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Abstract

Information analysis is an essential process for all researchers and physicians. However, the amount

of biomedical literature that we currently have available and the format in which it is found make this

process difficult. Therefore, it is essential to apply text mining tools to automatically obtain information

from these documents. The problem is that most of these tools are not designed to deal with non-English

languages, which is critical in the biomedical literature, since many of these documents are written in the

authors’ native language.

Although there have been organized several shared tasks where text mining tools were developed for

the Spanish language, the same does not happen for the Portuguese language. However, due to the lexical

similarity between the two languages, it is possible to hypothesize that the tools for the two languages

may be similar and that there is an annotation transfer between Portuguese and Spanish.

To contribute to the development of text mining tools for Portuguese and Spanish, this dissertation

presents the ICERL (Iberian Cancer-related Entity Recognition and Linking) system, a NERL (Named

Entity Recognition and Linking) system that uses deep learning and it is composed of two similar pipelines

for each language, and the parallel corpus ICR (Iberian Cancer-related) corpus. Both these tools are

focused on the oncology domain. The application of the ICERL system on the ICR corpus resulted in

3,999 annotations in Spanish and 3,287 in Portuguese. The similarities between the annotations of the

two languages and the F1-score of 0.858 that resulted from the comparison of the Portuguese annotations

with the Spanish ones confirm the hypothesis initially presented.

Keywords: Biomedical Literature, Named Entity Recognition, Named Entity Linking, Deep Learn-

ing, Iberian Setting.
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Resumo

A divulgação de descobertas realizadas pelos investigadores e médicos é feita através de vários docu-

mentos como livros, artigos, patentes e outros tipos de publicações. Para que investigadores estejam

atualizados sobre a sua área de interesse, é essencial que realizem uma análise rápida e eficaz destes

documentos. Isto porque, quanto mais eficiente for esta fase, melhores serão os resultados que serão

obtidos e, quanto mais rápida for, mais tempo poderão dedicar a outras componentes dos seus trabalhos.

No entanto, a velocidade com que estes documentos são publicados e o facto de o texto presente nos

mesmos ser expresso em linguagem natural dificulta esta tarefa. Por isso, torna-se essencial a aplicação

de ferramentas de prospeção de texto para a extração de informação.

As ferramentas de prospeção de texto são compostas por diversas etapas, como por exemplo, Re-

conhecimento de Entidades Nomeadas (em inglês Named Entity Recognition ou NER) e Mapeamento

de Entidades Nomeadas (em inglês Named Entity Linking ou NEL). A etapa NER corresponde à identi-

ficação de uma entidade no texto. NEL consiste na ligação de entidades a uma base de conhecimento.

Os sistemas estado-de-arte para a NER são métodos de aprendizagem profunda e normalmente utilizam

a arquitetura BiLSTM-CRF. Por outro lado, os sistemas estado-de-arte NEL usam não só métodos de

aprendizagem profunda, mas também métodos baseados em grafos.

A maioria dos sistemas de prospeção de texto que atualmente temos disponíveis está desenhada ape-

nas para a língua inglesa, o que é problemático, pois muitas das vezes a literatura biomédica encontra-se

descrita na língua nativa dos autores. Para resolver este problema têm surgido competições para desen-

volver sistemas de prospeção de texto para outras línguas que não o inglês. Uma das línguas que têm

sido um dos principais focos destas competições é a língua espanhola. O espanhol é a segunda língua

com o maior número de falantes nativos no mundo e com um elevado número de publicações biomédicas

disponível. Um dos exemplos de competições para a língua espanhola é o CANTEMIST. O objetivo do

CANTEMIST passa pela identificação de entidades do domínio oncológico e a ligação das mesmas à

base de dados Clasificación Internacional de Enfermedades para Oncología (CIE-O). Por outro lado, o

português não têm sido alvo de grande interesse por parte destas competições.

Devido ao facto de que o português e o espanhol derivarem do latim, existe uma semelhança lexical

elevada entre as duas línguas (89%). Portanto, é possível assumir que as soluções encontradas para

espanhol possam ser adaptadas ou utilizadas para o português, e que exista transferências de anotações

entre as duas línguas. Por isso, o objetivo deste trabalho passa por criar ferramentas que validem esta

hipótese: o sistema ICERL (Iberian Cancer-related Entity Recognition and Linking) e o corpus ICR
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(IberianCancer-related). O sistema ICERL é um sistemaNERL (NamedEntity Recognition and Linking)

bilíngue português-espanhol, enquanto que o ICR é um corpus paralelo para as mesmas línguas. Ambas

as ferramentas estão desenhadas para o domínio oncológico.

A primeira etapa no desenvolvimento do sistema ICERL passou pela criação de uma pipeline NERL

para a língua espanhola específica para o domínio oncológico. Esta pipeline foi baseada no trabalho

desenvolvido pela equipa LasigeBioTM na competição CANTEMIST. A abordagem apresentada pelo

LasigeBioTM no CANTEMIST consiste na utilização da framework Flair para a tarefa NER e do algo-

ritmo Personalized PageRank (PPR) para a tarefa NEL. O Flair é uma ferramenta que permite a combi-

nação de diferentes embeddings (representações vetoriais para palavras) de diferentes modelos num só

para a tarefa NER. O PPR é uma variação do algoritmo PageRank que é utilizado para classificar im-

portância de páginas web. O algoritmo PageRank é aplicado sobre um grafo. Originalmente, cada nó do

grafo representava uma página web e as ligações entre nós representavam hiperligações entre páginas. O

algoritmo estima a coerência de cada nó no grafo, isto é, a sua relevância. No contexto da tarefa NEL, o

grafo é composto por candidatos para as entidades de interesse. O Flair foi utilizado pela equipa Lasige-

BioTM para o treino de embeddings que foram obtidos em documentos em espanhol do PubMed. Estes

embeddings foram integrados num modelo para NER que foi treinado nos conjuntos de treino e desen-

volvimento do corpus do CANTEMIST. O modelo treinado foi depois utilizado no conjunto de teste do

corpus do CANTEMIST para a obtenção de ficheiros de anotação com as entidades reconhecidas. Foi

depois feita uma procura pelos candidatos para a tarefa de NEL das entidades reconhecidas em três bases

de dados: o CIE-O, o Health Sciences Descriptors (DeCS) e o International Classification of Diseases

(ICD). A partir destes candidatos foi construído um grafo e através do algoritmo PPR os candidatos foram

classificados e foi escolhido o melhor candidato para ligar cada entidade. Esta pipeline foi aperfeiçoada

através da adição de novos embeddings, um prolongamento do treino no modelo NER e uma correção de

erros no código do sistema para a tarefa NEL. Apesar destas alterações contribuírem para um aumento

significativo na performance da tarefa NEL (medida-F de 0.0061 para 0.665), o mesmo não aconteceu

para a tarefa NER (medida-F de 0.741 para 0.754). A versão final do sistema ICERL é composta por uma

pipeline para a língua portuguesa e pela pipeline que foi testada no corpus do CANTEMIST, com uma

ligeira diferença na tarefa NEL: em vez de ser escolhido apenas um candidato para cada entidade, é es-

colhida uma lista de candidatos do CIE-O e o DeCS. Já na pipeline portuguesa são escolhidos candidatos

do DeCS e da Classificação Internacional de Doenças (CID). Esta diferença na tarefa NEL deve-se ao

método que foi utilizado para avaliar a performance do sistema ICERL e para não restringir o sistema a

apenas um candidato e a um vocabulário. Para a construção da pipeline portuguesa, três modelos para

a tarefa NER foram testados e concluiu-se que a melhor abordagem passaria pela combinação de um

modelo semelhante ao modelo utilizado na pipeline espanhola e o modelo BioBERTpt. Devido à elevada

semelhança lexical entre as duas línguas, foi testada a hipótese de utilização da mesma pipeline para as

duas línguas. No entanto, através do software NLPStatTest foi possível concluir que a utilização de uma

pipeline específica para cada língua traduz-se numa melhoria de 58 por cento na medida-F para os textos

em português.

O corpus ICR é composto por 1555 documentos para cada língua que foram retirados do SciELO.Uma

vez que a pipeline espanhola foi treinada com ficheiros do CANTEMIST corpus, foi também necessário
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retirar documentos do SciELO e do PubMed para treinar a pipeline portuguesa.

O sistema ICERL foi aplicado ao corpus ICR e o método de avaliação passou pela comparação dos

resultados das anotações portuguesas com as anotações em espanhol. Isto porque foi possível avaliar a

performance da pipeline espanhol no corpus do CANTEMIST, e os resultados obtidos foram próximos do

estado-de-arte. A aplicação do sistema ICERL no corpus ICR resultou em 3999 anotações em espanhol

sendo que 216 dessas anotações são únicas e 3287 em português sendo que 171 dessas anotações são

únicas. Para além disso, a entidade câncer é a entidade mais frequente para as duas línguas. Para além

destas semelhanças nas anotações, o facto de ter sido obtido 0.858 em medida-F no método de avaliação

permite concluir que existe transferências de anotações entre as duas línguas e que é possível utilizar

ferramentas de prospeção de texto semelhantes para ambas.

Palavras Chave: Literatura Biomédica, Reconhecimento de Entidade, Mapeamento de Entidade,

Aprendizagem Profunda, Contexto Ibérico.
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Chapter 1

Introduction

Biomedical literature is the primary dissemination method used by researchers and physicians to

share their findings. It includes articles, patents, and other written reports, so it is an essential source of

knowledge [Hearst, 1999]. The biomedical experts studying a subject must have access to cutting-edge

information about it. However, the large quantity of literature being published in recent years makes this

task difficult [Lamurias and Couto, 2019]. Too much time is wasted in this process, and it is unfeasible to

analyze all the data of interest. This could affect the veracity and quality of the information because the

data could be outdated or incomplete and negatively affect an entire project. In addition, the significant

amount of time spent by the researchers in this process could be helpful for the remaining phases of

their research. Furthermore, biomedical literature comprises an extensive collection of text expressed in

natural language, which computers usually do not understand. These two reasonsmotivate the application

of text mining tools to extract information from those documents automatically [Sousa, 2019].

Text mining is the process of extracting interesting and non-trivial patterns or knowledge from un-

structured text [Tan et al., 1999]. Text mining pipeline includes, among others, Named Entity Recog-

nition (NER) and Named Entity Linking (NEL). NER corresponds to the recognition of entities men-

tioned in the text. These entities can be described as anything with a proper name: a person, a location,

or an organization [Jurafsky and Martin, 2009]. In the biomedical field, these entities can be a gene or a

disease. NEL corresponds to the mapping of the recognized entities to entries in a given knowledge base

(KB). These tasks provide researchers and physicians a more effective way to obtain, integrate and inter-

pret data from different sources [Zhu et al., 2013] and to reduce the required time to process information

[Wei et al., 2013; Simon et al., 2019]. They can be carried out by different methods such as rule-based,

machine learning, and deep learning. Deep learning methods are the state-of-the-art for the NER task, but

rule-based methods such as graph models can also be included in the state-of-the-art for the NEL task.

One of the problems associated with biomedical text mining is the non-English text. Even though

there is a considerable amount of these texts in repositories such as PubMed and SciELO [Neves et al.,

2016], there is also a lack of resources to deal with them. For example, in 2017, less than 10% of the pub-

lications about ”Natural Language Processing” (NLP) were focused on non-English languages [Névéol
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Chapter 1 Introduction

et al., 2018]. This number is problematic since only about 5% of the world population has English as

their native language1, which means that the majority of current solutions is not designed for 95% of the

world population. The lack of these tools is critical for biomedical texts since usually, these are expressed

in the author’s native language. The Spanish language is a prime example of the necessity of these re-

sources. Spanish is the second most spoken native language in the world with more than 460,000,000

native speakers1 and with more than 374,000 entries in PubMed. Although there is a lack of text mining

tools for the Spanish language, this shortage is even more significant for the Portuguese language. Even

though the Portuguese language has a smaller population of native speakers than Spanish, 220,000,000
1, and a smaller number of texts available, more than 111,000 entries in PubMed, these numbers are also

significant and require text mining tools designed to extract information.

There are two possible text mining approaches for non-English text. The first is translating the text in

English and then applying text mining tools in the translated text, like, for example, the work of [Campos

et al., 2017] which developed a system for translations of radiology articles in Portuguese. The second is

applying the text mining techniques directly in text and use terminologies in that language. Even though

the first approach have shown to be successful, it was demonstrated that it does not always brings benefits

in the results [Rosales-Méndez et al., 2018], since a translation could result in a loss of relevant infor-

mation, such as the name of an entity, especially if done by non-experts. Furthermore, the first approach

does not take advantage or contributes to the development of the multilingual tools like for example,

the multilingual version of a KB like ”Clasificación Internacional de Enfermedades” (CIE)2, ”Classi-

ficação Internacional de Doenças” (CID) and Health Sciences Descriptors (DeCS) 3, or NER systems

in the biomedical field designed for non-English languages such as BioBERTpt. Therefore, the second

approach will be the focus of this work.

1.1 Objectives

Given the large amount of biomedical literature available, the application of text mining tools is essential

for performing information retrieval by researchers and physicians. Considering the lack of these tools

for languages other than English, a series of shared tasks to create state-of-the-art NER and NEL solutions

for clinical text has emerged in recent years. One example of these shared tasks is the CANTEMIST4

whose goal is to recognize entity mentions of tumor morphology in Spanish health documents and assign

them to their respective ”Clasificación Internacional de Enfermedades para Oncología” (CIE-O) codes.

Due to the significant amount of biomedical literature published in Spanish and the number of Spanish

speakers globally, this language has been addressed in several shared tasks. However, the number of

shared tasks and text mining tools for Portuguese text is lower when compared to Spanish. Since there

1https://web.archive.org/web/20190312060544/https://www.ethnologue.com/statistics/size
2https://icd.who.int/es
3https://decs.bvsalud.org/
4https://temu.bsc.es/cantemist/

2
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is a high lexical similarity between Portuguese and Spanish [Castro et al., 2018, as cited in Ulsh, 1971],

due to the fact that they both derived from Latin, this work hypothesizes that it is possible to use similar

text mining tools for Portuguese and Spanish and to transfer annotations between the two languages.

1.2 Methodology

The methodology used to validate the hypothesis presented in this work is composed of four steps:

1. Development of a state-of-the-art Named Entity Recognition and Linking (NERL) pipeline for the

Spanish language;

2. Creation of a parallel corpus for Portuguese and Spanish;

3. Development of a bilingual Portuguese and Spanish deep learning NERL system;

4. Application of the bilingual NERL system to the parallel corpus and compare the results between

Portuguese and Spanish.

The developed Spanish pipeline was based on the LasigeBioTM team’s work at the CANTEMIST

[Ruas et al., 2020] shared task. Our approach consisted in using the Flair framework for the NER task

and the Personalized PageRank (PPR) for the NEL task. Improvements were made to that pipeline to

achieve the state-of-the-art results that other approaches obtained in CANTEMIST. These improvements

refer to the addition of Character and Bytepair embeddings, the extension of the training process for the

NER model, and the correction of code errors in the system developed for the NEL task. This pipeline

and the other two tools developed in this work: the ICR (Iberian Cancer-related) and the ICERL (Iberian

Cancer-related Entity Recognition and Linking), are focused on the oncological domain.

To build the ICR corpus, parallel abstracts in Portuguese and Spanish were retrieved from SciELO.

The ICERL system is composed of the Spanish pipeline resulting from the first phase of this dissertation

and a similar pipeline for the Portuguese language combined with the BioBERTpt model. The Spanish

pipeline was trained using the training and development sets from the CANTEMIST corpus and abstracts

from PubMed. Since a correspondence in Portuguese of these files is not available, files from SciELO

and Pubmed in Portuguese were also retrieved for the training of the Portuguese pipeline of the ICERL

system.

The ICERL systemwas applied to the ICR corpus to generate the annotations and compare the ICERL

system’s performance in the two languages. Since it was possible to assess the performance of the Spanish

pipeline on the CANTEMIST corpus, the evaluation method consisted in comparing the results of the

Portuguese pipeline with the results of the Spanish pipeline. This evaluation method can be done since

KBs with versions of each language were selected for the NEL task: the vocabulary DeCS in Portuguese

and Spanish, the CIE, and the CID.
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To further evaluate the ICERL system, this work resulted in the participation in shared tasks. How-

ever, during this dissertation, there were none available for the Portuguese language or the oncological

domain; it was only possible to test the ICERL system at ProfNER and MESINESP2: shared tasks for

the Spanish language not cancer-related.

1.3 Contributions

The two main contributions of this dissertation are the ICERL system and the ICR corpus. These con-

tributions are of the utmost importance because, as far as I know, there are no NERL systems in the

oncological domain that are designed to handle both Portuguese and Spanish. Furthermore, although

there are biomedical corpora in Spanish and Portuguese for NERL systems, such as the corpora provided

by the text mining shared tasks, to the best of my knowledge, there are no Portuguese-Spanish parallel

corpora for the oncological domain.

The development of the ICERL system and the ICR corpus resulted in the submission of a paper:

• Andrade, V. D., Ruas, P., and Couto, F. M. (2021). Named Entity Recognition and Linking: a

Portuguese and Spanish Oncological Parallel Corpus. doi: 10.1101/2021.09.16.460605.

This work also contributed to the participation of LasigeBioTM at ProfNER and MESINESP2. At

ProfNER, the developedNER system and the rule-basedmodule achieved the second-best performance in

the classification task. At MESINESP2, I created a NEL feature for the extreme multi-label classification

system used in the shared task. These two participations are described in two workshop papers:

• Ruas, P., Andrade, V. D., and Couto, F. M. (2021). Lasige-BioTM at Profner: BILSTM-CRF and

contextual Spanish embeddings for Named Entity Recognition and Tweet Binary Classification. In

Proceedings of the Sixth Social Media Mining for Health (SMM4H) Workshop and Shared Task;

• Ruas, P., Andrade, V. D., and Couto, F. M. (2021) Lasige-BioTM at MESINESP2: entity linking

with semantic similarity and extreme multi-label classification on Spanish biomedical documents.

In Proceedings of the Working Notes of Conference and Labs of the Evaluation Forum (CLEF).

In addition to ProfNER and MESINESP2, I was also involved in the participation of LasigeBioTM at

CANTEMIST. In this shared task, my role was to test the solutions produced by the team and find ways

to improve them. This participation is described in the following workshop paper:

• Ruas, P., Neves, A., Andrade, V. D., and Couto, F. M (2020). LasigeBioTM at CANTEMIST:

Named Entity Recognition andNormalization of TumourMorphology Entities and Clinical Coding

of Spanish Health-related documents. In Proceedings of the Iberian Languages Evaluation Forum

(IberLEF 2020).
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1.4 Document structure

In addition to the first chapter, this document is structured in four chapters as follows:

• Chapter 2 (Related work): introduces the necessary concepts to understand the work done in this

dissertation, which includes a description of NER and NEL tasks and the approaches available

to perform them, biomedical knowledge organization systems, text mining shared tasks, and the

evaluation methodology used in this work.

• Chapter 3 (CANTEMIST pipeline): describes the LasigeBioTM’s pipeline at the CANTEMIST

and the improvements that I made to it.

• Chapter 4 (Iberian corpus (ICR) and NERL system (ICERL)): describes the development of the

ICR corpus and the ICERL system. The first section of this chapter explains the work done for the

ICR corpus and the other documents used to train the ICERL system. The second part refers to

the steps taken to develop the final version of the ICERL system from the pipeline described in the

Chapter 3.

• Chapter 5 (Conclusions): presents the main conclusions of this dissertation and some suggestions

for future work.
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Chapter 2

Related Work

2.1 Information Extraction Approaches

Information Extraction (IE) corresponds to the process of turning unstructured data into structured data

[Jurafsky andMartin, 2009]. This process includes approaches such as rule-based, machine learning, and

deep learning. The IE is based on rules that include terms, regular expressions, and sentence constructions

defined by experts [Lamurias and Couto, 2019]. These rules allow the system not to depend on training

corpus as with machine learning and deep learning approaches.

The majority of rule-based approaches tend to focus on pattern matching. For example, dictionary

approaches, that given a text and a lexicon with the terms of interest, perform string matching between

text and terms [Couto and Lamurias, 2018].

2.1.1 Machine learning

Machine learning (ML) is the process used by systems to learn tasks automatically. This learning is ac-

quired through training and validation data to make predictions in test data. In the text mining domain,

these data can correspond to annotated corpora [Lamurias and Couto, 2019]. There are two learning

paradigms for ML models: supervised and unsupervised. In supervised learning, the labels of each in-

stance of the training data are known, and in unsupervised learning, the training data is not labeled.

Models such as Support Vector Machine (SVM) and Conditional Random Field (CRF) use supervised

learning, while the Hidden Markov Models (HMM) use both supervised and unsupervised learning.

SVM is used in classification and regression problems. SVM aims to find the boundary separating

different classes and has a maximal distance from any point on the training data, allowing SVM to have

better classifications than other models [Manning et al., 2008; Li et al., 2009]. For example, in SVM and

other machine learning and deep learning methods that deal with text, these points are vectors represen-
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tations of words called word embeddings. Hence, SVM enables text classification, used in text mining

tasks such as NER, NEL, and POS (Part-of-speech) tagging.

HMM computes a probability distribution for a sequence of variables given an observed sequence.

The idea of this model is that the variables of the same sequence are independent of each other [Beal

et al., 2001]. HMM is used in POS tagging and NER.

CRF is a probabilistic method for labeling and segmenting sequential data [Wallach, 2004]. CRF

moderates strong independence assumptions between variables made by other probabilistic models like

HMM, [Lafferty et al., 2001] which makes it appropriate for the NER task since the meaning of words is

heavily dependent on the context.

2.1.2 Deep learning

Deep learning is a form of machine learning that enables computational models to learn data represen-

tations with multiple levels of abstraction [LeCun et al., 2015]. These methods are based on artificial

neural networks (ANNs) with multiple hidden layers and can be used in speech and audio recognition,

object detection, bioinformatics, NLP, and other domains. ANNs are computational networks inspired

by biological neural networks and are composed of processing units called nodes comparable to neurons

in the biological neural networks. These nodes can be organized into three different types of layers: the

input layers, the hidden layers, and the output layers. ANNs architectures include:

• Recurrent Neural Network (RNN). RNN is an ANN where it occurs a recurrent connection in

the nodes during a time period. This neural network uses its memory to process sequences of

inputs which makes it applicable to tasks with sequential data such as text mining. Long short-

termmemory (LSTM) is a Recurrent Neural Network capable of handling long-term dependencies.

When two LSTM layers are processing a sequence in different directions, the resulting architecture

is called Bidirectional LSTM (BiLSTM). A BiLSTM is a combination of forward and backward

language models. The forward language model predicts the next token given the current one, and

the backward language model does the inverse and predicts the previous token given the current

one. Hence, BiLSTM allows the use of future and past input features in a given time frame and

has shown better results when compared to a simple LSTM in text mining [Huang et al., 2015].

• Convolutional Neural Network (CNN or ConvNET). CNN is a multilayer node usually used to

process images. This neural network has a light pre-processing step due to its ability to learn from

filters, while in other neural networks, the filters are hand-engineered. Even though this neural

network was originally designed to deal with images, CNN has been used in text applications in

recent years [Hu et al., 2014]. CNN can be used for linking biomedical entities [Deng et al., 2019]

and ranking them according to their semantic information [Li et al., 2017].
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2.2 Named Entity Recognition

NER corresponds to the identification of entities in text. In the biomedical domain, these entities can

represent diseases, genes, proteins, among others. Therefore, finding and classifying entities is one of

the most fundamental tasks in text mining, not only because it is the first to be executed but also because

its output will condition the performance of subsequent tasks.

Usually, NER starts by splitting the text into smaller pieces called tokens. This process is called

tokenization. The main challenge of tokenization is to determine the target of the splits. The simplest

solution is to delimit the tokens by spaces and punctuation. For example, in the expression “Attention

deficit hyperactivity disorder” the tokenization process will separate the words ”attention”, ”deficit”,

”hyperactivity,” and ”disorder” which in this case were meant to be a single entity and refer to the con-

dition known as ADHD. This problem is compounded in a multilingual setting where each language has

its own lexical characteristics, but several of the recent tokenizers are designed to resolve these issues

[Cruz Díaz and Maña López, 2015]. According to its definition and context, the words resulting from the

tokenization are assigned to a POS label. The state-of-the-art NER approaches in the biomedical field use

deep learning and the BiLSTM-CRF architecture [Huang et al., 2015] and pre-trained language models.

The BiLSTM-CRF architecture (Figure 2.1) is defined by the use of past and future input features by the

BiLSTM and the use of sentence-level tag information due to CRF layer [Hu et al., 2014].

It is essential to have manually annotated entity datasets called gold standards to train and evaluate

NER systems. However, since it is difficult to generate manual annotations, the datasets are not available

in some biomedical domains, and the available ones can be limited in size [Crichton et al., 2017].

2.2.1 Pre-trained language models

Pre-trained language models are trained over extensive corpora using a given training task. The result-

ing word representations are then used on different tasks and corpora, a process designated by transfer

learning [Edunov et al., 2019]. This is useful since it allows the reuse of representation without the need

for training from scratch. Pre-trained language models can be divided into two generations depending

on the type of word embedding. The first generation of pre-trained language models includes Word2vec

and GloVe, which learn non-contextual embeddings, and the second generation includes CoVe, ELMo,

and BERT that learn from contextual embeddings [Qiu et al., 2020]. For instance, in the sentences ”John

is in a prison cell” and ”Organism composed by a single cell”, the meaning of the word cell is different

in the two cases. A second-generation model understands that the context in two sentences is different

and does not use the same embedding for the word ”cell” in these two cases.

2.2.1.1 Non-Contextual Embeddings Models

Word2Vec [Mikolov et al., 2013b] is one of the simplest and most used pre-trained language methods. It

predicts words using two different methods: CBOW and Skip-gram. The CBOWmodel predicts the cur-
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Figure 2.1: BiLSTM architecture. The BiLSTM layer comprises F nodes corresponding to the forward LSTM and

the B nodes, the backward LSTM. CRF layer is used for POS tagging. B stands for the beginning of the entity, I

for the inside of the entity, and O for out of the entity. In this case, the entity is tagged with the label ”Mor NEO”

(Morfología de neoplasias). This image was adapted from [Ji et al., 2019].

rent word based on the surrounding words. The Skip-grammakes the opposite, it predicts the surrounding

words given the current word [Mikolov et al., 2013a]. Word2vec has an extension named FastText with

a variation of this approach. In FastText, each word is represented as a set of character n-grams. The em-

bedding is done in each character n-grams, and the words are represented as the sum of these embeddings

[Bojanowski et al., 2017].

GloVe developed by [Pennington et al., 2014] is trained on global word-word co-occurrence on a cor-

pus. The resulting model produces linear substructures of the word vector space. This model outperforms

Word2vec in NER tasks.

2.2.1.2 Contextual Embeddings Models

Unlike first-generation pre-trained language methods, ELMo uses the entire input sentence function and

computes it on top of a BiLSTM (Figure 2.2) [Peters et al., 2018]. As a result, ELMo can be added to

existing models to improve text mining tasks like NER and question answering.

BERT [Devlin et al., 2018] has a multilayer biredirectional transformer encoder architecture (Figure

2.3). The Transformer architecture is based on attention mechanisms to draw dependencies between

input and output [Vaswani et al., 2017]. As described by [Devlin et al., 2018], BERT’s implementation
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Figure 2.2: Pre-training of ELMo. ELMo uses a BiLSTM in pre-training and a feature-based approach for predic-

tion. This image was adapted from [Devlin et al., 2018]

is composed of two essential steps: pre-training and fine-tuning. First, BERT is pre-trained on unlabeled

data using two procedures:

• MASK LM: it masks some percentage of the input tokens at random and predicts those tokens.

This procedure is made with the intent of creating a deep bidirectional model in training.

• Next Sequence Prediction: responsible for making the model identify relationships between sen-

tences which is fundamental in tasks like question answering.

At first, BERT used BooksCorpus and Wikipedia for pre-training, but variations trained on biomed-

ical and scientific corpora emerged, like SciBERT, BioBERT, and ClinicalBERT. These models have

shown significant improvements when compared to traditional BERT in text mining tasks in the scien-

tific domain [Lee et al., 2020; Alsentzer et al., 2019]. In addition to domain-specific models, multilingual

models have also emerged, such as BETO, trained on a Spanish corpus, and BioBERTpt, trained on Por-

tuguese corpus related to the biomedical field.

In the fine-tuning step, the model starts with pre-trained parameters that will be fine-tuned for a

specific task like NER. This is the main difference between BERT and ELMo [Devlin et al., 2018]. After

pre-training the model, ELMo uses an architecture-specific for each task [Peters et al., 2018].

2.3 Named Entity Linking

NEL, also called normalization or disambiguation, corresponds to the text mining task of linkingmentions

in a text to entries in a KB. This task is important because an entity can be mentioned in many different
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Figure 2.3: Pre-training of BERT. BERT uses the Transformer Encoder in pre-training. This image was adapted

from [Devlin et al., 2018]

ways, and the same name can be used to describe different entities [Shen et al., 2014]. Thus NEL allows

the identification of name variations of a certain entity and distinction in cases of ambiguity.

A KB contains the definition, the description, and other relevant information for each containing

entity [Zheng et al., 2010]. DBpedia, for example, is a multilingual KB that was built with information

extracted fromWikipedia [Lehmann et al., 2015] and it is one of the most important KBs available since it

covers a variety of domains such as companies, geographic information, people and scientific publications

[Bizer et al., 2009]. However, there are also KBs designed especially for the biomedical domain. As will

be explained in detail in Section 2.4, these KBs can be in the form of a thesaurus, vocabularies, and

ontologies.

2.3.1 Graph Models

As previously mentioned, NEL’s state-of-the-art approaches include graph-based models. A graphmodel

is composed of a set of random variables and a graph. Each node of a graph is associated with one of

the random variables, and the edges express the dependence between the random variables [Scutari and

Strimmer, 2010].

PageRank was the algorithm originally used by Google to rank webpages in their search engine [Page

et al., 1999]. In this algorithm, the web is considered a graph, where each graph’s node is a different

webpage. In addition, each webpage has links for other pages called forward links and links from other

pages called backlinks. The output of this algorithm is the probability distribution of getting to a webpage

after several iterations.

The PPR, a variation of the PageRank algorithm, is being used in NEL [Lamurias et al., 2019]. The
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difference between this algorithm and the original PageRank is that the crossing of the graph is not ran-

dom. In PPR, it goes from a node to a chosen forward link.

2.4 Biomedical Knowledge Bases

KBs gathers all variations of the same term, eliminating ambiguity cases and controlling synonyms that

facilitate the indexing of entity mentions and the retrieval of information through browsing and searching

[Gudivada et al., 2018; Zeng, 2008]. For text mining, it is important that KBs also can support semantic

relations between concepts because these relations can be important for text mining tasks. Examples of

KBs are:

• Thesaurus: a thesaurus usually includes the definition of concepts and the relationships between

them. It coordinates processes of indexing and document retrieval [Frakes and Baeza-Yates, 1992].

• Subject Headings: a subject heading is a list of words or phrases used to describe a topic of texts

in books, articles, and other documents and link them to other texts with similar subjects [Harpring,

2010]

• Taxonomies: a taxonomy is a hierarchical classification for a specific topic. In taxonomy, a term

has one or more parent/child relationships to other terms, which is a simpler structure when com-

pared to a thesaurus [Harpring, 2010]. Taxonomy is usually used to classify organisms, but it can

also be used in the health domain.

• Ontologies: As described by [Borst, 1999], an ontology is a formal, explicit specification of a

shared conceptualization. That is, an ontology concept is defined explicitly and formally in the

same way by a group of people. Ontologies are defined to be understood by humans and by com-

puters. The main language to define ontologies is the Web Ontology Language (OWL). In the

biomedical field, a group of developers designated as the Open Biomedical Ontology (OBO)1

foundry that came together to develop and define a set of principles to be followed to describe

ontologies. The main principles are:

1. The ontologies must be open to being used, and its origin have to be identified and not altered;

2. All the ontologies are defined in a common shared syntax;

3. Each property in an ontology such as a relation must have a unique URI identifier;

4. The ontology developer has procedures to identify different versions;

5. The ontology has a distinctly scope and content;

6. The ontology has textual definitions for the majority of its terms;

1http://www.obofoundry.org/
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7. The ontology uses relations defined by the Relations Ontology (RO);

OBO Foundry’s ontologies include the Gene Ontology (GO) to annotate genes, genes, products,

and sequences with concepts related to their functions [Consortium, 2008], the Chemical Entities of

Biological Interest (ChEBI) to annotate small chemical compounds involved in biological process

[Degtyarenko et al., 2007] and the Disease Ontology (DO) to provide definitions about diseases,

genotypes, phenotypes, proteomes, epitopes and drugs [Kibbe et al., 2015].

2.4.1 English KBs

The Unified Medical Language System (UMLS) is an example of developing a thesaurus in the biomed-

ical field. UMLS was developed by the National Library of Medicine (NLM) and consists of biomedical

vocabularies designed to help health professionals and researchers retrieve and integrate biomedical in-

formation such as electronic health records from different sources [Bodenreider, 2004]. UMLS comprises

three different knowledge sources: Metathesaurus, Semantic Network, and SPECIALIST Lexicon and

Lexical Tools. The biggest component of UMLS is the Metathesaurus. The Metathesaurus2 is a large

multilingual biomedical thesaurus composed of nearly two hundred different vocabularies from several

sources. One of the main goals of Metathesaurus is to understand the meaning of each word in a vocab-

ulary and link all the words that have the same meaning. Therefore the Metathesaurus is organized by

concepts. Metathesaurus assigns each concept and all the related words unique identifiers and points out

relations between concepts.

Created by the National Library of Medicine (NLM) in 1960, the Medical Subject Headings (MeSH)

was designed to index, catalog, and search health-related information in MEDLINE/PubMed, books,

journals, and NLM’s catalog [Nelson et al., 2001].

2.4.2 Multilingual KBs

SNOMED CT3 is a multilingual clinical healthcare terminology. SNOMED CT enables the consistent

representation of clinical content in electronic health records providing an automatic way to interpret

them and better patient care.

DeCS4 was developed fromMeSH. DeCS is a multilingual vocabulary created by the Latin American

and Caribbean Center on Health Sciences Information (BIREME) to allow common terminology for

searching in three languages: English, Portuguese and Spanish. In addition to the health-related terms

provided by MeSH, DeCS has terms from other four topics: Public Health, Homeopathy, Science and

Health, and Health Surveillance.

2https://www.ncbi.nlm.nih.gov/books/NBK9684
3snomed.org
4https://decs.bvsalud.org/en/about-decs/
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Created by theWorldHealthOrganization (WHO), the International Classification ofDiseases (ICD)5

classifies diseases, disorders, injuries, medical procedures, and other related conditions for clinical and

research purposes [Dodd et al., 2018]. ICD is revised periodically and has domain-specific extensions.

For example, ICD-O-3 corresponds to the third edition of the International Classification of Diseases for

Oncology. This taxonomy allows easy storage, retrieval analysis, and sharing of health information. ICD

also has versions in forty-two languages, such as the CIE in Spanish and CID in Portuguese.

The Human Phenotype Ontology (HPO)6 provides phenotype vocabulary and disease-phenotype an-

notations. HPO is the standard system of phenotypic information by various groups such as international

rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools [Köh-

ler et al., 2017]. Currently, HPO hasmore than 13,000 terms that are connected by is-a relationships. HPO

is an ongoing project that aims to translate all of these terms, synonyms, and textual definitions into var-

ious languages: Chinese, Dutch, French, German, Italian, Japanese, Portuguese, Russian, Spanish, and

Turkish.

2.5 Shared tasks

In recent years a series of shared tasks to evaluate state-of-the-art text mining solutions for clinical text

in Spanish has emerged. This dissertation’s work contributed to the participation in three of these shared

tasks: ProfNER, MESINESP2, and CANTEMIST.

The ProfNER shared task, whose goal is the identification of professions and occupations in Health-

related tweets in Spanish, is organized by the ”Social Media Mining for Health Applications (#SMM4H)

Shared Task 2021”. It includes two sub-tasks:

• Track A – Tweet binary classification: to determine if a tweet has a mention of occupation or

not;

• Track B - NER offset detection and classification: to recognize the span of mentions of occu-

pations and to classify them in the respective category (”PROFESION” or ”SITUACION LABO-

RAL”).

The MESINESP7 task organized by the BioASQ that consists in the indexing of documents from the

”Índice Bibliográfico Español en Ciencias de la Salud” (IBECS) and ”Literatura Latino-Americana e do

Caribe em Ciências da Saúde” (LILACS) with DeCS terms. The second edition, MESINESP2, includes

the following sub-tasks:

• MESINESP-L – Scientific Literature: indexing with DeCS terms of Spanish abstracts from two

databases, IBECS, and LILACS;

5https://www.who.int/classifications/icd/en/
6https://hpo.jax.org
7https://temu.bsc.es/mesinesp/
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• MESINESP-T - Clinical Trials: indexing with DeCS terms of Spanish clinical trials from REEC

(Registro Español de Estudios Clínicos);

• MESINESP-P – Patents: indexing with DeCS terms Spanish patents extracted from Google

Patents.

The CANTEMIST is the only task related to tumor morphology. CANTEMIST includes three sub-

tasks:

• CANTEMIST-NER: identification of tumor entities;

• CANTEMIST-NORM: indexing the identified entity to the corresponded CIE-O term;

• CANTEMIST-Coding: provide for each document a ranked list of its correspondingCIE-O codes.

In addition to the developed tools, the clinical texts in Spanish provided by these tasks can be used

to train future applications.

In addition to these shared tasks, the Clinical Case Coding in Spanish Shared Task (CodiEsp)8 where

the participants are asked to index clinical documents to CIE vocabulary and the PharmaCoNER9 task

that seeks to recognize chemical and proteins entities [Sun and Yang, 2019] are other examples of text

mining shared tasks for the Spanish biomedical domain.

2.6 Multilingual Corpora

As mentioned throughout this work, the number of text mining resources for non-English languages,

such as corpora, is reduced. Still, it is possible to find some cases of English parallel corpora with

another language. Examples of these corpora are the BVS corpus [Soares and Krallinger, 2019] and the

Multilingual Radiology Research Articles Dataset (MRRAD) [Campos et al., 2017]. The BVS corpus

comprises abstracts from the BVS database, a database with biomedical information about Latin America

and Carib created by BIREME in Portuguese, Spanish, and English. MRRAD is a parallel corpus of

Portuguese research articles related to radiology and alternative translations in English.

For the corpora exclusively in Spanish, some of the corpora available come from text mining com-

petitions like those described in the Section 2.6. In addition to those corpora, there are also instances like

the DrugSemantics [Moreno et al., 2017], a corpus for NER related to the pharmacotherapeutic domain.

The amount of corpora exclusively in Portuguese is scarcer than those available in Spanish, and most

of them are not available to be tested. One of the few examples is SemClinBr, an annotated corpus for

clinical text mining tasks in Brazilian Portuguese with 1,000 clinical notes, labeled with 65,117 entities

and 11,263 relations [Peters et al., 2020]. Another example is theHSL dataset, which contains information

8https://temu.bsc.es/codiesp/
9https://temu.bsc.es/pharmaconer/
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about the patients from the Syrian-Lebanese Hospital (HSL), also in Brazilian Portuguese [Reys et al.,

2020]. These corpora are not open-access which makes it difficult to replicate the results obtained.

2.7 NER and NEL tools

MER stands out for its simplicity and efficiency among the specifically developed systems to work in

biomedical text. MER is a user-friendly NER and NEL tool that only needs an ontology or a list of terms

representing the entities, their identifiers, and a Unix shell. This simple tool takes advantage of the grep

and awk commands for text processing [Couto and Lamurias, 2018].

In addition to MER, other systems are designed for the NER task, such as the default NER model

provided by the Flair framework and the BioBERTpt model. The NER model provided by Flair is an

example of a system that uses deep learningmethods for theNER task. Flair allows the use of several word

embeddings combinations to design a single model without additional engineering effort [Akbik et al.,

2019]. Besides usingword embeddings from other pre-trainedmodels such as FastText, ELMo, or BERT,

Flair has its own contextual word embeddings. The difference between these contextual embeddings

and others is that they are trained without any explicit notion of words, and words are treated just as

sequences of characters [Akbik et al., 2018]. The NER model provided by Flair has been applied to

Spanish biomedical text [Akhtyamova et al., 2020]. On the other hand, BioBERTpt uses the pre-trained

language model BERT trained on Portuguese clinical and biomedical corpora for NER in clinical and

biomedical Portuguese text [Schneider et al., 2020].

There are also systems specifically for the NEL task, like the PPR-SSM [Lamurias et al., 2019].

PPR-SSM is based on the PPR algorithm and uses the semantic similarity between the candidates for

each entity and their information content (IC) to improve the results of the NEL task. In the PPR-SSM,

candidates with high semantic similarity with the other nodes and a high IC have a better ranking in the

disambiguation graph. The IC is the frequency of the presence of an entity in a corpus. The semantic

similarity measurement (SSM) corresponds to the similarity value between entities using the relations

defined in KBs. The Resnik is one of the metrics used to measure the semantic similarity between entities

[Resnik, 1995]. This metric is defined as:

SSMresnik(e1,e2) = ICshared(e1,e2)

In which, ICshared(e1,e2) is the IC of most informative common ancestor of the entities e1and e2.

For the NER and NEL systems designed for languages other than English, shared tasks have been

shown to play a key role. The systems derived from these shared tasks have obtained promising results

NER and NEL when applied to biomedical entities. For example, in CANTEMIST, the systems with the

best results have used pre-trained models, more specifically BERT and some of its variations [García-

Pablos et al., 2020; Xionga et al., 2020].
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2.8 Evaluation

The evaluation of NERL systems is made by comparing the outputted predictions against the manual

annotations done by experts, the gold standard test. The metrics normally used in the evaluation are

precision (P), recall (R), and F1-score. These metrics are calculated by the following instances:

• True positives (TP): number of correctly identified predictions. The model identifies an entity

that is present in the gold standard.

• False positives (FP): number of incorrect predictions classified as positive. The model identifies

an entity that is not present in the gold standard or incorrectly identifies an entity that is present in

the gold standard.

• False negatives (FN): number of incorrect predictions classified as negative. The model does not

identify an entity that is present in the gold standard.

The precision is the percentage of instances that the system detected that are in fact positive. The recall

is the percentage of instances that were correctly identified [Jurafsky and Martin, 2009]. For example, in

the NER task, if a system identifies 100 entities in the text and from those 100, only 80 are in the gold

standard, that model has 80% precision. On the other hand, if a system identifies 80 correct entities of

the 100 present in the gold standard, the model has 80% recall [Campos, 2017]. F1-score is the harmonic

mean of recall and precision. This metric is used to compare the efficiency of different systems.

There are twomethods to evaluate a system’s performance: themicro-average and themacro-average.

The micro-average corresponds to the sum of all error types of all documents to make the average of each

metric. The macro-average consists of calculating the Precision, Recall, and F1-score for each document

and then make the average for all documents. Since micro-average weighs each instance separately, it

will capture the imbalance between the documents. Therefore the ICERL system uses it as the evaluation

method. On the other hand, if all documents are equally important, the macro-average is more suitable

[Jurafsky and Martin, 2009].

Micro− average precision =
TP1 + TP2 + ...+ TPn

TP1 + TP2 + ...+ TPn+ FP1 + FP2...+ FPn

Micro− average recall =
TP1 + TP2 + ...+ TPn

TP1 + TP2 + ...+ TPn+ FN1 + FN2 + ...+ FNn

Macro− average precision =
P1 + P2 + ...+ Pn

n

Macro− average recall =
R1 +R2 + ...+Rn

n
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F1− score =
2× Precision×Recall

Precision+Recall
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Chapter 3

CANTEMIST pipeline

As previously mentioned, the first phase of this dissertation consisted of developing a NERL pipeline for

the Spanish language. It was intended for this pipeline to have a performance similar to the state-of-the-

art achieved at the CANTEMIST shared task: an F1-score equal or higher than 0.87 and 0.83 for the NER

and NEL tasks, respectively. The performance of this pipeline and the other approaches developed for

this competition was evaluated by comparing the annotations generated with the annotations manually

generated by experts [Miranda-Escalada et al., 2020].

The starting point to develop this pipeline was the approach developed by the LasigeBioTM team for

the CANTEMIST shared task (Figure 3.1) [Ruas et al., 2020]. LasigeBioTM used the Flair framework for

the training of embeddings in Spanish PubMed abstracts. The resulting embeddings were integrated into

a NER model, which was then trained on the training and development sets of the CANTEMIST corpus.

Next, the trained model was applied to the CANTEMIST corpus test set to obtain the annotation files with

the recognized entities. The next step was to perform NEL, more concretely, by searching candidates for

the recognized entities. This search was made in CIE-O-3 and also in two other vocabularies, DeCS and

ICD-10. Finally, a disambiguation graph was constructed with these candidates. Then, the candidates

were ranked through the PPR-SSM algorithm, and the best candidate was linked to the entity mentioned

in the text.

3.1 NER methods

LasigeBioTM used the Flair framework to developed four NER models: ”base”, ”large”, ”medium” and

”pubmed” [Ruas et al., 2020]. Based on these four models, a fifth model was developed, ”medium 2.0”,

corresponding to an improved version of the model with the best results. Since the best approaches de-

veloped for the CANTEMIST-NER sub-task used BERT [Miranda-Escalada et al., 2020], other systems

based on this pre-trained language model were also developed.
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Figure 3.1: LasigeBioTM procedure for the CANTEMIST shared task.

3.1.1 NER models

• “base”: it includes Flair embeddings (es-forward and es-backward) trained on Spanish Wikipedia

and Spanish FastText embeddings.

• “large”: it includes Flair embeddings (es-forward and es-backward) trained on SpanishWikipedia,

Spanish FastText embeddings, and PubMed Flair embeddings trained on two PubMed splits.

• “medium”: it includes Flair embeddings (es-forward and es-backward) trained on SpanishWikipedia,

Spanish FastText embeddings, and PubMed Flair embeddings trained on one PubMed split.

• “pubmed”: it includes PubMed Flair embeddings trained on four PubMed splits.

• “medium 2.0”: it includes Flair embeddings (es-forward and es-backward) trained on Spanish

Wikipedia, PubMed Flair embeddings trained on one PubMed split, Spanish FastText embeddings,

Spanish Bytepair embeddings, and Character embeddings.

• “medium+bert”: it includes Flair embeddings (es-forward and es-backward) trained on Spanish

Wikipedia, Spanish FastText embeddings, PubMed Flair embeddings trained on one PubMed split,

and BERT embeddings trained on Wikipedia.

• “bert”: it includes Spanish FastText embeddings and BERT embeddings trained on Wikipedia.

• “scibert”: it includes Spanish FastText embeddings and BERT embeddings trained on documents

from Semantic Scholar.
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• “beto”: it includes BERT embeddings trained on Spanish Corpora composed by several sources

such as Wikipedia.

• “scibert+beto”: it includes BERT embeddings trained on documents from Semantic Scholar and

other sources.

3.1.2 Training setup

LasigeBioTM trained the Flair embeddings in translated abstracts of PubMed articles [Ruas et al., 2020].

These 130,000 articles with 155,366,645 tokens were divided in four splits to optimize the training pro-

cess, which one with 80%/10%/10% of the articles in the train, validation and test files, respectively:

1. 32,500 articles, 40,987,614 tokens

2. 32,500 articles, 35,352,727 tokens

3. 32,500 articles, 39,021,229 tokens

4. 32,500 articles, 40,005,075 tokens

The embeddings were trained forward and backward, and the parameters used to create them are

described in Table 3.1. For the NER tagger, all the models use Flair’s default architecture, BiLSTM with

a CRF decoding layer, and the training parameters are described in Table 4.5. The NER phase training

was done using one NVIDIA Tesla P4 and one NVIDIA Tesla M10 GPU.

Table 3.1: Flair embeddings training parameters of the CANTEMIST pipeline.

Models Hidden size Nlayers Dropout Sequence length
Mini

batch size
Max epochs Patience

LasigeBioTM 1024 1 0.1 250 32 100 25

medium 2.0 1024 1 0.1 250 32 200 25

Table 3.2: Training parameters for NER models of the CANTEMIST pipeline.

Models Hidden size Learning rate
Mini

batch size
Max epochs Patience

LasigeBioTM 256 0.1 32 55/150 3

medium 2.0 256 0.1 32 150 3

BERT models 256 0.1 8 55/150 3
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3.2 NEL methods

After generating the output files of the NER step, the ten best candidates from CIE-O-3, the five best can-

didates from ICD-10, and the five best candidates from DeCS were retrieved by string matching. These

candidates were used to build a disambiguation graph in which the PPR-SSM is applied. As previously

mentioned, the PPR-SSM uses the IC and the semantic similarity to rank each candidate for each entity.

In this case, the IC corresponds to the frequency of each candidate in the training and development of the

CANTEMIST corpus, and the semantic similarity is related to the CIE-O-3 hierarchy. This hierarchy is

used to make the edges between candidates in the disambiguation graph; two candidates are considered

linked in the graph if they are also linked in the CIE-O-3.

Only the best candidate of CIE-O-3 is selected in the NEL task. The role of the non-CIE-O-3 can-

didates is to create a bigger disambiguation graph with more semantic information, which was expected

to improve the precision of the disambiguation [Ruas et al., 2020]. Thus, LasigeBioTM developed two

models for NEL:

• ”single ont:” only uses candidates from CIE-O-3

• ”multi ont:” uses candidates from CIE-O-3, ICD-10 and DeCS

Both models had flaws in the string matching steps, such as uppercase and lowercase letters and space

between words which were corrected. These corrections resulted in models in which the search for the

best candidate is first done through a dictionary method and only through PPR-SSM if this approach does

not work. In other words, if an exact match candidate is found in the CIE-O-3 list by string matching, the

model will link the entity to that candidate. On the other hand, if there is no exact match, the model applies

the PPR-SSM algorithm to select the best candidate. This method was inspired by SINAI’s approach,

one of the teams that participated in the CANTEMIST shared task [López-Úbedaa et al., 2020]. Like the

SINAI’s approach, the search for candidates is done in the list of CIE-O provided by the CANTEMIST

authors and the complete list of CIE-O-3 and the train and development set CANTEMIST corpus.

3.3 Results and discussion

This work started by replicating the ”medium” model developed by LasigeBioTM, and similar results

were obtained (F1-score of 0.741 and 0.061 for the NER and NEL task, respectively). Due to a lack

of time, LasigeBioTM only used this model at the CANTEMIST shared task, so I tested the other three

after replicating this model. Since none had a better performance (Table 3.3), the improvements were

only made in the ”medium” model. These improvements refer to the usage of BytePair and Character

embeddings, the training of the NER tagger up to 150 epochs, and training of the PubMed embeddings

up to 200 epochs. The introduction of BytePair and Character embeddings has proved to be efficient for

recognizing biomedical entities in Spanish [Akhtyamova et al., 2020]. As can be seen from the Table
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3.3, these embeddings and the re-training of PubMed’s embeddings increased the performance of the

”medium” model. Since the improvement was small, models that use the pre-trained language model

BERT were also evaluated. However, as shown in Table 3.3, the performance of these models was

worse than the ”medium” and the state-of-the-art achieved at the CANTEMIST [Miranda-Escalada et al.,

2020]. There are several possible reasons behind this decrease. The first one is the architecture used.

All the models I developed for NER were built on Flair, which means they all feature a BiLSTM-CRF

architecture. Unlike the models developed by the other teams that used other frameworks and other

architectures [García-Pablos et al., 2020; Xionga et al., 2020]. In addition to that, due to incompatibilities

between BERT and the Flair framework, it was necessary to reduce the NER taggers’ batch size. Since

BERT has a token length limitation of 512, I cropped the sentences in each document up to that limit

which may have resulted in a loss of information and consequently a decrease in performance.

Table 3.3: Performance of tested models for CANTEMIST-NER.

Models
NER tagger trained up to 55 epochs

(F1-Score)

NER tagger trained up to 150 epochs

(F1-Score)

medium 0.741 0.753

base 0.710 —

pubmed 0.736 —

medium + bert 0.642 —

bert 0.68 —

scibert 0.598 —

beto 0.60 —

scibert + beto 0.642 —

medium 2.0 0.743 0.754

Themodifications on the NEL taskwere effective since, as is described in Table 3.4, themodel ”single

ont” and ”multi ont” achieved an F1-Score of 0.664 and 0.665. However, these results are still far from

expected, which may be related to the low performance of the NER step. To test this hypothesis, these

models were applied to the training and development sets from the NER step and used NEL’s training

and development sets to assess the performance. As can be seen from the Table 3.5, this hypothesis is

confirmed because the evaluation metrics were close to 100%. Therefore, it is possible to consider that

the results obtained are similar to those obtained by the state-of-the-art of the CANTEMIST shared task.
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Table 3.4: Performance of improved models for CANTEMIST-NORM.

Models Precision Recall F1- score

single ont 0.690 0.639 0.664

multi ont 0.691 0.641 0.665

Table 3.5: Performance of improved ”multi ont” model on training and development sets.

Precision Recall F1- score

train set 0.974 0.974 0.974

dev set 0.971 0.971 0.971
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Iberian corpus (ICR) and NERL system

(ICERL)

After improving the CANTEMIST pipeline, the next phases of this dissertation consisted of creating

the ICR corpus and the ICERL system. The first section of this chapter presents the methodology used

to retrieve the files that composed the ICR corpus and a description of their annotation. In addition, this

section also describes the methodology used to retrieve the files used for the training of the Portuguese

pipeline. The second part of this chapter describes the adaptation of improved pipeline to the final ver-

sion of the ICERL system, the methods used to evaluate the system, the results and discussion of the

application of the ICERL system on the ICR corpus, and how the solutions found for the ICERL system

were used at ProfNER and MESINESP2 shared tasks.

4.1 ICR corpus

As shown in Table 4.1, the ICR corpus is composed of 1,555 abstracts for each language. The average

and maximum length of these abstracts and the total number of annotations are similar between the two

languages. Furthermore, the ICR corpus presents the same most frequent annotation in both languages.

The main difference between the texts in Portuguese and Spanish refer to the number of occurrences of

the most frequent annotation. These annotations were done by applying the final version of the ICERL

system on the ICR corpus. The reason for the annotations differences between the two languages is going

to be explained in detail in Section 4.2.

To train the Portuguese NER model, 974 documents from SciELO and 41 from PubMed were re-

trieved (Table 4.2). The query used to retrieve the SciELO files was the same that was used for the ICR

corpus; therefore, a filter was applied to the training files to ensure that none of the files was also in

the ICR corpus. Since the number of training files is low when compared to the ICR corpus, nlpaug1, a

Python library for data augmentation was used to increase the number of training files. This tool replaced

1https://github.com/makcedward/nlpaug
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Table 4.1: Description of the ICR corpus.

Spanish Portuguese

Number of documents 1,555 1,555

Average text length 1,227 1,172

Max text length 2,744 2,850

Total annotations 3,399 3,287

Unique annotations 216 171

Most frequent annotation cáncer câncer

Number of occurrences

of the most frequent

annotation

2,553 1,880

the words from the training files with the respective synonyms from WordNet. For example, in some

files, the word ”câncer” was replaced with ”câncro”. For each file, two other files were created using

nlpaug, thus making 3,045 documents for training. These files were then annotated using the Spanish

pipeline of the ICERL system. As the CANTEMIST corpus, the annotations on these documents follow

the IOB format and use the tag ”MORFOLOGIA_NEOPLASIA” (”MOR_NEO”). Therefore, each token

from the training files was tagged with the label “B-MOR_NEO” if it is the beginning of annotation, the

label “I-MOR_NEO” if it is the inside of an annotation, and the label “O” if it is the outside of an annota-

tion (Table 4.3). These annotations were subjected to manual corrections regarding the tokenization and

labeling process, for example, in some cases the entity ”tumor” was split into two tokens (”tum” and ”r”)

and entities such as ”cáncer de boca” were labeled:

• ”cáncer” -> “B-MOR_NEO”

• ”de” -> ”O”

• ”boca” -> ”O”

when it should be labeled:

• ”cáncer” -> “B-MOR_NEO”

• ”de” -> ”I-MOR_NEO”

• ”boca” -> ”I-MOR_NEO”

In addition to the ICR corpus and the training files for the Portuguese NER model, articles were

retrieved from SciELO to train the Portuguese embeddings. In total, 65,903 articles were retrieved, but

only 500 were used due to a lack of time. Furthermore, unlike the ICR corpus and the NER models
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Table 4.2: Querys used to retrieve the ICR corpus, the Portuguese files for the NERmodel training, and Portuguese

Files for the embedding training.

Query
Date

SciELO Pubmed

ICR corpus
((*) AND(oncology))

OR (cancer))
- 11/02/2021

Portuguese Files for

NER model training

((*) AND(oncology))

OR (cancer))

Case Reports[Publication Type]

AND POR[LA]

AND Cancer[Filter]

31/03/2021

Portuguese Files for

embedding training
(*) - 02/04/2021

Table 4.3: Number of tokens of Portuguese training files.

number of ”B-MOR_NEO” tokens 9,814

number of ”I-MOR_NEO” tokens 7,305

number of ”O” tokens 7,755,603

total number of tokens 7,772,722

training files, no filter was used to retrieve these files. This is because it was intended that these files

were as similar as possible to the PubMed files used in training Spanish embeddings. Therefore the

training files for Portuguese embeddings encompass several biomedical domains.

4.2 ICERL system

The ICERL system comprises two pipelines; one is designed to deal with the Spanish text and the other

with the Portuguese. For the NER task, the Spanish pipeline uses the NER model ”medium 2.0”, which

was described in Chapter 3, and for the Portuguese pipeline, three models were developed:

• ”cantemistpt”: it includes Flair embeddings (pt-forward and pt-backward) trained on Portuguese

Wikipedia, Portuguese FastText embeddings, and SciELO Flair embeddings, Portuguese Bytepair

embeddings, and Character embeddings.

• ”cantemistpt + biobertpt”: it includes Flair embeddings (pt-forward and pt-backward) trained

on Portuguese Wikipedia, Portuguese FastText embeddings, and SciELO Flair embeddings, Por-

tuguese Bytepair embeddings, Character embeddings, and BioBERTpt embeddings.

• ”biobertpt”: it includes Portuguese FastText embeddings and BioBERTpt embeddings.
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The NEL task is the main difference between the ICERL system and the procedure used in the CAN-

TEMIST corpus. Instead of returning the best candidate from CIE-O, the ICERL system returns a list of

CIE-O and DeCS for the Spanish texts and CID-O and DeCS for Portuguese texts. This approach was

made in order to not restrict the ICERL system to just one candidate and one vocabulary. For example,

the entity ”Neoplasia benigna” is in the DeCS vocabulary with the code ”D009369” and in CID with the

code ”8000/0”. An ID was also created for all entities found, which identifies the entities by the line and

order in which they are found in the line. This ID is used by the evaluation method (Subsection 4.2.2) to

compare entities from the two languages.

The Figure 4.1 illustrates the ICERL system. As can be seen, in addition to making the Spanish

annotations, the Spanish pipeline is also applied to the Portuguese training files. The resulting annotations

and the Portuguese embeddings are used to train a NER model that, together with a NEL model, are

applied to the Portuguese texts.

To improve the performance of the ICERL system in Portuguese, the entities found in Portuguese text

were expanded. The expansion refers to the replacement of the Portuguese entities by their synonyms in

DeCS. To do so, MER was applied in the Portuguese text to retrieve the entities in the text. Only the enti-

ties composed by terms present in the CID vocabulary were chosen to filter the entities of the oncological

domain. The resulting entities were then replaced by their Portuguese synonyms. For example, in the

sentence ”Os bloqueios neurolíticos, para o controle da dor em paciente com tumores cuja possibilidade

terapêutica é difícil.” the DeCS synonym of the entity ”tumores”, ”tumores malignos” was added to the

original sentence : ”Os bloqueios neurolíticos, para o controle da dor em paciente com tumores / tumores

malignos cuja possibilidade terapêutica é difícil.”

4.2.1 Training setup

The training setup of the Spanish pipeline was described in the Subsection 3.1.2. As with the CAN-

TEMIST models, the Portuguese models used a BiLSTM with a CRF decoding layer, and they were

trained using one NVIDIA Tesla P4 and one NVIDIA Tesla M10 GPU. The parameters for training the

Portuguese embeddings and the models are described in Tables 4.4 and 4.5.

Table 4.4: Portuguese Flair embeddings training parameters.

Hidden size Nlayers Dropout Sequence length
Mini

batch size
Max epochs Patience

1024 1 0.1 250 32
110 foward

118 backward
25
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Table 4.5: Training parameters of the Portuguese models.

Models Hidden size Learning rate
Mini

batch size
Max epochs Patience

cantemistpt 256 0.1 32 150 3

biobertpt 256 0.1 32 150 3

cantemistpt + biobertpt 256 0.1 16 150 3

4.2.2 Evaluation method

Since the performance of the Spanish pipeline on the CANTEMIST corpus is available, and it is similar

to the state-of-the-art, the evaluation method consists of the comparison between the results of the Por-

tuguese and Spanish pipelines. Therefore, the evaluation method considers a TP, if at least one of the

candidates of the Portuguese entity is on the candidates of the Spanish entity; an FP, if the Portuguese

pipeline does not find an entity which was found by the Spanish pipeline or none of the candidates of the

Portuguese entity is on the candidates of the Spanish entity; an FN, if the Spanish pipeline does not find

an entity and the Portuguese pipeline does (Figure 4.2). Thus, the difference between using the expansion

for the evaluation method is that the list of Portuguese candidates is composed of several entities instead

of just one.

4.2.3 Results and discussion

The Table 4.6 presents the Portuguese NER models and the baseline results. The baseline corresponds to

the application of the Spanish pipeline on the Portuguese texts. The baseline’s precision can be explained

by the high semantic similarity between the two languages. This result demonstrates that the application

of the Spanish pipeline in texts in Portuguese is reasonable. However, the recall reveals that some of the

entities that the system found in Spanish were not found in Portuguese, which means that it was possible

to develop an approach with a better performance. To do so, the three Portuguese NER models were

created.

The results of the three models show that the BioBERTpt or a similar pipeline to the one used for

Spanish are both valid solutions for the Portuguese texts. However, the performance achieved by these

models is related to the manual correction of the annotations of the training files in Portuguese. For

example, the recall and F1-score of the ”cantemistpt” model decrease to 0.155 and 0.264, respectively,

without the manual correction of the Portuguese training files. Since the three models had the same F1-

score, the recall was used to decide which model had the best performance. This metric was chosen at

the expense of precision as it expresses the number of entities found in Spanish that were not found in

Portuguese. The higher the recall, the lower the number of these entities. Therefore, I considered the

”cantemistpt + biobertpt” model the best performance and the final version of the ICERL system used it
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for the Portuguese pipeline.

TheNLPStatTest, a toolkit to compare the performance of twoNLP systems, was used for the baseline

and the final version of the ICERL system. The F1-score in each document was the score used to compare

the two systems, and as it is described in Table 4.7 and Figure 4.3, the ICERL system’s F1-score is 58

percentage points higher than the baseline. The same toolkit was used to confirm this hypothesis by the

student’s t-test.

Table 4.6: Performance of the baseline and the Portuguese NER models.

Models Precision Recall F1-score

baseline 0.887 0.171 0.287

cantemistpt 0.874 0.842 0.858

cantemistpt + biobertpt 0.873 0.844 0.858

biobertpt 0.898 0.821 0.858

Table 4.7: Statistics of the baseline and ICERL system.

Score Mean Median Std. Dev. Minimum Maximum

ICERL system 0.708 0.703 0.121 0.369 0.954

baseline 0.121 0.089 0.118 0.000 0.578

In addition to the Portuguese NER models, an expansion of the Portuguese entities was carried out.

This approach was made under the hypothesis that the ICERL system did not recognize some Portuguese

entities, but their synonyms could be. However, the expansion had the opposite effect as expected; the

performance decreased slightly, making the expansion of the Portuguese entities unnecessary (Table 4.8).

MER did not find new entities and, in some cases, did not find entities that the two pipelines had found.

Therefore, the final version of ICERL does not use this approach.

Table 4.8: Results of the expansion of the Portuguese entities.

Models Precision Recall F1-score

cantemistpt 0.869 (-0.005) 0.842 (0.000) 0.855 (-0.003)

cantemistpt + biobertpt 0.867 (-0.006) 0.843 (-0.001) 0.855 (-0.003)

biobertpt 0.892 (+0.006) 0.823 (+0.002) 0.856 (-0.002)

After the evaluation of the ICERL system, an error analysis was conducted in one hundred and eighty-

three annotations, and the thirty-three errors were found. As expected, given the results of the models,

the majority of the errors corresponds to entities that are not being recognized by the Portuguese (60.6%)

and Spanish pipeline (30.3%). However, 9.1 % of the errors are related to the comparisons between dif-
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ferent entities, which was not expected. For example, in the document ”S0034-70942013000200006”,

the Spanish annotation is ”tumores epidermoides”, and the Portuguese is ”tumores”. None of the can-

didates of the Portuguese annotation is in the list of candidates of the Spanish annotation, which is why

the system considers this example as FP. On the other hand, there are also some cases in which the

system does not consider an error when comparing different entities. For example, in the document

”S0034-70942003000500011” the Portuguese annotation ”carcinoma na mama”, the Spanish annotation

is ”carcinoma” and the system considers this case as a TP. In this case, the system found similarities

between the two entities, and therefore they shared some of the same candidates. These annotation dif-

ferences and the other two types of errors are assumed to be because different files were used to train the

two pipelines. In addition, the Portuguese training files had to be corrected manually, which may have

further differentiated the training annotations of the two languages.

The results obtained in Table 4.6 show that the ICERL system has a similar performance in both

languages. Furthermore, the fact that there are no errors in which the same entities for Portuguese and

Spanish do not have the same candidates reinforces this claim.

4.2.4 Applications

This subsection describes thework I did in the participation of LasigeBioTMat the ProfNER andMESINESP2

shared tasks [Ruas et al., 2021b,a]. Although these shared tasks are not specifically related to oncology,

the participation in them served to apply the solutions found for the ICERL system.

My role in LasigeBioTM’s participation at the ProfNER shared task consisted in developing three

NER models. These models were used to predict the entities in sub-track B (NER), and the resulting

predictions were used in sub-track A (tweet binary classification). If the model recognized at least one

entity in a tweet, the label ”1” was assigned to that tweet. If the model did not recognized a tweet, the

label ”0” was assigned. The three models developed were:

• “base”: it includes Flair embeddings (es-forward and es-backward) trained on Spanish Wikipedia

and Spanish FastText embeddings.

• “twitter”: it includes FastText Spanish COVID-19 Twitter Embeddings.

• “medium”: it includes FastText Spanish COVID-19 Twitter Embeddings, Flair embeddings (es-

forward and es-backward) trained on Spanish Wikipedia and Spanish FastText embeddings.

The training parameters used in these models were the following: hidden size=256, minimum batch

size=32, maximum epochs=55 and patience=3.

Since the ”base”model obtained better performance in the application on the validation set, this model

was selected to be applied on the test set. On the test set, the ”base” model achieved an F1-score of 0.727

in sub-track B and 0.971 in sub-track A, which led to the second-best performance in sub-track A in the

entire competition (Table 4.9).
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Table 4.9: Results of the ”base” model and the median of all participants in sub-tracks A and B. P, R, and F1 refer

to precision, recall, and F1-score, respectively.

Sub-track A Sub-track B

Model P R F1 P R F1

base 0.951 0.886 0.917 0.814 0.657 0.727

median 0.919 0.855 0.886 0.842 0.727 0.761

For the MESINESP2 shared task, I developed a NEL module that uses the entities provided by the

competition and links them to the DeCS. The entities are then given to the X-Transformer, a text classifier

model, to perform the extreme multi-label classification, which is the competition’s goal.

As the methodology used by the ICERL system, this NEL model uses string matching and the PPR-

SSM algorithm to select the best candidate for each entity. After selecting the best candidate for all

entities, the number of entities given to the extrememulti-label classificationmodel is filtered by semantic

similarity. That is, the Resnik’s metric will select the entities that are similar to other entities recognized

in the same document. Two models were created to assess the effect of selecting only the most relevant

entities as the classifier model’s input. The first selected all entities; the second only selected the top 25%

according to their average semantic similarity with all entities.

The best results achieved by the classifier model corresponds to an F1-Score of 0.2007, 0.0686, and

0.0314 for sub-tracks MESINESP-L, MESINESP-T, and MESINESP-P, respectively. In the sub-tracks

MESINESP-L and MESINESP-P, the results were achieved by using all the entities to the classifier

model, while on sub-track MESINESP-T, only 25% of the entities were used. These results are low

compared to the systems presented by the other participants, and the reason is related to the short training

time of the classifier model.
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Figure 4.1: Description of the ICERL system application on the ICR corpus.
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TP example

Spanish sentence: De los 52.912 casos, 

83,4% eran mujeres y 96,9% era de 

carcinomas diferenciados.

Portuguese sentence: Dos 52.912 casos, 

83,4% eram femininos e 96,9% eram 

carcinomas diferenciados

Spanish entity: carcinomas

Portuguese entity: carcinomas

Spanish candidates: [2320, 8270/3, 

9081/3, 8271/0,  8160/3, 8010/9, 

8010/3, 8140/3, 8934/3, 8337/3, 

8231/3]

Portuguese candidates: [2320, 

9081/3, 8160/3, 8010/9, 8010/3, 

8934/3, 8042/3, 8231/3, 8102/3, 

8300/3, 8337/3]

Spanish sentence: Los resultados son 

consistentes con la epidemiología del 

cáncer de tiroides, con predominio del sexo 

femenino y carcinomas diferenciados.

Portuguese sentence: Os achados são 

consistentes com a epidemiologia do câncer 

de tireoide, com predominância do sexo 

feminino e do carcinoma diferenciado.

FP example

Spanish entity: Not found

Portuguese entity: carcinoma 

diferenciado

Spanish candidates: Not found

Portuguese candidates: [2320, 

8082/3, 8022/3, 8805/3, 8145/3, 

8530/3, 8246/3, 8020/3, 

2331,38036, 9372/3, 2330, 31596, 

31595, 9243/3, 2335, 2340, 34685, 

8331/3, 31587, 2329]

FN example

Spanish sentence: Describir el perfil 

clínico y epidemiológico de los casos de 

cáncer de tiroides en Brasil.

Portuguese sentence: Descrever o 

perfil clínico-epidemiológico de casos 

hospitalares de câncer primário de 

tireoide no Brasil

Spanish entity: cancer

Portuguese entity: Not found

Spanish candidates: [8000/3, 

9562]

Portuguese candidates: Not 

found

Figure 4.2: Evaluation examples of the ICERL system.
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A

B

Figure 4.3: Score frequencies of the ICERL system (A) and the baseline (B) on the ICR corpus.
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Chapter 5

Conclusions

The emergence of text mining tools for languages other than English is important in biomedical liter-

ature since it is often written in the author’s native language. Thus, the ICERL system and the ICR corpus

are two important contributions to text mining tools in the biomedical context, especially in the oncolog-

ical domain for the Portuguese and Spanish languages, where similar tools do not exist. The ICERL sys-

tem and the ICR corpus are available at https://github.com/lasigeBioTM/ICERL_system-ICR_
Corpus.

The modifications carried out in the pipeline developed by LasigeBioTM constituted the first step

in developing the ICERL system. The resulting pipeline from these modifications corresponds to the

pipeline used by the ICERL system in texts written in Spanish. The modifications improved the F1-score

from 0.741 to 0.754 for the NER task and from 0.061 to 0.665 for the NEL task.

The second step was to create a pipeline for the Portuguese language. For this, three solutions for

the NER task were tested. The solution with the best results was a model composed of the BioBERTpt

system and a pipeline equivalent to the Spanish pipeline. Although the lexical similarity between the

two languages allows the application of the same pipeline for both languages, it was concluded that the

specific pipeline for each language results in an F1-score 58 percentage points higher. In addition to

the three models, an expansion of the Portuguese entities was tested to increase the performance of the

pipeline. Still, the results obtained came to refute this approach.

The ICR corpus corresponds to 1,555 documents in Portuguese and Spanish taken from SciELO and

PubMed. The application of the ICERL system in the ICR corpus resulted in 3,399 annotations for the

Spanish language, of which 216 correspond to unique annotations and 3,287 in Portuguese, with 171

being unique annotations. The entity ”cancer” was the most frequent annotation for both languages.

The similarity between the annotations statistics of the two languages and a 0.858 F1-score achieved

by the evaluation method confirms the hypothesis proposed at the beginning of this dissertation; it is

possible to use similar text mining tools for Portuguese and Spanish and to transfer annotations between

the two languages maintaining comparable performance.
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The solutions found for the ICERL system played an important role in the participation of Lasige-

BioTM at the MESINESP2 and ProfNER shared tasks. At ProfNER, this contribution is highlighted by

the second place achieved in the sub-track A. On the other hand, at MESINESP2, it is impossible to de-

termine the impact of the NEL module created for the classifier model, as the low achieved results were

due to the classifier model’s training time. However, the participation in these shared tasks demonstrates

that the work done for the ICERL system can be adapted to other domains.

5.1 Future work

Although the modifications made in the Spanish pipeline have greatly increased the performance in the

NEL model, the same did not happen in the NER model. Therefore, the first suggestion for future work

will be the improvement of this model. To do so, I recommend using a corpus from a shared task, such as

the Codiesp, to generate new Flair embeddings. Another suggestion to achieve state-of-the-art results is

using BERT models in their original framework. As already mentioned, the results achieved were lower

than expected in the Flair framework. These approaches would increase the results in the NER task and

the NEL task since, as shown in Chapter 3, the results of the NEL task are conditioned to the NER task.

One of the problems of this dissertation is related to the time spent training the NER models and the

Flair embeddings. This was a limitation to test new approaches since some of these models took about

four weeks to be ready. Therefore, it would be important to estimate the number of epochs that optimize

the time spent training the models and the embeddings.

As mentioned in Chapter 4, the most frequent annotation corresponds to 75% of the total annotations

in Spanish and 66% in Portuguese. The ICR could be composed by different annotations through the use

of other queries related to the oncology domain, such as Case Reports[Publication Type] AND POR[LA]

AND oncology[MeSH] and Case Reports[Publication Type] AND POR[LA] AND Neoplasm[MeSH].

Furthermore, as mentioned in Chapter 5, annotation differences between the two languages for the same

entity were also observed. A solution to this problem could be using a parallel corpus for the training of

the ICERL system and the same annotation criteria for both languages. This is because, despite manually

correcting training annotations for the Portuguese pipeline, the amount of annotations does not allow

all errors to be corrected. Moreover, the corrected training annotations for the Portuguese pipeline do

not always follow the same annotation criteria used in the training files of the Spanish pipeline. Since

the Spanish pipeline training files came from the CANTEMIST shared task and were designed only for

entities present in the CIE-O vocabulary and not for DeCS. For example, the entity ”neoplasia de la

mama” is not present in the CIE-O, but it can be found in the DeCS.

The participation at the ProfNER and MESINESP2 shared tasks demonstrated that the hypothesis

behind the development of the ICERL system could be adapted to other domains. The ICERL system

and the ICR corpus could also be extended to other languages such as Catalan, Galician, Italian and

French since there is a high lexical similarity between them and Portuguese and Spanish. In this case, the

ICR corpus would have to be constituted by parallel corpora that included English in addition to these
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languages. The evaluation method of the ICERL system would be the comparison of the performance on

these languages with a performance of a state-of-the-art tool on the texts written in English. Since there

has been a greater focus on text mining tools for the English language, the performance obtained on texts

in English will be higher than for other languages. Therefore, the results obtained on the texts in English

will be considered as the gold standard.
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