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Summary (English)

Animal behavior is a fascinating area from a physical perspective, and yet there are several

challenges in making physical models about it. A specific challenge is in coming up with models

derived from data, removing human-centric bias when defining behaviors. A good example of

the complexity associated with it can be seen in animal contests, such as in zebrafish (Danio

rerio) fights. Being well understood, makes it a good first example to explore these complex

interactions. Our main objective consists of attempting to derive a set of behavioral states

directly from the data.

We define these states for the pair, rather than for each fish individually, based on our

assumption that social interactions are joint behaviors and cannot be fully described for an

individual element of the interaction. We do so through the definition of simple variables with

analogues in classical physical models. These variables are respectively distance, alignment of

the heading and acceleration vectors, the average and deviation of the tail beating rate, and speed,

and these form a 6 dimensional system. We define compound behavioral states in function of the

variables defined previously. We embed the 6-dimensional system, after a normalization process

in a 2-dimensional representation through a nonlinear embedding technique. We assign labels

to the different density peaks through a user-defined classification tree. We build a symbolic

sequence from the density peaks, and do spectral analysis on the computed transition matrix

associated with the sequence, to have a first picture of the dynamics of the interaction.

We are able to recover a connection between different clusters with different behaviors,

forming “super-clusters” and giving an overall structure to the fight. Spectral analysis also

suggests the dynamics between these larger clusters is non-markovian and occurs in longer

timescales, relative to behaviors within clusters.

These results suggest that it is possible to recover the behavioral structure of a contest from

simple variables, and there are dynamical features we can recover from data. This opens up

opportunities to explore dynamics by using less interpretable and more accurate variables.
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Resumo (Português)

O comportamento animal é uma área fascinante do ponto de vista físico, no entanto ainda

existem vários desafios associados à construção de modelos ou ao desenvolvimento de teorias

do comportamento em física. Um dos desafios é desenvolver modelos diretamente dos dados,

eliminando o viés antropocêntrico que existe na definição de estados comportamentais. Um

bom exemplo da complexidade associada ao comportamento pode ser encontrado em interações

sociais, nomeadamente interações agonistas entre peixes-zebra (Danio rerio). Estas interações

são bem compreendidas e estereotípicas, e existem catálogos a descrever os estados comporta-

mentais associados a cada fase da interação. Isto e a versatilidade genética a que o peixe zebra

se encontra associado, tornam esta interação ideal para o nosso estudo.

O nosso objetivo principal consiste na tentativa de derivar um conjunto de estados compor-

tamentais diretamente a partir dos dados experimentais obtidos, sendo estes estados definidos

para o conjunto, e não individualmente. Fazemos isso sob a assunção de em interações soci-

ais, estados comportamentais dependem dos elementos envolvidos nessa interação (neste caso,

são peixes-zebra) e que esta não é completamente descrita, exceto se levar ambos em conta

simultaneamente.

Os dados são esqueletos tridimensionais dos 2 peixes-zebra num volume. O processo de

aquisição desses dados consiste na aquisição de imagens em 3 planos bidimensionais com câ-

maras de alta definição, e um pipeline de processamento, que combina várias redes neuronais

para a identificação de pontos corporais, a atribuição de identidade temporal aos peixes envolvi-

dos, e a interpolação das imagens nos diferentes planos. Este processo permite a conversão de

vários vídeos em sinais temporais que podem ser manipulados e processados de forma adequada.

Usamos variáveis interpretáveis, no caso, a distância, os alinhamentos de direcção e aceler-

ação, e os ritmos de batimento de cauda. Essas variáveis embora sejam simples, podem dizer

bastante informação sobre a natureza do comportamento, sendo úteis numa exploração inicial.

Definimos estados comportamentais compostos (colecção de vários comportamentos efec-
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tuados pelos peixes ao longo de um determinado período de tempo) e exploramos a dinâmica

de uma luta nesta descrição simplificada.

O sistema que resulta das variáveis definidas possui 6 dimensões, projectamos esse sistema

para um plano bidimensional para melhor análise.

Efectua-se um histograma das novas variáveis, e ter uma estimativa da densidade de prob-

abilidade através da convolução do mesmo com uma gaussiana bidimensional. Detecta-se os

picos de densidade, que neste sistema podem ser interpretados como estados comportamentais.

Com essa descrição é possível gerar uma sequência simbólica que representa a dinâmica da

interacção como sendo a transição entre vários estados comportamentais discretos. Constrói-se

uma matriz que representa a transição entre os vários estados, e por decomposição espectral

pode-se observar o comportamento dos valores próprios em função do número de transições

e é possível decompor os estados em vários conjuntos através dos vectores próprios, cuja

dinâmica entre eles é representada pelo valor próprio associado. Através da sequência simbólica

é possível uma descrição da interacção entre os elementos, tendo inclusive informação sobre a

escala temporal associada à dinâmica entre esses estados.

Ao associar os clusters aos diferentes estados comportamentais compostos definidos pre-

viamente, é possível ver que certos clusters se encontram associados, e apresenta uma certa

estrutura, que pode ser representativa da dinâmica real.

Também é possível determinar a escala temporal de interações entre diferentes conjuntos de

clusters. Foi possível determinar que os comportamentos ocorrem em escalas temporais maiores

do que a escala tipica para processo de Markov, e a escala temporal mais elevada se encontra

associada a transição entre estados associados à agressão entre o par, e estados associados aos

períodos entre lutas.

Mostramos que é possível obter uma estrutura comportamental da luta entre dois peixes-

zebra utilizando as variáveis simples que definimos. Isto é um framework que permite explorar a

dinâmica da sua interação emmaior detalhe, a utilizar variáveis ou representações mais precisas,

que podem não ser interpretáveis.

Keywords— Comportamento, Danio rerio, Clustering, Métodos
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Chapter 1

Introduction

Ethology is a field in biology that studies animal behaviour. For a long period of time, it has been

a qualitative science, based in direct observation by humans, classifying behaviour in classes that are

determined by the observer. This may introduce several possible errors: the results may be biased by

the observer; possible intrinsic properties of behaviour may ignored; and since the observer classifies the

behavior statically, the whole dynamic of the system is incomplete. In order for ethology to become a

quantitative science, there needs to be a change in the method of observation. [1] Recent developments

in machine learning and image tracking have led to the development of what is known as computational

ethology, which allows for quantitative analysis and physical interpretation of behaviour. [1] There are

examples of this, for physical modelling of collective motion using fluid dynamics [2] or to model

behavioral patterns in single animals using random walk and stochastic processes [3]. It’s possible

to combine the quantitative behavioral model with neural or genetic models to address more interesting

questions about the nature of behavior. [1] And yet, there are several questions that have not been adressed

in ethology from a physical perspective, and a quantitative description may be helpful into ultimately

deriving a physical theory of behavior [4].

1.1 Quantifying Natural Behavior

At first, several cases are presented as examples where computational methods and physical theory are

used to describe certain behavioral processes. These methods are reliant on the experimental procedures

used. A experimental setting may have a controlled environment where a constrained set of behaviors are

observed. [5] A different approach is to focus on measuring behavior on the organism scale rather than

focusing on the environment with minimal artificial constraints. There are several experimental methods

possible as:
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• Posture tracking - Behavioral patterns can be represented by postural changes over time. An image

directly displays animal behavior which can be later converted into a more abstract representation.

It used to be done by manual frame by frame analysis of video footage, which is ineffective for

long high framerate videos. In recent years, several techniques have been developed for better and

more accurate tracking.

– Stopgap techniques are inspired by previously developed human motion capture, where

small dye spots are introduced on the animal’s limbs. It may introduce possible confounds,

and the system may be biased towards human-like patterns. [6]

– Markerless techniques adresses previous difficulties by using internal reflections to charac-

terize contact points between an animal and a substrate. However it can’t track portions of

the animal not interacting with or separated from the substrate. [7]

– Model-based image analysis uses known biomechanical degrees of freedom to find the

posture that would produce images with the highest likelihood. [8]

– Besides these techniques, another possibility is to do automatic annotations through deep

learning and neural networks, which would still require human-annotated training sets. [9]

• Field imaging - Recent development of cheap equipments and open source animal tracking algo-

rithms have made this option increasingly popular. [10]

• Real-time feedback and brain imaging - it varies in computational intensity, with computationally

lighter approaches being implemented in real time. Observations can be done in two fronts,

stimulating the response of behavior by neuronal input, or predicting upcoming behaviors through

neuronal signals. There are challenges associated with this method, mainly in recording animals

for long periods of time, and in registering volumetric neural imaging data. [1]

The resulting data can be described in a theory with basis in consistency, fidelity, interpretability and

scalability. Fidelity and interpretability are in opposition, as models that are more easily interpreted

tend to be less accurate. This suggests a continuum of solutions, typically dependent on the researcher’s

representation of behavior, and selecting that representation is dependent on the interests of the research:

[4]

• Quantification associated with the experimental apparatus - having the advantage of consis-

tency but being too low-dimensional and having an unnatural dynamic. [11]

• A coarse variable like mean velocity can also be measured, being more naturalistic, however that

only allows for dynamics at a single scale, not being able to capture more precise patterns of

behavior that may occur at different scales. [12]
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Figure 1.1: Development of a Behavioral Model (from [4])

• Human-defined classification system by a trained observer - This approach as a more detailed

description, it is labor intensive and user-specific (the behavioral classes are defined intuitively),

limiting reproducibility. Finally, it assumes behavior states are part of a discrete system of states

and the data doesn’t seem to show this as a good representation. [4]

• Advances in automation have increased the throughput of the first two options, and supervised

machine learning techniques have improved the repeatability and decreased the manual labor

required for human-defined classification.

But the fundamental difficulties presented by each of these cases still remain. There is a need for a

general principle and approach towards behavioral classification. [4]

Bio-locomotion is an area where the focus to study behavior has been directed. Usually behavior

is studied through dynamic motion trajectories, like center-mass, body-bending and/or limb trajectories.

These behaviors are stereotyped, since physical constrains allow for fewer degrees of freedom inmovement

execution, and during locomotion, their dynamics are in a lower dimension than the number of degrees

they have available. [13] Based on these observations, recent developments have been pushed for data-

driven and unsupervised analysis of animal behavior, showing that a large fraction of animal movements

are low dimensional compared to their degrees of freedom. [14] There are different approaches that have

several similarities between them used to identify stereotyped behavior from videos (not considering

other modalities). The general structure is described in fig 1.1.

The first step after data collection is to define a postural time series. Several principles may be

considered when dealing with postural time series.

• Stereotypy and discretization - behavior is treated as a sequence of discrete states. The similarity

3



between instances of a state in that sequence is what is defined as stereotypy, and it can be quantified

by determining how long the trajectory in posture phase space diverge. [15] Non-stereotyped

behavior is considered to be part of a continuous transition between the states [16].

• Hierarchical organization - While it has been shown as being very effective to produce complex

adaptive behaviour in robotics [17] with little computational power, there is a lack of clear demon-

strations of such hierarchical organization in non-human animals. But it is still widely used as a

principle when considering a representation of behavior. [18] These can be constructed as nested

representations withmultiple levels of nesting, using dictionary based compression algorithms [19]

or cluster analysis [20].

• Low postural dynamics - animal behavior generally has many degrees of freedom, however when

considering correlations and independence between these degrees allows for a lower dimensional

representation that maintains the information about the posture. This holds not only for simple

animal structures but for more complex ones.

Low dimensionality, stereotypy and hierarchy can all emerge in postural phase space. [21]

The main objective is to turn the high-dimensional data (millions of pixels) into a lower-dimensional

representation that can describe the animal’s posture in its entirety. The number of variables required

are different for different animals, however, it is small compared to the dimension of the acquisition data.

That can be done directly through posture tracking and or indirectly by image segmentation and principal

component analysis for dimensionality reduction.

To measure stereotyped behaviors, we need to create a dynamical representation that describes how

the postural time series are changing. This can be achieved by fitting a differential equation to the data or

through features that incorporate dynamics to segments of data. An appropriate dynamical representation

can emerge from this, describing the postural time series. [22], [21]

Another approach is to fit a statistical model to the data, for example by an Auto Regressive-Hidden

MarkovModel.This would allow for a dynamical and behavioral representation, but it requires a parameter

that determines the timescale for behavioral states, and it is known that behaviors may occur in different

time scales [23].

To complement this, some representations are multi-scalar in nature, throughmotifs (posture patterns

that occur commonly) of various lengths [24] or using a time-frequency analysis approach [16], showing

behavior at multiple scales.

Capturing motifs may not be robust to slight changes in postural dynamics, like changes in frequency.

While time-frequency analysis gives information in both amplitude and phase, typically only uses am-

plitude, which helps with the robustness, and the behavioral representation can be obtained through

4



clustering [25], or low-dimensional embedding of the resulting vector of amplitudes [16], [26]. The

embedding generates a space with anisotropic density, and the behavioral representation is either the

density or the peaks.

The several representations discussed above can be grouped into being either discrete or continuous.

In general, discrete representations can be derived from continuous ones.

Continuous representations may be interesting because they allow to display non-stereotyped

behavioral dynamics.

If the data has clusters, however, it is ideal for clustering in discrete representations [25]. While

statistical methods allow for the development of a dynamical model, it works under an assumption on the

timescale for the data.

We can look at several cases where the different methods discussed were explored and see what

conclusions they have reached.

Lee et al. did a series of tests in zebrafish to determine their orientation mechanisms, based in direct

observation of video footage and analysis (statistical and Bayesian). The results showed that they navigate

by determining directions based on distance relationships between visible surfaces. They use the perceive

distance between two 3-d surfaces to determine their relative position and direction. [27]

In a follow-up study, they reach the conclusion that zebrafish rely mostly on boundaries to orientation

and spatial mapping, and other features as local cues towards a certain location. This suggests a similar

neural structure and function across several species.Environmental boundaries may play a major role

in mapping location in an environment for other animals, and these results suggest that the mechanism

behind this are related. [28]

Berman et al. used time-frequency analysis (through Morlet wavelet analysis [29]) and spatial

embedding (through t-distributed stochastic neighbour embedding [30]) to develop representations for

stereotyped behaviors in flies (Drosophila Melanogaster). This allowed for a low-dimensional represen-

tation where stereotyped behaviors could be described by peaks in density . The results they have suggest

that about half the behaviors displayed by the flies are non-stereotyped. This method also allows to find

subtle behavioral sex-specific differences. [16]

Caenorhabditis Elegans, or C. elegans in short, is a nematode that is very used in the development of

behavioral models, not only for the simplicity of its structure but also because it is the first multicellular

organism with both a complete genome [31] and connectome [32], which allows for studies not only at

the genetic level, but at the neuronal level in conjunction with behavioral models.

Baek et al. developed an automated tracking and imaging system and used acquired image data

to quantify the motion patterns for wild and mutant worms. They use image segmentation to have a

binary mask which they use to develop a skeleton of the image (through thinning and pruning of the
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Figure 1.2: Densities in behavioral space during stereotyped (a) and non-stereotyped (b) behavior
(from [16])

image [33]), being an easier structure for feature extraction. They then use the extracted features to train

a classification and regression tree analysis [34]. The results show that mutant animals can be identifiable

based on a small number of image features collected. Also, these methods have the advantage of giving

the possibility to determine phenotypes in a more quantitative, objective manner, more reliable than

previous methods.Skeleton decomposition is now a standard for C. Elegans behavioral analysis. [35]

Sznitman et al. used image processing and tracking to develop a skeleton representation, and combine

the kinematic data with a linearized model to study the two dimensional motion of C. Elegans at low

Reynolds regimes. The model used was a linearized model (a slender filament at low Re) for the torque

of the system with the momenta based in the Voigt model [36], and by some approximations, simplify

the model, giving origin to a biharmonic equation of the form:

∂y4

∂x4 + ξ
∂y

∂t
(1.1)

where y(x, t) is the body displacement of the nematode, t is the time, x is the position in the x axis

and ξ is a constant that depends on the nematode’s material properties and the fluid’s drag coefficient.

Equation 1.1 can be solved analytically, and fitting the data to this model makes it possible to determine

the material coefficients describing the physical motion. The results show there is a periodic swimming

behavior that propagates from the nematode’s head to its tail, being able to estimate the nematode’s tissue

material properties. Due to its non-invasive nature, it is an ideal method for genetic and small molecule
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screening applications. [37]

Keaveny et al. had a similar study, wanting to better understand the mechanical relationship between

animal and its surrounding environment, and to develop a model to predict the trajectories of C. elegans.

They used a linear model for the forces applied on the worm, similar to the one used by Sznitman et al.,

and a nonlinear variant [38] of the model that can be reduced to the linear model with the appropriate

parameters. Linear resistive force theory proved itself effective in predicting the nematode’s path based

on a sequence of body postures. Differences were found between nematodes captured in the wild, and

those grown in the lab, when considering the drag anisotropies. The nonlinear model, while providing

good predictions, does not solve the discrepancy between the generated parameters and experimentally

measured ones. The linear resistive model can be used for applications as whole-animal simulations and

advanced tracking, but the nature of interaction between the nematode and its lab environment remains

unsolved. [39]

Helms et. al investigate the motile behavior of nematodes and possible variations due to several

factors. Focusing on trajectory dynamics on timescales spanning from ballistic to diffusive movement,

they find that features of the motility statistics are captured by a random walk model with independent

dynamics in the speed (defined as an Ornstein-Uhlenbeck process [40]), turning (determined by body

orientation, as a drift and diffusion process [40]) and reversal events (determined by alignment, a random

telegraph process [41]).

Figure 1.3: C. Elegans’ motility, described by three quantities: speed s, body orientation ψ and
alignment ∆ψ(from [3])

The parameters change across species in a correlated low-dimensional manner suggesting a common

mode of behavioral control and a trade-off between exploration and exploitation. The distribution of

phenotypes shows there are behavioral differences across strains, suggesting they employ contrasting

bet-hedging strategies for foraging. [3]

Stephens et al. extracted curvature (using Frenet equations [42]) that describes a posture at a low

dimensional space than the motion. Similar results have been obtained for motor control in humans.

Their results showed the posture as a combination of small set of eigenworms (template motor behavior),

whose coefficients vary continuously. These are not correlated linearly but are nonlinear and coupled. It

also shows that some responses are stochastic due to not considering other behavioral variables, and that

said inclusion may uncover deterministic responses. With the eigenworms a phase space is derived, and
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there equations of motion can be built (using the Langevin equation [43]) where the set of attractors can

be described as rigorous behavioural states. This allows for a quantitative description of worm behavior

and shows for evidence of more subtle behavioral states. [21]

They exploit the reduced space of C. elegans postures in a following article to develop a novel tracking

algorithm which captures both simple shapes and self-occluding coil, which have yet to be studied in 2D

worm behavior. They apply previously developed algorithms to show that the complex coiled shapes are

a superposition of two simpler patterns.

Figure 1.4: Sample tracking results compared to the original images for a turning motion(from
[44])

They discover a dichotomy in spontaneous, large-amplitude coils by studying the escape response

of the nematodes, showing that these reorientations not only occur at the classical Omega postures but

also larger delta-postures, that occur independently from one another, suggesting a distinct triggering

mechanism, being the analog of a left-right step. These turns occur with approximately equal rate and

adapt to environmental conditions in similar timescales. [44]

In Costa et al., they use adaptive locally linear analysis [45] based on a likelihood-based hierarchical

clustering using Ward’s minimum variance criterion [46], which simplifies the complex global dynamics

into simpler local dynamics with linearization, and find the local eigenvalues, applying it to C. elegans

postural dynamics, andwhole brain imaging. The full spectrum of eigenvalues, not only gives information

about oscillatory behavior but also stability and criticality [47]. The results here suggest the behavioral

repertoire is far more complicated than the canonical representation of forward, reversal and turn. Tests

in brain dynamics show that the global brain dynamics are damped away by a decrease in oxygen in

instability boundary. This shows interesting dynamics to be studied at a critical region [48]

From these different results we can see several approaches being explored with varying results,

giving insight onto the nature of behavior. One key point to take however is that none of these approaches

is necessarily the best. They give access to different forms of information that may lead to different

questions. It is likely this project will be the same, not giving the best approach, but a different approach

to tackling behavior. It doesn’t seem we are close to having a best approach, but this contributes to the

8



wealth of information about behavior.
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1.2 Animal contests

Within the vast array of social interactions in animals, contests are of particular interest, due to their

asymmetric nature. The outcome of a fight will have a winner and a loser, two different behavioral

states for the animals involved. Animal contests have passive and active approaches, and in some cases

a history of these contests involves a combination of these, being therefore of critical importance to

our understanding of contests in animals to understand said approaches. Game theory provides several

frameworks from which to look at these interactions, considering the interplay between the outcome of a

contest and a contestant’s ability or cost. Three particular models have been extensively used to describe

contests.

• Sequential assessment - in the SA model, the contest is seen as a consistent sequence of behaviors,

where each behavior is executed with the purpose of obtaining the maximum ammount of infor-

mation about an opponent fighting ability (referred to as resource holding potential or RHP), with

the least ammount of cost, and the interactions between the contestants allow a better estimation

of the opponent’s RHP over time (this implies an minimization of the cost/information ratio).

There are some assumptions made by this model, like the assumption that the contestant doesn’t

make decisions based on past interactions. And this model predicts that the outcome of a contest

is determined by the asymmetry in the contestants RHP, and that there is no escalation within

behavioral stages. [49]

• War of attrition - WOA models are self assessment models, since it assumes the contestants don’t

take into account the opponents abilities into their decisions. It takes into account the contestant’s

endurance, and the length of interaction. The behaviour is determined based on the individual cost

they have, and the outcome of the interaction is determined by the maximization of the pay-off

(obtained the most resource value while spending the least effort.) This cost is dependent on both

energy spent by the contestant and the length of the interaction, and has potential for escalation. [50]

• Cumulative assessment - in CA models, the outcome of a fight is based on a cumulative sum of a

contestant’s adversaries actions, and the physical cost those incurr, with the fight ending after some

threshold is crossed. The contestant is unable to detect the effect of its attacks on its opponents,

but is able to distinguish fighting or fleeing scenarios. [51]

Overall it is possible to distinguish each model based on some characteristics, with CA and SA

relying on an initial assymetry of the contestants RHP to determine the outcome of a fight, while for a

WoA model, the contestants start at a similar fighting ability. CA has an escalation within its behavior

stages, something not predicted by SA models [52]. There are several experimental cases where these
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models fit the description of animal fights, but there is no universal model that accurately describes an

animal contest [53]. Part of the challenge may be due to the lack of proper data in said contests, and

hopefully advances in tracking algorithms and data analysis will aid the development of new models or

the exploration of these models from different perspectives.

11



1.2.1 Zebrafish dyadic contests

Zebrafish (Danio rerio) are another species that are models in ethology due to their extensive use

in biomedical research and their genetic versatility, as well as neurological species (mostly on larval

zebrafish that are transparent). It also has a consistent behavioral terminology, making observations more

consistent. [54]

Figure 1.5: Zebrafish contest ethogram with
transitions (from [55])

Zebrafish fights are a sequence of well charac-

terized behaviors with the purpose of establishing

dominance between the fish. The behavioral cate-

gories are classified into groups as displays, physi-

cal attacks, chases, and freezing (see fig 1.5). And

the progression of the fight usually follow a tran-

sitions across these different categories, as shown

by [55].

Due to its versatility in lab environment Ze-

brafish is an ideal animal model to be explored. In

particular, due to its stereotyped fighting behavior

beingwell established, it is a good set of behavioral

classes to be explored quantitatively. And being an

animalmodel in geneticsmeans it is possible to see

how this behavior is affected by mutations in par-

ticular genes [56]. This introduces questions over

the robustness of this behavior to genetic modifica-

tions and to environmental conditions and it is an

opening into the exploration of collective behavior

in small groups of animals.

There are examples of modern day tools being

used to describe zebrafish fights: Applying computer vision, it is possible to detect zebrafish trajectories

automatically, preserving identity [57]. From the resulting trajectories, a neural network is trained to

detect aggressive interactions between the pair. From the results, there is evidence suggesting motor

coordination between the pair, giving rise to two distinct phases of aggressive interaction, a symmetric

and asymmetric phases, correspondent to a contest and resolution phases. Observations also suggest a

CA model is more adequate to describe the fighting interaction, relative to the other examples. [58].

Amore in-depth description of the fight (in kinematic terms) will be explored further in this document.
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Figure 1.6: Using computer vision and neural networks to detect zebrafish attacks fromvariables.
Source: [58]

1.3 Timeline

The project began in February 2020, and lasted 12 months, having all definitive results by February

2021. In the first month, the focus was directed at data analysis, following which we developed some

models to describe the observed results.

Different experiments were conducted, to determine the robustness of the developed model.

In the beginning, this was the main pathway expected during the development of this project, however

there were some changes, due to the CoVID-19 pandemic outbreak.
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Timeline of project

1 2 3 4 5 6 7 8 9 10 11 12

Data Analysis

Image Tracking

Data Processing

Theory development

Initial Model*

New experimental tests*

Milestone*

Thesis

*subject to changes

1.4 Objectives

As shown in this plan, there is a need to quantify behavior in order to develop mathematical

models that can be better conjoined with already existent genetic and neuronal results for a

more holistic description of animal behavior. There are several methodologies in experimental

procedures and model developments that can be useful in different fronts and subjects, all

tackling different questions, with several properties emerging depending on the method used.

Choosing the most adequate approach is a challenge in both ethology and theoretical biophysics

and we attempt an approach that is simplified and yet quite informative on the nature of a fight.

Our main objective is to find a description of the fight that is ethologically useful directly

from the variables. In our specific case, we want to find a description from variables defined

for the pair, rather than from individual fish behavior. And we want to do so from variables that

are interpretable, as these allow for a first analysis and is of easy translation to an ethological

description.
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Chapter 2

Methods

2.1 Experimental setting

Although strictly experimentalworkwon’t be the focus of this dissertation plan, it is important

to point out the details that may be relevant for data analysis and model development.

The experiments are carried out by part of the group at OIST (Okinawa Institute of Science

and Tecnology) Graduate University, in Okinawa, Japan, which is working jointly with the group

at VU Amsterdam and several others.

We did the experiment using zebrafish pairs of the wild-type variety. The observations are

done in a cube of 30 cm3 with three cameras (Chameleon3 USB3 Model CM3-U3-13Y3M-S-

BD) perpendicular to the 3 cartesian planes (x,y and z) and at the opposite side of each camera

there is a LED plane that covers the face of the cube to ensure that the luminosity is uniform (it

helps in image segmentation). The output are videos from the different planes, with resolution

of 1024× 1280 pixels.

2.1.1 Understanding the development pipeline

As this is experimental data where no model is developed, the best procedure is to take

simple analytical measures that are robust to some of the tracking errors.

Therefore it is important to understand the 3D tracked data itself, and the pipeline developed

to obtain it. This pipeline has been developed over the past few years, and it has been improved.

The trajectories obtained come from images taped of a cubic fish tank. 3 cameras simulta-

neously capture footage from three perpendicular directions.
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Figure 2.1: Experimental setup used: A 30× 30× 30 cm3 tank with three cameras oriented in
perpendicular fashion, with planar LED backlights in the opposite side of the tank.

2.1.1.1 Automatic Label Assignment

These footages are cropped and pass through a supervised convolutional neural network

(CNN). Each CNN is trained for each particular direction, and for every frame, there can be

one or two images per frame (depending on the distance between the fish). The outputs of the

networks are skeletonized versions of the fish posture (3 Bodypoints and the edges connecting

them). The process through which these are defined is through part affinity fields, detailed

in [59]. A network application to determine postures in single frames is discussed in [60].

2.1.1.2 Cross-camera identity assignment

To assign fish identity across different planes, a process was developed by the group where

skeletons from two planes are used to compute the third one, and difference between the

prediction and the network results are compared. The network result with the smallest error is

chosen as the fish correspondent to the skeletons of the other frames, this error being a sum of

euclidean distances between the three bodypoints. This process is repeated for all three planes,

meaning that the process is a permutation across the different planes. The permutation with the

lowest mean error is chosen.
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2.1.1.3 Temporal identity assignment

To maintain temporal identity across the movie, idTrackerAI, an algorithm developed for

multi animal tracking is used in the XY plane. [57]

The end result is a collection of 3D trajectories for 3 bodypoints for 2 fishes. However, it

is not a perfect process. Errors in temporal assignment can happen and the calibration process

that leads to the combination of 3 2D images to get one 3D coordinate does have some errors.

The network itself has some associated predictions errors (since it does not give a bodypoint

necessarily, but a 2D gaussian distribution around the location of said bodypoint). When those

errors are combined across different steps of the pipeline, they end up multiplying. Thus far,

a possible solution for this is to just ignore any frame where certain criteria are not met (for

instance, there only being one bodypoint across all three camera views, or the errors in third

step being higher than a certain threshold).

Two problems were a major concern for our analytical efforts.

• Fish swapping errors -While idTracker is great to assign temporal identity, it is not without

flaws, specially when fish are close to each other. While these don’t occur too frequently,

the temporal integrity of the datasets are compromissed and analytical approachs that rely

on it, are somewhat affected by it. While we don’t know howmuch it is affected, we would

rather use techniques not affected by said problem.

• Missing frames - Due to a lack of training data from some regions in the tank, the

network may fail to properly label the fishes, leading to missing frames, which also causes

challenges for methods that require temporal identity to be consistent. While Kalman

filtering has been used, it was found to be ineffective when dealing with a large number

of consecutive missing frames, or large gaps. The best solution for this problem was

selecting more training data from the correspondent regions in the tank. There were still

some missing section remaining but their number was reduced enough that interpolation

was a feasible tool to use.

For the rest of the analysis we used data from 6 experiments, envolving two fish pairs:

2.1.2 Data Analysis and Processing

When it comes to data analysis, we used a hybrid approach for quantification based in some

coarse variables and posture tracking with unsupervised machine learning techniques for image
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Figure 2.2: Processing pipeline to recover 3D postural information from a pair

Date of experiment Pair Number of frames Missing frames (%) Gap size n > 20
January 29th 1 769848 1.5 21
January 30th 2 501943 1.3 6
February 14th 2 495610 0.9 7
February 18th 1 537880 1.7 4
March 27th 2 561010 0.9 5
March 31th 1 746434 1.3 6

Sampling rate (Hz) 100

Table 2.1: Datasets used in analysis

tracking. We want to build a physical model, therefore we will use biomechanical degrees of

freedom and constraints coupled with the ML techniques, such that the obtained variables are

easily interpretable.
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2.2 Joint Variables

One of the biggest challenges when deriving a physical description of a behavioral state

(i.e. posture) is the appropriate representation of said state. Often, there is a trade-off between

fidelity and interpretability with more accurate representations being less interpretable and

vice-versa. [4].

It is possible to obtain representations by unsupervised methods, through short time dynamic

analysis and other cases as the examples showcased below:

• Time delay embedding - relevant time delays would be recovered under a minimization

criteria (minimization of the mutual information between the variables). Through a

neighbour embedding method, it is possible to recover a high dimensional representation

of behavior.

• Machine Learning methods

– Autoencoder networks on the variables would allow for nonlinear dynamics to

be recovered, through information compression with the appropriate cost function.

There is the issue of being a black-box approach that will give non-interpretable

representations.

– SVD would recover a higher dimensional representation of the variables and a non-

linear decomposition of variables.

• Local linear models will give a short time linear dynamic description of the system,

with the models being defined through a dissimilarity metric. This approach is useful for

dynamic analysis, including the recovery of unstable eigenvalues and emergence of chaos.

• PCA decomposition which is limited by recovering linear modes and dynamics in be-

haviors, but that is fairly straight forward and is a good choice for a first approach for

dimensionality reduction. Some improved versions can allow the recovering of nonlinear

and time delayed elements of the dynamics.

Any of these techniques or a combination of them are good approaches to recover a non-

human defined representation of a behavioral state. Whatever there is the issue of most of these

modes not being interpretable from a ethological or physical perspective, and are best applied

to a system that is better understood.
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2.2.1 Notation and Definition of Variables

To simplify expressions and for compactedness, the following notation will be used:

• bki (n), k = {0, 1, 2}, i = {0, 1} - this is the bodypoint k for fish i at frame n, a 3-D point.

So each bki (n) has three values (corresponding to the x,y and z planes).

• When only one of the coordinates axis is being considered (e.g. the z-axis), it will be

displayed explicitly (zki (n)).

• Differences - When a vector is being displayed (between two bodypoints of the same fish

or between different fish) it will represented by ∆jkbi(n) = bji (n)−bki (n) for two different

bodypoints on the same fish and ∆i→jb
k(n) = bki (n) − bkj (n) for two different fish. A

difference in time is described by ∆nb
k
i (n) = bki (n+ 1)− bki (n).

• fs is the sampling frequency in the experiment (100 Hz).

We are looking at this system in an exploratory fashion, so it is more helpful for us to easily

interpret the results obtained, at the cost of a somewhat less accurate model. With that in mind,

we use human-defined single fish variables (dependent only on a single fish), based on known

body constraints and previous ethological studies, and through these variables we are able to

recover the fish’s trajectory and posture.

• Heading vector, a 3D vector embedded in a 2-sphere, the different between the head and

pectoral points normalized. This variable is defined under the assumption that the fish has

rigid body between the head and pectoral points as:

hi = b01
i

||b01
i ||

This is a reasonable assumption taking into account the anatomical structure of adult

zebrafish. [61]

• Speed, (which is time dependent) defined as

si(n) = ||∆nb
k
i (n)||fs

• Tail beating rate, a tail frequency defined on a 2-sphere, described in further detail ahead.
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• Vertical deflection of the tail which is defined as

φi(n) = arcsin
(

∆21zi(n)
||∆21bi(n)||

)

considered more relevant than the horizontal angle, as there is evidence that this postural

feature is relevant in submissive behavior.

From these variables it is possible to recover a trajectory and a posture conformation for the

fish, under the assumption that the horizontal coordinates of the tail are not particularly relevant

(whether the fish is bending its tail to the right or to the left).

While the variables defined abovewill describe single fish postures, sincewewant to describe

social interactions, there will be other constraints to be considered, giving rise to a new set of

variables, composite variables. Composite variables, also human-defined, depend on the pair of

fishes and can’t be defined in isolation:

• Joint variables

– The average distance between a and b

– Alignment, defined as the dot product of the heading vectors of the pair

– Acceleration alignment, the dot product of the normal acceleration vectors of the

pair.

– Average tail beating rate

– Average speed

• Deviation variables

– Coefficient of variation of the tail beating rate

The variables above are considered joint or deviation variables, based on whether or not they

capture the properties of the pair as a whole entity or if they capture the differences between

them.

The composite variables are defined based on ethological descriptions suggesting some

symmetries, but those symmetries are not rigorously defined.

The composite variables defined above are the ones used when developing behavioral states

for the pair, as they don’t require picking any particular fish as a reference, albeit losing infor-

mation that is relevant to specific questions about a contest, such as the winner of a fight.
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The next few subsections will clarify some of the variables above

2.2.1.1 Distance

Distance is a common variable when looking at social behaviour and interaction in general,

being easily interpretable and obtainable. There are two particular cases in zebrafish fight where

distance plays a role: in display and circling where both fish are close to each other, and bites,

strikes and other physical attacks, where the head of one fish is close to the body of the other

fish. To be able to distinguish contacts, a variable denominated heading distance from fish i to

fish j is defined as

di→j = min
k

(|b0
i − bkj |) (2.1)

In this case, the mean distance is the average of the heading distances of both fish, normalized

by the average fish bodylength d = 1
2Lb

(d1→2 + d2→1).

2.2.1.2 Relative alignment

Relative orientation is another variable that is studied when discussing collective behavior. It

is defined as the difference between the orientation of different animals and it’s a proxy variable

for alignment (equivalent to polarization in magnetic systems).

It is possible to define a relative orientation between both fish using the previously defined

heading vectors, given by

p = h1 · h2 (2.2)

To define the acceleration alignments, the formulation is equivalent but instead of hi we use

the acceleration defined as the change in alignment

ani = ∆nhifs

pa = an1 · an2 (2.3)

2.2.1.3 Tail beating

Quick changes in speed and direction in fish’s motion are associated with the change in fish’s

posture displayed by a tail beating. Therefore it is interesting to see how often these fish change
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direction and more important, if there is a connection between these and the onset and outcome

of a fight. To define an appropriate variable we first consider our fish’s representation, a 3 body-

point-skeleton, or two vectors from the pectoral point to the head and tail points respectively,

(b01
i and b21

i ). As we are not concerned with the fish’s body length but with the bending, we

normalize th tail-pectoral vectors, and from the new b21
i versor we compute tail beating rate.

From a continuous analogue:

ωi = 1
2π ||

d

dt
b̂21
i || =

1
2π

√
(θ̇ cosφ)2 + φ̇2 (2.4)

An interesting observation we can make is that when one of the angles is constant (for

a purely vertical or horizontal oscillation), the tail beating rate is equal to the frequency of

oscillation for that direction. Of course from our case, we will be working with finite differences

rather than derivatives, but the formulation is equivalent.
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2.3 Compound Behavioral States

From ethological descriptions, there is a escalation that happens in a fight. To capture

that escalation we must look within the fighting interaction. As some behaviors are similar

in terms of their objective within a contest, we can look at them as being part of a larger

category or compound behavioral state. They are called compound because, rather than defining

these behavioral states for single fish, they are defined for the pair, and may be include several

individual fish behaviors within:

• Displays In this section of a fight the pair are measuring each other’s fighting ability

through indirect means. In general the pair begins their interactions at this stage, usually

escalating into more aggressive interactions, but sometimes the contest is resolved at this

stage if the fighting ability gap is large enough. Since we controlled the experiments for

pairs with roughly the same fighting ability, that is not the case for most of the experiments

ran. This compound behavior has two distinct phases.

– Passive display - In this phase, the pair exhibits display behaviors (The pair is aligned,

moving slowly or stopped).

– Active display - This phase includes a characteristic circling behavior (The pair is

aligned in antiparallel fashion, and they move in a circular pattern).

• Aggression - There is an escalation of the interaction and the pair is showing aggressive

behavior. This usually occurs right after displaying but there may be shorter bouts that

occur outside of the general fight interactions, usually attacks from the winner over the

loser, usually interchangedwith freezing behavior by the loser. This stage includes chasing,

striking and biting, and the distinction is done based on the relative, rate of these events.

– Symmetric aggression - Both fish attack at a similar rate.

– Asymmetric aggression - One fish attacks at a significantly higher rate, likely the

winner of the contest.

• Freezing - An assymetric stage of the fight, where one fish displays freezing behavior (is

at the bottom of the tank, not moving with a droopy tail). At this stage, the resolution of the

contest has been settled, with the loser fish exhibiting this behavior.Usually occurs at the

end of an aggressive stage, and becomes more common the longer the fish are interacting

with each other.
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Analysing the fight through these compound behavioral will allows a more detailed view of

a fight that is still interpretable.

To describe the dynamics of the fight, we must undertand these compound behavioral states

through the variables we have defined. These compounds behavioral states are defined by the

different behaviors contained within them. Exploring these behaviors over a fight will give us a

better insight into the compound behavioral states themselves.

2.3.0.1 Display

We can think of the display state as having two distinct phases, a passive and active phase.

Within those different phases, specific behaviors are exhibits by the fish which have an effect

on their general property. We detect these different behaviors by looking at average values over

a time window of 100 frames (1 second) and comparing them to thresholds. This done under

the assumption these behaviors occur at these timescale, or that their effects on the variables are

visible at this timescale.

For the passive display phase, we expect the fish pair to exhibit mostly display behavior,

characterized by these variables:

• 〈d|d〉 < 2 bl

• 〈|p|||p|〉 ≈ 1

• 〈s|s〉 < 3.5 bl/s

For active display, circling behavior is the most relevant and distinct exhibited by the pair.

• 〈p|p〉 ≈ -1

• 〈pa|pa〉 ≈ -1

within a short time window, something also shown on the experiment. This is the key distinction

between this stage and a general display.

These events are in general short lived, but they are all contained within the display state of

a fight, as these do not require physical contact between the fish.

2.3.0.2 Aggression

The key distinction of the aggressive state relative to the display state is that the fish in this

state exhibit aggressive behaviors.
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There are several different aggressive behaviors contained within it, but they share charac-

teristics as physical contact and high intensity, which can be thought of in simplified fashion as

collisions event between the pairs.

If we think of an aggressive interaction as a collision between the fish, we can detect it based

on its speed and its distance, in this case, the distance from the head of the aggressor to the body

of the other fish. As the interaction becomes more aggressive it becomes more intense which is

manifested in higher speed and closer distance, which may be captured over a time window.

• 〈di→j|di→j〉 < 0.25 bl

• 〈si|si〉 > 3.5 bl/s

To distinguish between a symmetric and assymetric phase of the aggressive section, we can

compare the rate of aggressive behaviors over a longer window of time. In this case, collisions

are a proxy for aggressive behavior, so we look at the rate of collisions over time.

2.3.0.3 Freezing

Within the freezing state, one of the fish exhibits freezing behavior. The most relevant

variable when discussing freezing behavior are their speed. The fish tend to be at the bottom of

the tank and a speed close to zero (but not necessarily zero, as the fish may drift).

• 〈si|si〉 < 1 bl/s
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2.4 2D Projection and Clustering

The joint variables defined above form a 6-dimensional system. We are limited by our

3-dimensional view of the world, so there is a need for lower dimensional projection. We will be

analyzing multiple experiments at once, in order to build a more robust representation. So we

use 6 experiments from 2 different fighting pairs, attaching the experiments together in a single

trajectory. The lower dimensional projection is done through an embedding process.

Consider the 6-d system as being part of a topological space X, and the lower dimensional

projection being in a topological space Y. The embedding process Γ is described by

Γ : X → Y (2.5)

where Γ is an injective and continuous map (an homeomorphism) between the two spaces.

There are several challenges with implementing this process numerically, but there are several

embedding techniques that have these properties.

The following approach is inspired by a similar pipeline used in [16], with changes in the

kind of processing and variables used, the embedding techniques and the clustering process.

2.4.1 UMAP Embedding

2.4.1.1 Theoretical foundation

This embedding is done under a couple of assumptions for our data:

• The data can be uniformedly distributed in a manifold

• This manifold, if it exists, is locally connected

• The primary purpose of the embedding process is to preserve topological structure.

A manifold M is locally connected if every point it contains is locally connected, that is, the

neighbourhood around any point in M contains a connected open set. [62]

These assumptions are the motivation behind the methods present in UMAP. Under the first

assumption, any volume V in the manifold should contain the same number of points in every

location in the manifold. This can also imply that for k-th nearest neighbours, there is a fixed

volume for every point in the manifold. Thus distances between points in the manifold can be

normalised by the distance from a point to its k-th nearest neighbour. The working principle of
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UMAP consists of approximmating local manifolds around every point and using their fuzzy

simplicial set representations to build topological representation of the high dimensional data.

From an initial low dimensional representation, the latter part of the method consists in finding

an equivalent topological representation minimizing the cross-entropy between the high and

low-dimensional representations, through stochastic gradient descent. [63]

UMAP is computionally implemented by:

• Computing a weighted k-neighbourhood graph over the initial high dimensional system,

with the connections corresponding to the neighbours of a particular point under a distance

metric.

• Defining a function preserving characteristics of the graph (global properties) and finding

a low dimensional representation that optimizes it.

The choice of hyperparameters has an influence on the representation of variables, and

for our application we used the default options for the metric, the euclidean metric, with 15

neighbours for each point. We used a learning rate of 7, and the number of output components

we choose is 2 (the dimension we want to visualize our system in). [63]

2.4.1.2 Minimum square difference sampling

Consider aM×N matrix A representative of the time series, with M variables and N points,

and we want to select a set of n points from said matrix , v. From window of length w = bN
n
c,

we select the point j in the kth window such that:

vj = min
j∈wk

( ∑
1≥i≤M

(Aij − Âk)2
)

(2.6)

with Âk being aM × 1 vector corresponding to the average values in the kth window. This

ensures the sample we get is more representative of the average properties of the whole time

series.

2.4.2 Kernel density estimate

To visualize the structure of the resulting projection, we do a kernel density estimate (KDE)

over the two variables by computing an histogram and doing a convolution of this two dimen-

sional histogram with a gaussian kernel.
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For one dimension:

Consider an histogramH with n bins of some random variable v as a sum of delta functions:

H(v) =
n−1∑
i=1

ciδ(v − v̂i)

where v̂i is midpoint of bin i (the point in the middle of the interval [vi, vi+1]), and ci is the value

of the histogram in that interval. The kernel density estimate gh(v) is defined as:

gh(v) = (H ∗ kh)(v) =
∫ ∞
∞

H(u)kh(v − u)du =
n−1∑
i=1

cikh(v − v̂i) (2.7)

with kh(v) being the kernel function with bandwidth h. This result can also be generalized

for two dimensions.

This approximates the probability density function to a better extent than the regular his-

togram with the risk of oversmoothing and losing relevant detail. Choosing the appropriate

parameters can help avoid oversmoothing, such as the number of bins in the histogram and the

bandwidth of the gaussian kernel used (determining a resolution for the representation). The

number of bins used is proportional to the square root of the number of samples used in the

embedding. The bandwidth of the kernel is determined by the user (In this case it is equal to

10).

The approximate probability density function gives a "behavioral map" where the peaks in

density (probability modes) can be interpreted as behavioral states. (see figure 3.3-a)

2.4.3 Peak Detection and Clustering

Detecting peaks in the probability density is equivalent to finding the maxima in a scalar

function of 2 variables. The gradient is a good method when trying to find extrema in a

multivariate function, but it has some caveats. It doesn’t give a distinction between minima and

maxima, so while it would be necessary it is not a sufficient method.

For a scalar function f : Rn → R, the n×n Hessian Matrix H is defined as the Jacobian of

the gradient of f J(~∇f ), of the form:
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... ∂2f
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This definition is for real numbers, but it can be extended to the complex numbers aswell [64].

From this definition, ∃H(f) ⇐⇒ ∃ ∂2f
∂xi∂xj

continuous ∀xi, xj ∈ Rn. Under Schwarz’s

theorem, ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

, which implies H(f) a is a symmetric matrix.

For simplicity, we will show the following results for an Hessian of a function defined in R2,

but they are generalized for higher dimensions. The Hessian is used often for second derivative

tests [65], for the detection of extremal points (and determining whether they are maxima or

minima).

This is done through Hessian equations:

L(x, y) = ∂2f

∂x2 + ∂2f

∂y2 (2.8)

D(x, y) = ∂2f

∂x2
∂2f

∂y2 − ( ∂
2f

∂x∂y
)2 (2.9)

The first equation is the Laplacian of f , and the second equation is called the Hessian

determinant equation, and these correspond respectively to the trace and the determinant of

the Hessian, turning the analytical problem into an algebraic problem, that can be solved

computationally.

For a extremal point of f p = (x0, y0):

• if D(x0, y0) > 0 and L(x0, y0) > 0 then p is a local minimum

• if D(x0, y0) > 0 and L(x0, y0) < 0 then p is a local maximum

• if D(x0, y0) < 0 then p is a local saddle point

• if D(x0, y0) = 0 the second derivative test is not conclusive, and there is a need for a

higher order derivative test.
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That itself gives us information about the location of the maxima in a particular function or

scalar field. Another observation to make is that the neighbour around said point also satisfies

this conditions, since the Hessian is equivalent to the shape factor (curvature) of a surface defined

in a Euclidean space (as the matrix representation of the metric is the identity). Therefore a

detection of clusters can be seen as the detection of regions satisfying the same conditions as

the maxima they enclose, (regions of positive curvature, reflected in the negative Laplacian).

Under the assumption these results remain valid for finite differences, we can use the Hessian

to find the probability modes. We not only want to find the extrema, but also want to find the

neighbourhood of said extrema. The Laplacian can work as an edge detection method, and

combined with the determinant of the H, it’s possible to find regions in the map with positive

curvature (the neighbourhood surrounding a local maximum).

Having found those probability modes, we binarize the maxima and a neighbourhood around

them, and apply morphological transformations on this binary representation, labelling the

resulting clusters with a connected component algorithm [66], ensuring we capture the modes

and their neighbourhood, and the inclusion of more data points in our analysis. (see figure 3.3-b)

For each cluster we find locations in time satisfying the condition (being contained within

the cluster). From these temporal locations we can build a symbolic representation of the fight

through the clusters, again, under the assumption than the clusters obtained are equivalent to

behavioral states. (see figure 3.4)

2.4.4 Ethogram Computation and Symbolic representation

From the clusters recovered from KDE we can compute the ethogram through the following

process:

Consider a fight sequence ~s = (s1, s2) and a set of clusters C = {Ci}, i = 1, ..., n.

We define the ethogram e as an n-dimensional binary sequence:

ei(t) =


1 if ~s (t) ∈ Ci

0 otherwise
(2.10)

The n-dimensional binary ethogram can also be symbolic represented by a 1-dimensional

symbolic sequence:

St = σi, for i such that ei(t) = 1 (2.11)
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This symbolic sequence can be interpreted as a stochastic process, that can be later analysed.

2.5 Behavioral Labelling

From the temporal ethogram, we can learn some properties of the recovered clusters, in

this case, the average values of the joint variables within the clusters. By knowing the average

properties of the clusters, it is possible to label them as being associated with different compound

behavioral states, based on phenomenological conditions. With this in mind, we use a labelling

process and classification based on phenomenological conditions.

Figure 2.3: Classifier used for Behavioral Labelling

A cluster labelled with this process does not necessarily correspond to the compound behav-

ior, rather, it has characteristics associated with that compound behavior.

2.6 Transition Matrix and Spectral Analysis

Having a symbolic sequence allows us to make a transition matrix possible describing the

dynamics of the fight through transition across these different clusters.(see figure 3.7)

Consider a sequence S = S1S2S3... where Sτ is the state occupied by the pair at transition

time τ (to distinguish from time t), and consider the set of states σ = σi, i = 1, ..., n, and a
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transition matrix describing a change of states from τ to τ + 1 . If at a transition τ , Sτ = σi, the

entry in in the transition matrix is equal to the probability of the next state being σj , given by:

Aij = P (Sτ+1 = σj|Sτ = σi) (2.12)

The computation of the elements of the matrix is done through a recursion process over the

finite sequence.

We compute eigenvalues of transitionmatrices for different number of transitions, for a better

understanding of their properties.

The transition matrix is used to describe transitions between states in a Markov Chain. If

our process is Markovian, the transition matrix describes it completely. A Markov Chain is a

stochastic property that exhibits the Markov property, presented here only as a statement:

Given a present state Sτ and a past state Sτ−1, the future state Sτ+1 is only dependent on Sτ .

A more detailed description of this property is given by [67], but it is used in general

to describe memoryless stochastic processes. While not being accurate in the description of

behavior, it is a useful framework to understand the dynamics between the different clusters.

What the Markov property shows is that if the transition from Sτ to Sτ+1 is given by a

transition matrix A1, then in general:

St+τ = AτSt = (A1)τSt ⇐⇒ Aτ = (A1)τ (2.13)

For τ transitions, the transition matrix is a function of the transition matrix for one transition.

If A1 is diagonalizable, this expression becomes:

V −1DτV = V −1(D1)τV

With D being a diagonal matrix where the nonzero elements correspond to the eigenvalues

of A1.

From the Perron-Frobenius theorem, we know that if we have a nonnegative square matrix,

the largest eigenvalue λM is positive, with all remaining eigenvalues |λi| < λM . So λM

determines the spectral radius of the matrix.

With λM = 1 and all other eigenvalues contained within the radius |λi| < 1, all other

eigenvalues approach zero as the number of transitions (τ ) approach infinity.

So the eigenvector associated with this eigenvalue describes the steady-state distribution of

the states as τ approach infinity, therefore it has nonnegative values.
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The other largest eigenvalues λi < 1 are associated with dynamic properties of the process,

which are described by the associated eigenvectors [68].

The clusters of behavior are a discretization of the behavioral phase space recovered, and if

extended to a continuous representation, the transition matrix becomes the infinite dimensional

Perron-Frobenius operator. The spectrum of this operator are modes equivalent to the eigenvec-

tors of the transition matrix, eigenfunctions. Since all eigenvalues are bound to a spectral radius

λM = 1, these provide a temporal hierarchy for relaxation towards the eigenfunction describing

the equilibrium distribution (with the eigenvalue λ = 1). [69]

The eigenvectors can be interpreted in a similar way as describing different hierarchies of

dynamics between clusters tending towards the equilibrium distribution.

Figure 2.4: Analysis pipeline from the derived variables to the results.

The processing pipeline will be discussed in further detail in the next sections, and it does

not include side analysis done on individual variables, as this was to tackle the main objective

of the project.

2.7 Supplementary Material

The code developed in the project can be found at the GitHub repository https://github.

com/rafaelalmada240/zebrafishfightanalysis.
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Chapter 3

Results and Discussion

3.1 Results

3.1.1 Kinematic description of a contest

Figure 3.1: Average distance over a fighting experiment, with the highlighted areas correspond-
ing respectively to a time when the fish are fighting and after the fight has ended.

From dataset 1, we looked at the distribution of joint variables during and after a fight,

using the average distance as a measure to determine the proper time windows to consider (see

figure 3.2).

A Kolmogorov-Smirnov test was done on the histograms, to have an empirical measure of

the difference between distributions. Below we have a table displaying the difference between

the distributions.
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Figure 3.2: Distribution of joint variables in two intervals of a fight, during a fight and after the
fight.

Variable Test statistic (100 bins) p-value
Distance 0.49625 < 10−16

Alignment 0.25717 < 10−16

Acc. Alignment 0.12454 < 10−16

Speed 0.31731 < 10−16

Mean Tail Beating 0.65807 < 10−16

Deviation Tail Beating 0.18885 < 10−16

Deviation of Elevation 0.36728 < 10−16

Dα = 0.00728 α = 0.01

Table 3.1: Test of distribution differences, during and after a fight section

3.1.2 Behavioral Map

3.1.2.1 State variables

We first combined all of the six datasets into a single time series, so we could analise

them all at once. We used a 2D projection of the original 6D system made from the joint

variables, acquired using the UMAP embedding technique previously described in the methods

section.

From the resulting 2D projection of the system, we compute its KDE and detect the density

peaks, using the Hessian matrix, the process of which is also discussed in the aforementioned

section. (see figure 3.3)

We assigned temporal labels to these clusters, through the process described in the previous

section. This results in our "ethogram" of the fight. (see figure 3.4)
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Figure 3.3: Left - An estimate of the 2D probability density function for the two embedded
variables. The width (standard deviation) of the gaussian kernel used was 10. The variables
were obtained through UMAP embedding. Right - Clusters around density peaks, recovered
through the Hessian equations, and connected components algorithm. The density peaks may
be different behavioral states.

Figure 3.4: A fight "ethogram" based on the clusters recovered from the KDE estimate.

3.1.2.2 Cluster properties and overall structure

We looked at average values for our 6 variables in the clusters using the computed ethogram,

and compared these with the average over the whole dataset. (see figure 3.5)

We labelled the clusters obtained based on the values of their average variables, as either

display, aggressive behaviors or freezing behaviors, using thresholds for these variables. We

characterized them as either passive or active display, and as symmetric or asymmetric aggressive

behaviors. (see figure 3.6)
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Figure 3.5: Averages of the joint variables for each cluster.

Figure 3.6: Cluster Labelling and association to compound behavioral states through a thresh-
olding process

3.1.3 Symbolic and Spectral Analysis

From the computed ethogram, we obtained a symbolic representation, from which we

computed the transition matrix for a dyadic contest.(see figure 3.7)

Having a transition matrix, gave us the opportunity to do spectral analysis. First we did

spectral decomposition of the matrix, and later we computed the eigenvalues for other number
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Figure 3.7: Transition matrix buit from the symbolic representation of a fight

of transitions, to have a better insight over the dynamics of the fight. (see figure 3.8)

Figure 3.8: The 3 largest eigenvalues below 1 as a function of the transitions.
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Figure 3.9: Values of the eigenmodes associated with the second, third and fourth largest
eigenvalues.

We did a projection of the eigenvectors associated with the three largest eigenvalues over

the clusters with which the values of their coefficients are associated, to better visualize them in

context of the fight. (see figure 3.10)
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Figure 3.10: Cluster projection of eigenvectors for the eigenvalues respectively associated.

3.2 Discussion

Initially we looked at the distance time-series over an experiment. We observed a trend for

the pair to be close during a fight bout, increasing rather quickly after the interaction is over.

(see figure 3.1).

After this initial analysis we compared the distribution of the six joint variables in two

different instances of the experiment, during a fight bout and after the fight is finished. (see

figure 3.2).

As expected from the time series, the distribution of distances (fig 3.2-a) during the fight

concentrates in general in lower distances, while it is broad after the fight, suggesting the pair

is not interacting with each other as strongly and the fish are exploring more of the tank rather

than engaging with one another.

The difference in distribution (fig 3.2-b) for the speeds shows an higher average speed of

the pair during the fight, suggesting an higher activity, a result reflected on the distribution of

mean tail beat rates (fig 3.2-e), reinforcing the idea that the tail beating rate may be a good proxy

measure for the activity of the pair.

The distribution of the heading and acceleration alignments (figs 3.2-c,3.2-d) shows the fish

are more aligned with each during the fight, which may be due to the fight including chases and

displays, behaviors in which the pair is more aligned. The lower average alignment outside of a

fight suggest a greater degree of independence in their interaction at least on a first order.

The distribution of deviation of tail beating rate (fig 3.2-f) shows an increase after the

fight. A possible way to interpret deviation is to consider the deviation as a measure of
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synchronization(the closer the two tail beating rates are, the more synchronized the pair is) this

can be seen as a break in said order or symmetry. It may be a way to distinguish between

symmetric and asymmetric phases.

From the Kolmogorov Smirnov tests, it is possible to see significant differences between the

distributions of these variables in different instances.

These results tell us that there is a process of escalation in a fight, higher activity (from the

higher tail beat rate and speed), higher level of interaction (from the closer distance and higher

alignments), and that there is a break in synchronization (from the increase in tail beat deviation

after the fight).

This description of the fight is a reductive view, but it gives us a general interpretation of the

dyadic contest that can be further explored by trying to capture the dynamics directly from our

variables.

By combining 6 datasets from two different fish pairs in a single time series, we expect these

results to be more robust than if we were to use a single experiment. We did a 2d projection of

the 6 joint variable system using UMAP and found peaks in the KDE, clustering around their

neighbourhood(fig 3.3). From this process, we computed a "fight ethogram"(fig 3.4) .

There are some discernible patterns to be discussed, and some clusters are more explored in

the time period correspondent to the fight bouts, while others are more explored in the period

both fish happen to be at the bottom of the tank, however these observations by themselves are

not conclusive.

With reference in the previous ethogram, we compute the average value of the joint variables

in each cluster (fig 3.5) . And we can make some observations from the results. The clusters

that in the previous figure were more common during the fight section have a higher mean tail

beating rate than the global average, which is a main feature of aggressive states. The clusters

where the distance is higher than the global average correspond to freezing states, where the pair

is in general in lower activity, something also reflected in the mean speed.

Using the labelling process described in fig 2.3, we labelled the cluster as belonging to

different behavioral states as a function of their average properties (fig 3.6). The first observation

to make is that none of these clusters exhibit a specific behavior like circling or display, but they

are part of a compound behavioral states that includes these specific behaviors, or have average

properties similar to the ones exhibited by the pair when performing displays or during circling

events. A better way to refer to these clusters were these behaviors are present are clusters that
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exhibit display-like or freeze-like behavior. The small clusters are joined in larger structures

of similar average properties. If we consider our labelling process as adequate, then this result

suggests our compound behavioral states have finer distinct structures, and that there is a finer

possible description of behavior from the clusters recovered. There is close proximity between

display clusters and aggressive clusters, while these are separate from freezing clusters by the

aforementioned display clusters. This structure suggests a particular dynamic for the fight,

one of escalation and deescalation that is not abrupt. It suggests transition from a symmetric

aggressive interaction to a freezing interaction that is fundamentally assymetric is transient

rather than instantaneous.

A look through the transition matrix (fig 3.7) shows us that the clusters are more highly

connected to their neighbouring clusters in the behavioral map we recovered. It also show

transitions between larger sets of clusters that are to be expected from the graphical interpretation.

There are values closer to zero for transitions between behavioral clusters that are further apart

in the map (i.e freezing states to aggressive states), in accordance to our possible interpretation

of the fighting dynamics. From the transition matrix we could do spectral analysis and explore

the properties of the fish-pair system.

The first observation we made from the plot (fig 3.8) is that we do not have a markovian

process, which is fairly unremarkable, given we’re exploring animal behavior. Another observa-

tion is that the second, third and fourth largest eigenvalues have a behavior that is distinctly non

markovian, with the 2nd eigenvalue decaying at a far slower rate relative to the other eigenvalues

up until the order of 102 transitions. This suggests these eigenvalue capture long-term behavioral

patterns.

Looking at the eigenvectors (fig 3.9), they seem to describe activity between different sets

of clusters, suggests these eigenvalues are associated with the dynamics of the fight.

By projecting the value of eigenvectors over the clusters they correspond (fig 3.10), we have

a better picture of the dynamics associated with it. The clusters with negative and positive

coefficient represent different dynamical states, and the eigenvalues describe the dynamics

between these different states. As these large dynamic states roughly correspond to the labelled

compound behavioral states, we can interpret the eigenvalues as describing the transition between

the behavioral states which occur at a long timescale.

From all of the results we have from the fight, we can build a picture of how to interpret

the dynamics for a fish pair. The fight can be interpreted as a stochastic process with the pair
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transitioning across different stereotyped behavioral states. The transition between these states

has dynamic modes of different timescales, these timescales being captured by their associated

eigenvalues.

A possible interpretation to what the pipeline does at a physical level, it that the dynamic

modes are representation of metastable regions of the phase space, close to stable fixed points

that are captured by our model and projected onto a lower dimension. The variables we used for

the embedding process can be seen as observables of the system.

Another possible interpretation is that the 2d histogram recovered is equivalent to a lower

dimensional projection of a potential energy manifold, where the dynamic modes are associated

with energy minima, and the transition probabilities are functions of the potential barriers

between the different minima.

All of these pictures are equivalent in some fashion and give us a framework to interpret fish

interactions in a physical language.

3.2.1 For future projects

Some things we may want to explore are different variables, or to develop an accurate

reasoning for the choice of these variables, other representation of joint variables and even the

addiction of single fish variables may change the dynamics recovered.

The dimensionality reduction process is also something that requires testing. Perhaps a toy

higher dimensional system may be projected down onto lower dimensions and the dynamics of

that system may be explored to see what is lost and preserved in the process.

While we are happy with the results obtained, there are several things we think could improve

our results, while still working with the same set of variables. A key problem would be using

the default Euclidean metric on the joint variables, where some non-Euclidean variables (the

alignments) were included. We used a transform of these variables for better implementation,

but a possible change in the future would be to explore non-Euclidean metrics, which would

involve the transformation of our Euclidean variables. We hope to see in the future, how using

different metrics would change our resulting projection and the interpretations we derived from

them.

It will be of interest to explore how the eigenvalues are associated with different scales for a

fight. Our results show we can have a finer description of the fight, as such we may explore the

possibility of building an hierarchical structure of the fight based on the clusters recovered.
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Something to explore would be to test the robustness of this model. This was built from

the combination of several different experiments, so it will be interesting to see how the picture

changes with the inclusion of more experiments, perhaps leading to a statistically significant

model of the fight.

Our physical interpretation of our variables as being observables of a system, leave a couple

of questions in the air. Whether or not properties of a phase space can be reproduced by

observables is something we’ve yet to determine, so it is a priority in further to clarify it.

Perhaps a possible approach would be to consider the case where observables are functions

of phase space variables. After having a sufficiently robust model, we can start exploring

its properties, and making predictions. As zebrafishes are used in genetic studies, it will be

interesting to explore changes to the system when using mutants in a fight.
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Chapter 4

Conclusion

We began by introducing the zebrafish fight as an example of an interesting example of

social interactions between animals, in specific, contests. We addressed the challenges that exist

when attempting to model these small number interactions. We presented some unsupervised

techniques that can be used for a more principled model development, and ultimately, used a

system of easily interpretable joint variables. We used a set of compound behavioral states for

an initial analysis of the kinematic properties reflected in our variables. We embedded jointly-

defined variables in a lower dimensional representation, and from the resulting map, we built a

symbolic representation of the fight as a function of the density peaks in the map, we analyse

the kinematic properties of the resulting clusters and identify them with a compound behavioral

state.

The model we developed may capture distinct behavioral states not perceptible to human

observation and labelling, and a larger structure of the dynamics of the fight by looking at the

joint variables. It is also possible this picture will change with a different representation of

variables, or with a more detail posture of the fish (namely including the fins).

It may be of interest to develop more on the built model of the interaction, specially in how

the different eigenvalues are associated with long timescale behaviors. And how looking at

different temporal resolutions will change the picture of the fight. Testing the robustness and

dependency of the model to different parameters is fundamental in case we want to use it for any

further analysis. If this observation is consistent across the different experiments to be done,

then it brings an interesting framework for the analysis of a fight, namely how this fight dynamic

changes with different mutations or environmental conditions.

As for what this project represents for the larger question of a physical model for behavior, it
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doesn’t even scratch the surface. That would be a fairly presumptious assertion. What it does is

bring a certain framework fromwhich we can answer this larger question, and possible questions

that come from it. Exploring social behaviors as a joint property has certain implications in the

nature of behavior, so it would also be interesting to explore it from another perspective.

The end of this project comes with certainly more questions than answers, and yet I see this

as a positive outcome. After all, what is the pursuit of science, if not a series of questions to be

answered?
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4.1 Appendix - Recovering Almost Invariant Sets in Dynam-

ical Systems

It is relatively complicated to describe certain dynamical systems, especially chaotic ones.

However, some representations allow us to infer properties of the system and make predictions,

like almost invariant sets. Prior to understand almost invariant sets, it is perhaps useful to

describe invariant sets first.

An invariant set is a region in the phase, where if a point in that region is selected and tracked

over time, it will remain in the region.

Mathematically, it can be expressed:

Consider an operator T : U → U . A subspace V ⊂ U is invariant if ∀x ∈ V , T (x) ∈ V . [70]

Almost invariant sets are defined as regions of relative stability in the phase space, where

trajectories spend a lot of time before transitioning to another region. While it may be hard to

describe the trajectory of chaotic systems, it is possible to describe their dynamics in function

of these almost invariant sets [71].

The eigenmode projection recovers the invariant/almost invariant sets present in the Dynam-

ical System, being possible to partition a phase space into almost invariant sets. The eigenvalue

may be associated with a dynamic switching pattern between the two invariant sets.

τswitch = − τ

log |λ| ≈ −
1

log |λ0|

with τswitch being the average time between transitions, and λ0 being the eigenvalue at τ = 0.

Our process of building a transition matrix from dynamic modes, is effectively a coarse-

grained process for the estimation of almost invariant sets.

To understand what the UMAP process does to a typical dynamical system, we will apply

the pipeline to a couple of well known systems with the purpose of having a clear understanding

of the process.

We will use dynamical systems with two almost-invariant sets for simplicity.
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Figure 4.1: Representation of three almost-invariant sets (from [71])

4.1.1 Lorenz system

The Lorenz system is a classic and well known dynamical system that exhibits chaotic

behavior [72], that has more than one almost invariant set. so it is the obvious first choice when

it comes down to exploring dynamical properties. It is defined by:



ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

We simulate the system with the following parameters: σ = 10, ρ = 8/3 and β = 28, with

a ∆t = 0.005 s and T = 200 s.

By having this many samples, these are the results we recovered:
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Figure 4.2: KDE of the XZ projection for the Lorenz System, and the recovered 2 dimensional
projection

It is possible to see a resemblance between the projected UMAP result and the XZ projection

of the Lorenz attractor. This suggests some of the overall topological structure of the attractor

is preserved.

Figure 4.3: Time series of the X coordinate in the Lorenz system; "Ethogram" of the UMAP-
embedded Lorenz system

The activity patterns across the different clusters is also reminiscent of the dynamical patterns

in the X variable.
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Figure 4.4: Eigenmode projection of the Lorenz System for the second largest eigenvalue

From the second eigenvalue, we are able to recover representations of the almost invariant

sets present in the Lorenz system.

Figure 4.5: Eigenmode projection of the Lorenz System for the fourth largest eigenvalue

A second run gives us the fourth eigenvalue associated with it instead

Note: It seems the biggest factor determining this is the process from getting the clusters to

making the transition matrix, another common thread is how these invariant set eigenmodes are
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associated with real eigenvalues, this may be a key towards determining the properties of this

method and improving it).

4.1.2 Chua’s circuit system

Chua’s circuit is an electronic circuit that exhibits chaotic behavior, and has two almost

invariant sets [73]. It is described by the following equation:



ẋ = α(y − x− g(x))

ẏ = x− y + z

ż = −βy

, g(x) = γx+ 1
2(δ − γ)(|x+ 1| − |x− 1|)

For the Chua system we use parameters as α = 15, β = 25.58, γ = −5/7 and δ = −8/7,

with a ∆t = 0.01 s and T = 200 s.

Figure 4.6: KDE of the XZ projection for the Chua’s System, and the recovered 2 dimensional
projection

Different from the first case, there is not a clear similarity between the embedding and the

projection, however the two density clusters are clearly distinct, which is an interesting feature

associated with the topological equivalency of the representation.
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Figure 4.7: Time series of the Z coordinate in the Chua’s system

Figure 4.8: "Ethogram" of the UMAP-embedded Chua’s system

The activity patterns across the different clusters is also reminiscent of the dynamical patterns

in the Z variable, similar to the previous cases relative to the Lorenz System.

Figure 4.9: Eigenmode projection of the Chua’s System for the fourth largest eigenvalue

In this case, the fourth eigenvalue seems to be the one associated with the eigenmode

distinguishing different invariant modes.
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4.1.3 Discussion

The UMAP process consists essentially of embedding data to a uniform manifold and

projecting said manifold to a lower dimension [63]. So, a possible explanation for these results

might be that the almost invariant sets form a uniform manifold, and therefore the properties

preserved by the manifold projection would be equivalent to the dynamic properties of the

almost invariant sets. If we can prove a particular invariant set is smooth and bounded, it can

be embedded in a uniform manifold. Something we might have to consider is whether this is

something similar to a coarse-grained view of the phase space, as we embedded phase space

variables, explaining the observed invariant sets. There is a problem with consistency when

it comes to detecting these invariant sets from the eigenmodes. The eigenmodes with which

they are associated are highly inconsistent, and may be due to the construction of the transition

matrix, as it does not seem to be fairly consistent across different runs. This may be a problem for

systems for which we do not know what the description is, as the one explored in the experiment.

That can adressed by choosing a random seed, which was implemented in the main project.

Another thing we need to change is perhaps the fact we used the phase space variables

directly in this case while in general, we may only have access to observable variables. If we

can show we are able to recover invariant sets from UMAP projections, we can then argue that

the behavioral map for the zebrafish fight we recovered not only has behavioral relevancy but

also physical relevancy, as we can show that the invariant set of the social dynamic system is

recovered through the observable variables of the system.
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