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“Don’t compete! — competition is always injurious
to the species, and you have plenty of resources to
avoid it!”

Pyotr Kropotkin, Mutual Aid: A Factor of Evolution
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Summary (English)

Animal behavior is a fascinating area from a physical perspective, and yet there are several
challenges in making physical models about it. A specific challenge is in coming up with models
derived from data, removing human-centric bias when defining behaviors. A good example of
the complexity associated with it can be seen in animal contests, such as in zebrafish (Danio
rerio) fights. Being well understood, makes it a good first example to explore these complex
interactions. Our main objective consists of attempting to derive a set of behavioral states
directly from the data.

We define these states for the pair, rather than for each fish individually, based on our
assumption that social interactions are joint behaviors and cannot be fully described for an
individual element of the interaction. We do so through the definition of simple variables with
analogues in classical physical models. These variables are respectively distance, alignment of
the heading and acceleration vectors, the average and deviation of the tail beating rate, and speed,
and these form a 6 dimensional system. We define compound behavioral states in function of the
variables defined previously. We embed the 6-dimensional system, after a normalization process
in a 2-dimensional representation through a nonlinear embedding technique. We assign labels
to the different density peaks through a user-defined classification tree. We build a symbolic
sequence from the density peaks, and do spectral analysis on the computed transition matrix
associated with the sequence, to have a first picture of the dynamics of the interaction.

We are able to recover a connection between different clusters with different behaviors,
forming “super-clusters” and giving an overall structure to the fight. Spectral analysis also
suggests the dynamics between these larger clusters is non-markovian and occurs in longer
timescales, relative to behaviors within clusters.

These results suggest that it is possible to recover the behavioral structure of a contest from
simple variables, and there are dynamical features we can recover from data. This opens up

opportunities to explore dynamics by using less interpretable and more accurate variables.
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Resumo (Portugués)

O comportamento animal € uma drea fascinante do ponto de vista fisico, no entanto ainda
existem vdrios desafios associados a constru¢do de modelos ou ao desenvolvimento de teorias
do comportamento em fisica. Um dos desafios é desenvolver modelos diretamente dos dados,
eliminando o viés antropocéntrico que existe na definicdo de estados comportamentais. Um
bom exemplo da complexidade associada ao comportamento pode ser encontrado em interagdes
sociais, nomeadamente interagdes agonistas entre peixes-zebra (Danio rerio). Estas interacdes
sao bem compreendidas e estereotipicas, e existem catdlogos a descrever os estados comporta-
mentais associados a cada fase da interagdo. Isto e a versatilidade genética a que o peixe zebra
se encontra associado, tornam esta interacao ideal para o nosso estudo.

O nosso objetivo principal consiste na tentativa de derivar um conjunto de estados compor-
tamentais diretamente a partir dos dados experimentais obtidos, sendo estes estados definidos
para o conjunto, € ndo individualmente. Fazemos isso sob a assun¢@o de em interagdes soci-
ais, estados comportamentais dependem dos elementos envolvidos nessa interacdo (neste caso,
sdo peixes-zebra) e que esta ndo € completamente descrita, exceto se levar ambos em conta
simultaneamente.

Os dados sao esqueletos tridimensionais dos 2 peixes-zebra num volume. O processo de
aquisicao desses dados consiste na aquisi¢do de imagens em 3 planos bidimensionais com ca-
maras de alta definicao, e um pipeline de processamento, que combina vérias redes neuronais
para a identifica¢do de pontos corporais, a atribuicao de identidade temporal aos peixes envolvi-
dos, e a interpolacdo das imagens nos diferentes planos. Este processo permite a conversao de
varios videos em sinais temporais que podem ser manipulados e processados de forma adequada.

Usamos varidveis interpretaveis, no caso, a distancia, os alinhamentos de direc¢do e aceler-
acdo, e os ritmos de batimento de cauda. Essas varidveis embora sejam simples, podem dizer
bastante informacao sobre a natureza do comportamento, sendo dteis numa exploragao inicial.

Definimos estados comportamentais compostos (coleccdo de varios comportamentos efec-
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tuados pelos peixes ao longo de um determinado periodo de tempo) e exploramos a dindmica
de uma luta nesta descri¢ao simplificada.

O sistema que resulta das varidveis definidas possui 6 dimensoes, projectamos esse sistema
para um plano bidimensional para melhor andlise.

Efectua-se um histograma das novas varidveis, e ter uma estimativa da densidade de prob-
abilidade através da convolu¢do do mesmo com uma gaussiana bidimensional. Detecta-se os
picos de densidade, que neste sistema podem ser interpretados como estados comportamentais.

Com essa descrigdo € possivel gerar uma sequéncia simbdlica que representa a dindmica da
interaccao como sendo a transicao entre varios estados comportamentais discretos. Constrdi-se
uma matriz que representa a transi¢ao entre os varios estados, e por decomposi¢do espectral
pode-se observar o comportamento dos valores proprios em funcdo do nimero de transicoes
e € possivel decompor os estados em vdrios conjuntos através dos vectores proprios, cuja
dindmica entre eles € representada pelo valor préprio associado. Através da sequéncia simbdlica
é possivel uma descri¢do da interacc¢ao entre os elementos, tendo inclusive informacao sobre a
escala temporal associada a dindmica entre esses estados.

Ao associar os clusters aos diferentes estados comportamentais compostos definidos pre-
viamente, € possivel ver que certos clusters se encontram associados, € apresenta uma certa
estrutura, que pode ser representativa da dinamica real.

Também € possivel determinar a escala temporal de interacdes entre diferentes conjuntos de
clusters. Foi possivel determinar que os comportamentos ocorrem em escalas temporais maiores
do que a escala tipica para processo de Markov, e a escala temporal mais elevada se encontra
associada a transi¢do entre estados associados a agressao entre o par, e estados associados aos
periodos entre lutas.

Mostramos que € possivel obter uma estrutura comportamental da luta entre dois peixes-
zebra utilizando as varidveis simples que definimos. Isto é um framework que permite explorar a
dindmica da sua interagdo em maior detalhe, a utilizar varidveis ou representacdes mais precisas,

que podem ndo ser interpretaveis.

Keywords— Comportamento, Danio rerio, Clustering, Métodos

vii



Contents

|Acknowledgements|

Summary (English)|

[Resumo (Portugués)|

List of Figures

[List of Tables

(I Introduction|
1.1 Quantifying Natural Behaviod. . . . . . . .. .. ... . o o oo

2 Methods

2.1~ Experimental setting] . . . . . . . . . . ...

[2.1.1  Understanding the development pipelinef. . . . . . . .. .. ... ... ... ..

[2.1.2  Data Analysis and Processing| . . . . .. ... ... ... ... ... ... .

2.3 Compound Behavioral States| . . . . . .. .. ... o o oo

2.4 2D Projection and Clustering| . . . . . . . . . . . . . .. ...

2.4.1 UMAPEmbedding| . . . . . .. .. ...

[2.4.2  Kernel density estimate|. . . . . . . . . . .. ... Lo o

[2.4.3  Peak Detection and Clustering| . . . . . . ... ... ... ... .. .......

[2.4.4  Ethogram Computation and Symbolic representation| . . . . . . ... ... ...

viii

iv

vi

xii

10
12
13
14



2.5 Behavioral Labelling| . . . . . ... ... ... .. ... ... . o

[2.6 Transition Matrix and Spectral Analysis| . . . . . . .. ... ... ... ... ...

2.7 Supplementary Materiall . . . . . ... ... o

[(3.1.1  Kinematic descriptionof acontest] . . . . . . . . .. .. .. ... L.,

[3.1.2 Behavioral Map|. . . . . . . . . ...

4_Conclusion|

.1 Appendix - Recovering Almost Invariant Sets in Dynamical Systems| . . . . . . ... ..

[d.1.1  Lorenzsystem| . . . . . .. .. .. ...

[@4.1.2° Chua'scircuit system| . . . . . . . . . . ...

Bibliography

iX



List of Figures

1.1~ Development of a Behavioral Model| . . . . . ... ... .. ... ............ 3
[1.2  Densities in behavioral space during stereotyped (a) and non-stereotyped (b) behavior] . . 6
1.3 C. Elegans’ motility, described by three quantities: speed s, body orientation v and |

| alignment AY| . . . . .. e e e e e e 7
[1.4  Sample tracking results compared to the original images for a turning motion| . . . . . . 8
1.5  Zebrafish contest ethogram with transitions| . . . . . ... ... ... ... ... .... 12
[1.6  Using computer vision and neural networks to detect zebrafish attacks from variables.| . . 13
[2.1 Experimental setup used: A 30 x 30 x 30 cm® tank with three cameras oriented in |

| perpendicular fashion, with planar LED backlights in the opposite side of the tank.| 16
[2.2  Processing pipeline to recover 3D postural information fromapai . . . . . . ... . .. 18
2.3 Classifier used for Behavioral Labelling| . . . . .. ... ... ... ... ........ 32
2.4 Analysis pipeline from the derived variables to the results.| . . . . . ... .. ... ... 34
3.1  Average distance over a fighting experiment, with the highlighted areas corresponding |

| respectively to a time when the fish are fighting and after the fight has ended.| . . . . . . 35
[3.2  Distribution of joint variables in two intervals of a fight, during a fight and after the fight| 36
[3.3  Left - An estimate of the 2D probability density function for the two embedded variables. |

| The width (standard deviation) of the gaussian kernel used was 10. The variables were

| obtained through UMAP embedding. Right - Clusters around density peaks, recovered

| through the Hessian equations, and connected components algorithm. The density peaks

| may be different behavioral states.| . . . . . . .. ... ... ... L. 37
3.4 A fight "ethogram” based on the clusters recovered from the KDE estimate. | . . . . . . . 37
3.5 Averages of the joint variables for each cluster,|. . . . . ... ... ... ... ...... 38
[3.6  Cluster Labelling and association to compound behavioral states through a thresholding

| PrOCESS| . . . v o e e e e e e e e e e e e 38
3.7 Transition matrix buit from the symbolic representation of a fight{. . . . . . . . ... .. 39




3.8 The 3 largest eigenvalues below 1 as a function of the transitions.|. . . . . . .. ... ..

39

[3.9  Values of the eigenmodes associated with the second, third and fourth largest eigenvalues.| 40

[3.10 Cluster projection of eigenvectors for the eigenvalues respectively associated.| . . . . . . 41
i.1  Representation of three almost-invariantsets{ . . . . . . . .. ... ... ... ... ... 49
4.2 KDE of the XZ projection for the Lorenz System, and the recovered 2 dimensional projection| 50
4.3 Time series of the X coordinate 1n the Lorenz system; "Ethogram™ of the UMAP- |

embedded Lorenz system| . . . . . . . . .. ... e 50
.4 Eigenmode projection of the Lorenz System for the second largest eigenvalue| . . . . . . 51
4.5 Eigenmode projection of the Lorenz System for the fourth largest eigenvaluef . . . . . . . 51
4.6 KDE of the XZ projection for the Chua’s System, and the recovered 2 dimensional projection| 52
i. 7 'Time series of the Z coordinate 1in the Chua’s system| . . . . . ... ... ... ..... 53
.8 "Ethogram" of the UMAP-embedded Chua’s system|. . . . . .. ... ... ... .... 53
.9  Eigenmode projection of the Chua’s System for the fourth largest eigenvalue| . . . . . . . 53

xi



List of Tables

2.1 ~Datasetsused inanalysis| . . . .. ... ... .........

[3.1 Test of distribution differences, during and after a fight section|

Xii



Chapter 1

Introduction

Ethology is a field in biology that studies animal behaviour. For a long period of time, it has been
a qualitative science, based in direct observation by humans, classifying behaviour in classes that are
determined by the observer. This may introduce several possible errors: the results may be biased by
the observer; possible intrinsic properties of behaviour may ignored; and since the observer classifies the
behavior statically, the whole dynamic of the system is incomplete. In order for ethology to become a
quantitative science, there needs to be a change in the method of observation. [1]] Recent developments
in machine learning and image tracking have led to the development of what is known as computational
ethology, which allows for quantitative analysis and physical interpretation of behaviour. [[1] There are
examples of this, for physical modelling of collective motion using fluid dynamics [2] or to model
behavioral patterns in single animals using random walk and stochastic processes [3[]. It’s possible
to combine the quantitative behavioral model with neural or genetic models to address more interesting
questions about the nature of behavior. 1] And yet, there are several questions that have not been adressed
in ethology from a physical perspective, and a quantitative description may be helpful into ultimately

deriving a physical theory of behavior [4].

1.1 Quantifying Natural Behavior

At first, several cases are presented as examples where computational methods and physical theory are
used to describe certain behavioral processes. These methods are reliant on the experimental procedures
used. A experimental setting may have a controlled environment where a constrained set of behaviors are
observed. [5]] A different approach is to focus on measuring behavior on the organism scale rather than
focusing on the environment with minimal artificial constraints. There are several experimental methods

possible as:



 Posture tracking - Behavioral patterns can be represented by postural changes over time. An image
directly displays animal behavior which can be later converted into a more abstract representation.
It used to be done by manual frame by frame analysis of video footage, which is ineffective for
long high framerate videos. In recent years, several techniques have been developed for better and

more accurate tracking.

— Stopgap techniques are inspired by previously developed human motion capture, where
small dye spots are introduced on the animal’s limbs. It may introduce possible confounds,

and the system may be biased towards human-like patterns. [6]

— Markerless techniques adresses previous difficulties by using internal reflections to charac-
terize contact points between an animal and a substrate. However it can’t track portions of

the animal not interacting with or separated from the substrate. [[7]

— Model-based image analysis uses known biomechanical degrees of freedom to find the

posture that would produce images with the highest likelihood. [8]]

— Besides these techniques, another possibility is to do automatic annotations through deep

learning and neural networks, which would still require human-annotated training sets. 9]

* Field imaging - Recent development of cheap equipments and open source animal tracking algo-

rithms have made this option increasingly popular. [[10]

* Real-time feedback and brain imaging - it varies in computational intensity, with computationally
lighter approaches being implemented in real time. Observations can be done in two fronts,
stimulating the response of behavior by neuronal input, or predicting upcoming behaviors through
neuronal signals. There are challenges associated with this method, mainly in recording animals

for long periods of time, and in registering volumetric neural imaging data. [[1]]

The resulting data can be described in a theory with basis in consistency, fidelity, interpretability and
scalability. Fidelity and interpretability are in opposition, as models that are more easily interpreted
tend to be less accurate. This suggests a continuum of solutions, typically dependent on the researcher’s
representation of behavior, and selecting that representation is dependent on the interests of the research:

4]

* Quantification associated with the experimental apparatus - having the advantage of consis-

tency but being too low-dimensional and having an unnatural dynamic. [11]

* A coarse variable like mean velocity can also be measured, being more naturalistic, however that
only allows for dynamics at a single scale, not being able to capture more precise patterns of

behavior that may occur at different scales. [|12]]

2
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Figure 1.1: Development of a Behavioral Model (from [4])

* Human-defined classification system by a trained observer - This approach as a more detailed
description, it is labor intensive and user-specific (the behavioral classes are defined intuitively),
limiting reproducibility. Finally, it assumes behavior states are part of a discrete system of states

and the data doesn’t seem to show this as a good representation. [4]

* Advances in automation have increased the throughput of the first two options, and supervised
machine learning techniques have improved the repeatability and decreased the manual labor

required for human-defined classification.

But the fundamental difficulties presented by each of these cases still remain. There is a need for a
general principle and approach towards behavioral classification. [4]

Bio-locomotion is an area where the focus to study behavior has been directed. Usually behavior
is studied through dynamic motion trajectories, like center-mass, body-bending and/or limb trajectories.
These behaviors are stereotyped, since physical constrains allow for fewer degrees of freedom in movement
execution, and during locomotion, their dynamics are in a lower dimension than the number of degrees
they have available. [13]] Based on these observations, recent developments have been pushed for data-
driven and unsupervised analysis of animal behavior, showing that a large fraction of animal movements
are low dimensional compared to their degrees of freedom. [[14] There are different approaches that have
several similarities between them used to identify stereotyped behavior from videos (not considering
other modalities). The general structure is described in fig[T.1}

The first step after data collection is to define a postural time series. Several principles may be

considered when dealing with postural time series.

* Stereotypy and discretization - behavior is treated as a sequence of discrete states. The similarity



between instances of a state in that sequence is what is defined as stereotypy, and it can be quantified
by determining how long the trajectory in posture phase space diverge. [[15] Non-stereotyped

behavior is considered to be part of a continuous transition between the states [|16].

» Hierarchical organization - While it has been shown as being very effective to produce complex
adaptive behaviour in robotics [|17]] with little computational power, there is a lack of clear demon-
strations of such hierarchical organization in non-human animals. But it is still widely used as a
principle when considering a representation of behavior. [[18]] These can be constructed as nested
representations with multiple levels of nesting, using dictionary based compression algorithms [|19]]

or cluster analysis [20].

* Low postural dynamics - animal behavior generally has many degrees of freedom, however when
considering correlations and independence between these degrees allows for a lower dimensional
representation that maintains the information about the posture. This holds not only for simple

animal structures but for more complex ones.

Low dimensionality, stereotypy and hierarchy can all emerge in postural phase space. [21]]

The main objective is to turn the high-dimensional data (millions of pixels) into a lower-dimensional
representation that can describe the animal’s posture in its entirety. The number of variables required
are different for different animals, however, it is small compared to the dimension of the acquisition data.
That can be done directly through posture tracking and or indirectly by image segmentation and principal
component analysis for dimensionality reduction.

To measure stereotyped behaviors, we need to create a dynamical representation that describes how
the postural time series are changing. This can be achieved by fitting a differential equation to the data or
through features that incorporate dynamics to segments of data. An appropriate dynamical representation
can emerge from this, describing the postural time series. [[22]], [[21]]

Another approach is to fit a statistical model to the data, for example by an Auto Regressive-Hidden
Markov Model.This would allow for a dynamical and behavioral representation, but it requires a parameter
that determines the timescale for behavioral states, and it is known that behaviors may occur in different
time scales [23]].

To complement this, some representations are multi-scalar in nature, through metifs (posture patterns
that occur commonly) of various lengths [24]] or using a time-frequency analysis approach [|16f], showing
behavior at multiple scales.

Capturing motifs may not be robust to slight changes in postural dynamics, like changes in frequency.
While time-frequency analysis gives information in both amplitude and phase, typically only uses am-

plitude, which helps with the robustness, and the behavioral representation can be obtained through



clustering [25], or low-dimensional embedding of the resulting vector of amplitudes [|16]], [26]. The
embedding generates a space with anisotropic density, and the behavioral representation is either the
density or the peaks.

The several representations discussed above can be grouped into being either discrete or continuous.
In general, discrete representations can be derived from continuous ones.

Continuous representations may be interesting because they allow to display non-stereotyped
behavioral dynamics.

If the data has clusters, however, it is ideal for clustering in discrete representations [25]. While
statistical methods allow for the development of a dynamical model, it works under an assumption on the
timescale for the data.

We can look at several cases where the different methods discussed were explored and see what
conclusions they have reached.

Lee et al. did a series of tests in zebrafish to determine their orientation mechanisms, based in direct
observation of video footage and analysis (statistical and Bayesian). The results showed that they navigate
by determining directions based on distance relationships between visible surfaces. They use the perceive
distance between two 3-d surfaces to determine their relative position and direction. [27]]

In a follow-up study, they reach the conclusion that zebrafish rely mostly on boundaries to orientation
and spatial mapping, and other features as local cues towards a certain location. This suggests a similar
neural structure and function across several species.Environmental boundaries may play a major role
in mapping location in an environment for other animals, and these results suggest that the mechanism
behind this are related. [28]]

Berman et al. used time-frequency analysis (through Morlet wavelet analysis [29]]) and spatial
embedding (through t-distributed stochastic neighbour embedding [30]) to develop representations for
stereotyped behaviors in flies (Drosophila Melanogaster). This allowed for a low-dimensional represen-
tation where stereotyped behaviors could be described by peaks in density . The results they have suggest
that about half the behaviors displayed by the flies are non-stereotyped. This method also allows to find
subtle behavioral sex-specific differences. [[16]

Caenorhabditis Elegans, or C. elegans in short, is a nematode that is very used in the development of
behavioral models, not only for the simplicity of its structure but also because it is the first multicellular
organism with both a complete genome [31f] and connectome [32f], which allows for studies not only at
the genetic level, but at the neuronal level in conjunction with behavioral models.

Bacek et al. developed an automated tracking and imaging system and used acquired image data
to quantify the motion patterns for wild and mutant worms. They use image segmentation to have a

binary mask which they use to develop a skeleton of the image (through thinning and pruning of the
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Figure 1.2: Densities in behavioral space during stereotyped (a) and non-stereotyped (b) behavior

(from []EI])

image [33])), being an easier structure for feature extraction. They then use the extracted features to train
a classification and regression tree analysis [34]. The results show that mutant animals can be identifiable
based on a small number of image features collected. Also, these methods have the advantage of giving
the possibility to determine phenotypes in a more quantitative, objective manner, more reliable than
previous methods.Skeleton decomposition is now a standard for C. Elegans behavioral analysis. [35]

Sznitman et al. used image processing and tracking to develop a skeleton representation, and combine
the kinematic data with a linearized model to study the two dimensional motion of C. Elegans at low
Reynolds regimes. The model used was a linearized model (a slender filament at low Re) for the torque
of the system with the momenta based in the Voigt model [36]], and by some approximations, simplify
the model, giving origin to a biharmonic equation of the form:

oy dy

Dt + e (1.1

where y(z,t) is the body displacement of the nematode, ¢ is the time, x is the position in the x axis
and £ is a constant that depends on the nematode’s material properties and the fluid’s drag coefficient.
Equation[T.T]| can be solved analytically, and fitting the data to this model makes it possible to determine
the material coefficients describing the physical motion. The results show there is a periodic swimming
behavior that propagates from the nematode’s head to its tail, being able to estimate the nematode’s tissue

material properties. Due to its non-invasive nature, it is an ideal method for genetic and small molecule



screening applications. [|37]]

Keaveny et al. had a similar study, wanting to better understand the mechanical relationship between
animal and its surrounding environment, and to develop a model to predict the trajectories of C. elegans.
They used a linear model for the forces applied on the worm, similar to the one used by Sznitman et al.,
and a nonlinear variant [38]] of the model that can be reduced to the linear model with the appropriate
parameters. Linear resistive force theory proved itself effective in predicting the nematode’s path based
on a sequence of body postures. Differences were found between nematodes captured in the wild, and
those grown in the lab, when considering the drag anisotropies. The nonlinear model, while providing
good predictions, does not solve the discrepancy between the generated parameters and experimentally
measured ones. The linear resistive model can be used for applications as whole-animal simulations and
advanced tracking, but the nature of interaction between the nematode and its lab environment remains
unsolved. [39]]

Helms et. al investigate the motile behavior of nematodes and possible variations due to several
factors. Focusing on trajectory dynamics on timescales spanning from ballistic to diffusive movement,
they find that features of the motility statistics are captured by a random walk model with independent
dynamics in the speed (defined as an Ornstein-Uhlenbeck process [40]]), turning (determined by body
orientation, as a drift and diffusion process [40]) and reversal events (determined by alignment, a random

telegraph process [41]]).

Figure 1.3: C. Elegans’ motility, described by three quantities: speed s, body orientation 1) and
alignment A (from [3]])

The parameters change across species in a correlated low-dimensional manner suggesting a common
mode of behavioral control and a trade-off between exploration and exploitation. The distribution of
phenotypes shows there are behavioral differences across strains, suggesting they employ contrasting
bet-hedging strategies for foraging. [3|]

Stephens et al. extracted curvature (using Frenet equations [42]) that describes a posture at a low
dimensional space than the motion. Similar results have been obtained for motor control in humans.
Their results showed the posture as a combination of small set of eigenworms (template motor behavior),
whose coeflicients vary continuously. These are not correlated linearly but are nonlinear and coupled. It
also shows that some responses are stochastic due to not considering other behavioral variables, and that

said inclusion may uncover deterministic responses. With the eigenworms a phase space is derived, and

7



there equations of motion can be built (using the Langevin equation [43]]) where the set of attractors can
be described as rigorous behavioural states. This allows for a quantitative description of worm behavior
and shows for evidence of more subtle behavioral states. [[21]]

They exploit the reduced space of C. elegans postures in a following article to develop a novel tracking
algorithm which captures both simple shapes and self-occluding coil, which have yet to be studied in 2D
worm behavior. They apply previously developed algorithms to show that the complex coiled shapes are

a superposition of two simpler patterns.
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Figure 1.4: Sample tracking results compared to the original images for a turning motion(from
[44))

They discover a dichotomy in spontaneous, large-amplitude coils by studying the escape response
of the nematodes, showing that these reorientations not only occur at the classical Omega postures but
also larger delta-postures, that occur independently from one another, suggesting a distinct triggering
mechanism, being the analog of a left-right step. These turns occur with approximately equal rate and
adapt to environmental conditions in similar timescales. [44]

In Costa et al., they use adaptive locally linear analysis [45]] based on a likelihood-based hierarchical
clustering using Ward’s minimum variance criterion [46]], which simplifies the complex global dynamics
into simpler local dynamics with linearization, and find the local eigenvalues, applying it to C. elegans
postural dynamics, and whole brain imaging. The full spectrum of eigenvalues, not only gives information
about oscillatory behavior but also stability and criticality [47]. The results here suggest the behavioral
repertoire is far more complicated than the canonical representation of forward, reversal and turn. Tests
in brain dynamics show that the global brain dynamics are damped away by a decrease in oxygen in
instability boundary. This shows interesting dynamics to be studied at a critical region [48|]

From these different results we can see several approaches being explored with varying results,
giving insight onto the nature of behavior. One key point to take however is that none of these approaches
is necessarily the best. They give access to different forms of information that may lead to different
questions. It is likely this project will be the same, not giving the best approach, but a different approach

to tackling behavior. It doesn’t seem we are close to having a best approach, but this contributes to the



wealth of information about behavior.



1.2 Animal contests

Within the vast array of social interactions in animals, contests are of particular interest, due to their
asymmetric nature. The outcome of a fight will have a winner and a loser, two different behavioral
states for the animals involved. Animal contests have passive and active approaches, and in some cases
a history of these contests involves a combination of these, being therefore of critical importance to
our understanding of contests in animals to understand said approaches. Game theory provides several
frameworks from which to look at these interactions, considering the interplay between the outcome of a
contest and a contestant’s ability or cost. Three particular models have been extensively used to describe

contests.

* Sequential assessment - in the SA model, the contest is seen as a consistent sequence of behaviors,
where each behavior is executed with the purpose of obtaining the maximum ammount of infor-
mation about an opponent fighting ability (referred to as resource holding potential or RHP), with
the least ammount of cost, and the interactions between the contestants allow a better estimation
of the opponent’s RHP over time (this implies an minimization of the cost/information ratio).
There are some assumptions made by this model, like the assumption that the contestant doesn’t
make decisions based on past interactions. And this model predicts that the outcome of a contest
is determined by the asymmetry in the contestants RHP, and that there is no escalation within

behavioral stages. [49]

e War of attrition - WOA models are self assessment models, since it assumes the contestants don’t
take into account the opponents abilities into their decisions. It takes into account the contestant’s
endurance, and the length of interaction. The behaviour is determined based on the individual cost
they have, and the outcome of the interaction is determined by the maximization of the pay-off
(obtained the most resource value while spending the least effort.) This cost is dependent on both

energy spent by the contestant and the length of the interaction, and has potential for escalation. [[S0]

* Cumulative assessment - in CA models, the outcome of a fight is based on a cumulative sum of a
contestant’s adversaries actions, and the physical cost those incurr, with the fight ending after some
threshold is crossed. The contestant is unable to detect the effect of its attacks on its opponents,

but is able to distinguish fighting or fleeing scenarios. [|51]]

Overall it is possible to distinguish each model based on some characteristics, with CA and SA
relying on an initial assymetry of the contestants RHP to determine the outcome of a fight, while for a
WoA model, the contestants start at a similar fighting ability. CA has an escalation within its behavior

stages, something not predicted by SA models [[52f]. There are several experimental cases where these
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models fit the description of animal fights, but there is no universal model that accurately describes an
animal contest [53]]. Part of the challenge may be due to the lack of proper data in said contests, and
hopefully advances in tracking algorithms and data analysis will aid the development of new models or

the exploration of these models from different perspectives.
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1.2.1 Zebrafish dyadic contests

Zebrafish (Danio rerio) are another species that are models in ethology due to their extensive use

in biomedical research and their genetic versatility, as well as neurological species (mostly on larval

zebrafish that are transparent). It also has a consistent behavioral terminology, making observations more

consistent. [|54]
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Figure 1.5: Zebrafish contest ethogram with
transitions (from [55]])

Zebrafish fights are a sequence of well charac-
terized behaviors with the purpose of establishing
dominance between the fish. The behavioral cate-
gories are classified into groups as displays, physi-
cal attacks, chases, and freezing (see fig[T.5)). And
the progression of the fight usually follow a tran-
sitions across these different categories, as shown
by [|55].

Due to its versatility in lab environment Ze-
brafish is an ideal animal model to be explored. In
particular, due to its stereotyped fighting behavior
being well established, itis a good set of behavioral
classes to be explored quantitatively. And being an
animal model in genetics means it is possible to see
how this behavior is affected by mutations in par-
ticular genes [56]. This introduces questions over
the robustness of this behavior to genetic modifica-
tions and to environmental conditions and it is an
opening into the exploration of collective behavior
in small groups of animals.

There are examples of modern day tools being

used to describe zebrafish fights: Applying computer vision, it is possible to detect zebrafish trajectories

automatically, preserving identity [57]. From the resulting trajectories, a neural network is trained to

detect ag