason about
what might be the causes for a certain event to happen, and given that it did, what we can infer from it.
In its most recent update, ATOMIC encodes knowledge of socialinteractions, physicalentity relations,
and eventcentered relations. ATOMIC is then used as a resource to build a dataset to enrich pretrained
language models by finetuning them on a tail generation task (Bosselut et al., 2019; Hwang et al., 2020).
Tail generation task is designed to enable models to learn the knowledge contained in a KB. The task con
sists in presenting the model with a concept A and a relation, and the model must generate a concept B
that has such relationship with concept A. This neurosymbolic approach, which enriches models through
a generation task, is named Commonsense Transformers (COMET). COMET is described in more detail
in Section 4.1.4.

The reasoning behind the generation task lies in the fact that the universe of commonsense knowledge
is so vast that we cannot hope to build a resource that is complete from training on piles of raw text (in pre
training) or from smaller, specifically labeled datasets. Thus, we need our models to be able to integrate

3Good oldFashioned AI

25

Chapter 2 Related Work

more and broader knowledge other than the knowledge that incidentally must be contained in (labeled)
text datasets. In the paper that introduces ATOMIC’s latest version, ATOMIC2020 (Hwang et al., 2020),
pretrained language models were tasked with generating tail concepts by being prompted with a head
concept and a relation, without any finetuning. The pretrained models struggled to generate the correct
tail entities, as they may not possess the capabilities required to express such knowledge. COMET models
were then evaluated on the same task and could successfully generate the correct tail entities.

2.8 Summary

This chapter laid out the related work necessary to grasp the work conducted in this dissertation.
Commonsense knowledge, which captures human values and needs, is an essential aspect of the

human experience and one which is helpful for machines. Endowing them with this knowledge allows
them to understand our worldview, our needs, capabilities and beliefs. Furthermore, reasoning with such
knowledge allows humans, and hopefully the machines, to infer new knowledge and to act when facing
problems unseen before.

Commonsense reasoning has been an object of study in AI since its inception. Automated common
sense reasoning was first realized using logic programming, in what is labeled the symbolic paradigm
of AI. Knowledge is represented as propositions, which can be connected to form complex propositions.
This knowledge can then be used to answer questions, which are formulated as queries, according to the
syntax of the logic programming language. A search algorithm, named solver, will search through the
encoded knowledge to find the query’s suitable answer(s).

Logic programming has two inherent problems which motivate the adoption of deep learning for
automated commonsense reasoning: (i) complex queries are demanding for solvers and can become
intractable in terms of time, being unable to be resolved in a timely manner; (ii) Knowledge representation
is accomplished through the efforts of humans, commonly experts in the domain. Representing every
domain of commonsense becomes unfeasible, as it requires an overwhelming amount of experts. Deep
learning offers the promise of learning such knowledge from natural raw text, which can then be used to
reason with.

The mainstream deep learning approach for natural language processing tasks currently is the Trans
former. The Transformer is a sequencetosequence neural network model, meaning its input and output
are sequences of text. It comprises two parts: the Encoder, which encodes the input sequence, and the
Decoder, which decodes the output sequence based on the input. The Transformer uses a selfattention
mechanism to relate each token of a given sequence to provide contextual information.

It has become standard practice to divide the training of these networks into two stages. In the first
stage, named the pretraining, the model is trained on language modelling tasks using a large corpus of
raw text, endowing it with some capacity to suitably process natural language (or at least a good amount
of linguistic phenomena). In a second stage, named the finetuning, the model, which now possesses

26

Chapter 2 Related Work

enhanced priors, is tasked with learning to solve a specific natural language problem.
Different variants of the Transformer exist, trained with this pretrainthenfinetune methodology.

BERT and RoBERTa are Encoderonly Transformers that excel at classification tasks. GPT is a Decoder
only transformer that excels at generation tasks. T5 is an EncoderDecoder Transformer (standard) which
frames all tasks in a textual manner, named the texttotext methodology.

These models can be tasked with learning commonsense reasoning tasks. Previous work has demon
strated that they acquire some commonsense knowledge during the pretraining stage, which can be rea
soned with to solve tasks. When finetuned on commonsense reasoning tasks, these models can achieve
good results and are starting to approximate human ability.

Despite the success of these models, the manner in which they achieve them is beginning to be un
veiled in recent research. Similarly to other neural networks, the Transformer seems to be picking up
on spurious signals in the data, socalled shortcuts, which may help solve the dataset, but not the task
in a general fashion. For example, in computer vision, some models tasked with identifying pneumonia
in chest radiographs learned to identify hospitals instead through tokens present in the radiographs. For
COVID19 identification, some models looked at the borders of the radiography to achieve high perfor
mance. In NLP, the way in which certain words are distributed in the dataset can provide the models with
hints that help resolve the task.

A class of algorithms that can expose the negative influence of these shortcuts are “Adversarial At
tacks”. Adversarial attack algorithms perturb the input to the network, e.g. by replacing words in the
input with their synonym, in a way that preserves the semantics of the original input and is grammatically
correct. These perturbations can lead models astray, considerably dropping their performance. This is a
potential indication that the models are using shortcuts.

Lastly, a promising technique, which aims to “merge” the symbolic with the neural paradigm, to
build more robust and knowledgeable models. Common between most neurosymbolic methods is the
idea that knowledge contained in knowledge bases, which became a valuable tool during the symbolic
paradigm, are transferred to or accessed by neural networks, affording them with systematic knowledge.
The resulting models should have more refined priors than regular neural networks, which could help
avoid forming wrong generalizations by utilizing shortcuts.

27

Chapter 3

Tasks

Tasks that require the model to perform some commonsense reasoning are tasks of the type that involve
commonsense reasoning when performed by humans. Namely tasks required to reach new conclusions/
facts and to piece knowledge together to explain events.

In NLP literature, these types of tasks commonly fall under two categories: multiplechoice question
answering (Q&A) and machine reading comprehension. In this dissertation, to simplify the implemen
tation and focus on one type of task for the extensive experimentation phase, I select four, Q&A only,
commonsense reasoning tasks, covering different topics and different reasoning types, setting a demand
ing environment to probe different language models’ knowledge and ability.

3.1 Argument Reasoning Comprehension Task

The Argument Reasoning Comprehension Task (ARCT) (Habernal et al., 2018a) is a task developed
to test a model’s ability to reason through arguments. ARCT requires comprehension of an argument
structure and how its parts relate with each other, which to humans, requires language understanding,
logic skills and also commonsense.

The underlying structure of an argument, whose uncovering dates back to Aristotle and his study of
argumentation (especially important with the definition of syllogisms), is defined as a series of premises
that support a respective claim/conclusion. In the example below (E1), a major premise (all humans are
mortal) and a minor premise (Socrates is human) allow for the conclusion that Socrates is mortal.

(E1)

All humans are mortal
Socrates is human.

Therefore, Socrates is mortal

Toulmin decomposes an argument further, indicating a structure composed of six components (Toul

29

Chapter 3 Tasks

min, 1958). There are three fundamental components in his approach: grounds (also known as reasons
or premises), warrants and the claim. A warrant is itself a (implicit) premise, and plays the role of linking
the explicit premises and the claim, such that the claim must logically follow from the grounds, creating
a reasoning chain: Reason → Warrant → Claim.

Warrants are, however, primarily implicit in arguments (Freeman, 2011). They are left to the ad
dressee to be figured out, as it is presupposed that it is common knowledge shared between the addressee
and the speaker. The addressee relies on common sense to identify them, requiring commonsense rea
soning to perform warrant identification. An example of a warrant can be given by simplifying example
E1 in the following manner:

(E2)
Socrates is human.

Therefore, Socrates is mortal

Notice how the first premise was not provided, yet the argument still makes sense. The missing
warrant is commonsense as we know that all humans are mortal.

ARCT is a conceptually simple task: given a reason (R) and a claim (C), select the correct war
rant from two options such that the correct warrant supports the deductive inference R → C. Figure 3.1
provides three examples from the ARCT dataset.

Reason: People choose not to use Google.

Claim: Google is not a harmful monopoly.

Correct warrant: 2

Warrant 1: all other search engines
re-direct to Google.

Warrant 2: other search engines do not
re-direct to Google.

Example 1

Reason: Libraries have always been about
making information available to all people.

Claim: We need libraries.

Reason: Vegan diets do not supply enough
nutrients.

Claim: Veganism is not good for everyone.

Correct warrant: 1

Warrant 1: Technology has made
information readily available for all.

Warrant 2: Technology hasn't made
information readily available for all.

Correct warrant: 1

Warrant 1: Nutrient requirements are not
lower once you are vegan.

Warrant 2: Nutrient requirements will be
lower once you are vegan.

Example 2 Example 3

Figure 3.1: Three examples from the ARCT dataset.

The dataset was constructed with data from the Room for Debate, a section in the New York Times,1

where knowledgeable contributors participate in debates regarding contemporary issues. The section has
an editorial board and moderation, guaranteeing a good quality of data compared to open forums such as
Create Debate.2 The authors select 188 debates of controversial issues and used crowdworkers (referred
as turkers) from Amazon Mechanical Turk to perform several annotation, summarization and validation
tasks, comprising an eight step pipeline. The crowdsourcing produced 1970 dataset instances.

The dataset was used to create a shared task (Habernal et al., 2018b) at SemEval 2018,3 where re
1https://www.nytimes.com/roomfordebate
2https://www.createdebate.com/
3https://alt.qcri.org/semeval2018/

30

https://www.nytimes.com/roomfordebate
https://www.createdebate.com/
https://alt.qcri.org/semeval2018/

Chapter 3 Tasks

searchers and practitioners can participate in a competition by devising their own system to tackle the
task.

The original dataset used in SemEval 2018 has been flagged with data artifacts enabling spurious
correlation in (Niven and Kao, 2019) (as described in Section 2.5). The authors identified key words
(such as “not”) that were being successfully used by the models as shortcuts to determine the target class.

After expunging the dataset from these spurious cues, BERT’s performance dropped to random chance.
A reproduction work (Rodrigues et al., 2020) empirically confirmed the drop in test scores when using
the revised dataset for the top scoring models participating in SemEval 2018.

For this dissertation, the revised dataset will be used instead of the original. The revised dataset size
is described in Table 3.1.

Train Dev Test Total

2420 632 888 3940

Table 3.1: Number of examples in each dataset partition.

3.2 AI2 Reasoning Challenge

The AI2 Reasoning Challenge (ARC) (Clark et al., 2018) is a multiplechoice natural science question
answering task made from a collection of questions from 3rd to 9thgrade science exams, mostly in the
US.

The motivation behind this reasoning challenge comes from the fact that most previous Q&A datasets
do not require deep comprehension, instead relying primarily on surfacelevel cues to be resolved. To
this end, the authors collected natural science exams, which in theory require different types of reasoning
and knowledge (a good portion attributed to world knowledge & commonsense).

SAT, the standardized test used for college admissions in the US, has been used as a Grand Challenge
in AI (Bayer et al., 2005), as the tests require many of the capabilities desired in a cognitive system.
Standardized tests are thus a valuable resource to build robust tasks.

The dataset was compiled from various sources, with most of the questions coming from an undis
closed partner. Other sources are mostly programs and education departments from different states. Three
examples of the dataset are provided in Figure 3.2.

After analyzing a sample of 100 examples, the authors consider that models are required to learn
different types of knowledge: Definitions, facts & properties, structure, processes & causal, teleolo
gy/purpose, algebraic, experiments, and spatial/kinematic. It also requires different types of reason
ing: question logic, linguistic matching, multihop, comparison, algebraic, hypothetical/counterfactual,
explanation/metareasoning, spatial/kinematic and analogy.

31

Chapter 3 Tasks

Question: Air has no color and cannot be
seen, yet it takes up space. What could be
done to show it takes up space?

Answer A: observe clouds forming.

Answer B: measure the air temperature.

Answer C: blow up a beach ball or balloon.

Answer D: weigh a glass before and after it
is filled with water.

Example 1

Question: A telescope would be used for
all the following except

Question: A large, solid spherical body in
the solar system is classified as a moon.
Which characteristic of the body gives it
this classification?Answer A: to measure the density of

Earth's atmosphere.

Answer B: to learn more about stars and
planets.

Answer C: to observe the surface of the
Moon.

Answer D: to better understand Earth.

Answer A: It rotates on its axis.

Answer B: It lacks liquid water.

Answer C: It orbits a nearby planet.

Answer D: It reflects light from a star.

Example 2 Example 3

Correct answer: A Correct answer: CCorrect answer: C

Figure 3.2: Three examples from the ARC dataset.

To guarantee that the task is challenging for models, the dataset is divided into two sets: the “Easy”
and “Challenge” sets. To partition the dataset, the authors implement two trivial solvers that act as filters,
whereby if an example can be solved with these solvers, it will be placed in the Easy set; otherwise, it
will be placed in the Challenge set.

The solvers used to determine hard questions were the following:

Information Retrieval Solver. Identifying a question and answer option in a large webbased text
corpus, with a certain confidence, using a query engine. The sentence with the highest overlapping score
is chosen as the prediction.

Pointwise Mutual Information (PMI) Solver. PMI (Church and Hanks, 1990) establishes associa
tive strength between two ngrams in a corpus. This solver uses PMI to establish associative strength
between the question and each answer option, picking the option with the largest average PMI (lexical
cues).

The final filtered dataset size is described in Table 3.2.

Challenge Easy Total

Train 1119 2251 3370
Dev 299 570 869
Test 1172 2376 3548

Total 2590 5197 7787

Table 3.2: Number of examples in each dataset partition.

32

Chapter 3 Tasks

3.3 Physical Interaction: Question Answering

Physical commonsense knowledge is a critical dimension of commonsense that is in constant use in our
lives. Learning about the properties of objects starts at an early age of exploration. A study conducted with
5monthold infants (Hespos and Spelke, 2004) found that infants develop a conceptual representation
of tight vs. loosefitting of one object to another, indicating that object mechanics can be learned before
language acquisition (although physical knowledge is eventually enhanced with language).

For humans, acquiring physical commonsense knowledge is part of the human experience. We can
interact with the world, manipulate objects and figure out how we might use them to solve problems. This
process is called grounding (Bisk et al., 2020a). As of yet, models cannot interact with the world to learn
these properties, like humans do. It stands as a real challenge for models to acquire physical knowledge
from raw text only.

Physical Interaction Question Answering (Bisk et al., 2020b) (PIQA) tests the physical commonsense
knowledge of models. The task presents the model a goal, mostly an everyday situation that a human
might want to accomplish, and two possible solutions to attain the goal. The model has to pick the solution
that makes more sense. Three dataset examples are presented in Figure 3.3.

Goal: What can I use to help filter water
when I am camping.

Correct solution: 2

Solution 1: You can use a water filtration
system like a brita pitcher.

Solution 2: Coffee filters are a cheap and
effective method to filter water when
outdoors.

Example 1

Goal: How do you see the solution to a
problem you entered on the calculator on
iPhone?

Goal: Create quick hot chocolate drink.

Correct solution: 1

Solution 1: Press the = button.

Solution 2: Press the AC button.

Correct solution: 1

Solution 1: Put chocolate bar and milk in a
mug, then microwave.

Solution 2: Put granola bar and milk in a
mug, then microwave.

Example 2 Example 3

Figure 3.3: Three examples from the PIQA dataset.

The inspiration (and data source) for the task came from instructables.com, a website that provides
instructions to build, craft or manipulate objects (including cooking). The contents of each instructable
can be used to extract valuable physical knowledge regarding various objects. The authors made use of
the crowdsource platform Amazon Mechanical Turk to produce the dataset examples (Figure 3.4).

The turkers receive an instructable as inspiration. From the instructable contents, they are asked to
produce a goal, a solution, and a trick, which is similar to the proposed solution but with a trick that
makes it wrong. Ideally, the goal requires physical knowledge to answer. After collecting the examples,
the authors performed a pipeline of artifact removal from examples that are biased towards a particular
target. The dataset size is described in Table 3.3.

33

https://www.instructables.com/

Chapter 3 Tasks

Figure 3.4: Reproduced from (Bisk et al., 2020b). Instructions provided to turkers on Amazon Mechan
ical Turk.

3.4 CommonsenseQA

The tasks introduced in the previous sections had particular domains of knowledge, from arguments
to science to physical knowledge. As the fourth and final task, a general domain task is convenient,
maximizing the domains covered in this study.

CommonsenseQA (Talmor et al., 2019) (CSQA) is a multichoice question answering dataset that
targets different types of commonsense knowledge, across several domains. To generate the dataset, the
authors resort to ConceptNet (Liu and Singh, 2004), a large knowledge base, that contains commonsense
knowledge. ConceptNet is organized as a graph, which can be decomposed in triples (𝑐1, 𝑟, 𝑐2), where
𝑐1 and 𝑐2 are concepts and 𝑟 is the relation between them. Figure 3.6 provides a general pipeline of the
generation process.

Each crowdworker receives a question set composed of three triples with the same source concept
(blue subgraph in Figure 3.6). For each triple, the crowdworker must formulate a question containing the

34

Chapter 3 Tasks

Train Dev Test Total

16113 1838 3084 21035

Table 3.3: Number of examples in each dataset partition.

source concept, such that the answer is the target concept, e.g. for (river, atLocation, waterfall)
a possible question is “Where on a river can you hold a cup upright to catch water on a sunny day?”.
The target concepts of the other triples are included as candidate answers.

The crowdworker chooses the additional two distractors following two rules. The first distractor is
chosen by the crowdworker from a set of target concepts with the same relation to the source concept
(red subgraph in Figure 3.6). The worker formulates the other distractor with the restraint that it must be
a plausible answer. The authors train workers to classify each example as “unanswerable” or selecting
the correct answer to verify question quality. Three examples from the resulting dataset are shown in
Figure 3.5.

Question: What is something someone
driving a car needs even to begin?

Answer A: practice.

Answer B: feet.

Answer C: sight.

Answer D: keys.

Answer E: open car door.

Example 1

Question: The act of traveling is simple,
you're just what?

Question: Where do most people keep
utensils?

Answer A: relocation.

Answer B: disorientation.

Answer C: meeting new people.

Answer D: statue.

Answer E: getting somewhere.

Answer A: backpack.

Answer B: cupboard.

Answer C: plate.

Answer D: drawer.

Answer E: dinner.

Example 2 Example 3

Correct answer: E Correct answer: DCorrect answer: C

Figure 3.5: Three examples from the CSQA dataset.

A sample of 100 examples from the dataset was analyzed, verifying that they require a vast amount
of knowledge types, as defined by the authors: spatial, cause & effect, has parts, is member of, purpose,
social, activity, definition, and preconditions.

The dataset size is described in Table 3.4.

Train Dev Test Total

9741 1221 1140 12102

Table 3.4: Number of examples in each dataset partition.

35

Chapter 3 Tasks

Figure 3.6: Adapted from (Talmor et al., 2019). Generation process for CommonsenseQA. Crowdwork
ers receive a subgraph from ConceptNet, and must produce questions using the concepts and the relations
between them.

3.5 Summary

In this chapter, the commonsense reasoning tasks proposed for this dissertation were presented.
Argument Reasoning Comprehension Task (ARCT) tests the argument reasoning ability of a model,

requiring not only language and logic skills but also commonsense knowledge. An argument is composed
by three major segments: the claim, which is the assertion trying to be made; the premises / reasons, which
are facts or evidences which support the claim; and the warrant, which is an implicit premise that allows
the claim to logically follow from the premises. The warrant is left implicit, on the supposition that it is
knowledge shared between the addresser and the addressee easily recovered by the latter. In ARCT, the
model is given a reason, a claim and two possible warrants, having to pick the warrant which supports
the connection between the reason and claim.

The second task is AI2 Reasoning Challenge (ARC), which is a multiplechoice question answering

36

Chapter 3 Tasks

task focused on natural sciences. It was made from a collection of questions from 3rd to 9thgrade science
exams. It requires different types of reasoning and commonsense knowledge. The model is provided with
a question and up to five candidate answers, and it must choose the correct answer to the question.

The third task, Physical Interaction Question Answering (PIQA), tests the capabilities of models to
answer commonsense questions regarding the physical world. Models are presented with a goal, mostly
an everyday situation that a human might want to accomplish, and two possible solutions to attain the
goal. Models will need to learn, from raw text only, physical commonsense knowledge.

The final task is CommonsenseQA (CSQA), a multiplechoice question answering task, whose ques
tions belong to a wide array of knowledge types. CSQA covers many different types of scenarios which
one might encounter in daily life. It was built resorting to a knowledge base named ConceptNet.

37

Chapter 4

Implementation

This chapter addresses the implementation of the models (Section 4.1) along with their training method
ology (Section 4.3), the adversarial attack (Section 4.2), data contamination studies (Section 4.4) and
shortcut exploration (Section 4.5).

The implementation of the models and some of the data used for the experiments can be found in the
following repository: https://github.com/nlx-group/study-of-commonsense-reasoning.

Section 2.3.2, Section 2.6 and Section 2.7 provided a brief introduction and background of the models
and methods that are described in this chapter.

4.1 Models

To study the commonsense reasoning capabilities of NLP models, models are grouped according to sim
ilar characteristics that reflect different paradigms in neural NLP.

One group is the Encoderonly Transformers, of which the chosen instance is RoBERTa (Liu et al.,
2019b) (Section 4.1.1). Encoderonly Transformers were first introduced with BERT (Devlin et al., 2019),
starting a research line on classification models.

Another group comprises the Decoderonly Transformers. The GPT series of models have gained
notoriety, and I selected the most recent computationally affordable version, GPT2 (Radford et al., 2019)
(Section 4.1.2).

Yet another group is the EncoderDecoder Transformers. T5 (Raffel et al., 2020) (Section 4.1.3) is
chosen as the representative due to the promising capabilities displayed through its excellent scores in
the GLUE benchmark. By including this type of architecture, the objective is to determine whether (i)
having both the encoder and decoder helps; and (ii) the texttotext framework helps with reasoning.

The final group is the NeuroSymbolic Transformers. COMET (Bosselut et al., 2019; Hwang et al.,
2020) (Section 4.1.4) is the selected candidate due to the simplicity of the training objective to inject the
knowledge from a Knowledge Base (KB) into the model. The goal is to determine whether the quality

39

https://github.com/nlx-group/study-of-commonsense-reasoning

Chapter 4 Implementation

of data coming from a KB can boost the reasoning abilities through finer priors.
All models were implemented using PyTorch (Paszke et al., 2019) and Huggingface’s Transformers

library (Wolf et al., 2020a). PyTorch allows to perform tensor computation using GPU’s, and features an
automatic differentiation system. Huggingface’s Transformers is built on top of PyTorch. Its goal is to
provide implementations of stateoftheart Transformer architectures for NLP. It offers the possibility of
reusing pretrained weights, remove the need to pretrain the language models, which is computationally
expensive.

4.1.1 RoBERTa

RoBERTa (Liu et al., 2019b) is a derivative of BERT (Devlin et al., 2019), resulting from the optimization
of BERT models. The authors sought to optimize BERT by building a profile of the impact of each model
attribute and pretraining task, akin to an ablation test. As a consequence, the authors propose a series
of changes to the original BERT architecture, the resulting model being named RoBERTa. This is a
summary of the changes,

• Masking. For the MLM task, BERT uses a static mask, meaning the words to be masked in each
sentence are selected in preprocessing and do not change over the training epochs. RoBERTa uses
a dynamic mask, where for each sentence, which can be seen many times during training, a new
mask is calculated for each appearance.

• Pretraining objective. BERT defines its pretraining objective as the combined loss of MLM and
NSP tasks. It was found with RoBERTa that NSP does not improve downstream task performance,
opting to remove it from the pretraining objective, maintaining MLM only.

• Large batch training. BERT was trained for 1M steps and a batch size of 256. More recent
literature (You et al., 2020) suggests trading the number of steps for large batch sizes, resulting in
faster training and better performance. RoBERTa implements an 8K batch size and experiments
with 100K, 300K and 500K training steps, with the latter (500K) creating a better model.

• Text Encoding. BytePair Encoding (Sennrich et al., 2016) is the subword tokenization algorithm
used by BERT. In BERT, the vocabulary size was set to 30K. In RoBERTa, the vocabulary size was
increased to 50K. An additional change was the manner in which input embeddings are composed.
In BERT, input embeddings are the sum of the token embedding, positional embedding and segment
embedding. In RoBERTa, a simplification is made and segment embeddings are removed.

One of the authors’ assumptions regarding the pretraining phase was that BERT was undertrained,
so they compiled a new training set that includes more data for the pretraining phase. The data was com
piled from six different sources, the BookCorpus (Zhu et al., 2015) & English Wikipedia (original BERT

40

Chapter 4 Implementation

training set), CCNews (Nagel, 2016), OpenWebText (Gokaslan and Cohen, 2019) and Stories (Trinh and
Le, 2018). Overall, RoBERTa is trained with 160GB of raw text, while BERT was trained with 16GB.

Regarding the finetuning stage, RoBERTa behaves just like BERT. In a text classification task, the
input is a single sequence of tokens, starting with a CLS token. Each segment of the input is separated by
a SEP token. This is exemplified in Figure 4.1a. The hidden state (representation) corresponding to the
CLS token in the final layer is passed on to a classification head (Figure 4.2) to make a prediction.

During finetuning, the authors deploy a linear learning rate scheduler with warmup, meaning the
learning rate increases from 0 to the learning rate set by the user, over the course of a number of pre
determined steps, called warmup steps. After reaching the learning rate value set by the user, it linearly
decreases to 0. This scheduler is used in this dissertation during RoBERTa’s training.

Ro a

CLS Question SEP SEPSEPChoice 1 ... Choice N

Linear

+

Softmax

(a) General input example for classification tasks. The
token embeddings are the input to the network, and a
final hidden state is calculated after N Encoder blocks.
The final hidden state corresponding to the CLS token
is handed to a classification layer which will produce a
prediction.

Ro a

CLS Question SEP SEPChoice 1

CLS Question SEP SEPChoice N

...

...

Linear

+

Softmax

(b) MultipleChoice RoBERTa scheme. Input is sec
tioned into N inputs, one for each candidate answer.
The inputs are passed separately, and the classification
head outputs one value per input, which is shaped into
a probability distribution vector. The maximum value
corresponds to the most relevant candidate answer, ul
timately being the prediction of the network.

Figure 4.1: Two types of finetuning schemes for RoBERTa.

The authors additionally made taskspecific modification for NLI tasks, employing a method previ
ously mentioned at the end of Section 2.4. For tasks that require the model to choose between several
candidate answers, given a premise (e.g. multiplechoice Q&A), providing the whole input simultane
ously (as pictured in Figure 4.1a) can introduce errors and bias, as each candidate answer can attend
to other answers. By sectioning the input into pairs of <question, answer>, the model can use the
linguistic knowledge it possesses to choose the pair that it deems more “natural”, or more correct.

The modification frames problems under a pairwise ranking scheme. For example, let us imagine
a multiplechoice task comprised of a question and multiple (N) possible answers. Under this scheme,

41

Chapter 4 Implementation

Hidden State

Dropout

Dropout

Linear +

Tanh

Linear

Figure 4.2: Layout of a classification head. Inbetween linear projections, dropout (Srivastava et al.,
2014) is employed. The final linear layer projects to an output space, whose dimension equals the number
of output classes. It is common to perform a softmax after.

the input is sectioned into N inputs, each containing the question and a candidate answer. Each input
is passed through the model, from which the hidden state corresponding to the CLS token is used for
prediction. The classification layer contains just one output neuron, which calculates the relevance of
the <question, answer> pair. The pair with the maximum relevance score is chosen as the predicted
answer. This is shown in Figure 4.1b.

In this dissertation, the model produced from this modification is called “MultiChoice RoBERTa”.
MultiChoice RoBERTa is implemented and made available from Huggingface.1 The implementation of
this kind of model is described in Section 4.1.4.

All the proposed tasks (Section 3) for this dissertation can be converted into a multiplechoice format.
Three tasks are compatible with a standard MultiChoice RoBERTa implementation. ARCT and PIQA are
binary classification tasks, thus have two candidate answers. CSQA has five categories, which translates
to five candidate answers. ARC’s Challenge Set differs slightly from the previous, as it does not have a
fixed number of candidate answers. Most of the examples have four candidate answers; however, a small
number of examples have five, which poses a problem due to batch training.

In order to have a shorter and more stable training, computations are usually done in batch. This can
be a challenge when learning ARC, as batches can contain examples with different numbers of candidate
answers, meaning tensors would have to vary in shape, which is not possible. There are two options
to address this issue. One option is to produce batches with a fixed length of candidates; the other is
to introduce padding candidates. I have chosen the latter to preserve pseudorandom batches as much

1https://huggingface.co/transformers/model_doc/roberta.html#robertaformultiplechoice

42

https://huggingface.co/transformers/model_doc/roberta.html#robertaformultiplechoice

Chapter 4 Implementation

as possible. The padding candidates have their relevance score set to zero before computing the loss to
avoid them being chosen as the network’s prediction.

The input to the network then becomes a 3D Tensor, 𝑁 × 𝑀 × 𝐿, where 𝑁 is the batch size, 𝑀 is
the number of candidate answers, 𝐿 is the sequence length, in subwords.

4.1.2 GPT2

GPT2 (Radford et al., 2019) is the second version of the GPT model series, developed by OpenAI.2 It
differs from the other models used in this dissertation due to its strictly lefttoright generative nature, as
opposed to architectures that use the Transformer encoder, which performs bidirectional attention.

GPT2 leverages the Transformer decoder (on the left in Figure 2.1) to produce a general language
model, that can be applied to most NLP tasks with little adjustments.

Similarly to RoBERTa (Section 4.1.1), GPT2 is first pretrained with large corpora on a language
modelling task to learn the intricacies of the human language. Unlike RoBERTa, however, the language
modeling task is performed in a more canonical formulation, in a lefttoright manner: given a context
(𝑤0, 𝑤1, … , 𝑤−1), predict the next word 𝑤𝑖. The authors constructed their pretraining corpus, named
WebText, by scraping all outbound links from Reddit with at least three karma score (three “upvotes”).
After deduplication and heuristicbased cleaning, the final dataset contains just over 8 million documents
and totals 40GB of text.

The finetuning procedure is also similar to RoBERTa’s. Stacked Transformer decoders encode the
sequence, and the hidden states are passed on to a classification head. The classification token (CLS) is
placed at the end of the sequence, as opposed to the beginning (as in RoBERTa), in order to encode the
meaning of the entire sequence in a single representation. As the architecture is inherently lefttoright,
only the last token can access and encode information of the whole sequence.

The resulting model, GPT2, was applied to several tasks to evaluate its performance. When applied
in a zeroshot manner (without finetuning), it could still achieve great results, surpassing the state of the
art in some tasks. This shows that unsupervised pretraining provides useful generalizations for other
tasks.

In GPT2’s paper, the problem of text memorization from the pretraining phase was explored. An
experiment was devised to verify whether the results could be due to memorization. They create bloom
filters3 from WebText and calculate an upper bound for text collisions between the downstream tasks
datasets and WebText. The existence of text collision between the pretraining dataset (WebText) and fine
tuning datasets (downstream tasks) is called data contamination. It was found that due to text overlap,
the model gains small but consistent benefits, arguably due to memorization. This problem motivates
further experimentation for this dissertation (Section 4.4).

2https://openai.com/
3Probabilistic data structure that can efficiently definitely determine whether an element is not in a set, but cannot guarantee

that it is in the set, only that it may be in it.

43

https://openai.com/

Chapter 4 Implementation

For this dissertation, a list of changes made to the GPT2 implementation provided by HuggingFace
is indicated below:

• The pretraining phase does not use a padding (PAD) token and classification ([CLS]) token. Em
bedding layer is resized to include these two tokens, so they can be used and trained.

• Pairwise ranking scheme is used to train GPT2. The available architecture is adapted so as to follow
this methodology, by passing each (question, answer) pair separately through a classification
head.

A cosine learning rate scheduler is used during the finetuning process, as described in the original
GPT paper (Radford et al., 2018). The learning rate increases linearly to the learning rate value set by
the user in N warmup steps, and decays to 0 following a cosine wave.

4.1.3 T5

T5 is a texttotext framework leveraging a standard Transformer architecture. The input to the network
should be kept as natural as possible, and unlike RoBERTa, it requires no special tokens (e.g. the CLS
token). To help the network understand what task it is performing, and to identify the different segments
of the input, textual prefixes are added to the input. The task is prepended to the input, and a prefix is
prepended to each segment of the input, as can be seen in Figure 4.3. The output of T5 is textual, even
for regression tasks.

This flexibility, due to both the input and output being textual, facilitates its usability, as T5 can
accommodate different tasks with no additional changes to the network itself. In fact, in its introductory
work, T5 performs multitask learning of all GLUE (Wang et al., 2018) (General Language Understanding
Evaluation) tasks, at the same time, obtaining stateoftheart results in each.

T5 is pretrained with a denoising task called span prediction. Instead of masking single tokens,
contiguous spans of tokens are masked, and the model must predict the tokens that were masked, restoring
the original input. It is shown in its paper that models pretrained with span prediction perform better on
downstream tasks than models pretrained with single token prediction. The model was pretrained with
the “Colossal Clean Crawled Corpus” (C4), which after undergoing filtering (for quality reasons) totals
around 745GB of raw text.

In order to generate text, T5 has a Transformer decoder stack available, unlike BERT and RoBERTa.
The decoder block (Figure 2.1) comprises a Masked MultiHead Attention layer, an EncoderDecoder
MultiHead Attention layer, and a feedforward layer for the output. The Masked MultiHead Attention
block can only access information from the past at each timestep, hence why it receives a partial (masked)
input at each timestep. The MultiHead Attention layer that follows it is slightly different from the one
present in the Encoder. Here, attention will be calculated using the previous layer’s output (in the decoder)
and the Encoder’s output, which contains valuable information from the input.

44

Chapter 4 Implementation

T5

<TASK> question: <QUESTION> choice 1: <CHOICE 1> (...) choice N: <choice N>

choice 2

Figure 4.3: The first part in the example is the name of the task (e.g. arct). For each section of the input,
a textual description is prepended (e.g. question: (...)). The output must also be generated (text), which
in this example, is choice 2.

During training, the partial outputs (masked outputs) are fed to the decoder all at once for performance
reasons. To begin generation during inference time, the decoder is primed with a beginofsentence token
and performs generation in an autoregressive manner until a maximum number of tokens is reached, or
the decoder itself emits an endofsentence token.

Since the model’s output is generated, hallucination might occur. Hallucination happens when the
model generates a label that does not belong to the set of labels for the task. Despite the authors not having
observed this behavior in their experiments, it can still happen when using T5, and naturally, hallucinated
responses would be marked as incorrect answers.

A linear learning rate scheduler is used during the training of T5 models. Due to T5’s flexibility, the
architecture needs no changes across tasks, requiring only an input adjusted to the task. Examples of the
formatting followed for each task are found below (Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7).

Input →

arct claim: Google is not a harmful monopoly
reason: People can choose not to use Google.
warrant0: all other search engines re-direct to google
warrant1: other search engines do not re-direct to
google

Expected Output → True

Figure 4.4: Formatted example for the ARCT task input to a T5 model. The expected value in the form
of binary value (0 or 1) is converted to True or False.

45

Chapter 4 Implementation

Input →

arc question: Air has no color and cannot be seen, yet
it takes up space. What could be done to show that air
takes up space?
A: observe clouds forming
B: measure the air temperature
C: other search engines do not re-direct to google
D: weigh a glass before and after it is filled with

water

Expected Output → C

Figure 4.5: Formatted example for the ARC Task input to a T5 model.

Input →

piqa goal: What can i use to help filter water when I
am camping.
sol0: You can use a water filtration system like a
brita pitcher.
sol1: Coffee filters are a cheap and effective method
to filter water when outdoors.

Expected Output → True

Figure 4.6: Formatted example for the PIQA task input to a T5 model.

Input →

csqa question: What is something someone driving a car
needs even to begin?
A: practice
B: feet
C: sight
D: keys
E: open car door

Expected Output → C

Figure 4.7: Formatted example for the CSQA task input to a T5 model.

46

Chapter 4 Implementation

4.1.4 COMET(BART)

COMET, short for Commonsense Transformers, is a method that aims to enrich a pretrained transformer
with commonsense knowledge coming from knowledge bases. To incorporate the knowledge, COMET
resorts to a finetune task named tailprediction. Given a triple, (head, relation, tail), the model
is presented with the head and relation, and it must (learn to) generate the tail (Figure 4.8).

COMET()

PersonX stops eating
fast food

lose some weight

gets more work done

law-abidingPersonX stops at the
red light

PersonX stops
bothering PersonY

xWant

xAttr

oEffect

Head TailRelation

Figure 4.8: Example of the tailprediction task. PersonX and PersonY corresponds to two different per
sons. The example features different types of relations, and their definitions are the following. xWant:
as a result, PersonX wants; xAttr: X is seen as; oEffect: as a result, PersonY or others will.

The authors finetune Transformers on this task for one epoch and observe that the models can in
fact learn the commonsense knowledge from the knowledge base and, additionally, generalize and create
new, unseen knowledge.

Knowledge bases that can be represented as triples can be leveraged by COMET models. In the
paper, the authors apply GPT2 (Radford et al., 2019) and BART (Lewis et al., 2020) to learn the tail
generation task, using ATOMIC2020 (Hwang et al., 2020; Sap et al., 2019) triples as a source of knowl
edge. ATOMIC (Sap et al., 2019) is a Commonsense Knowledge Base that encodes commonsense knowl
edge regarding the physical and social aspects of the human experience. Knowledge is grouped into three
categories: PhysicalEntity, which encodes knowledge about entities and objects, e.g. What can be
done using eggs; SocialInteraction, concerning the reaction, intentions, purposes and other aspects of
sociallytriggered events; EventCentered, which gives an intuition as to how common events related to
each other. Its second version, ATOMIC2020 (Hwang et al., 2020), was expanded with more knowledge
using the same approach as used in version one, and also through the integration of knowledge com
ing from ConceptNet (Liu and Singh, 2004). Figure 4.9 provides examples of each type of knowledge
encoded in ATOMIC2020.

In this dissertation, I will use the BART variant of COMET, named COMET(BART). BART is an
EncoderDecoder Transformer model with some slight modifications, such as changing the activation
function from ReLU to GeLU (Hendrycks and Gimpel, 2016)). BART’s pretraining phase comprises

47

Chapter 4 Implementation

Figure 4.9: Reproduced from (Hwang et al., 2020). Examples for each relation type and their respective
size in ATOMIC2020.

several denoising tasks, combining the loss of each one. It follows a list of the pretraining tasks:

• Token Masking. The same task as in BERT’s pretraining phase. Single random tokens are
masked, and the model must predict the original input.

• Token Deletion. Instead of masking, delete the token. The model must identify where the missing
token is and predict it.

• Text Infilling. Similar to the span prediction task, mask a span of tokens (or insert a mask that
should not be there). The model must generate the original text.

• Sentence Permutation. Permute the sentences in the input text. The model must generate the
original sequence.

48

Chapter 4 Implementation

• Document Rotation. Random token is selected, and input is rotated so that it starts with the
selected token. The model must generate the original text.

The pretraining dataset is the same as RoBERTa’s, comprising around 160Gb of raw text.

Encoder Decoder

A B C D E A B C D E<s>

Linear

+

Softmax

Label

Figure 4.10: An example of how to use BART for classification problems.

To finetune a trained COMET model on an additional task, we follow the best practices for BART,
as described in the respective paper. For multiplechoice tasks, the methodology used is the same as
described in MultiChoice RoBERTa’s implementation (Section 4.1.1). The major difference lies in the
fact that BART has a decoder stack, so instead of the Encoder’s final state being fed into a classification
head, it is fed into the EncoderDecoder MultiHead Attention instead. On the decoder side, we introduce
the same sequence that we introduced to the Encoder. After the decoder has processed the whole sequence,
the hidden states corresponding to the last token is given to a classification head. This process is depicted
in Figure 4.10.

The pretrained BART(COMET) model used in the original paper was released by the authors.4

In this dissertation, it is used to initialize a BART model before finetuning on the proposed tasks.
COMET(BART)’s finetuning phase is identical to MultiChoice RoBERTa’s (Section 4.1.1): the in
put is the 3D tensor, where each example is decomposed into multiple inputs, one for each candidate
answer.

Unlike what happened for RoBERTa, Huggingface does not feature an implementation of a multi
choice BART model, so it was implemented by me. The implementation required only two minor changes
(i) in the input shape; and (ii) classification head. The multiple stages of the pipeline are depicted in
Figure 4.11. It follows a description of the series of operations that comprises the implementation.

Input Reshape. The required input tensor is the same as described in Section 4.1.1, a 3D Tensor,
where the first axis contains each batch example, the second axis contains each (question, answer)

4https://github.com/allenai/comet-atomic-2020#model-comet-atomic-2020

49

https://github.com/allenai/comet-atomic-2020#model-comet-atomic-2020

Chapter 4 Implementation

pair, where each pair is a matrix containing subword embeddings. The size of the second axis tells us the
number of candidate answers.

We will follow along the stages in Figure 4.11. The first operation is a reshape of the input tensor,
going from a 3D tensor to a 2D tensor. Here, the (question, answer) pairs are all arranged sequen
tially. This is necessary to perform a batch forward pass with all the pairs from each example at the same
time, saving compute time.

Feeding BART(COMET). The second operation is feeding the pairs to the COMET(BART) model,
which represents each token in the sequences as continuous vectors, of which we keep the last token of
each pair, denoted here as hidden states ℎ(𝑞𝑖,𝑐𝑖).

Classification. In the third operation, we pass the hidden states through a classification head that
is slightly different from the standard (Figure 4.2). Dropout is applied to each input hidden state. The
hidden states are then passed through a linear layer with only one neuron, producing one value per pair,
which is the relevancy score attributed to the pair. This produces a vector of relevancy scores (𝑟(𝑞𝑖,𝑐𝑖)),
one for each pair.

Output Reshape. In the fourth and final operation, we reshape the vector by grouping every two
scores. We group with a step size of two because this is an example for a binary task, where the model
has to choose from two choices. This produces a two by two matrix (two examples, two candidates).
Given the matrix of scores, the prediction of the network is the argmax5 of each vector.

BART’s original implementation6 uses a polynomial learning rate scheduler, as such, in this disser
tation, COMET(BART) is trained with the same scheduler.

4.2 Adversarial Attack

Adversarial attacks, in this dissertation, serve the purpose of hinting at possible brittle, surfacelevel
comprehension, vulnerable to simple changes in the input that preserve the semantics of the example.
They only provide hints, and not definite proof, because these are automated methods, and as such, not
all perturbations will preserve semantics and grammaticality. A good portion of them will have these
characteristics, however, which means it is still a useful approach.

Three adversarial attack algorithms are considered for this dissertation: BERTAttack (Li et al., 2020b),
BAE (Garg and Ramakrishnan, 2020) and TextFooler (Jin et al., 2020). BERTAttack and BAE use a
BERT model to select candidate word replacements, while TextFooler uses counterfitted GLOVE Word
Embeddings (Mrkšić et al., 2016; Pennington et al., 2014). These three algorithms are implemented in a
Python package named TextAttack (Morris et al., 2020b), which is used in this dissertation.

TextAttack abstracts and automates the attacking process, along with the implementation of several
attack algorithms. The user of the library is required to implement two classes: Dataset and Model.

5argmax is an operation that retrieves the index of the maximum value of all the elements in a vector.
6https://github.com/pytorch/fairseq/blob/master/examples/bart/README.md

50

https://github.com/pytorch/fairseq/blob/master/examples/bart/README.md

Chapter 4 Implementation

Reshape

Reshape

Dropout + Linear

Input

1

2

3

4

Figure 4.11: Conceptual implementation of a multichoice BART model. In this example, the input
contains two examples (batch size of two), each example having two candidate answers (binary classifi
cation).

The Dataset class is responsible for reading and producing a structured format of each example of
the dataset. It creates a list of dictionaries, each dictionary containing an example, where the keys are the
labels for each segment of the input and the values hold the respective text.

The Model class encapsulates the model under attack. The three algorithms (BERTAttack, BAE and
TextFooler) assume the target is a blackbox model, and in order to find important words in the input, they
compare the difference in the logit value7 for the correct class with and without the word in the input.
The model class thus receives several examples, passes them through the model, and returns the logit
values. The framework calculates the difference in values and picks the most important words. Starting
with the most important word and successively progressing towards the least, replacement candidates
for each word are determined until the prediction of the model is changed. Determining the replacement

7Logits are the nonnormalized predictions made by the model.

51

Chapter 4 Implementation

candidates depends on the algorithm. BERTAttack and BAE use a BERT model to do so, while TextFooler
uses word embeddings.

With the intention of learning about the quality of the adversarial examples produced by each algo
rithm, I performed preliminary experimentation with them. Upon inspection of small samples of each
algorithm, despite BAE and BERTAttack using complex and powerful language models, they appeared
to yield worse quality adversarial examples than TextFooler, which uses a simpler method with offthe
shelf word embeddings. BERTAttack and BAE produced ungrammatical and nonsemantic preserving
examples more often than TextFooler did. As a result, TextFooler is chosen as the algorithm to be used
in the experimentation.

Although TextFooler fared better than the others, it was still somewhat inconsistent using the out
ofthebox implementation. An evaluation study (Morris et al., 2020a) carried out by the authors of
TextAttack, found that even stateoftheart adversarial attack algorithms, such as TextFooler, often do not
preserve semantics, and 38% introduce grammatical errors. The authors of the paper make a suggestion
regarding TextFooler’s hyperparameters, by finding more appropriate threshold values through human
evaluation.

The hyperparameters relate to filtering out candidate words and candidate adversarial examples.
TextFooler selects candidate replacement words by calculating the target word’s cosine similarity with
every other word in the GLOVE’s vocabulary. All the words above a certain threshold are selected as
candidate replacements. This threshold is one of the two hyperparameters. In TextFooler’s original
implementation this threshold was set to 0.5. The evaluation study mentioned above finds a 0.9 cosine
similarity threshold more suitable. In this dissertation, 0.9 is used as the threshold.

The remaining hyperparameter is the sentence similarity threshold. A generated adversarial example
should be semantically equivalent to the original example. TextFooler addresses this issue by calculating
the cosine similarity between the sentence embeddings of the original example and the adversarial exam
ples, only selecting the adversarial examples above the sentence similarity threshold. Sentence represen
tation is obtained using the Universal Sentence Encoder (Cer et al., 2018). In the original implementation
of TextFooler, this threshold was set at ≈ 0.841. The evaluation study finds a suitable threshold of 0.98.

In this dissertation, after performing some preliminary tests on the proposed tasks (Chapter 3), 0.98
was far too strict and could barely produce any adversarial examples. A compromise was found at 0.9
threshold value, which produced a considerable number of adversarial examples, and from the inspection
of a small sample, the examples had reasonable levels of semantic preservation and grammaticality.

4.3 Training Methodology

BERT and its derivative models are unstable across random runs (Devlin et al., 2019; Mosbach et al.,
2021), meaning that with the same setup but using different seeds, the results can vary significantly. The
currently accepted hypothesis set forth by a study (Mosbach et al., 2021) suggests that despite catastrophic

52

Chapter 4 Implementation

forgetting (Kirkpatrick et al., 2017; McCloskey and Cohen, 1989) and small datasets being correlated with
the instability, the problem is inherently an optimization one. The authors notice that the gradients are
several orders of magnitude smaller during failed runs than successful runs. It is thus advisable to follow
the empirically determined finetune practices established in the models’ respective papers.

In this dissertation, the hyperparameters used are kept to their default, presented in the models’
papers; however, a sequential hyperparameter search is performed for two hyperparameters: learning
rate and batch size. First, learning rate is optimized by searching the model with the highest dev accuracy
score, after finetuning for 10 epochs, from the following range of rates: { 1e3, 1e4, 1e5, 2e3, 2e4,
2e5, 3e3, 3e4, 3e5 }. Using the learning rate determined in the previous step, an appropriate batch
size is determined in the the same way, from the range: { 4, 8, 16, 32 }. The learning rate and batch size
found for each task are described in Appendix A.

After the hyperparameter search, models in each run are trained up to 30 epochs, with epochwise
checkpointing. The checkpoint that yields the highest dev accuracy is chosen as the model to test with.
In order to have a significant result, the reported results are the mean of five runs, each with different
seeds: 42, 1128, 1143, 1385, 1415.

Datasets for NLP are usually partitioned into three parts: train, dev, and test split. A lifecycle of a
model consists of training on the train data, optimizing hyperparameters or checking for overfitting by
intermittently testing on the dev split, and finally, after all that, testing on previously unseen data with
the test split. NLP has seen a rise in task competitions, where participants have access to training data
and dev data and can create models from the data. Instead of having access to the reference output of the
test split, they only have access to the input of the test split. They use the models to make predictions on
the testset inputs and send them to the competition organizer, that calculates some performance metric
by comparing the predictions with the testset reference output, and the metric score is displayed on a
leaderboard online.

Two of the proposed tasks, PIQA and CSQA, are active competitions, and as such, I do not have
access to the testset reference. In order to have three splits of the data, I consider the dev set as testing
data and report on that data in Section 5. From the training data, I produce two splits: 90% of the training
data is kept as training data, and 10% is set aside as dev data in a random fashion. In order to keep a
balance of classes in the train and dev splits, I use stratified splitting,8 which guarantees that the random
split performed in the data preserves the distribution of the classes in the original data.

To verify statistical significance between models, a Student ttest is performed with 𝛼 = 0.05.

All experimentation was done on a single NVIDIA Titan RTX 24Gb VRAM over the course of five
months (with some stoppage time in between experiments).

8https://scikit-learn.org/stable/modules/cross_validation.html#stratified-shuffle-split

53

https://scikit-learn.org/stable/modules/cross_validation.html#stratified-shuffle-split

Chapter 4 Implementation

4.4 Data Contamination Study

Data contamination is becoming an extremely relevant phenomena in NLP, as the pretrain & finetune
procedure becomes more widespread. As models become larger, they can benefit from more pretraining
data. The web provides a colossal amount of text, and as such, researchers usually resort to scraping the
web to collect more pretraining corpora from which to train models with. Projects like CommonCrawl9

are perpetually scraping the web and making available large amounts of text from it, having collected
petabytes of data since 2008.

A problem arises when researchers build datasets for tasks from the same webpages that have been
used as pretraining data. Models can potentially memorize spans of text from those resources, and as
such, the basic principle of testing on unseen (o.o.d) data is broken.

The authors of GPT2 (Radford et al., 2019), as mentioned in Section 4.1.2, were concerned that their
model could be benefitting from data contamination, by memorizing text from the pretraining corpus.
They create bloom filters10 from WebText (GPT2’s pretraining corpus), producing a set of 8Grams
present in the corpus. They then go through the tasks testsets and decompose it into sets of 8Grams,
from which they can calculate the overlap with WebText using the bloom filters. As bloom filters are
probabilistic structures, this gives them an upperbound on the overlap, with a calculated false positive
rate upperbound of 1

108 . It was found that due to text overlap, the model gains small but consistent
benefits, arguably due to memorization.

In the next version, GPT3 (Brown et al., 2020), the authors decided not to use bloom filters, due to
the trade off of certainty for time not being deemed as worthy. In GPT3’s paper, they calculate direct
overlap of NGram sets, to obtain deterministic, trustworthy overlap statistics. The methodology follows
a three part algorithm:

1. Determining the size of the NGrams. In the previous study, the authors use a static size of n
grams, 𝑁 = 8. In this refined methodology, the size of the NGrams changes depending on the
downstream task testset. The authors define N as the fifth percentile of the distribution of the size
(in tokens) of the examples in the testset. In order to avoid spurious collisions and timeintensive
computations, they set minimum and maximum values for N, 8 and 13, respectively.

2. Creating the set of NGrams. After determining the size of the NGram for the task testset, they
create a set of unique NGrams from the testset examples.

3. Computing collisions. Using the same size of NGrams, iterate over the pretraining corpus, pro
ducing NGrams and verifying if they are present in the set of NGrams from the task testset. All

9https://commoncrawl.org/
10Probabilistic data structure that can efficiently definitely determine whether an element is not in a set, but cannot guarantee

that it is in the set, only that it may be in it.

54

https://commoncrawl.org/

Chapter 4 Implementation

NGram collisions are saved with counters. The authors speed this computation by parallelizing
the process and using an Apache Spark cluster.11

Popular machine reading datasets such as QuAC (Choi et al., 2018), SQuAD 2 (Rajpurkar et al., 2018)
or DROP (Dua et al., 2019) are flagged for >90% contamination. PIQA (Bisk et al., 2020b) is flagged
with 29% contamination. However, removing the contaminated text only decreases the performance by
3%, regardless of model size. The authors see this as a sign that memorization may not be at play but
rather statistical cues in the data, though they did not offer empirically based support to that conjecture.

To perform the study in this dissertation, I implemented this algorithm in Python. NLTK (Loper and
Bird, 2002) was used to compute NGrams from text. Step one and two can be implemented resorting to
basic data structures in Python’s standard library, such as the Set and Dictionary. Step three would require
an Apache Cluster to parallelize. Instead, multiprocessing12 is used to distribute the workload to different
processes. The pretraining corpus is evenly split according to the number of workers defined. Each
worker is responsible for calculating overlaps between their section of the corpus and the computed N
Grams from the task testset. After all workers have finished, the results are merged. The computation was
done in a server with two Intel®Xeon®Gold 6152, with 44 cores & 88 threads available. The computation
was thus carried out with 88 workers.

The initial algorithm implementation used to obtain the results discussed in Section 5.5 was later
refined to devise an open source library, with the aim of allowing researchers to analyze textual overlaps
between pretraining datasets and any given task testset.

Obtaining the pretraining RoBERTa’s/BART’s pretraining corpora proved to be an arduous task.
As described in Section 4.1.1 and Section 4.1.4, RoBERTa and BART were trained on five datasets:
BookCorpus (Zhu et al., 2015) & English Wikipedia, CCNews (Nagel, 2016), OpenWebText (Gokaslan
and Cohen, 2019) and Stories (Trinh and Le, 2018). COMET(BART) was additionally trained with
ATOMIC2020 (D. Hwang et al., 2021).

BookCorpus has recently stopped being openly distributed, and several initiatives to obtain the corpus
by crawling the original source have been made. The Pile (Gao et al., 2020), a large language modelling
dataset, made by merging several corpus together, has made available a recrawled BookCorpus. In this
dissertation, The Pile’s version13 of BookCorpus is used.

OpenWebText and English Wikipedia can be obtained using HuggingFace’s Datasets (Wolf et al.,
2020b) package. They can be programmatically downloaded and manipulated from Python. Information
regarding both datasets can be read through their documentation webpages.14

Stories is a corpus built from CommonCrawl. Unfortunately, due to data loss, the original distribution

11https://spark.apache.org/
12https://docs.python.org/3/library/multiprocessing.html
13Download URL: https://the-eye.eu/public/AI/pile_preliminary_components/books1.tar.gz
14OpenWebText: https://huggingface.co/datasets/openwebtext; Wikipedia: https://huggingface.co/

datasets/wikipedia#20200501en

55

https://spark.apache.org/
https://docs.python.org/3/library/multiprocessing.html
https://the-eye.eu/public/AI/pile_preliminary_components/books1.tar.gz
https://huggingface.co/datasets/openwebtext
https://huggingface.co/datasets/wikipedia#20200501en
https://huggingface.co/datasets/wikipedia#20200501en

Chapter 4 Implementation

website no longer exists. After contact with the author, he made openly available a backup of the dataset.15

ATOMIC2020 is a Commonsense Reasoning Knowledge Graph, distributed as a triple file, with a
head, relation and tail. The authors made the data openly available.16

The last dataset, and also more difficult to obtain, is CCNews, a specific section of CommonCrawl
that contains news from different websites and different languages. RoBERTa used a version of CC
News, with 63 million news articles created between September 2016 and February 2019. I used News
Please (Hamborg et al., 2017) to extract, parse and save the news articles as json files, by adapting an
existing script from the newsplease repository.17 As CommonCrawl joins news together from the various
sources and languages, all news articles from that specific time range had to be processed and filtered,
such that (i) news are within the correct range of dates; (ii) news are in the English language. Download
and filtering had an execution time of 28 days.

4.5 Shortcut Exploration

An exploration is carried out in the search of shortcuts/cues that might be guiding the models’ learning.
In this exploration, two experiments are implemented: class balance and ngram lexical cues.

The implementation for the first experiment, where class balance is examined, does not require an ex
tensive description as it is done with basic arithmetic with Python. The relative frequency of occurrences
for each candidate answer is calculated, for each split of the dataset, and from there one can observe
whether the relative frequency is balanced, or not, over all the candidate answers.

For the second experiment, the metrics developed in (Niven and Kao, 2019) are adopted. These
metrics aim to provide a quantitative measure of how beneficial ngrams present in the dataset are as cues,
if used by the model. Three metrics are used: applicability (𝛼𝑘), productivity (𝜋𝑘) and coverage (𝜉𝑘). For
the experiments, unigrams and bigrams are considered.

The proposed tasks (Chapter 3) can be framed as a multiple choice problem, whereby the model must
choose the correct answer from a set of candidate answers. As such, each dataset example has two major
segments: the question (or in the case of ARCT, the reason and claim) and the candidate answers (in
ARCT, the warrants). The calculation of the metrics take into account tokens present in the candidate
answers.

The applicability 𝛼𝑘 of a cue 𝑘 (Equation 4.1) measures the number of examples where the cue 𝑘
occurs in one candidate answer, but not in any of the others:

𝛼𝑘 =
𝑛

∑
𝑖=1

𝟙[∃𝑗, 𝑘 ∈ 𝕋(𝑖)
𝑗 ∧ 𝑘 ∉ 𝕋(𝑖)

¬𝑗] (4.1)

15https://drive.google.com/drive/u/1/folders/1yZzwaV8LO1hK8ChIm0sxazXF8BSIZ683
16https://allenai.org/data/atomic-2020
17https://github.com/fhamborg/news-please/blob/cc0be8e5e238a4743c04c304acb759970ab9ef17/

newsplease/examples/commoncrawl.py

56

https://drive.google.com/drive/u/1/folders/1yZzwaV8LO1hK8ChIm0sxazXF8BSIZ683
https://allenai.org/data/atomic-2020
https://github.com/fhamborg/news-please/blob/cc0be8e5e238a4743c04c304acb759970ab9ef17/newsplease/examples/commoncrawl.py
https://github.com/fhamborg/news-please/blob/cc0be8e5e238a4743c04c304acb759970ab9ef17/newsplease/examples/commoncrawl.py

Chapter 4 Implementation

where 𝟙 is the indicator function (yields 1 if the input is true, and 0 if not) and 𝕋(𝑖)
𝑗 is the set of tokens

for candidate answer 𝑗 in example 𝑖.
Applicability tells us the number of examples where a cue provides a direct signal to one of the

candidate answers, but it does not inform us on whether that signal yields a correct answer. Productivity
𝜋𝑘 of a cue 𝑘 (Equation 4.2) provides us with a measure of the proportion of applicable examples where
the cue predicts the correct answer,

𝜋𝑘 =
∑𝑛

𝑖=1 𝟙[∃𝑗, 𝑘 ∈ 𝕋(𝑖)
𝑗 ∧ 𝑘 ∉ 𝕋(𝑖)

¬𝑗 ∧ 𝑦𝑖 = 𝑗]
𝛼𝑘

(4.2)

where 𝑦𝑖 = 𝑗 means the correct answer for example 𝑖 is answer 𝑗, which cue 𝑘 belongs to. A cue
provides a useful signal if its productivity is above random chance: 𝜋𝑘 > 1

𝑚 , where m is the number of
candidate answers in each example.

The previous two metrics encompasses applicable examples only, which are examples where a cue
𝑘 is present in one candidate answer and not the other. It is useful, to understand how broad cue 𝑘’s
presence in the dataset is, to define its coverage 𝜉𝑘,

𝜉𝑘 = 𝛼𝑘
𝑛 (4.3)

where n is the total number of examples.
Using the previously defined equations, the metrics were calculated in Python.

4.6 Summary

This chapter described the implementation of four models (RoBERTa, GPT2, T5 and BART), the ad
versarial attack algorithm TextFooler, the data contamination analyses and the shortcut detection. It also
describes the training methodology used for finetuning tasks.

All of the models were implemented using HuggingFace’s Transformer library. For RoBERTa, GPT
2 and BART, a pairwise ranking finetuning method was used. This method is implemented for RoBERTa
in the HuggingFace library; however, such is not the case for GPT2 and BART. Therefore, I extended
the library to implement those methods.

The data contamination study followed an algorithm described in the paper introducing the models
GPT2 and GPT3. It was implemented in Python, and parallelized using its multiprocessing library.
The code was later improved to produce a new opensource package that helps researchers check their
pretraining and finetuning datasets for textual overlaps.

The pretraining datasets used to train RoBERTa and BART, which were this study’s target, proved
challenging to obtain, as their distribution either was not possible due to licensing issues or the repositories
had expired.

57

Chapter 4 Implementation

Lastly, the implementation of the two experiments in the shortcut exploration was done in Python.
The first experiment, which checks the class balance of each dataset, required only the calculation of
relative frequencies of each candidate answer. The second experiment, which searches for lexical cues,
was achieved by implementing metrics specifically designed in the literature for that purpose.

58

Chapter 5

Results

This chapter presents the results and findings from the different experiments performed. In Section 5.1,
the experiments were conducted using regular language models, pretrained with raw text, and finetuned
on the tasks (Chapter 3). The same tasks were the target of finetune using a neurosymbolic model, pre
trained on raw text and ATOMIC2020 commonsense knowledge base, in Section 5.2. Adversarial attacks
are described in Section 5.3. CrossTask Evaluation is discussed in Section 5.4. Data contamination study
is presented in Section 5.5. Finally, the product of the exploration of shortcuts is presented in Section 5.6.

5.1 Neural Models

5.1.1 Evaluation on Commonsense Reasoning Tasks

In order to prepare the neural models to solve the selected tasks, I finetuned the models on those four
different tasks, previously presented in Chapter 3.

Table 5.1 shows the accuracy for each task. As expected, all the models perform above random
choice, showing that the tasks can be performed comfortably by the neural models.

While there is a clear gap between the performance of the models and humans, some tasks are notably
more challenging than others, showing mixed results across tasks for each model.

OnARCT, a binary classification task testing argument reasoning, the best scoring model is RoBERTa
Large, with a gap of 0.09 accuracy from the human upper bound. CSQA, a 5choice Q&A general domain
commonsense reasoning task, has a gap of 0.156, similar to PIQA, where the gap is 0.16. PIQA differs
from CSQA, being a binary classification task focused on physical commonsense knowledge. These two
feature a more significant margin.

Somewhat surprisingly, RoBERTa fares better across tasks compared to T5: this is unexpected as T5

1https://www.tau-nlp.org/csqa-leaderboard
2https://yonatanbisk.com/piqa/

59

https://www.tau-nlp.org/csqa-leaderboard
https://yonatanbisk.com/piqa/

Chapter 5 Results

ARCT ARC PIQA CSQA Params

Random 0.5 0.25 0.5 0.2
HUMAN 0.909 N/A 0.949 0.889

RoBERTaLarge 0.815 ± 0.011* 0.411 ± 0.022 0.789 ± 0.006* 0.733 ± 0.006* 355M
GPT2Medium 0.540 ± 0.071 0.318 ± 0.009 0.706 ± 0.005 0.551 ± 0.012 345M
T5Large 0.743 ± 0.006 0.440 ± 0.008* 0.772 ± 0.005 0.713 ± 0.007 770M

State of the Art 0.599 0.814 0.835 0.833

Table 5.1: Accuracy of models (rows) on the selected tasks (columns). Scores displayed are the mean of
the accuracy scores for 5 runs. A bold figure indicates the best result in that task. Human benchmarks and
state of the art (SOTA) for CSQA were taken from their public leaderboard;1for ARCT, human bench
mark from (Habernal et al., 2018a) and SOTA from (Zhou et al., 2020); and for PIQA, human benchmark
from (Bisk et al., 2020b) and SOTA from their public leaderboard.2‘*’ indicates results that are statisti
cally significant with 𝛼 = 0.05.

consistently tops the charts in comprehension tasks (Raffel et al., 2020),3 and in this case, has more than
the double of parameters. RoBERTa performs better on three of the four tasks, ARCT, PIQA, and CSQA,
emerging as the most capable reasoner.

GPT2 stands out in a negative way, performing worse than RoBERTa and T5 in every task, with a
considerable gap to them.

While recalling that our goal in this dissertation is to study the integrity of the tasks that the models
are intended to be performing, rather than to seek to beat the state of the art concerning the performance
scores for these tasks, it is worth noting though that a new state of the art is actually established for the
revised ARCT dataset (0.815), surpassing the previous one (0.599) by a considerable amount. While the
SemEval sharedtask regarding ARCT gained traction, amassing a considerable amount of participants,
and consequently papers reporting on their solutions to the task, the revised version (Niven and Kao,
2019) seems to not have gained equal traction. Upon inspection of its citations, only two papers report a
solution using the revised dataset, which may help explain why the previous state of the art is so much
lower than the result obtained in this dissertation.

In the remaining tasks, the models fall below the state of the art, while not by much in PIQA (0.789
against 0.835) and CSQA (0.733 against 0.833).

Two patterns seem to arise from the empirical results, which are worthwhile to mention.
Despite ARCT being harder for humans to solve than PIQA, machines are better at solving ARCT

than PIQA. Both are binary problems, but PIQA is much more comfortable to humans than ARCT, as
it probes for physical knowledge, more natural than analyzing arguments about controversial problems.

3https://super.gluebenchmark.com/leaderboard

60

https://super.gluebenchmark.com/leaderboard

Chapter 5 Results

Reciprocally, it seems natural that PIQA is more difficult to models, as they cannot easily capture the
facts of the physical world.

Another pattern regards ARC and CSQA, both multiplechoice problems with up to five possible
answers. ARC’s accuracy score is almost half of CSQA’s, which cannot be discarded based on having
more margin for error due to more possible answers. While CSQA has a wider array of commonsense
dimensions than ARC, the latter was obtained from science exams, thus probing a more profound knowl
edge about the physical world, like physics and chemistry laws. It is not inconceivable then that ARC is
a more arduous task for machines to solve.

As RoBERTa emerges as the most capable reasoner, the experiments that follow will be carried out
resorting to RoBERTa.

5.1.2 Retraining and Evaluation with Partial Input

For human to perform the tasks at stake, every segment of the input is necessary, despite not all of them
being equally important. A task that can be solved by models by just looking at the answers and not
knowing the respective question it is a clear indication that the models are taking some shortcut.

Table 5.2 contains the results of the partial input training. For each task, the hyperparameters (in
cluding random seed) that produced the best performing RoBERTaLarge model are used to train models
that are fed with partial inputs.

Task
Full

Inputs
Random
Score

Full Input
Score

Partial Input
Partial Input

Score

ARCT
Claim (C) + Reason (R)

Warrant 0 & 1 (W)
0.5 0.831

C+R 0.5

R+W 0.5

C+W 0.785

ARC
Question (Q) +

Candidate Answers (A)
0.25 0.435

Q 0.227

A 0.245

PIQA
Goal (G) +

Solution 1 & 2 (Sol)
0.5 0.795

Goal 0.495

Sol 0.735

CSQA
Question (Q) +

Candidate Answers (A)
0.2 0.738

Q 0.196

A 0.218

Table 5.2: Partial input training results (accuracy). Scores above random choice are in bold.

Accuracy above random baseline are in bold. For both ARCT and PIQA, an accuracy score obtained

61

Chapter 5 Results

with partial inputs, close to the score when using full inputs, is achieved. Despite CSQA also having a
score above random baseline when only using answers, it is only 0.018 above it, which is not enough to
say there are cues present that the models are benefiting from.

ARCT is a “repeated offender” in this setting. In previous work that flagged severe problems in the
dataset (Niven and Kao, 2019), the authors noticed that providing just one or two segments of the input
is enough for the model to perform above the random baseline, as it is relying on cues to solve the task,
breaking it completely. After balancing out the cues, this was not possible anymore, at least when using
BERT. We can see that such is still possible when using RoBERTa, as providing only the claim (C) and
the warrant (W) is enough for the model to obtain an accuracy score of 0.785, just 0.046 shy of the score
using the whole input (0.831). It seems that RoBERTa is better at picking up these cue signals and is
taking advantage of them to perform the task, a strong indicator of surface learning.

PIQA shows the same problem as ARCT. Providing just the solution and leaving out the goal yields
an accuracy score of 0.735, 0.06 shy of the score when using the full inputs (0.795). The model is
providing solutions for a problem/goal it was not provided with, yet it is able to perform way above the
random baseline. Without a goal, both solutions should be equally likely, unless one of the solutions
seems so ridiculous that it is ruled out just off of commonsense, which would mean that the model is
performing another type of commonsense reasoning task. Given the history of cue abuse by these models,
this scenario seems unlikely, although not impossible.

Both tasks have gone through preprocessing steps to eliminate statistical lexical cues. It is not im
possible that some lexical cues remain, but the cues the models are using are likely highly nonlinear,
making them likely difficult to detect. I will be back to this in more detail below in Section 5.6.

The remaining tasks, ARC and CSQA, seem to be more resistant to shortcut learning by RoBERTa.
Providing just the question or just the answer leaves the models confused, as it should, which is reflected
in scores in the vicinity of the random score. One of the most apparent differences between these two
tasks and the others is that they offer more candidate answers (45) than the others (binary). It could be
a hint that Q&A tasks with multiple choices provide better generalization power.

To understand if this is the reason, the tasks were converted to binary tasks by picking one random
wrong answer and the correct answer. The models could not still obtain a score above the random baseline.

5.2 NeuroSymbolic Models

5.2.1 Evaluation on Commonsense Reasoning Tasks

Table 5.3 shows the performance scores of COMET(BART) and BARTLarge, the latter being a baseline
to which COMET(BART) is compared.

4https://www.tau-nlp.org/csqa-leaderboard
5https://yonatanbisk.com/piqa/

62

https://www.tau-nlp.org/csqa-leaderboard
https://yonatanbisk.com/piqa/

Chapter 5 Results

ARCT ARC PIQA CSQA Params

Random 0.5 0.25 0.5 0.2
HUMAN 0.909 N/A 0.949 0.889

BARTLarge 0.655 ± 0.154 0.382 ± 0.027 0.777 ± 0.005 0.738 ± 0.005* 406M
COMET(BART) 0.790 ± 0.005 0.412 ± 0.011 0.783 ± 0.008 0.718 ± 0.008 406M

State of the Art 0.599 0.814 0.835 0.833

Table 5.3: Accuracy of models (rows) on the selected tasks (columns). Scores displayed are the mean
from the scores obtained for 5 runs. A bold figure indicates the best result in the task. Human bench
marks and state of the art (SOTA) for CSQA were taken from their public leaderboard;4for ARCT, hu
man benchmark from (Habernal et al., 2018a) and SOTA from (Zhou et al., 2020); and for PIQA, human
benchmark from (Bisk et al., 2020b) and SOTA from their public leaderboard.5‘*’ indicates results that
are statistically significant with 𝛼 = 0.05.

COMET(BART) outperforms BARTLarge on all but one task, CSQA, broadranging fivechoice
Q&A task. In CSQA, BARTLarge performs even better than the previously best performing model in
this dissertation, RoBERTa (Section 5.1.1). Despite the evident differences in the means, the ttest yielded
a pvalue of > 0.05 for all tasks but CSQA, meaning the differences are not statistically significant in
other tasks.

This could be due to the small sample size (5 runs), which may not be enough to detect a meaning
ful difference in this instance. BARTLarge also has a larger standard deviation on ARC and ARCT,
especially the latter, possibly due to instability across the random seeded runs.

If disregarding the statistical significance, the neurosymbolic method does provide an advantage
over the baseline (BARTLarge), meaning the refined priors enhance the capabilities of the model to
perform the commonsense reasoning tasks. However, when comparing with the best performing model
from Section 5.1.1, RoBERTa, COMET still falls short.

In comparison with the state of the art for each task, the patterns are similar to the ones observed in
Section 5.1.1. Both COMET(BART) and BARTLarge comfortably surpass the state of the art, whereas
fall short for ARC, PIQA and CSQA. The gap to the state of the art for ARC is the largest.

In tasks other than CSQA, RoBERTaLarge remains as the most capable reasoner, obtaining better
results than both COMET(BART) and BARTLarge.

The same patterns observed in Section 5.1.1 are present here. In terms of the binary tasks, PIQA
(physical commonsense) and ARCT (argument reasoning), PIQA remains harder, but not by much,
than ARCT for COMET(BART), despite humans finding ARCT harder than PIQA. ARC, which tar
gets sciencerelated commonsense reasoning, continues to be harder than CSQA, with nearly half the
accuracy.

63

Chapter 5 Results

5.2.2 Retraining and Evaluation with Partial Input

Task
Full

Inputs
Random
Score

Full Input
Score

Partial Input
Partial Input

Score

ARCT
Claim (C) + Reason (R)

Warrant 0 & 1 (W)
0.5 0.795

C+R 0.5

R+W 0.5

C+W 0.782

ARC
Question (Q) +

Candidate Answers (A)
0.25 0.422

Q 0.227

A 0.344

PIQA
Goal (G) +

Solution 1 & 2 (Sol)
0.5 0.794

Goal 0.495

Sol 0.724

CSQA
Question (Q) +

Candidate Answers (A)
0.2 0.727

Q 0.196

A 0.184

Table 5.4: Partial input training results (accuracy). Scores above random choice are in bold.

Table 5.4 shows the partial input training results for COMET(BART).
ARCT and PIQA continue to be resolved by just taking into account the answers, as this had been

observed in Section 5.1.2. The same question arises from this result: what are the models actually solving?
ARC, which previously showed no signs of being solved with partial inputs, emerges here as another

“broken” task, with COMET(BART) achieving 0.344 accuracy, just 0.078 shy of the score obtained when
looking at the whole input. The model is answering sciencerelated commonsense reasoning questions
without looking at the question itself. The fact that RoBERTa could not take advantage of the signals
present in the data, and COMET(BART) did, shows the influence of the pretraining regime on the mod
els’ capabilities on downstream tasks. BART itself is pretrained with the same data as RoBERTa, but
with different tasks. These differences allow it to learn different linguistic phenomena, which may be
helpful in some ways and not in others. On top of that, through the COMET framework, BART was in
jected with commonsense knowledge. These fundamental differences generate a different solution (in the
optimization landscape), such that the model seems to be able to capture different underlying shortcuts.

5.3 Adversarial Attack

As per the implementation described in Section 4.2, the neurosymbolic model and the best of the neuro
onlymodels, namelyCOMET(BART) andRoBERTa, are put to the test, being the target of a TextFooler (Jin

64

Chapter 5 Results

Task Random Model Before After Δ Δ%

ARCT 0.5
RoBERTaLarge 0.831 0.476 0.355 42.7%

COMET(BART) 0.795 0.512 0.283 35.5%

ARC 0.25
RoBERTaLarge 0.435 0.157 0.278 63.9%

COMET(BART) 0.422 0.107 0.315 74.7%

PIQA 0.5
RoBERTaLarge 0.795 0.306 0.489 61.5%

COMET(BART) 0.794 0.286 0.508 64.0%

CSQA 0.2
RoBERTaLarge 0.738 0.536 0.202 27.4%

COMET(BART) 0.727 0.500 0.226 31.3%

Table 5.5: Results of the adversarial attack on RoBERTaLarge and COMET(BART), on each task.

et al., 2020) attack. For both RoBERTaLarge and COMET(BART), the best performing model from the
five runs for each task is selected as the attack target. Table 5.5 shows the results of the adversarial attack.

Both RoBERTaLarge and COMET(BART) show brittleness, with the neurosymbolic model, despite
having been exposed to finegrained commonsense facts, still not being any less susceptible to the attack
than RoBERTaLarge.

A sharper drop in performance is observed in ARCT, ARC and PIQA, the same tasks that were flagged
in Section 5.1.2 and Section 5.2.2 as being “broken”. This aligns with the hypothesis that adversarial
attacks target nonrobust features, present when models learn the task through shortcuts. Since a sharper
drop is observed in these tasks, together with the evidence other experiments uncovered, it hints at the
possibility that these models are not learning solely the commonsense reasoning task, but learning also
to identify certain spurious signals present in the data.

5.4 CrossTask Evaluation

Testing on other datasets, without having trained on them, provides an excellent opportunity of evaluating
the knowledge retention and how well the models can generalize and reason with it. If a given model
happens to have found spurious cues for a given dataset, and thus specific only to that dataset, it would
try to apply them to other datasets and fail to do so.

Table 5.6 and Table 5.7 show the results of the cross task evaluation, for RoBERTaLarge and COMET(BART),
respectively.

All but two directions, one per each model, perform well above the tasks’ random baseline. In
RoBERTaLarge, the direction PIQA → ARC falls 0.02 below the randombaseline, and for COMET(BART),

65

Chapter 5 Results

Tested On

ARCT ARC PIQA CSQA

Trained
With

ARCT 0.831 0.310 0.571 0.293
ARC 0.589 0.435 0.627 0.343
PIQA 0.597 0.230 0.795 0.552
CSQA 0.627 0.384 0.687 0.738

Random 0.5 0.25 0.5 0.2

Table 5.6: Crosstask results for RoBERTa (in accuracy). The values in the diagonal are from Table 5.1.

Tested On

ARCT ARC PIQA CSQA

Trained
With

ARCT 0.795 0.321 0.614 0.350
ARC 0.542 0.422 0.562 0.355
PIQA 0.580 0.350 0.794 0.579
CSQA 0.592 0.114 0.660 0.727

Random 0.5 0.25 0.5 0.2

Table 5.7: Crosstask results for COMET(BART) (in accuracy). The values in the diagonal are from
Table 5.3.

CSQA → ARC does so by 0.136. As a reminder, CSQA is a 5choice Q&A commonsense reasoning task
with a wide array of domains. ARC is an upto 5choices Q&A commonsense reasoning task targeting
scientific commonsense. A repeating pattern is the target direction, as both instances are tested on ARC.
At first glance, this pattern could further reinforce the findings from Section 5.2.2, where ARC is solved
by providing COMET(BART) with just the “answers”, as the model abuses shortcuts to obtain a good
performance. However, that extrapolation cannot be sustained by these results. Models trained on other
tasks can stay well above random on ARC, which can be due to transferring knowledge or shortcuts.
These two isolated cases cannot thus sustain the hypothesis that models have learned shortcuts that are
not transferable to ARC. A possible explanation for these divergences can be what is known as nega
tive transfer (Ruder, 2017), through gradient conflict (Javaloy and Valera, 2021; Levi and Ullman, 2020;
Suteu and Guo, 2019; Yu et al., 2020). In more concrete terms, the optimization landscape is different
in both tasks. The local optima found in these two instances happen to be a horrible solution in ARC’s
optimization landscape, diverging from any local optima.

CSQA appears to provide the best prior knowledge out of all the tasks, making sense as it is a very
general domain dataset, covering a broad range of commonsense dimensions and reasoning types. It does

66

Chapter 5 Results

not stray far off from a finetuned model’s scores when applied to other tasks in a zeroshot manner.
ARCT appears to provide the least out of all the tasks, which is somewhat expected as it is not an

ordinary commonsense reasoning task. While requiring commonsense reasoning, the task differs not only
in the domain, as it covers controversial social topics, but the task itself is different, not so much a Q&A
task as the rest of them, but an argument mining task of warrant identification.

The gap to the finetune baseline (diagonal values) is shorter in COMET(BART) than in RoBERTa
Large, hinting at the fact that COMET(BART) could be better maximizing the transferability of knowl
edge (or shortcuts)

Given that the models generally behave well in a zeroshot manner, an hypothesized performance
decrease due to nontransferable shortcuts is not observed, and thus the experiment is inconclusive in
that regard.

5.5 Data Contamination

Name Split N
Total

Examples
Dirty

Examples
Dirty

Percentage
Clean

Examples
Clean

Percentage

ARCT test 13 888 0 0% 888 100%
ARC test 10 1172 14 1.19% 1158 98.81%
PIQA dev 8 1838 243 13.22% 1595 86.78%
CSQA dev 8 1221 62 5.08% 1159 94.92%

Table 5.8: Data contamination statistics for each task. An example is considered dirty if it has at least a
single Ngram (N Value in 3rd column) collision with any of the pretraining datasets.

The results obtained in the previous sections motivates an inquiry into a possible contamination of the
tasks’ respective test sets, whereby the examples might have been observed during the pretraining phase.
The methodology followed for this study is described in Section 4.4.

Table 5.8 shows the outcome of such study analysis.
Interestingly, one of the most affected tasks, ARCT, is entirely clean, with none of the examples

being flagged for an overlap with any of the pretraining testsets. This effectively eliminates the option
of memorization as an explanation for the shortcut learning observed, and since previous work (Niven
and Kao, 2019) eliminated trivial lexical spurious cues, the only remaining explanation for the brittleness
of the task is highly nonlinear shortcuts in the data that models exploit.

The remaining tasks exhibit different levels of contamination. ARC was flagged for 1.19% of its
testset, 14 examples out of 1172, the lowest of the contaminated tasks. CSQA follows ARC with 5.08%
contamination, 62 examples out of 1221. The most contaminated task is PIQA, with 13.22% of the devset
contaminated, 243 examples out of 1838.

67

Chapter 5 Results

An additional experiment was performed to verify the level of data contamination between the tasks
testsets. It was found that they share no ngrams between themselves, meaning there is no data contam
ination beween tasks. This effectively rules out the possibility of memorization being an explanatory
factor for the CrossTask Evaluation experiment (Section 5.4).

Name Split
Original Accuracy

Score
Accuracy Score

Dirty Set
Accuracy Score

Clean Set

ARC test 0.435 0.714 (+0.279) 0.432 (0.003)
PIQA dev 0.795 0.835 (+0.040) 0.789 (0.006)
CSQA dev 0.738 0.726 (0.012) 0.739 (+0.001)

Table 5.9: RoBERTa’s accuracy when tested on the full testset (Original Accuracy Score), on the Dirty
Set (contains only dirty examples) and Clean Set (contains only clean examples).

Name Split
Original Accuracy

Score
Accuracy Score

Dirty Set
Accuracy Score

Clean Set

ARC test 0.422 0.643 (+0.221) 0.420 (+0.002)
PIQA dev 0.794 0.819 (+0.025) 0.790 (0.004)
CSQA dev 0.727 0.710 (0.017) 0.727 (+0.000)

Table 5.10: COMET(BART)’s accuracy when tested on the full testset (Original Accuracy Score), on the
Dirty Set (contains only dirty examples) and Clean Set (contains only clean examples).

To further understand the impact of the contamination on the accuracy scores obtained, and to what
extent memorization may be at play, two sets were created from the testsets/devsets: one set denoted as
”Dirty Set”, containing only dirty examples, and another denoted as ”Clean Set”, containing only clean
examples.

Table 5.9 and Table 5.10 shows the performance of RoBERTa and COMET(BART), respectively, on
these two sets and the original testset/devset.

Performance of ARC increases considerably on the Dirty Set; however, since the set is so tiny (14
examples), the impact on the overall score is marginal, such that in the Clean Set, there is no clear ad
vantage or disadvantage in having the dirty examples present. Nevertheless, both models do find those
examples much easier, hinting at the impact that memorization can have on the evaluation process.

PIQA, the most contaminated task, appears to have had its accuracy score slightly inflated through
memorization. Performance on the Dirty Set is slightly better than in the Clean Set, which in turn is lower
than the original accuracy score, albeit not by much.

CSQA, differently from the previous two tasks, actually shows degradation of performance due to
contamination. Performance on the Dirty Set is lower than on the Clean Set, meaning the model must be

68

Chapter 5 Results

conflating concepts, not generalizing well to the clean examples, bringing the performance down.
Overall, models trained on ARC greatly benefit from data contamination, and a slight benefit was also

detected for PIQA, but the same does not happen for ARCT and CSQA. Given that data contamination
only provided substantial performance gains in one of four tasks, the behavior that leads the models not
to learn the task meant to be conveyed by the datasets cannot be fully explained by memorization alone.
Thus shortcuts should be present in the data.

5.6 Shortcut Exploration

In this section, the results of two experiments looking to identify shortcuts are presented. The first ex
periment, which checks class balance of each task dataset, is discussed in Section 5.6.1. Section 5.6.2, in
turn, covers the analysis of possible lexical cues present in each task dataset.

5.6.1 Class Balance

Table 5.11 contains the statistics of target distribution for each task dataset split.
ARCT, PIQA and CSQA appear to be quite well balanced. Despite PIQA and CSQA not being

perfectly balanced, the gap between the unbalanced classes and random choice is so small that no real
advantage are likely to be obtained from it.

ARC is slightly more unbalanced than the other tasks, although not by much either. In the train split,
candidate answer in the first position, labeled 0 in the table because it is zeroindexed, has a diminished
presence in the split. The remaining three candidate answer positions are relatively well balanced, mean
ing it would be difficult for a model to take advantage of the slight unbalance. In the development and test
splits, the first position is also underrepresented, and two classes have a bigger present than the others,
creating a slight unbalance.

In spite of this, the unbalance cannot explain the results for ARC on the previous experiments, as the
model learns from the train split, and as such in order for the model to learn to take advantage of this
unbalance, it would have to be present in the train split as well. Since the train split is relatively well
balanced, the models should not pick up on such signal.

5.6.2 Lexical Cues

In this section, a discussion ensues from the cues detected using two of metrics described in Section 4.5:
coverage (𝜉𝑘), which measures the percentage of the total examples in which the cue is present; and
productivity (𝜋𝑘), which indicates the proportion of examples where the cue predicts a correct answer.
A useful cue has a productivity above random choice, 𝜋𝑘 > 1/𝑚, where m is the number of candidate
answers.

69

Chapter 5 Results

ARCT Cues. Table 5.12 presents the top ten unigram and bigram cues in ARCT’s dataset. The
most extensive coverage is achieved with “not”, which is incidentally the most useful cue in the original
dataset, with a coverage of 0.64 and productivity of 0.61. The dataset was balanced in order to nullify the
productivity of the cues (Niven and Kao, 2019). In the revised dataset, “not” has a coverage of 0.38 and
a productivity of 0.5 (random chance). Since the dataset has been revised with the aid of these metrics, it
is expected that there are no high coverage useful unigram and bigram cues lingering, evidenced by the
fact that none of the cues detected had productivity greater than 1/2.

ARC Cues. In Table 5.13, the top ten unigram and bigram cues present in ARC’s dataset are shown.
Three useful bigrams were detected, and five useful unigram cues are present in the top ten: “to”, “and”,
“on”, “for”, “an”. The coverage of these unigram cues are relatively low, with the largest coverage being
0.13 (13% of the dataset) corresponding to cue “to”, however, its productivity is very near the random
baseline of 0.25. The remaining cues have coverages of 0.06 and 0.05, with the largest productivity being
0.41 for cue “and”. This cue is thus a strong signal when found in only one of the candidate answer, but
because it is such a common function word, it rarely is found in only one of the candidates, having a low
application because of this.

ARC therefore has lexical cues present in the dataset, although their coverage and productivity are so
low that it cannot explain the scores obtained.

PIQACues. Table 5.14 outlines the top 10 (in coverage) unigram and bigram cues for PIQA’s dataset.
Four useful unigram and two useful bigram cues are present in the top 10. Three of the unigrams are
function words, and the cue “a” has the most coverage with 0.10. The remaining cues hover between
0.07 and 0.01 coverage. The cues that were found have low productivity, nearing the random choice
mark (0.5), and when considering their low coverage, it is an indication that the dataset does not have
“anchors” from which models can fully take advantage of.

CSQA Cues. Top 10 (in coverage) unigram and bigram cues found for CSQA’s dataset are shown in
Table 5.15. Similar to what can be observed in ARC’s and PIQA’s dataset, CSQA contains a few unigram
and bigram cues, but their coverage and productivity are so low that the performance cannot be attributed
to their presence. Five unigram and six bigram cues are useful, as their productivity is greater than 0.2
(random baseline). The coverage for the bigram cues is just 0.01, while for the unigrams is in the range of
0.07 to 0.03. The productivity for the cues does not stray far from the random baseline, but three bigrams
achieved a productivity of 0.27 or greater, which is a considerable gap to the random baseline.

In light of the results, one might be tempted to conjecture that no real useful cues are present in the
dataset. This conjecture, however, would not stand as the metrics used allow the detection of contiguous
lexical cues, because they function with ngrams. It could be that the dataset contains other lexical cues
that are not so linear, e.g. when the word “boat” appears in the third position in the sentence, and “car”
in the eight position, the answer is 0.

There are also other types of cues which are not strictly lexical, but instead rely on the features of
word embeddings and hidden states. These require other types of analysis and are not trivial to find and
interpret. It is an emerging topic of research.

70

Chapter 5 Results

Task Split
Choice
Number

Occurrences
Relative

Frequency
Random
Chance

ARCT

Train
0 1210 0.500

0.500

1 1210 0.500

Development
0 316 0.500
1 316 0.500

Test
0 444 0.500
1 444 0.500

ARC

Train

0 239 0.214

0.250

1 296 0.265
2 291 0.260
3 293 0.262

Development

0 64 0.214
1 73 0.244
2 78 0.261
3 83 0.278
4 1 0.003

Test

0 266 0.227
1 311 0.265
2 310 0.265
3 285 0.243

PIQA
Train

0 8053 0.500

0.500
1 8060 0.500

Development
0 910 0.495
1 928 0.505

CSQA

Train

0 1909 0.196

0.200

1 1973 0.203
2 1946 0.200
3 1985 0.204
4 1928 0.198

Development

0 239 0.196
1 255 0.209
2 241 0.197
3 251 0.206
4 235 0.192

Table 5.11: Class balance for each task dataset split. Relative frequency in bold indicates a frequency
above random chance.

71

Chapter 5 Results

Unigrams Bigrams
Unigram Coverage (𝜉𝑘) Productivity (𝜋𝑘) Bigram Coverage (𝜉𝑘) Productivity (𝜋𝑘)

(not,) 0.38 0.5 (is, not) 0.09 0.5
(do,) 0.12 0.5 (are, not) 0.07 0.5

(does,) 0.06 0.5 (do, not) 0.04 0.5
(can,) 0.06 0.5 (can, not) 0.03 0.5
(to,) 0.06 0.5 (does, not) 0.03 0.5

(and,) 0.05 0.5 (not, be) 0.03 0.5
(no,) 0.04 0.5 (is, a) 0.03 0.5
(a,) 0.04 0.5 (can, be) 0.02 0.5
(ca,) 0.04 0.5 (will, not) 0.02 0.5
(be,) 0.04 0.5 (not, a) 0.02 0.5

(more,) 0.03 0.5 (to, be) 0.02 0.5

Table 5.12: Top 10 unigram and bigram cues with regards to coverage, in descending order, for the ARCT
dataset.

Unigrams Bigrams
Unigram Coverage (𝜉𝑘) Productivity (𝜋𝑘) Bigram Coverage (𝜉𝑘) Productivity (𝜋𝑘)

(to,) 0.13 0.26 (of, the) 0.07 0.15
(in,) 0.13 0.25 (in, the) 0.06 0.24
(of,) 0.13 0.25 (to, the) 0.04 0.24
(a,) 0.11 0.22 (amount, of) 0.03 0.25

(the,) 0.09 0.25 (from, the) 0.03 0.27
(water,) 0.09 0.15 (in, a) 0.03 0.30
(from,) 0.07 0.23 (on, the) 0.03 0.22
(and,) 0.06 0.41 (the, same) 0.02 0.30
(on,) 0.06 0.26 (number, of) 0.02 0.16
(for,) 0.05 0.29 (the, amount) 0.02 0.24
(an,) 0.05 0.29 (of, a) 0.02 0.25

Table 5.13: Top 10 unigram and bigram cues with regards to coverage, in descending order, for the ARC
dataset. In bold are cues whose productivity 𝜋𝑘 > 1/4, indicating a useful cue.

72

Chapter 5 Results

Unigrams Bigrams
Unigram Coverage (𝜉𝑘) Productivity (𝜋𝑘) Bigram Coverage (𝜉𝑘) Productivity (𝜋𝑘)

(a,) 0.10 0.52 (in, the) 0.03 0.41
(of,) 0.07 0.50 (on, the) 0.03 0.54
(to,) 0.07 0.49 (of, the) 0.03 0.50
(and,) 0.07 0.52 (with, a) 0.03 0.47
(in,) 0.06 0.47 (use, a) 0.02 0.51
(on,) 0.06 0.53 (to, the) 0.02 0.47
(the,) 0.05 0.40 (in, a) 0.02 0.50
(with,) 0.05 0.47 (and, then) 0.02 0.43
(it,) 0.05 0.48 (into, the) 0.01 0.52

(water,) 0.04 0.52 (top, of) 0.01 0.45
(your,) 0.04 0.45 (the, top) 0.01 0.47

Table 5.14: Top 10 unigram and bigram cues with regards to coverage, in descending order, for the PIQA
dataset. In bold are cues whose productivity 𝜋𝑘 > 1/2, indicating a useful cue.

Unigrams Bigrams
Unigram Coverage (𝜉𝑘) Productivity (𝜋𝑘) Bigram Coverage (𝜉𝑘) Productivity (𝜋𝑘)

(store,) 0.07 0.24 (go, to) 0.01 0.20
(house,) 0.06 0.19 (new, york) 0.01 0.21

(to,) 0.06 0.17 (grocery, store) 0.01 0.20
(of,) 0.06 0.19 (have, fun) 0.01 0.25
(in,) 0.05 0.12 (talk, to) 0.01 0.06

(office,) 0.03 0.23 (office, building) 0.01 0.25
(city,) 0.03 0.22 (friend, house) 0.01 0.27
(room,) 0.03 0.23 (each, other) 0.01 0.10
(school,) 0.03 0.19 (neighbor, house) 0.01 0.28
(get,) 0.03 0.23 (living, room) 0.01 0.19
(park,) 0.03 0.16 (music, store) 0.01 0.34

Table 5.15: Top 10 unigram and bigram cues with regards to coverage, in descending order, for the CSQA
dataset. In bold are cues whose productivity 𝜋𝑘 > 1/5, indicating a useful cue.

73

Chapter 5 Results

5.7 Summary

This chapter presented the results obtained in this dissertation for several experiments. The models are,
at face value, very capable reasoners and appear to be catching up to humans, although they face a steep
battle still. A new stateoftheart result is obtained for the revised ARCT dataset.

Over the course of the chapter, different experiments were laid out that aimed to show that the models
are not learning the task meant to be conveyed by the datasets. Instead, they appear to be learning different
tasks due to greedy learning through shortcuts.

When presented with partial inputs, models can perform just as well as with the whole inputs. They
were shown to be brittle also when faced with adversarial attacks.

Models seem able to transfer knowledge from one task to another, which can be attributed either to
generalized knowledge or transferable shortcuts, or both.

A data contamination study was performed, finding that 3/4 tasks were contaminated, although with
little impact on the accuracy score when examined further.

COMET(BART), despite possessing more refined priors through its neurosymbolic pretraining,
does not behave any different from RoBERTa, showing the same (and even worse, in part) behaviour in
terms of shortcut learning and general brittleness.

Lastly, an exploration for possible shortcuts was performed. The datasets were found to be, in differ
ent degrees, quite balanced, and as such that cannot be responsible for the behavior observed. Unigram
and bigram lexical cues were found in ARC, PIQA and CSQA. However, their coverage and productivity
are so low that they cannot explain the shortcutting detected with other experiments.

74

Chapter 6

Conclusion

This chapter concludes this dissertation. Section 6.1 provides an overall summary of its contents.
In Section 6.2, a list of contributions set forth by this dissertation is highlighted, and lastly, Section 6.3
sketches future work elicited by the lingering questions.

6.1 Summary

While aiming at experimenting with deep learning of commonsense reasoning, this dissertation had two
connected subobjectives: to explore how mainstream deep learningbased language models perform
on a quintessential AI task, commonsense reasoning, and to tamper with the limits of these techniques,
supported by artificial neural networks which are different from the human capacity they seek to approx
imate.

Five stateoftheart architectures were leveraged to learn each four prominent commonsense rea
soning NLP tasks, in the English language. A new stateoftheart result was established for the revised
ARCT dataset. The results obtained for the remaining tasks fall slightly below the state of the art estab
lished in the literature, and exhibit a gap to human performance.

One of the architectures was a neurosymbolic architecture enriched with commonsense knowledge
coming from a commonsense knowledge graph. The conjecture that this could bring extra performance,
through a finegrained prior, eventually was not empirically supported.

The best performing model from Section 5.1.1, RoBERTa, was selected along with COMET(BART),
the neurosymbolic model, to undergo stress testing to cater to possible frailties in the generalization
capacity of their architectures.

First, models trained on partial inputs (obtained by removing specific segments, such as the question)
obtained scores very close to models trained with the whole input sequence. This phenomenon surfaces
in three of the four tasks considered, namely ARCT (Argument Reasoning Comprehension Task: given a
reason and a claim, select the correct warrant from two offered options), ARC (AI2 Reasoning Challenge:

75

Chapter 6 Conclusion

multiplechoice natural science Q&A task for questions from 3rd to 9thgrade science exams) and PIQA
(Physical Interaction Question Answering: a binarychoice for solutions to attain a given goal in the
realm of physical commonsense). This is solid evidence that the models are not learning the task meant
to be instantiated by the examples in the dataset, instead leveraging shortcuts in the data to minimize loss,
shortcutting the task to be performed.

Second, the adversarial attacks performed showed the brittleness of the models. In all four tasks,
severe degradation of performance was observed. An additional interesting pattern emerged from this
experiment: the degradation is more significant for the tasks that were flagged in the partial input ex
periment (ARCT, ARC and PIQA). As adversarial attacks exploit nonrobust feature dependence, this
further reinforces the point that the models should be exploiting some shortcuts.

Third, the models were crossevaluated in a zeroshot manner and obtained scores that are overall
comfortably above the random baseline. These results can be due to genuine knowledge transfer, but also
could be due to the transferring shortcuts detected with the experiments mentioned above, thus leaving
open the research to their ultimate explanation.

Fourth, a data contamination study was carried out, revealing different levels of contamination in the
testsets. ARCT is entirely clean, while ARC, PIQA and CSQA (Commonsense Question Answering:
multiplechoice question answering task regarding multiple commonsense domains) have been flagged
with, respectively, 1.19%, 13.22% and 5.08% of overlap between their pretraining and finetuning
datasets. This supports one of the downsides of the pretraining methodology: downstream task ex
amples may have been already input during the pretraining phase, potentially inflating results. Further
experiments were performed to illustrate this point. The models did show a slight advantage, although
so insignificant that memorization during pretraining cannot be what explains the inflated results, thus
implying that eventual shortcuts should be searched for be searched for elsewhere.

Finally, the datasets were checked for two different types of possible shortcuts. The first type of
shortcut is class imbalance and the second is lexical cues. In terms of class balance, the only dataset which
exhibited slight unbalance was ARC, although not enough to be considered a problem. Regarding lexical
cues, several of them were identified for ARC, PIQA and CSQA, but their coverage and productivity are
low, implying that the inflated results cannot be completely due to them.

Throughout this dissertation, different conjectures emerge in the efforts to find an explanation for the
seemingly shortcut learning by the models,

Number of candidate answers. In Section 5.1.2, tasks with more than two candidate answers (non
binary) seemed to be more robust to the partial input training stress. This hinted at the possibility that
having more answers to choose from helps to improve the generalization capabilities and avoid the learn
ing of shortcuts. However, such could not be confirmed after further experimentation, as converting
the tasks to a binary choice yielded the same results as obtained with their multiplechoice version, not
going above the random baseline. In Section 5.2.2, where the same methodology was applied to a neuro
symbolic model, ARC was able to be solved by only providing the answers, further confirming that the
number of candidate answers is not a deciding factor.

76

Chapter 6 Conclusion

Data Contamination. The pretrainthenfinetune methodology, which has become standard prac
tice, carries with it the danger of data contamination. The pretraining corpus is commonly gathered from
mass scraping the web. It is a possibility that when finetuning a model on a given task, the testset in
which the model is tested on shares the same sources with a portion of the pretrain corpus. If the model
has memorized that portion of text, it can potentially use it, breaking the assumption of an independent
testset, and potentially inflating the performance. The pretraining corpus and the proposed tasks testsets
were checked for textual overlap. The results indicate some overlap, but that overlap did not translate
into meaningful performance gains upon further inspection. As such, it cannot be the explanation for the
shortcut learning.

Class Balance. Class imbalance can be a powerful shortcut that models can take advantage of. How
ever, the experiments showed that ARCT, PIQA and CSQA are well balanced, and ARC is slightly
unbalanced but not to an extent where the model could benefit greatly. Therefore, the results cannot be
accounted for with class imbalance.

Lexical Cues. In ARCT, lexical cues, such as the word “not”, were powerful indicators of the correct
warrant. Experiments in this dissertation were conducted to detect unigram and bigram cues which could
plague the testsets. The outcome of the experiments show presence of a few cues in ARC, PIQA and
CSQA; however, their coverage and productivity are so low that they should not be able to guide models
to the performances.

6.2 Contributions

The major contributions of this dissertation are the following:

• A study of neural language models applied to Commonsense Reasoning. An exploratory study
was performed, using models from major families of the stateoftheart Transformer architectures.
RoBERTa emerged as the most capable reasoner.

• Stress study on language models. The stress experiments performed rendered evidence that the
models are, after all, not performing the commonsense reasoning tasks in the way meant for them.
Instead, they appear to be funneling on spurious signals present in the data, exploiting them to
boost performance.

• Data contamination library.1 Expanding on existing work on data contamination, a library was
produced and open sourced to allow researchers to analyze possible overlaps between the datasets
used in pretraining and the testsets of the downstream tasks.

• Three research papers produced. Three research papers have been produced based on this body
of work. Two of them have passed peer review and were accepted for publication (Branco et al.,

1https://github.com/nlx-group/overlapy

77

https://github.com/nlx-group/overlapy

Chapter 6 Conclusion

2021a,b). A third paper is still in preparation and is unpublished at the time of writing this disser
tation.

In order to permit the reproduction and replication of our results reported in this dissertation, our
code and relevant materials are publicly available at: https://github.com/nlx-group/study-of-
commonsense-reasoning.

6.3 Future Work

The results obtained in this dissertation provide hints of the power of deep neural networks to find patterns
in data to minimize loss, regardless of their potential to support ample generalization. These hints support
the hypothesis that, to a considerable extent, this is the process guiding the learning of these tasks but
offer no explanation on two major questions:

1. How may we identify these shortcuts? Trivial shortcuts are identifiable using cooccurrence statis
tics, for example. However, the uncovering of nontrivial shortcuts, such as a possible nonlinear
combination of features, are still an unsolved aspect in NLP and deep learning.

2. How may we accurately identify the mechanisms responsible for these shortcuts? This is an im
portant question, which naturally follows from the first one. Even if we are able to identify these
shortcuts, how can we design a learning process free of such error inducing procedures?

The first question falls within the scope of interpretability of NLP models. This research line aims
to create methods to interpret decisions made by neural networks, which can potentially unveil such data
artifacts, such as saliency maps, which highlight the importance of words in the sentence. Saliency maps
can be built using gradients (Simonyan et al., 2013; Sundararajan et al., 2017; Smilkov et al., 2017),
LIME (Ribeiro et al., 2016) and using attention (Clark et al., 2019; Lee et al., 2017; Vig and Belinkov,
2019; Wu et al., 2020; Xu et al., 2015). Alternative methods are also being developed with the concept of
influence functions, which model the influence of dataset examples, and its words, on the performance
of the model (Guo et al., 2020; Han et al., 2020; Jacovi et al., 2021; Kobayashi et al., 2020). While these
methods are promising, they mostly provide local explanations, making it difficult to identify highly
nonlinear shortcuts. To the best of our knowledge, no clear methodology has been developed to combat
shortcut learning using these methods.

A research line has also been established regarding the second question. More robust methods of
learning have been proposed in the literature, such as Adversarial Training (Goodfellow et al., 2015;
Huang et al., 2017; Papernot et al., 2016; Shaham et al., 2015), which consists of producing adversarial
datasets during the training process, and MetaLearning (Finn et al., 2017; Santoro et al., 2016; Schmid
huber, 1987), where models learn how to learn. These methods were designed to create more robust

78

https://github.com/nlx-group/study-of-commonsense-reasoning
https://github.com/nlx-group/study-of-commonsense-reasoning

Chapter 6 Conclusion

learning techniques to mitigate the symptoms of shortcut learning but were not motivated by any mech
anism underlying it. Identifying such mechanisms could allow for more precise methods of learning to
counteract it.

These two nontrivial questions are thus left unanswered by this dissertation and are open research
questions in the literature overall. The previous two techniques do provide a starting ground from which
research the tackling of these questions could begin. However, the highly nonlinear and complex nature
of the parameter space of these large deep learning models represents a difficult challenge.

79

References

How People Learn: Brain, Mind, Experience, and School. The National Academies Press, Washing
ton, DC, 1999. doi: 10.17226/6160. URL https://www.nap.edu/catalog/6160/how-people-
learn-brain-mind-experience-and-school. 22

M. Alzantot, Y. Sharma, A. Elgohary, B.J. Ho, M. Srivastava, and K.W. Chang. Generating natural lan
guage adversarial examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 2890–2896, Brussels, Belgium, Oct.Nov. 2018. Association for Com
putational Linguistics. doi: 10.18653/v1/D181316. URL https://www.aclweb.org/anthology/
D18-1316. 24

M. Baard. Ai founder blasts modern research, Mar 2018. URL https://www.wired.com/2003/05/
ai-founder-blasts-modern-research/. 7

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014. 11, 13

S. Bayer, L. Damianos, C. Doran, L. Ferro, R. Fish, L. Hirschman, I. Mani, L. Riek,
and B. Oshika. Selected Grand Challenges in Cognitive Science. Technical report,
2005. URL https://www.mitre.org/publications/technical-papers/selected-grand-
challenges-in-cognitive-science-search-engine-for-the. 31

Y. Bengio, P. Frasconi, and P. Simard. The problem of learning longterm dependencies in recurrent
networks. In IEEE international conference on neural networks, pages 1183–1188. IEEE, 1993. 11

Y. Bengio, P. Simard, and P. Frasconi. Learning longterm dependencies with gradient descent is difficult.
IEEE transactions on neural networks, 5(2):157–166, 1994. 11

Y. Bisk, A. Holtzman, J. Thomason, J. Andreas, Y. Bengio, J. Chai, M. Lapata, A. Lazaridou, J. May,
A. Nisnevich, N. Pinto, and J. Turian. Experience grounds language. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8718–8735, On
line, Nov. 2020a. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlpmain.703.
URL https://www.aclweb.org/anthology/2020.emnlp-main.703. 33

81

https://www.nap.edu/catalog/6160/how-people-learn-brain-mind-experience-and-school
https://www.nap.edu/catalog/6160/how-people-learn-brain-mind-experience-and-school
https://www.aclweb.org/anthology/D18-1316
https://www.aclweb.org/anthology/D18-1316
https://www.wired.com/2003/05/ai-founder-blasts-modern-research/
https://www.wired.com/2003/05/ai-founder-blasts-modern-research/
https://www.mitre.org/publications/technical-papers/selected-grand-challenges-in-cognitive-science-search-engine-for-the
https://www.mitre.org/publications/technical-papers/selected-grand-challenges-in-cognitive-science-search-engine-for-the
https://www.aclweb.org/anthology/2020.emnlp-main.703

Y. Bisk, R. Zellers, R. LeBras, J. Gao, and Y. Choi. Piqa: Reasoning about physical commonsense in
natural language. In AAAI, pages 7432–7439, 2020b. XIII, XV, 33, 34, 55, 60, 63

A. Bordes, N. Usunier, A. GarciaDuran, J. Weston, and O. Yakhnenko. Translating embeddings for
modeling multirelational data. In Neural Information Processing Systems (NIPS), pages 1–9, 2013.
25

A. Bosselut, H. Rashkin, M. Sap, C. Malaviya, A. Celikyilmaz, and Y. Choi. Comet: Commonsense
transformers for automatic knowledge graph construction. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4762–4779, 2019. 7, 25, 39

R. J. Brachman and H. J. Levesque. The tractability of subsumption in framebased description languages.
In AAAI, volume 84, pages 34–37, 1984. 6

R. Branco, J. Rodrigues, C. Saedi, and A. Branco. Assessing wordnets with WordNet embeddings. In
Proceedings of the 10th Global Wordnet Conference, pages 253–259, Wroclaw, Poland, July 2019.
Global Wordnet Association. URL https://www.aclweb.org/anthology/2019.gwc-1.32. 25

R. Branco, A. Branco, J. Silva, and J. Rodrigues. Shortcutted commonsense: Data spuriousness in deep
learning of commonsense reasoning. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Online, Nov. 2021a. Association for Computational Lin
guistics. To appear. V, IX, 3, 77

R. Branco, A. Branco, J. Silva, and J. Rodrigues. Commonsense reasoning: how do neurosymbolic and
neuroonly approaches compare? In Proceedings of the CIKM 2021 Workshops, Online, Nov. 2021b.
CEURWS. To appear. V, IX, 4, 78

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas
try, A. Askell, et al. Language models are fewshot learners. arXiv preprint arXiv:2005.14165, 2020.
11, 18, 54

D. Cer, Y. Yang, S.y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. GuajardoCéspedes,
S. Yuan, C. Tar, et al. Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018. 24, 52

S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot, F. Cerutti, M. Srivastava,
A. Preece, S. Julier, R. M. Rao, T. D. Kelley, D. Braines, M. Sensoy, C. J. Willis, and P. Gur
ram. Interpretability of deep learning models: A survey of results. In 2017 IEEE SmartWorld,
Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communica
tions, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCAL
COM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6, 2017. doi: 10.1109/UICATC.2017.8397411. 20

82

https://www.aclweb.org/anthology/2019.gwc-1.32

J. Cheng, L. Dong, and M. Lapata. Long shortterm memorynetworks for machine reading. In Proceed
ings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 551–561,
2016. 11

E. Choi, H. He, M. Iyyer, M. Yatskar, W.t. Yih, Y. Choi, P. Liang, and L. Zettlemoyer. QuAC: Ques
tion answering in context. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 2174–2184, Brussels, Belgium, Oct.Nov. 2018. Association for Com
putational Linguistics. doi: 10.18653/v1/D181241. URL https://www.aclweb.org/anthology/
D18-1241. 55

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. 10

K. Church and P. Hanks. Word association norms, mutual information, and lexicography. Computational
linguistics, 16(1):22–29, 1990. 32

K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does BERT look at? an analysis of BERT’s
attention. In Proceedings of the 2019 ACLWorkshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 276–286, Florence, Italy, Aug. 2019. Association for Computational Linguis
tics. doi: 10.18653/v1/W194828. URL https://www.aclweb.org/anthology/W19-4828. 20,
78

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you have
solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457,
2018. XIII, 24, 31

J. D. Hwang, C. Bhagavatula, R. Le Bras, J. Da, K. Sakaguchi, A. Bosselut, and Y. Choi. Cometatomic
2020: On symbolic and neural commonsense knowledge graphs. In AAAI’21, March 2021. URL
https://allenai.org/data/atomic-2020. 7, 55

A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel, C. Chen, J. Deaton, J. Eisen
stein, M. D. Hoffman, et al. Underspecification presents challenges for credibility in modern machine
learning. arXiv preprint arXiv:2011.03395, 2020. 20

E. Davis. Representations of commonsense knowledge. Morgan Kaufmann, 2014. 8

E. Davis and G. Marcus. Commonsense reasoning and commonsense knowledge in artificial intelligence.
Communications of the ACM, 58(9):92–103, 2015. 7, 9

G. De Palma, B. T. Kiani, and S. Lloyd. Deep neural networks are biased towards simple functions. arXiv
preprint arXiv:1812.10156, 2018. 20

83

https://www.aclweb.org/anthology/D18-1241
https://www.aclweb.org/anthology/D18-1241
https://www.aclweb.org/anthology/W19-4828
https://allenai.org/data/atomic-2020

A. J. DeGrave, J. D. Janizek, and S.I. Lee. Ai for radiographic covid19 detection selects shortcuts over
signal. Nature Machine Intelligence, pages 1–10, 2021. 21

J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. BERT: Pretraining of deep bidirectional transformers
for language understanding. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Compu
tational Linguistics. doi: 10.18653/v1/N191423. URL https://www.aclweb.org/anthology/
N19-1423. 11, 17, 39, 40, 52

P. Domingos. The master algorithm: How the quest for the ultimate learning machine will remake our
world. Basic Books, 2015. 7

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min
derer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020. 11

D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. DROP: A reading comprehension
benchmark requiring discrete reasoning over paragraphs. In Proc. of NAACL, 2019. 55

S. Edunov, M. Ott, M. Auli, and D. Grangier. Understanding backtranslation at scale. In Proceedings of
the 2018 Conference on EmpiricalMethods in Natural Language Processing, pages 489–500, Brussels,
Belgium, Oct.Nov. 2018. Association for Computational Linguistics. doi: 10.18653/v1/D181045.
URL https://www.aclweb.org/anthology/D18-1045. 11

C. Finn, P. Abbeel, and S. Levine. Modelagnostic metalearning for fast adaptation of deep networks.
In International Conference on Machine Learning, pages 1126–1135. PMLR, 2017. 78

J. B. Freeman. Argument Structure:: Representation and Theory, volume 18. Springer Science & Busi
ness Media, 2011. 30

L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020. 55

S. Garg and G. Ramakrishnan. Bae: Bertbased adversarial examples for text classification. In Proceed
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
6174–6181, 2020. 24, 50

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence to sequence
learning. In Proceedings of the 34th International Conference on Machine LearningVolume 70, pages
1243–1252, 2017. 16

84

https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/D18-1045

R. Geirhos, J.H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A. Wichmann. Short
cut learning in deep neural networks. Nature Machine Intelligence, 2(11):665–673, Nov 2020. ISSN
25225839. doi: 10.1038/s4225602000257z. URL https://doi.org/10.1038/s42256-020-
00257-z. 2, 20

M. Geva, Y. Goldberg, and J. Berant. Are we modeling the task or the annotator? an investigation
of annotator bias in natural language understanding datasets. In Proceedings of the 2019 Confer
ence on Empirical Methods in Natural Language Processing and the 9th International Joint Con
ference on Natural Language Processing (EMNLPIJCNLP), pages 1161–1166, Hong Kong, China,
Nov. 2019. Association for Computational Linguistics. doi: 10.18653/v1/D191107. URL https:
//www.aclweb.org/anthology/D19-1107. 2, 21

A. Gokaslan and V. Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019. 41, 55

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In Interna
tional Conference on Learning Representations, 2015. URL http://arxiv.org/abs/1412.6572.
23, 78

A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.
13

A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–
864, 2016. 25

G. M. A. Grube et al. Meno. Hackett Publishing, 1980. 7

H. Guo, N. F. Rajani, P. Hase, M. Bansal, and C. Xiong. Fastif: Scalable influence functions for efficient
model interpretation and debugging. arXiv preprint arXiv:2012.15781, 2020. 78

S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. Bowman, and N. A. Smith. Annotation artifacts
in natural language inference data. InProceedings of the 2018 Conference of the North American Chap
ter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pages 107–112, New Orleans, Louisiana, June 2018. Association for Computational Linguis
tics. doi: 10.18653/v1/N182017. URL https://www.aclweb.org/anthology/N18-2017. 2, 21

I. Habernal, H. Wachsmuth, I. Gurevych, and B. Stein. The argument reasoning comprehension task:
Identification and reconstruction of implicit warrants. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Tech
nologies, Volume 1 (Long Papers), pages 1930–1940, New Orleans, Louisiana, June 2018a. Associa
tion for Computational Linguistics. doi: 10.18653/v1/N181175. URL https://www.aclweb.org/
anthology/N18-1175. XV, 21, 29, 60, 63

85

https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1038/s42256-020-00257-z
https://www.aclweb.org/anthology/D19-1107
https://www.aclweb.org/anthology/D19-1107
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/1412.6572
https://www.aclweb.org/anthology/N18-2017
https://www.aclweb.org/anthology/N18-1175
https://www.aclweb.org/anthology/N18-1175

I. Habernal, H. Wachsmuth, I. Gurevych, and B. Stein. SemEval2018 task 12: The argument reasoning
comprehension task. In Proceedings of The 12th International Workshop on Semantic Evaluation,
pages 763–772, New Orleans, Louisiana, June 2018b. Association for Computational Linguistics. doi:
10.18653/v1/S181121. URL https://aclanthology.org/S18-1121. 30

F. Hamborg, N. Meuschke, C. Breitinger, and B. Gipp. newsplease: A generic news crawler and ex
tractor. In Proceedings of the 15th International Symposium of Information Science, pages 218–223,
March 2017. doi: 10.5281/zenodo.4120316. 56

X. Han, B. C. Wallace, and Y. Tsvetkov. Explaining black box predictions and unveiling data artifacts
through influence functions. In Proceedings of the 58th Annual Meeting of the Association for Compu
tational Linguistics, pages 5553–5563, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.aclmain.492. URL https://www.aclweb.org/anthology/2020.acl-
main.492. 20, 78

E. E.D. Hemdan, M. A. Shouman, and M. E. Karar. Covidxnet: A framework of deep learning classifiers
to diagnose covid19 in xray images. arXiv preprint arXiv:2003.11055, 2020. 21

D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016. 47

T. Henighan, J. Kaplan, M. Katz, M. Chen, C. Hesse, J. Jackson, H. Jun, T. B. Brown, P. Dhariwal,
S. Gray, et al. Scaling laws for autoregressive generative modeling. arXiv preprint arXiv:2010.14701,
2020. 18

S. J. Hespos and E. S. Spelke. Conceptual precursors to language. Nature, 430(6998):453–456, 2004. 33

S. Hochreiter and J. Schmidhuber. Long shortterm memory. Neural computation, 9(8):1735–1780, 1997.
10

S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. Adversarial attacks on neural network
policies. arXiv, 2017. URL https://arxiv.org/abs/1702.02284. 78

J. D. Hwang, C. Bhagavatula, R. L. Bras, J. Da, K. Sakaguchi, A. Bosselut, and Y. Choi. Cometatomic
2020: On symbolic and neural commonsense knowledge graphs. arXiv preprint arXiv:2010.05953,
2020. XIV, 25, 26, 39, 47, 48

A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Adversarial examples are not
bugs, they are features. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'AlchéBuc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, pages 125–136.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf. 21, 23

86

https://aclanthology.org/S18-1121
https://www.aclweb.org/anthology/2020.acl-main.492
https://www.aclweb.org/anthology/2020.acl-main.492
https://arxiv.org/abs/1702.02284
https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf

J.H. Jacobsen, J. Behrmann, R. Zemel, and M. Bethge. Excessive invariance causes adversarial vulner
ability. arXiv preprint arXiv:1811.00401, 2018. 20

A. Jacovi, S. Swayamdipta, S. Ravfogel, Y. Elazar, Y. Choi, and Y. Goldberg. Contrastive explanations
for model interpretability. arXiv preprint arXiv:2103.01378, 2021. 78

A. Javaloy and I. Valera. Rotograd: Dynamic gradient homogenization for multitask learning. arXiv
preprint arXiv:2103.02631, 2021. 66

R. Jia and P. Liang. Adversarial examples for evaluating reading comprehension systems. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2021–2031,
Copenhagen, Denmark, Sept. 2017. Association for Computational Linguistics. doi: 10.18653/v1/
D171215. URL https://www.aclweb.org/anthology/D17-1215. XIII, 22

D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits. Is bert really robust? a strong baseline for natural lan
guage attack on text classification and entailment. Proceedings of the AAAI Conference on Arti
ficial Intelligence, 34(05):8018–8025, Apr. 2020. doi: 10.1609/aaai.v34i05.6311. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6311. XIII, 24, 50, 64

P. Kapanipathi, I. Abdelaziz, S. Ravishankar, S. Roukos, A. G. Gray, R. F. Astudillo, M. Chang, C. Cor
nelio, S. Dana, A. Fokoue, D. Garg, A. Gliozzo, S. Gurajada, H. Karanam, N. Khan, D. Khandel
wal, Y.S. Lee, Y. Li, F. P. S. Luus, N. Makondo, N. Mihindukulasooriya, T. Naseem, S. Neelam,
L. Popa, R. G. Reddy, R. Riegel, G. Rossiello, U. Sharma, G. P. S. Bhargav, and M. Yu. Question an
swering over knowledge bases by leveraging semantic parsing and neurosymbolic reasoning. CoRR,
abs/2012.01707, 2020. URL https://arxiv.org/abs/2012.01707. 7

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020. 18

D. Kaushik and Z. C. Lipton. How much reading does reading comprehension require? a critical investi
gation of popular benchmarks. In Proceedings of the 2018 Conference on Empirical Methods in Natu
ral Language Processing, pages 5010–5015, Brussels, Belgium, Oct.Nov. 2018. Association for Com
putational Linguistics. doi: 10.18653/v1/D181546. URL https://www.aclweb.org/anthology/
D18-1546. 2, 21

D. Khashabi, S. Min, T. Khot, A. Sabharwal, O. Tafjord, P. Clark, and H. Hajishirzi. UNIFIEDQA:
Crossing format boundaries with a single QA system. In Findings of the Association for Computa
tional Linguistics: EMNLP 2020, pages 1896–1907, Online, Nov. 2020. Association for Computa
tional Linguistics. doi: 10.18653/v1/2020.findingsemnlp.171. URL https://www.aclweb.org/
anthology/2020.findings-emnlp.171. 11

87

https://www.aclweb.org/anthology/D17-1215
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://ojs.aaai.org/index.php/AAAI/article/view/6311
https://arxiv.org/abs/2012.01707
https://www.aclweb.org/anthology/D18-1546
https://www.aclweb.org/anthology/D18-1546
https://www.aclweb.org/anthology/2020.findings-emnlp.171
https://www.aclweb.org/anthology/2020.findings-emnlp.171

W. Kintsch and T. A. Van Dijk. Toward a model of text comprehension and production. Psychological
review, 85(5):363, 1978. 8

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. GrabskaBarwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017. 53

S. Kobayashi, S. Yokoi, J. Suzuki, and K. Inui. Efficient estimation of influence of a training instance. In
Proceedings of SustaiNLP:Workshop on Simple and Efficient Natural Language Processing, pages 41–
47, Online, Nov. 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.sustainlp
1.6. URL https://www.aclweb.org/anthology/2020.sustainlp-1.6. 78

T. Kudo and J. Richardson. SentencePiece: A simple and language independent subword tokenizer
and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 66–71, Brussels, Bel
gium, Nov. 2018. Association for Computational Linguistics. doi: 10.18653/v1/D182012. URL
https://www.aclweb.org/anthology/D18-2012. 16

V. Kuleshov, S. Thakoor, T. Lau, and S. Ermon. Adversarial examples for natural language classification
problems. 2018. 24

J. Lee, J.H. Shin, and J.S. Kim. Interactive visualization and manipulation of attentionbased neural ma
chine translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 121–126, 2017. 20, 78

D. B. Lenat, M. Prakash, and M. Shepherd. Cyc: Using common sense knowledge to overcome brittleness
and knowledge acquisition bottlenecks. AI magazine, 6(4):65–65, 1985. 7, 9

H. Levi and S. Ullman. Multitask learning by a topdown control network. arXiv preprint
arXiv:2002.03335, 2020. 66

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettle
moyer. BART: Denoising sequencetosequence pretraining for natural language generation, transla
tion, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Compu
tational Linguistics, pages 7871–7880, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.aclmain.703. URL https://www.aclweb.org/anthology/2020.acl-
main.703. 47

D. Li, Y. Zhang, H. Peng, L. Chen, C. Brockett, M.T. Sun, and B. Dolan. Contextualized perturbation
for textual adversarial attack. arXiv preprint arXiv:2009.07502, 2020a. 24

J. Li, S. Ji, T. Du, B. Li, and T. Wang. Textbugger: Generating adversarial text against realworld appli
cations. arXiv preprint arXiv:1812.05271, 2018. 24

88

https://www.aclweb.org/anthology/2020.sustainlp-1.6
https://www.aclweb.org/anthology/D18-2012
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703

L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu. Bertattack: Adversarial attack against bert using bert. In
Proceedings of the 2020 Conference on EmpiricalMethods in Natural Language Processing (EMNLP),
pages 6193–6202, 2020b. 24, 50

H. Liu and P. Singh. Conceptnet—a practical commonsense reasoning toolkit. BT technology journal,
22(4):211–226, 2004. 8, 34, 47

P. Liu, X. Qiu, and X. Huang. Recurrent neural network for text classification with multitask learning.
In Proceedings of the TwentyFifth International Joint Conference on Artificial Intelligence, IJCAI’16,
page 2873–2879. AAAI Press, 2016. ISBN 9781577357704. 11

X. Liu, P. He, W. Chen, and J. Gao. Multitask deep neural networks for natural language understanding.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
4487–4496, 2019a. 20

X. Liu, K. Duh, L. Liu, and J. Gao. Very deep transformers for neural machine translation. arXiv preprint
arXiv:2008.07772, 2020. 11

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019b.
11, 17, 18, 39, 40

E. Loper and S. Bird. Nltk: The natural language toolkit. CoRR, cs.CL/0205028, 2002. URL http:
//dblp.uni-trier.de/db/journals/corr/corr0205.html#cs-CL-0205028. 55

M.T. Luong, H. Pham, and C. D. Manning. Effective approaches to attentionbased neural machine trans
lation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 1412–1421, 2015. 13

J. Martens and I. Sutskever. Learning recurrent neural networks with hessianfree optimization. In
Proceedings of the 28th international conference on machine learning (ICML11), pages 1033–1040.
Citeseer, 2011. 11

J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon. A proposal for the dartmouth summer
research project on artificial intelligence, august 31, 1955. AI magazine, 27(4):12–12, 2006. 1

J. McCarthy et al. Programs with common sense. RLE and MIT computation center, 1960. 8

M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. Elsevier,
1989. 53

89

http://dblp.uni-trier.de/db/journals/corr/corr0205.html#cs-CL-0205028
http://dblp.uni-trier.de/db/journals/corr/corr0205.html#cs-CL-0205028

S. Mehta, M. Ghazvininejad, S. Iyer, L. Zettlemoyer, and H. Hajishirzi. Delight: Deep and light
weight transformer. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=ujmgfuxSLrO. 11

H. Mercier and D. Sperber. The enigma of reason. Harvard University Press, 2017. 8

G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995.
9

S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao. Deep learning based
text classification: A comprehensive review. arXiv preprint arXiv:2004.03705, 2020. 11

M. Minsky. Society of mind. Simon and Schuster, 1988. 8

D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat problems. In AAAI, vol
ume 92, pages 459–465. Citeseer, 1992. 6

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner,
B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Rit
ter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and
J. Welling. Neverending learning. In Proceedings of the TwentyNinth AAAI Conference on Artificial
Intelligence (AAAI15), 2015. 9

J. Morris, E. Lifland, J. Lanchantin, Y. Ji, and Y. Qi. Reevaluating adversarial examples in natural lan
guage. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
Findings, pages 3829–3839, 2020a. 23, 52

J. X. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi. Textattack: A framework for adversarial
attacks, data augmentation, and adversarial training in nlp, 2020b. 50

M. Mosbach, M. Andriushchenko, and D. Klakow. On the stability of finetuning {bert}: Misconceptions,
explanations, and strong baselines. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=nzpLWnVAyah. 52

N. Mrkšić, D. Ó Séaghdha, B. Thomson, M. Gašić, L. RojasBarahona, P.H. Su, D. Vandyke, T.H. Wen,
and S. Young. Counterfitting word vectors to linguistic constraints. In Proceedings of HLTNAACL,
2016. 50

S. Nagel. Ccnews, Oct 2016. URL https://commoncrawl.org/2016/10/news-dataset-
available/. 41, 55

90

https://openreview.net/forum?id=ujmgfuxSLrO
https://openreview.net/forum?id=ujmgfuxSLrO
https://openreview.net/forum?id=nzpLWnVAyah
https://commoncrawl.org/2016/10/news-dataset-available/
https://commoncrawl.org/2016/10/news-dataset-available/

T. Niven and H.Y. Kao. Probing neural network comprehension of natural language arguments. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4658–
4664, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19
1459. URL https://www.aclweb.org/anthology/P19-1459. 2, 21, 31, 56, 60, 62, 67, 70

T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. R. Acharya. Automated detection
of covid19 cases using deep neural networks with xray images. Computers in biology and medicine,
121:103792, 2020. 21

N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin, C. Xie, Y. Sharma, T. Brown,
A. Roy, et al. Technical report on the cleverhans v2. 1.0 adversarial examples library. arXiv preprint
arXiv:1610.00768, 2016. 78

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In
International conference on machine learning, pages 1310–1318. PMLR, 2013. 11

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, highperformance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'AlchéBuc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf. 40

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP,
volume 14, pages 1532–1543, 2014. 50

M. E. Peters, M. Neumann, R. L. Logan, R. Schwartz, V. Joshi, S. Singh, and N. A. Smith. Knowledge
enhanced contextual word representations. In EMNLP, 2019. 25

A. Poliak, J. Naradowsky, A. Haldar, R. Rudinger, and B. Van Durme. Hypothesis only baselines in
natural language inference. In Proceedings of the Seventh Joint Conference on Lexical and Computa
tional Semantics, pages 180–191, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/S182023. URL https://www.aclweb.org/anthology/S18-2023.
2, 21

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by gen
erative pretraining. 2018. 11, 17, 18, 44

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised
multitask learners. 2019. 39, 43, 47, 54

91

https://www.aclweb.org/anthology/P19-1459
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.aclweb.org/anthology/S18-2023

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified texttotext transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html. 11, 18, 19,
39, 60

P. Rajpurkar, R. Jia, and P. Liang. Know what you don’t know: Unanswerable questions for SQuAD.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 784–789, Melbourne, Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P182124. URL https://www.aclweb.org/anthology/P18-2124.
55

S. Ren, Y. Deng, K. He, and W. Che. Generating natural language adversarial examples through prob
ability weighted word saliency. In Proceedings of the 57th annual meeting of the association for
computational linguistics, pages 1085–1097, 2019. 24

M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1135–1144, 2016. 78

R. Riegel, A. G. Gray, F. P. S. Luus, N. Khan, N. Makondo, I. Y. Akhalwaya, H. Qian, R. Fagin, F. Bara
hona, U. Sharma, S. Ikbal, H. Karanam, S. Neelam, A. Likhyani, and S. K. Srivastava. Logical neural
networks. CoRR, abs/2006.13155, 2020. URL https://arxiv.org/abs/2006.13155. 7

A. Roberts, C. Raffel, and N. Shazeer. How much knowledge can you pack into the parameters of a
language model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5418–5426, Online, Nov. 2020. Association for Computational Linguis
tics. URL https://www.aclweb.org/anthology/2020.emnlp-main.437. 18

J. Rodrigues, R. Branco, J. Silva, and A. Branco. Reproduction and revival of the argument reasoning
comprehension task. In Proceedings of The 12th Language Resources and Evaluation Conference,
pages 5055–5064, 2020. 31

A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in bertology: What we know about how bert
works. Transactions of the Association for Computational Linguistics, 8:842–866, 2020. 20

S. Ruder. An overview of multitask learning in deep neural networks. arXiv preprint arXiv:1706.05098,
2017. 66

C. Saedi, A. Branco, J. Rodrigues, and J. Silva. Wordnet embeddings. In Proceedings of the third
workshop on representation learning for NLP, pages 122–131, 2018. 25

92

http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/P18-2124
https://arxiv.org/abs/2006.13155
https://www.aclweb.org/anthology/2020.emnlp-main.437

M. Salawa, A. Branco, R. Branco, J. António Rodrigues, and C. Saedi. Whom to learn from? graph
vs. textbased word embeddings. In Proceedings of the International Conference on Recent Ad
vances in Natural Language Processing (RANLP 2019), pages 1041–1051, Varna, Bulgaria, Sept.
2019. INCOMA Ltd. doi: 10.26615/9789544520564_120. URL https://www.aclweb.org/
anthology/R19-1120. 25

J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff. Masked language model scoring. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 2699–2712, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.aclmain.240. URL
https://www.aclweb.org/anthology/2020.acl-main.240. 20

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Metalearning with memory
augmented neural networks. In International conference on machine learning, pages 1842–1850.
PMLR, 2016. 78

M. Sap, R. Le Bras, E. Allaway, C. Bhagavatula, N. Lourie, H. Rashkin, B. Roof, N. A. Smith, and
Y. Choi. Atomic: An atlas of machine commonsense for ifthen reasoning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3027–3035, 2019. 25, 47

J. Schmidhuber. Evolutionary principles in selfreferential learning, or on learning how to learn: the
metameta... hook. PhD thesis, Technische Universität München, 1987. 78

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with subword units. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1715–1725, 2016. 16, 40

U. Shaham, Y. Yamada, and S. Negahban. Understanding adversarial training: Increasing local stability
of neural nets through robust optimization. arXiv preprint arXiv:1511.05432, 2015. 78

P. Shaw, J. Uszkoreit, and A. Vaswani. Selfattention with relative position representations. In Pro
ceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 464–468, 2018. 16

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013. 20, 78

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smoothgrad: removing noise by adding
noise. arXiv preprint arXiv:1706.03825, 2017. 20, 78

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929–1958,
2014. URL http://jmlr.org/papers/v15/srivastava14a.html. XIII, 42

93

https://www.aclweb.org/anthology/R19-1120
https://www.aclweb.org/anthology/R19-1120
https://www.aclweb.org/anthology/2020.acl-main.240
http://jmlr.org/papers/v15/srivastava14a.html

K. Sun and F. Nielsen. Lightlike neuromanifolds, occam’s razor and deep learning. arXiv preprint
arXiv:1905.11027, 2019. 20

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In Proceedings of the
34th International Conference on Machine LearningVolume 70, pages 3319–3328, 2017. 20, 78

M. Suteu and Y. Guo. Regularizing deep multitask networks using orthogonal gradients. arXiv preprint
arXiv:1912.06844, 2019. 66

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. Advances
in neural information processing systems, 27:3104–3112, 2014. 11, 13

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199, 2013. XIII, 23

A. Talmor, J. Herzig, N. Lourie, and J. Berant. CommonsenseQA: A question answering challenge target
ing commonsense knowledge. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4149–4158, Minneapolis, Minnesota, June 2019. Association for Compu
tational Linguistics. doi: 10.18653/v1/N191421. URL https://www.aclweb.org/anthology/
N19-1421. XIII, 34, 36

A. Tamborrino, N. Pellicanò, B. Pannier, P. Voitot, and L. Naudin. Pretraining is (almost) all you
need: An application to commonsense reasoning. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 3878–3887, Online, July 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.aclmain.357. URL https://www.aclweb.org/
anthology/2020.acl-main.357. 19

S. E. Toulmin. The Uses of Argument. Cambridge University Press, 1958. 29

T. H. Trinh and Q. V. Le. A simple method for commonsense reasoning. arXiv preprint arXiv:1806.02847,
2018. 41, 55

G. VallePérez, C. Q. Camargo, and A. A. Louis. Deep learning generalizes because the parameter
function map is biased towards simple functions. arXiv preprint arXiv:1805.08522, 2018. 20

F. Van Harmelen, V. Lifschitz, and B. Porter. Handbook of knowledge representation. Elsevier, 2008. 6

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in neural information processing systems, pages 5998–6008,
2017. XIII, 11, 12

94

https://www.aclweb.org/anthology/N19-1421
https://www.aclweb.org/anthology/N19-1421
https://www.aclweb.org/anthology/2020.acl-main.357
https://www.aclweb.org/anthology/2020.acl-main.357

J. Vig and Y. Belinkov. Analyzing the structure of attention in a transformer language model. In
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 63–76, Florence, Italy, Aug. 2019. Association for Computational Linguistics. doi:
10.18653/v1/W194808. URL https://www.aclweb.org/anthology/W19-4808. 20, 78

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. Glue: A multitask benchmark and
analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, 2018. 18, 44

L. Wang, Z. Q. Lin, and A. Wong. Covidnet: A tailored deep convolutional neural network design for
detection of covid19 cases from chest xray images. Scientific Reports, 10(1):1–12, 2020. 21

R. Williams and J. Peng. An efficient gradientbased algorithm for online training of recurrent network
trajectories. Neural Computation, 2, 09 1998. doi: 10.1162/neco.1990.2.4.490. 11

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural networks.
Neural Computation, 1(2):270–280, 1989. doi: 10.1162/neco.1989.1.2.270. 11

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush. Transformers: Stateoftheart natural language processing. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, Oct. 2020a. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.emnlp-demos.6. 40

T. Wolf, Q. Lhoest, P. von Platen, Y. Jernite, M. Drame, J. Plu, J. Chaumond, C. Delangue, C. Ma,
A. Thakur, S. Patil, J. Davison, T. L. Scao, V. Sanh, C. Xu, N. Patry, A. McMillanMajor, S. Brandeis,
S. Gugger, F. Lagunas, L. Debut, M. Funtowicz, A. Moi, S. Rush, P. Schmidd, P. Cistac, V. Muštar,
J. Boudier, and A. Tordjmann. Datasets. GitHub. Note: https://github.com/huggingface/datasets, 1,
2020b. 55

L. Wu, Z. Zhu, et al. Towards understanding generalization of deep learning: Perspective of loss land
scapes. arXiv preprint arXiv:1706.10239, 2017. 20

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s neural machine translation system:
Bridging the gap between human and machine translation. CoRR, abs/1609.08144, 2016. URL
http://arxiv.org/abs/1609.08144. 11, 16

95

https://www.aclweb.org/anthology/W19-4808
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/1609.08144

Z. Wu, T.S. Nguyen, and D. Ong. Structured selfAttentionWeights encode semantics in sentiment
analysis. In Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neu
ral Networks for NLP, pages 255–264, Online, Nov. 2020. Association for Computational Linguis
tics. doi: 10.18653/v1/2020.blackboxnlp1.24. URL https://www.aclweb.org/anthology/
2020.blackboxnlp-1.24. 20, 78

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend and
tell: Neural image caption generation with visual attention. In International conference on machine
learning, pages 2048–2057, 2015. 20, 78

A. Yang, Q. Wang, J. Liu, K. Liu, Y. Lyu, H. Wu, Q. She, and S. Li. Enhancing pretrained language
representations with rich knowledge for machine reading comprehension. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 2346–2357, Florence, Italy,
July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P191226. URL https:
//www.aclweb.org/anthology/P19-1226. 25

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer, and
C.J. Hsieh. Large batch optimization for deep learning: Training bert in 76 minutes. In Interna
tional Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
Syx4wnEtvH. 40

T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient surgery for multitask learning.
Advances in Neural Information Processing Systems, 33, 2020. 66

Y. Zang, F. Qi, C. Yang, Z. Liu, M. Zhang, Q. Liu, and M. Sun. Wordlevel textual adversarial at
tacking as combinatorial optimization. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6066–6080, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.aclmain.540. URL https://www.aclweb.org/anthology/
2020.acl-main.540. 24

J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and E. K. Oermann. Variable generalization
performance of a deep learning model to detect pneumonia in chest radiographs: a crosssectional
study. PLoS medicine, 15(11):e1002683, 2018. 2, 20

B. Zhang, D. Xiong, J. Su, H. Duan, and M. Zhang. Variational neural machine translation. InProceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 521–530, 2016.
11

H. Zhang, D. Khashabi, Y. Song, and D. Roth. Transomcs: From linguistic graphs to commonsense
knowledge. In C. Bessiere, editor, Proceedings of the TwentyNinth International Joint Conference on

96

https://www.aclweb.org/anthology/2020.blackboxnlp-1.24
https://www.aclweb.org/anthology/2020.blackboxnlp-1.24
https://www.aclweb.org/anthology/P19-1226
https://www.aclweb.org/anthology/P19-1226
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://www.aclweb.org/anthology/2020.acl-main.540
https://www.aclweb.org/anthology/2020.acl-main.540

Artificial Intelligence, IJCAI20, pages 4004–4010. International Joint Conferences on Artificial In
telligence Organization, 7 2020. doi: 10.24963/ijcai.2020/554. URL https://doi.org/10.24963/
ijcai.2020/554. Main track. 9

Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu. Ernie: Enhanced language representation with
informative entities. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 1441–1451, 2019. 25

B. Zhou, D. Khashabi, Q. Ning, and D. Roth. “going on a vacation” takes longer than “going for
a walk”: A study of temporal commonsense understanding. In Proceedings of the 2019 Confer
ence on Empirical Methods in Natural Language Processing and the 9th International Joint Con
ference on Natural Language Processing (EMNLPIJCNLP), pages 3363–3369, Hong Kong, China,
Nov. 2019. Association for Computational Linguistics. doi: 10.18653/v1/D191332. URL https:
//www.aclweb.org/anthology/D19-1332. 8

J. Zhou, Y. Cao, X. Wang, P. Li, and W. Xu. Deep recurrent models with fastforward connections for
neural machine translation. Transactions of the Association for Computational Linguistics, 4:371–383,
2016. 11

X. Zhou, Y. Zhang, L. Cui, and D. Huang. Evaluating commonsense in pretrained language models. In
AAAI, pages 9733–9740, 2020. XV, 19, 60, 63

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning
books and movies: Towards storylike visual explanations by watching movies and reading books.
In 2015 IEEE International Conference on Computer Vision (ICCV), pages 19–27, 2015. doi:
10.1109/ICCV.2015.11. 40, 55

97

https://doi.org/10.24963/ijcai.2020/554
https://doi.org/10.24963/ijcai.2020/554
https://www.aclweb.org/anthology/D19-1332
https://www.aclweb.org/anthology/D19-1332

Appendix A

Training HyperParameters

Task Model Batch Size Learning Rate Epochs

ARCT

RoBERTaLarge 16 1e5 25
GPT2Medium 8 2e3 18

T5 8 2e5 17
BARTLarge 16 2e4 12

COMET(BART) 8 1e4 25

ARC

RoBERTaLarge 8 1e4 16
GPT2Medium 4 1e3 26

T5 8 2e5 12
BARTLarge 8 1e4 27

COMET(BART) 8 3e5 22

PIQA

RoBERTaLarge 16 3e3 28
GPT2Medium 8 1e3 22

T5 8 1e5 9
BARTLarge 4 1e3 19

COMET(BART) 32 3e4 16

CSQA

RoBERTaLarge 8 3e4 13
GPT2Medium 8 1e3 14

T5 8 2e5 5
BARTLarge 8 3e4 18

COMET(BART) 8 1e4 14

Table A.1: Hyperparameters found through a search used in each experiment.

99

	Introduction
	Context and Motivation
	Objectives and Contributions
	Dissertation Outline

	Related Work
	Commonsense Knowledge & Reasoning
	Recurrent Neural Networks & Transformer
	Encoder-Decoder Model
	The Attention Mechanism
	Sequence Encoding
	The Transformer

	Pre-Trained Language Models
	BERT
	Other Variants

	Commonsense Reasoning with Transformers
	Shortcut Learning
	Adversarial Attacks
	Neuro-Symbolic Systems
	Summary

	Tasks
	Argument Reasoning Comprehension Task
	AI2 Reasoning Challenge
	Physical Interaction: Question Answering
	CommonsenseQA
	Summary

	Implementation
	Models
	RoBERTa
	GPT-2
	T5
	COMET(BART)

	Adversarial Attack
	Training Methodology
	Data Contamination Study
	Shortcut Exploration
	Summary

	Results
	Neural Models
	Evaluation on Commonsense Reasoning Tasks
	Retraining and Evaluation with Partial Input

	Neuro-Symbolic Models
	Evaluation on Commonsense Reasoning Tasks
	Retraining and Evaluation with Partial Input

	Adversarial Attack
	Cross-Task Evaluation
	Data Contamination
	Shortcut Exploration
	Class Balance
	Lexical Cues

	Summary

	Conclusion
	Summary
	Contributions
	Future Work

	References
	Appendix Training Hyper-Parameters

