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Resumo

Neste trabalho, tentamos dar resposta a uma das questões mais relevantes nos domínios da
física atómica e da física astro nuclear: “De onde surgem os elementos mais pesados da tabelas
periódica?”. Na verdade, sabe-se que grande parte dos elementos mais pesados que o ferro são
produzidos em estrelas gigantes e muito luminosas através de processo “s”, um processo de
captura lenta (“slow”) de neutrões, comparativamente à escala temporal de decaimento β.
Contudo, elementos mais pesados (com número de massa A & 140), onde se incluem os
lantanídeos e os actinídeos não são produzidos por estes processos. Para tal, é necessário um
fluxo de neutrões superior, de modo a permitir a síntese de isotopos mais massivos, antes de
estes se desintegrarem por decaimento β. A este processo de captura rápida de neutrões dá-se
o nome de processo r.

Assim, qualquer ambiente que permita que este processo ocorra naturalmente terá que ser
extremamente rico em neutrões. As supernovas de tipo II, que resultam do colapso
gravitacional do núcleo de uma estrela massiva, foram um dos primeiros locais a serem
sugeridos onde elementos pesados podiam estar a ser produzidos por processo r.
Desenvolvimentos na modelação destes ambientes levam a crer, no entanto, que estes não
possuam as condições necessárias. Todavia, a observação, pela primeira vez em Agosto de
2017, de um transiente eletromagnético associado à colisão de duas estrelas de neutrões, ao
qual denominamos por “kilonova” parece indicar que estes ambientes explosivos requerem
todas as condições para a formação de elementos por rápida captura de neutrões.

Uma das principais barreiras à modelação do fluxo e das curvas de luminosidade de
kilonovas recai na falta de informação sobre as propriedades atómicas de elementos formados
por processo r, em particular de elementos do bloco f , lantanídeos e actínideos. Assim, a
presente dissertação diz respeito a cálculos de estrutura atómica para estes elementos.
Concentrámos-nos, essencialmente, em cálculos dos níveis de energias e da força dos oscilador
para transições dipolares elétricas (E1), uma vez que estes são os parâmetros atómicos mais
relevantes para a modelação da opacidade do meio e, consequentemente, do fluxo de kilonovas
em Equilíbrio Termodinâmico Local (LTE).

É importante referir que cálculos de alta precisão para iões do bloco f são extremamente
exigentes computacionalmente, dado ao elevado número de níveis característicos deste
elementos. Tendo isto em conta, neste trabalho, realizaram-se cálculos para Nd III e U III,
dois iões representativos deste conjunto de elementos. Com isto tentámos, não só colmatar a
falta de cálculos de estrutura disponíveis na literatura, mas também transmitir um
conhecimento mais profundo sobre as características destes iões, algo essencial para cálculos
futuros em larga escala cada vez mais precisos.

O Flexible Atomic Code (FAC) [1], acessível ao público geral, foi o código escolhido para
a grande maioria dos cálculos. O código baseia-se no método de Interação de Configurações
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Relativista (RCI) à semelhança de outros que códigos que têm sido utilizados em para cálculos
sistemáticos destes elementos [2].

Os resultados obtidos para Nd III foram adicionalmente comparados com cálculos obtidos
através do método de Multi-configurações Dirac-Fock (MCDF), utilizando o código
MCDFGME (Multi-Configuration Dirac-Fock and General Matrix Elements Program)
[Idelicato_1987], bem como com resultados obtidos por Gaigalas et al. [3] utilizando uma
versão do código GRASP (General-purpose Relativistic Atomic Structure Package) [4] e com
os dados experimentais disponíveis. Verificámos que os resultados obtidos através do código
FAC reproduziam de forma bastante razoável os resultados obtidos tanto pelos outros códigos
como de forma experimental, para os níveis de mais baixa energia. No que diz respeito às
forças de oscilador, detetámos alguma discrepância de resultados para transições de
comprimento de onda mais elevado, particularmente entre as camadas 6d e 7p. Ainda assim,
após uma análise sobre a dependência da opacidade com os parâmetros atómicos, verificou-se
que o impacto destas transições, que ocorrem entre níveis excitados, teria um impacto
marginal nos cálculos de opacidade. Em condições de LTE, os estados de mais baixa energia
encontram-se exponencialmente mais preenchidos, fazendo com que excitações desses níveis
para níveis superiores sejam mais relevantes.

De facto, notou-se que apenas um número reduzido de linhas têm uma contribuição
significativa para a opacidade. Medindo o número destas “strong lines” é possível diretamente
aferir e comparar a influencia que certos iões têm para a opacidade. Para além disso, permite
reduzir o número total de linhas utilizadas na modelação do espetro de kilonovas, o que é
significativo principalmente para lantanídeos e actinídeos, dado o número de linhas
extremamente elevado associados a estes iões. Neste trabalho é discutida uma expressão
(ligeiramente diferente da utilizada habitualmente na literatura) para medir o impacto de uma
linha para a opacidade, que tem em conta o comprimento de onda associado à transição.

Resultados semelhantes aos obtidos para Nd III foram alcançados para os cálculos
realizados para U III. Neste caso, o número de niveís para os quais resultados, experimentais e
computacionais, estão disponíveis na literatura é bastante menor. Em todo o caso, as níveis de
energias obtidos para U III foram comparados com resultados obtidos por Savukov et al. [5]
obtidos por um método híbrido conjugando métodos Interação de Configurações e de “Coupled
Cluster” linear [6], e com dados experimentais disponibilizados por Blaise et al. Tal como no
caso do ião Nd III, os resultados obtidos com FAC concordam com os dados experimentais
dentro da margem de incerteza do código de ∆E ∼ 1 eV. Ainda assim, o número de
configurações utilizadas nos cálculos foi bastante reduzido, o que não permite garantir a
convergência dos resultados, nem a inclusão de um grau de correlação eletrónica suficiente que
consista numa aproximação razoável à de uma base “completa”. Assim, apesar dos bons
resultados comparativamente aos dados experimentais, a validação dos mesmos resultados por
cálculos mais detalhados é indispensável para garantir a sua fiabilidade.

Por fim, para ambos os iões, foi calculada a opacidade de expansão, em condições de LTE,
em função do comprimento de onda. Demonstrámos que as discrepâncias entre cálculos
realizados por diferentes códigos, quando existem, têm maior impacto nos comprimentos de
onda ultravioleta e visível. Em comprimentos de onda mais longos, a sensibilidade da
opacidade com a precisão dos cálculos parece diminuir, o que pode permitir obter resultados
fiáveis para a opacidade de lantanídeos e actinídeos através da realização de cálculos em larga
escala, mesmo que estes tenham um grau de precisão mais reduzida. Por outro lado, o estudo
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de características do espetro que possam ser permitir a identificação de elementos específicos
requer um grau de precisão muito superior, principalmente, no que diz respeito aos níveis de
mais baixa energia.

Um dos principais resultados deste trabalho prende-se com a opacidade de U III, que
mostrámos ser superior, em cerca de uma ordem de grandeza à opacidade de Nd III. Isto é
explicado pela maior densidade de níveis de baixa energia existente em U III, o que está
relacionado com o maior número atómico Z e maior um maior raio da orbital f de valência em
actínidios, comparativamente com lantanídeos. Em geral, antecipamos que esta característica
do espectro se estenda para mais pares lantanídeos-actinídeos. Assim, apesar de cálculos mais
precisos e para um maior número de iões seja necessário para confirmarem estas observações, é
previsível que a opacidade dos actinídeos possa ter um impacto mensurável na luminosidade de
kilonovas, apesar se serem esperadas abundâncias muito baixas destes iões nestes ambientes.

Palavras-Chave: opacidade, dados atómicos, kilonovas, forças de oscilador,
estrelas de neutrões





Abstract

The present dissertation concerns atomic structure calculations for lanthanide and actinide ions
that are significant to kilonovae modeling of the ejecta spectra. In particular, calculations for
Nd III and U III, two representative rare-earth ions, were achieved. Therefore, in this work we
try to bridge the gap created by the lack of atomic structure calculations f -block ions available
in the literature, while also providing valuable insight for future calculations.

We concentrated on level energies and oscillator strength calculations for electric dipole
transitions (E1) since these are the most critical atomic parameters for simulating the flux of
kilonovae in Local Thermodinamical Equilibrium (LTE). We mainly use the publicly accessible
Flexible Atomic Code (FAC) for the computations, which employs a Relativistic Configuration
Interaction (RCI) method. Not only that, but we compare our results to those obtained using
a Multi-configuration Dirac-Fock (MCDF) method as well as to available computational and
experimental data.

We demonstrated that discrepancies in the opacity spectra of Nd III across various
calculations are higher at the ultraviolet and visible wavelengths. At longer wavelengths the
sensitivity of the opacity with the accuracy of the calculations seems to decrease.

Additionally, we showed the opacity of U III to be about an order of magnitude higher than
the opacity of Nd III due to a higher density of levels of the actinide. In general, we anticipate
this feature of the spectrum to extend for more lanthanide-actinide pairs and, therefore, that
the opacity of actinides to have a measurable impact in the luminosity of kilonovae.

Keywords: opacity, atomic data, kilonovae, oscillator strengths, neutron stars
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Chapter 1

Introduction

The field of atomic physics has been known to be connected to many different topics. From
medical applications to materials engineering and even in astrophysics. In this work, the
importance of atomic physics will be highlighted together with insights from nuclear and
astrophysics motivated by a question which has been asked for a long time now: “Where do
heavy elements come from?”. A great part of the heavier-than-iron elements can be produced
in stars from the asymptotic giant branch (AGB stars) through a neutron-capture process
called s-process. The “s” comes from the slow capture rate of neutrons from seed nuclei,
relative to the competing reaction of β-decay. In addition to the s-process, a more extreme a
more extreme process is required, in which the rate of neutron capture is higher than the
timescale of beta decay. This process is conveniently called rapid neutron capture (or simply
r-process) and, hence, it is the most important process to explain the abundances of heavier
elements up to uranium and polonium.

However, for such a process to occur naturally in the universe, the environment in which it
is held must be extremely neutron rich. For that reason, core collapse supernovae explosions
were suggested as the main site for the production of r-process elements. Recent developments
in neutrino and nuclear physics and the lack of observations of its production in supernovae
enviroments have led scientists to account for a different scenario - the collapse of two neutron
stars. Not only computer simulations seem to show this site to possess the required electron
fraction and entropy conditions, but the recent observations seem to agree with most
theoretical predictions. One particularly important turning point for the study of r-process
nucleosynthesis was the observation of the first electromagnetic counterpart from the collision
of two neutron stars: a kilonova. This detection occurred in August 2017 after the detection of
gravitational waves from a neutron star merger by the LIGO-Virgo experiment, the
well-known GW170817 event. Subsequent triangulation of the source, which was made possible
by a worldwide team effort that enabled us to track and find the origin of these gravitational
waves quickly enough, allowed us, for the first time, the observation of its electromagnetic
counterpart, designated by AT2017gfo. This transient has very specific characteristics that
make it unique and distinguishes it from other transients. Its particularly high optical
brightness quickly faded away in a couple of days, while its long-lived infrared emission, lasted
for almost 2 weeks straight. Such characteristics are consistent with the ones one would expect
from an ejecta where r-process heating is dominant. Such features, associated to the rapid
color evolution of the ejecta, seem to be in accordance with some of the most recent theoretical
models of kilonovae which take them as potential sites for the occurrence of heavy r-process.

3



4 Chapter 1. Introduction

Many models have been proposed to explain the optical and near infrared spectral features
found in this so-called kilonova. However, there is still today a lack of information about the
atomic properties of lanthanide and actinide ions and for that reason most radiation transport
simulations are still using atomic data from lighter ions, like Fe, in its calculations. It is expected,
however, the opacities of the produced ion to be 10 times higher than the ones associated
with iron-like elements [7]. A complete atomic database of the most relevant properties of
inner transition elements is required for accurate modeling of the flux and measurement of the
abundances of ions which are produced in these environments. One of the main objectives
of this work is to perform atomic calculations for some elements of interest, which can also
provide better knowledge about differences that may exist between the production of actinides
and lanthanides in those sites. More than that, we will also try to draw some conclusions about
large-scale calculations for multiple ions and look into the drawbacks of some atomic codes that
are used for that purpose.

1.1 Neutron star mergers as a potential r-process site

The origin of heavier-than-iron elements has been an open question in nuclear astrophysics for
over 60 years now[8]. There is a consensus that roughly half of those elements are produced by
a rapid neutron capture process, or r-process for short. This process is characterized by having
a capture timescale shorter than the timescale for β-decay and nucleosynthesis runs along the
neutron drip line [9].

In order for the r-process to be viable, it is critical that the stellar environment possesses
a high density of neutrons. One of the most common quantities used to quantify the viability
of r-process is the electron fraction, defined as the ratio of the density of protons to the total
density of baryons, i.e.

Ye ≡
np

nn + np
. (1.1)

Light r-process elements are predicted to be created with Ye values ranging from 0.5 to
0.25, but heavier elements, such as lanthanides and actinides, are generally produced only in
environments with a very high neutron density (Ye < 0.25). Other nucleosynthesis processes,
such as s- and p-processes (the latter with capture of protons instead of neutrons), dominate
when Ye > 0.5 [10].

High entropy neutrino winds, emerging from the explosion of core collapse supernovae
(CCSNe), have been considered one of the promising sources for the r-process. However,
recent calculations in the beginning of the century have shown these sites to be unlikely to
possess the required neutron-rich and high entropy conditions necessary for heavy elements
(with mass number A & 140) to be produced [11–17]. This strong component of the nuclear
process, so-called heavy r-process, is the dominant one, accounting for essentially most of the
solar-system abundances. In particular, the advances in nuclear modeling and more and
precise radiative transport calculations [17–20] have established the critical role of neutrino
interactions in raising the electron fraction to values Ye ∼ 0.5, which are not compatible with
the production of rare-earth elements. Nevertheless, CCSNe are still considered an important
site for the weak r-process contributing to the production of elements between Zn and Mo [19].
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Possible exceptions to this picture include the explosions of highly massive stars [21], ν-
induced spallation in the He shell [22], and magneto-rotational supernovae [23, 24]. In this
latter case, the centrifugal rotation of the proto-neutron acts to reduce the electron fraction
to values where heavy r-process is viable. Nevertheless, all these events are considered to be
very rare and thus not reproducing the full solar-abundances of heavy elements observed. The
recent detection of 244Pu on the ocean floor has also shown abundances of about two orders
of magnitude lower than the ones predicted using supernovae explosions as the main site of
r-process [25]. On the other hand, recent observations of the electromagnetic counterparts of
neutron star mergers [26, 27] have been giving strength to the recent studies of these collisions
being associated with the productions of heavy elements by r-process. As already mentioned, the
gravitational shock wave detected by the LIGO-Virgo[28] experiment in August 2017, followed
by the observation of the first kilonova explosion [29] has been considered a hallmark in physics
in astro and nuclear physics bringing a recent interest in this topic as we now have experimental
data to which we can compare our previous models with.

The first overview of the physics of the electromagnetic transients associate with neutron
star mergers (NSM) (and also neutron star - black hole mergers) was given by Li and Paczyski
in 1998 [30]. In general the emission mechanism of kilonovae differs to that of type Ia supernova
(SNIa) mostly by the hydrodynamical considerations, of which we won’t go into much detail.
Nevertheless, some aspects to keep in mind are the following: in mergers, we generally expect
the ejection of material to be 2 orders of magnitude lower than in the case of supernovae, with
the mass of the ejecta Mej ∼ 0.01M� in NSM compared to Mej ∼ 1.4M� from SNIa. Moreover,
the expansion velocities are much higher for kilonovae of NSM, approaching relativistic velocities
of 0.1c-0.2c, while velocities of only 10000 km s−1 ≈ 0.03c are achieved for supernovae. These
values are actually in line with some of the most recent simulations that try to reproduce the
spectra of At2017gfo [7].

Another very important distinction is related to a three-part ejection mechanism in binary
mergers, that contrasts with the homologous expansion process we find in both SNIa and CCSNe.
In the initial phase of the collision, the surface layers of both neutron starts are stripped apart
and ejected dynamically in what we call “tidal tails”. Such ejecta is constituted mainly by
neutrons (due to the nature of the neutron starts merging) and it’s still quite cold, since it
happens on the initial impact. As the neutron stars start to press into each other, matter gets
also squeezed in and ejected into the polar regions. Finally, disk winds can form 1 second after
the first set of ejections, blowing away the just formed remnant.

Recent studies have shown a lower electron fraction of Ye . 0.2 can be maintained in the
tidal tail ejecta as they are less subjected to neutrino irradiation [31, 32]. Furthermore, the
ejecta properties, in particular in the disk wind, also depend on the remnant created. Most
importantly, we should distinguish between the cases where a black hole is promptly formed
and the case where a rapidly-spinning neutron star is formed. The main difference between the
two scenarios is that is the first case, the flux of neutrinos that interacts with the disk wind
ceases with the formation of the black hole, making the electron in the disk higher in the latter
scenario where the magnetar is formed.

From the initial very high densities, radioactive elements are synthesized, which contribute
to maintaining the initial hot temperature of the majority of the ejecta. As the ejecta expands,
the photon diffusion time decreases and eventually the radiation can escape from it. The
characteristic luminosity of kilonovae can be approximated by the radioactive heating during
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the timescale of the expansion of the ejecta. It is given by the following expression [33]:

L ≈ 5× 1040 erg s−1 ×
(

M

0.01M�

)1−α
2 ( vej

0.1c

)α
2

(
κ

1 cm2 g−1

)−α
2

, (1.2)

where a constant expansion velocity vej and opacity k is assumed for a mass M of the ejecta,
given in solar masses M�.

The opacity of the r-process elements in the ejecta is mainly dependent on bound-bound
atomic transitions. It is therefore not surprising that the kilonova light-curve is highly dependent
on the ejecta composition. If the Ye of the ejecta is not sufficiently low (Ye . 0.25), only light
r-process elements will be produced (28 < Z < 58). In this case, the main contribution to the
opacity is due to elements from the iron group, since they have the larger number of energy
levels due to the valence d-shell. Nevertheless, if the ejected matter is sufficiently neutron rich
(Ye ∼ 0.1) then heavier elements are produced (58 < Z < 90). In particular, lanthanides are
expected to make up to 10% of the mass fraction of a heavy r-process ejecta.

Lanthanides have, contrary to iron-group elements, valence f -shell electrons, which greatly
increases the number of energy levels while reducing the spacing between them. This is known
to result in a large opacity (κ ≈ 10 cm2 g−1) for an ejecta with high mass fraction of lanthanides
(Xlan ≥ 10−2), an ejecta with a low mass fraction of lanthanides (Xlan . 10−4) is characterized
by having low opacity (κ . 1 cm2 g−1). In practice, it means that, if r-process elements are
found in kilonovae environments, the amount of light that is able to escape the ejecta is much
lower, as they get absorbed in the process of exciting the ions in the medium. This can be easily
seen in the synthetic r-process transmission spectra produced by Watson et al. [34] illustrated in
fig. 1.1. Here we can see how the presence of heavy r-process elements (from 56Ba to 92U) reduces
the transmission of light to a value close to 0 in the ultraviolet (UV) and in the high optical
range, while still having a measurable effect in infrared. Besides that, and as also reported in [34,
35] and more recently in [36] strontium has a particular noticeable feature in the Near-Infrared
(NIR) at λ ∼ 8000 Å. It has been argued that an identical feature can be found in the spectrum
of AT2017gfo, which would indicate the presence of strontium ions in the ejecta.

From the geometry of the collision, two different components of the ejecta can be
distinguished [33] - a blue region specially near the poles of the collision, where neutrino
ejection is favored and only light r-process is possible, and a red component, favored in the
equatorial plane, where heavy r-process is expected to occur. A schematic illustration of the
different components of the ejecta is given in Figure 1.2 The inclusion of both components of
the ejecta provides a complete theoretical model of the electromagnetic transient of a NSM in
from the near UV to infrared wavelengths.
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Figure 1.1: Synthetic r-process element transmission spectra for different subset of r-process elements. The
solid black line includes the full contribution for all r-process elements, while the dashed black line excludes the
contribution of heavy-elements. The spectra are generated using solar r-process abundances. Imaged reproduced
from [34] and more details can be found in the original publication.

Figure 1.2: Different components of the ejecta from NS-NS mergers for the case of prompt black hole formation
(in the left panel) and for a long-lived magnetar remnant (right panel). Red color symbolize a “red” kilonova
emission with a high mass fraction of lanthanides, while blue color illustrates “blue” kilonova emission with
associated with a higher electron fraction and no lanthanide production. “Red” kilonova emission is expected
to peak at NIR wavelengths, while “blue” emission has their peak emission in the UV and optical wavelengths.
In the case where a black hole is not promptly formed and the magnetar formed is stable enough, the neutrino
emission is not suppressed which increases the electron fraction of the disk wind, reducing its opacity. Imaged
reproduced from [32].
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1.2 The importance of structure calculations and the lack of
atomic data

As already mentioned, the kilonova light curve is highly dependent on the opacity of the medium.
That parameter indirectly encodes the dependence of the composition of the medium on the
luminosity of the explosion, being a measure of how much light is absorbed in the plasma.
This will of course directly depend on the microscopic properties of the different ions and their
absorption and scattering cross-section of photons. The biggest contribution to the opacity of
kilonovae comes from bound-bound atomic transitions, which can be intuitively understood from
the complexity of heavy r-process elements. The number of energy states for a certain atom
is directly related to the number of distinct ways the electrons can be distributed within open
shells. Hence, the more complex an atom is, the more possible transitions it will have, which, in
terms of opacity, increases the probability of a photon being absorbed by such ion. By counting
the number of possible permutations for valence electrons, we can get a simple estimate of the
number of levels in a particular electron configuration

C =
∏
i

gi!

ki! (gi − ki)!
(1.3)

with ki representing the number of valence electrons for a given open nl-orbitals i with
degeneracy gi = 2(2li + 1). The number of lines is expected to scale as C2. Both lanthanides
and actinides ions are characterized by having an open f -shell (l = 3), which makes them the
most complex atoms in the whole periodic table and with a total number of levels and lines
orders of magnitude higher than other heavy ions. Such high complexity is also associated
with high degrees of correlation between the electrons, which makes the computation of those
levels and transitions a challenge in itself. For obtaining high accuracy in such calculations,
nuclear and electronic correlations must be included to full extent. However, this comes with
the drawback of having to diagonalize incredibly large Hamiltonian matrices, increasing
computation time significantly.

Traditionally, most groups working on atomic calculations privilege accuracy over the amount
of calculations produced. Accurate calculations of f -shell elements, due to their extremely high
number of levels, will not only require incredibly expensive computational resources, but would
take months or even years to achieve. In addition to that, the extreme complexity of these ions
makes semi-empirical models of energy levels unreliable. For this reason, lines and levels for
lanthanide and actinide ions available in the literature are scarce. In this case, however, for a
thorough model of the ejecta opacity and accurate modelling of the kilonovae lightcurves, an
extensive set of levels and lines of rare-earth ions is needed.

Regarding this efficiency problem, one of the strategies employed in the most recent
computations regarding this data is the use of codes which do not account for correlations
individually for each level, but include them under a central local potential felt by all the
electrons. Although they do not produce the most accurate results possible, these methods
account for a significant part of the existing correlations, while being able to maintain a
reasonable computing time. Many of such codes exist, and recent papers have been published
on calculations on lanthanides and actinides using Autostructure [37] and Hullac [38] codes
(see for example, [2, 33, 39, 40]). In this thesis, most of the calculations were performed using
the publicly available Flexible Atomic Code (FAC) which employs a similar method to the
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codes just mentioned, based on relativistic configuration interaction (RCI). A more detailed
discussion of the method and of some its particularities of the code is supplied in section 2.4.

1.3 Thesis Outline

In this thesis we will discuss some subtleties regarding these calculations while contributing to
our own results for the calculations on lanthanides and actinides. Results of different codes will
be discussed, with a major focus on the impact of the atomic data on the opacity contribution.
In particular, we will assess the impact of both quantity and quality of the data and try to
explain why and when the accuracy of individual levels must not be neglected.

With those considerations in mind, this thesis is organized in the following way:

• In chapter 2, a brief review is given on the nuclear physics, astrophysics and atomic
physics concepts, which are necessary not only for the computations done throughout
this thesis, but most importantly for the analysis and understanding of the results and
their implications. We start by explaining why Neutron Star mergers are being regarded
as potential sites for (heavy) r-process and what are the main variables or observables we
should tackle to study and test this hypothesis. Next, the prescription used for
computing the opacity is explained, detailing the approximations used and in which
conditions its application is viable. Finally, a brief description of the relativistic atomic
structure calculation is given. We highlight some differences between the three main
codes discussed during this work: MCDFGME (Multi-Configuration Dirac-Fock and
General Matrix Elements program) [41], GRASP (General-purpose Relativistic Atomic
Structure Package), particularly the most recent version, GRASP2K [4, 42], and FAC
(Flexible Atomic Code) [1].

• Chapter 3 makes up the core of this thesis, where we report and discuss the results of the
calculations performed on doubly ionized neodymium and uranium. We compare the
results with the (scarce) experimental data available, and with other theoretical
calculations, when possible. An in depth analysis of the data is done regarding the
impact of the data on the opacity and on comparing the contribution of different
elements based uniquely on their atomic properties. We discuss how actinides may have
a bigger role on the flux than initially thought, and what consequences do these insights
bring to radiation transport models.

• In the last chapter, we present the main conclusions of this work and some perspectives of
future work regarding a systematic calculation of open f -elements and the creation of an
atomic database of properties relevant to kilonovae models.





Chapter 2

Theoretical Background

2.1 The Sobolev line expansion approximation

As previously stated in the previous chapters, an accurate understanding of the opacity
characteristics of the expanding medium is critical for determining the light curves associated
with a kilonovae explosion. Previous works by Pinto & Eastman [43–45], in the study of light
curves of SNIa (and later confirmed by more recent works in kilonovae [32]), have shown
bound-bound transitions to be the major source of opacity, 2 orders of magnitude greater than
other contributions from electron scattering and bound-free and free-free transitions. These
latter effects, which are related to photoionization and bremsstrahlung processes, only pose
minor corrections to the opacity. Nonetheless, they must be accounted for when local
thermodynamical equilibrium conditions are not achieved, as they are important to determine
the ionization balance in the medium. A closer look to this aspect will be given in Section 2.2.

Our main goal here is, therefore, to characterize the absorptivity of the medium, or, in other
words, how does the intensity of the light varies as it moves through the medium. Neglecting
any angular dependence of the medium, we can write the variation of the intensity I as:

dI(ν)

dr
= −αI(ν) (2.1)

where α is the extinction coefficient, characterizing the rate at which the intensity decreases
per unit distance dr. It can also be thought of as the inverse mean free path for a photon in
the medium. We can then define an optical depth, denoted by τ as the probability of a photon
being absorbed over the whole length of the medium, i.e,

τ(ν) =

∫
αdr. (2.2)

Solving for the intensity I in Equation (2.1) we get

I(ν) = I0e
−τ(ν) (2.3)

with I0 being a constant associated with the intensity of the light before passing through the
medium.

The probability of transmission of radiation (photons) will, therefore, decrease exponentially
as e−τ(ν). This means that the probability of a photon being capture by an ion or escaping
the medium can be described quantitatively by the optical depth. This enables a quantitative

11
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distinction of a thin and thick plasma: for τ > 1 we say that the plasma is optically thick since
the probability of a photon escaping the plasma is very low; while on the opposite case of a thin
plasma τ < 1 the probability is much higher, culminating on a higher intensity of light.

Nevertheless, the photons, do not simply disappear in the material, as they are absorbed by
the different ions that make up the medium. As a result, the number of photons absorbed will
be proportional to the absorption cross section of the ions in the medium. This idea can be used
to provide a second definition of the optical depth, from a microscopic perspective.

Following a similar reasoning that we apply when we think of the mean free path, which is
defined as the number of interactions in a specified area (say 1 cm2) for a given distance, we can
define a column density N counting the number of ions for a specific column area i.e:

N [cm−2] =

∫
n[cm−3]dr (2.4)

where the integration is performed over the path the photon takes. Considering the cross section
σ(ν) for absorption of the photon in a line at frequency, ν we have that

τ(ν) = Nσ(ν) (2.5)

with the cross section σ(ν) given in cm2 so that τ remains dimensionless.
The absorption cross section for a single-transition in the ion actually assumes a simple form,

only depending on the absorption oscillator strength f (which is defined in Section 2.3.4) and
the line profile φ(ν). In the c.g.s. system of units we can write

σ(ν) =

(
πe2

mec

)
fφ(ν), (2.6)

with e as the electron charge (given in Stat Coulomb), me the electron mass (in g), the speed
of light c given in cm s−1 and φ(ν) given in seconds, with the oscillator strength f being an
adimentional unit.

2.1.1 The Sobolev Limit

In general, the determination of the shape of spectral features is a very complex task, as it
requires considerations from both atomic physics and plasma physics, and the interplay of
many mechanisms which are responsible for the widths and shapes in the spectra. In explosive
environments, thermal fluctuations usually play a major role1. The intrinsic thermal
broadening for a specific thermal velocity vth is thus given by

∆νth ≡ vth
c
ν0. (2.7)

with the thermal width ∆νth given with reference to the line center ν0. An illustration of line
broadening due to thermal Doppler shift is given in Figure 2.1 The line profile φ(νth) will thus
be given by a Gaussian function

φ(νth) =
1

∆νth
√
π
e
−

(
νth−ν0

)2
∆ν2

th (2.8)

1In general, the line profile is best described by a Voigt profile, accounting for contributions from collisional
broadening, thermal and microturbulent motions. For simplicity, only thermal broadening is considered in the
discussion. However, this doesn’t affect the main conclusions and arguments considered in the derivation of the
Sobolev approximation.
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We should note, however, that as the photon is moving through the medium, it is also
subjected to Doppler shift from the expansion of the ejecta. It’s initial frequency ν will be
shifted to ν ′ following

ν ′ = ν
(
1− vexp

c

)
, (2.9)

where vexp represents the expansion velocity of the medium. This means that, in general, as the
photon changes its comoving (Lagrangian) frame frequency while traveling through the medium
[46], it will shift in and out of resonance with multiple lines.

The probability of a photon being absorbed by the medium must account not only for the
line profile of the atomic transitions, but also for the shift of the photon due to expansion of the
medium. Here we reach the definition of the Sobolev length, specifically named after the Russian
physicist V.V. Sobolev, as it was the first to formalize the concept of an interaction length. For
this case, it is simply given by the ratio of the thermal velocity to the velocity gradient

LSob =
vth

dvexp/dr
(2.10)

The important point to keep in mind in our specific scenario is that the velocity of
expansion of the medium in kilonova (and even in supernova) is much larger than the usual
motion associated with thermal line widths as vth ∼ 10−5c. When this situation occurs, i.e.,
when vexp � vth we reach the so-called Sobolev limit which allow us to perform important
approximations to the problem.

There are two main consequences when we consider the Sobolev limit:

• A photon Doppler shifts over the whole line profile while only traversing through a small
part of the ejecta. We call this interaction to be local.

• A photon can come into resonance with multiple lines, which their rest separation is lower
than the expansion velocity of the medium (vexp/c)

Figure 2.1: Illustration of the broadening of lines due to Doppler shift. It is important to keep in mind that,
although this effect is the most prominent at the astrophysical scale, the thermal line width is much smaller than
the velocity of expansion in both kilonovae and supernovae environments, i.e. vth � vexp. Image reproduced
from [47].



14 Chapter 2. Theoretical Background

As in many stellar astrophysics problems, a good first approximation to the model is to
assume that the shape of the object does not change during the expansion process. In other
words, we assume that the velocity gradient is inversely proportional to time. Under this
homologous expansion approximation the radius of the ejecta is given by R = vexptexp while
LSob = vthtexp. Therefore, in practice, in the Sobolev limit LSob � R.

The fact that we can assume the photon interactions to be local makes the exact shape of
the line profile to be unimportant, as its width is very small when compared to the whole path
of the photon. Hence, we are allowed to use an approximation for φ(ν) as long as it doesn’t
greatly overestimate the mean path of the photon. One such approximation and that simplifies
our calculations considerably is the following [48]:

φ(ν) ≈ φ̃(ν) =


1

∆ν
, if ν0 ≤ ν < ν0 +∆ν

0, otherwise
(2.11)

where we are denoting φ̃(ν) as the approximation for φ(ν) and ∆ν is an approximation of the
true line width, with reference to the line center frequency ν0. Since we are assuming thermal
motion to give the major contribution, we can assume ∆ν ≈ ∆νth.

With this major improvement to the line profile function, we now have all the ingredients
to calculate the optical depth. Assuming the interaction occurs over a length LSob, we have
that N ≈ n × LSob from Equation (2.4). Substituting Equation (2.11) in Equation (2.6) and
Equation (2.5), and we end up with the following expression for τ for a single absorption line k:

(2.12)
τk(ν) = nLSob

(
πe2

mec

)
fk

1

∆νthk

=

(
πe2

mec

)
fknvthtexp

1

vth

c

ν0

Canceling vth and making explicit the dependence on the wavelength using c/ν0 = λ0 ≡ λ

we reach the commonly used approximation for the optical depth

τk(λ) =

(
πe2

mec

)
ntexpfkλ. (2.13)

This approximation was first derived in Moving Envelopes of Stars by V.V. Sobolev [49],
being this expression commonly referenced in the literature as simply Sobolev’s optical depth.

Apart from the constants, this expression for the optical depth is entirely dependent on three
types of parameters: those that depend on the conditions of the explosion, in this case texp, since
homologous expansion is assumed; n, which must be regarded as the number density of ions in
the lower level of the transition, property related to the composition of the medium itself; and
the atomic parameters fk and λk, in which we will be focusing most of our attention in this
work. For completeness, we will also give some insight on what is needed to compute the level
number density at different stages of the kilonova explosion.

2.1.2 The expansion opacity formalism

As it was defined in eq. (2.13), τk represents only the optical depth for a single transition. This
means that it only accounts for the interaction of the photon with only one line. As we are
dealing with multiple interactions over the path of the photon, the optical depth must be given
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by a sum over the set of lines that the photon interacts with. In principle, one must account also
for the fact that the photon may get stuck in a single line while traveling, as the lines thicken
due to the effect of the expansion of the medium. However, as explained previously, this effect
of thermal destruction of photons is negligible under the Sobolev limit as the distance traveled
by the photon within a line is negligible when compared to total the distance traveled by the
photon. As a result, more than assuming a locality, we may view the photon’s interaction with
a line as instantaneous and not directly reliant on the optical depth of the transition. The total
number of interactions a photon has in the range

[
ν(1− vexp

c ), ν
]

will thus define the effective
opacity of the medium. Still under the assumption of homologous expansion, the total distance
travelled by the photon can be related to its frequency by

(2.14)Lph =
ν

∆ν

dr

dv
c

=
ν

∆ν
texpc

with the velocity gradient dr/dv = texp for homologous expansion. The probability of a photon
interacting with a line is given by 1 − exp(−τk), which makes the probability of interaction of
each photon NLines (1− exp(−τk)) with NLines being the total number of lines that the photon
interacts with. More generally, accounting for the fact that τk is different for every line we can
define an effective total opacity by summing all individual interactions as follows:

τ =
∑
k

(
1− e−τk

)
(2.15)

where k runs for all lines over the distance Lph.
It is interesting to see how the effective opacity behaves at limiting values to get a sense of

what it really means: for τk � 1, meaning a high probability of a photon interacting with each
line, the whole sum just simplifies to the total number of lines, as expected; on the other hand,
when τk � 1 we get that τ ≈

∑
k τk meaning that the effective optical depth for a high amount

of weak interacting lines will behave similarly as the optical depth of one single thick line whose
value is given by the sum of the optical depth for to all interactions.

With this expression for the optical depth, completely derived from microscopical
considerations, we can now substitute in Equation (2.2), which defines τ from as a measure of
the absorbance of light. We can get the final expression for the absorption coefficient α, which
relates the macroscopic observables with the microscopic properties of the medium.

Considering α to be constant over the path of the photon, we simply have from rearranging
Equation (2.2)

α = τ/Lph (2.16)

In practice, we cannot directly measure the shift nor the distance traveled by the photons
at any point in time. This leads to some degree of arbitrariness in how the overall sum is
performed, in particular the choice of the range of frequencies to account for the photons path
Lph. In this work, we decided to restrict to the usual formalism used in different works (see,
for instance, [50]) and divide our wavelength range in small-sized bins ∆λbin and sum over all
lines in that bin. With this approximation, we are assuming that there is no correlation between
the interaction probability of individual lines. This assumption holds as long as there is not a
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high overlap of lines, or, in other words that the space between strong lines (lines with a high
optical depth) is much higher that the thermal width ∆λth. Under this approximation and using
Equation (2.14), we finally arrive at a computable final expression for α

α(λ) =
1

ctexp

∑
k

λk
∆λ

(1− eτk) (2.17)

where we write the absorption coefficient as a function of the wavelength for consistency with
our previous expression for the optical depth. As for the expansion opacity, which takes into
account then mass density of the medium ρ, it is defined as kexp = α/ρ and we get our final
expression

κexp =
1

ρctexp

∑
k

λk
∆λ

(1− eτk) . (2.18)

This is the formalism for the expansion opacity, which is used in most of the recent works
regarding opacity calculations in supernovae and more recently applied to the collision of NSM
and their explosion in a kilonova. For that reason this will be the formalism used for our own
opacity calculations. As a summary, the approximations used in deriving this expression are the
following:

• Homologous expansion, where we assume that the rate of expansion is proportional to
the radius of the explosion. This is a fairly common approximation in astrophysics and
reasonably accurate for rapidly expanding mediums.

• The width of the lines is small when compared to the velocity of expansion of the ejecta, or,
in other words vth � vexp. This assumption should be easily satisfied in rapidly evolving
environments, where it is an expected a difference of around two orders of magnitude
between the thermal and expansion velocities. This makes it such that we can regard the
photons interactions as both local and instantaneous.

• We use a simpler approximation for the line profile φ(ν), namely φ̃(ν) given in
Equation (2.11). Such an approximation is possible given the small width of the lines
compared to the range of frequencies traversed by the photon.

• There is no overlap of strong lines, i.e., ∆λbin/N � ∆λth, withN here denoting the number
of strong lines over that specific wavelength bin. This assumption is clearly valid for lighter
ions, with open p and d-shells. However, it may be concerning when we consider open f -
shell elements, where the number of lines is orders of magnitude higher. Recent works (for
instance [2]) have also shown these assumptions to also be verified for lanthanides.

It is important to mention a different prescription for the opacity calculations that was
suggested by Fontes et al. [51]. In their work they argue that straight discretization of the opacity
is applicable to kilonovae, contrary to what happens in SNIa, for which Sobolev’s framework
was initially developed. Under this line-binned opacity formalism, the total optical depth in a
wavelength bin is simply given by the sum of the optical depths of each line considered in the
wavelength bin, i.e.

τbinλ,j =
∑

i∈∆λj

τi. (2.19)
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This expression is equivalent to a power series expansion of eq. (2.15) in the limit where
τi � 1. For that reason, it is easy to see that this definition of the optical depth always provides
bigger values than the one suggested by Sobolev when this limit does not apply.

This approach has the advantage of allowing tabulation of the opacities, as no expansion
properties are required for its computation. However, line-binned opacities are qualitatively and
quantitatively different from the ones obtained from the expansion opacity formalism, specially
in the intermediate and high optical depth regimes. Even though such calculations may be
viable, not many calculations were produced using a line-binned approach, and for the reasons
mentioned above the results obtained with both approaches are not directly comparable.

2.2 Ionic density calculations in LTE

For the opacity calculations, as it has become explicit from Equation (2.18) there are two main
ingredients required for the opacity calculations: knowledge of the atomic data, specifically
transition wavelengths and oscillator strengths for the evaluation of line strengths and absorption
cross sections, and knowledge of the level density of the ions in the medium for which the
interactions are relevant. For this reason, it is important to consider how we can estimate the
population distribution in kilonovae mediums. As it was observed in the introduction, only a
small mass of 0.01M� is expected to be ejected from NSM. This, together with the relativistic
expansion velocities of the order of 0.2c− 0.3c suggest a very low density of the ejecta, even at
early times. Specifically, at tej ∼ 1 day it is expected densities of ρ ∼ 10−13 g cm−3. This makes
it such that the density of the gas is too low for local thermodynamical equilibrium (LTE) to
be established by collisional processes.

On the other hand, the presence of r-process elements points to an optically thick ejecta
in the same timescale. As firstly indicated by Pinto and Eastman in [45], this allows for the
formation of pseudo-blackbodies, producing a spectrum which is almost identical to a Boltzmann
distribution. The physical process is, however, completely difference from the scenario where
LTE is established by thermal processes. In the usual picture, collisional processes dominate
over the radiative ones, and the random transfer of momentum associated to the collisions
ensures a Maxwellian-like distribution of the level populations. In the present case, the LTE
distribution occurs from the high number of lines associated to iron group elements and rare-
earth elements present in the medium. The high optical depths expected in the UV and optical
ranges makes it such that high energy (short wavelength) photons are absorbed in the plasma.
Those excited ions will thus, as they de-excite, remit the photons, by fluorescence, typically at
higher wavelengths. Since the number of ways this redistribution of energy can occur is so high,
due to the high number of lines from the presence of r-process elements, we can expect it to
be sufficiently random to form a Boltzmann distribution of the level populations. Hence, under
these conditions of a high optical depth, which is expected to be maintained during the early
periods of the expansion, the assumption of LTE seems to provide a good approximation.

With this in mind, the level populations, for a particular density of ions n, will take the
shape of a Boltzmann distribution for neutral states:

nl
n0

=
gl
g0
ne−El/kBT (2.20)

where kB is the Boltzmann constant (in eV K−1), T is the temperature (in K), El (in eV) is the
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energy of the lower level of the transition, and gl and g0 are the statistical weight of the lower
level of the transition and of the ground level, respectively, while n0 represents the level density
population of the ground state. Considering N to be the number of electrons in an ion, the ratio
between two consecutive ionic stages is given by the Saha equation:

nN
nN−1

=
UN (T )Ue(T )

UN−1(T )ne
e−χN−1/kBT (2.21)

where ne is the electronic density, χN−1 is the ionization potential energy and nN and nN−1 is
the ionic density of two consecutive ionic stages with N and N − 1 electrons, respectively. The
electronic partition function Ue is given by:

Ue(T ) = 2

(
mekBT

2πh̄2

)3/2

(2.22)

While the partition function for the charge states UN (at a temperature T ) can be written in
terms of the sum of the statistical weights (g(N)

i ) of each level weighted by a Boltzmann factor:

UN (T ) =
∑
i

g
(N)
i e−E

(N)
i /kBT (2.23)

Although LTE conditions can be applicable to the earlier phases of the explosion, we must
keep in mind that the electromagnetic signal can last for days or even weeks after the explosion.
At such stages, the ions in the medium will be significantly more spread out (due to the rapid
expansion of the medium) and we anticipate a shift from an optically thick to an optically thin
plasma. For that reason the assumption of local thermodynamic equilibrium may not be valid
at later stages.

Departures from LTE conditions increase substantially the complexity of the opacity
calculations, and in particular, the complexity of the atomic physics’ contribution. This comes
from the fact that, since the Saha-Boltzmann equations are no long valid in non-LTE regimes,
the level populations must be ascertained explicitly. For that, we must account for
recombination and ionization processes, as well as photon emission and electron ion collisions,
in addition to the simple electromagnetic transitions which are required for the opacity
calculations in LTE conditions. The population distribution of levels and ions in the ejecta can
thus be determined numerically by solving a large set of coupled equations.

2.3 Atomic Calculations

Regarding the atomic parameters necessary for the calculation of bound-bound opacities, we
must compute both the oscillator strengths and transition energies for the transitions described
in the previous sections. For this computation, a variety of atomic codes are available, all based
on the same principles from relativistic electron theory. In this section, we will try to show the
general idea of the calculation, as well as the differences that may exist in different approaches.

Throughout this section and what follows from this work, and unless otherwise specified,
atomic units (a.u) are used. This system of units is defined by requiring the electron’s mass
me, the electron charge e, the Bohr radius a0, and the Planck’s constant h̄ to be equal to 1.
This means that all base units can be defined uniquely by fundamental constants. The most
important main base units for this work in their atomic units representation and their values in
SI are given explicitly in Table 2.1.
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Table 2.1: Atomic unit representation for important base units and their respective conversion factors to
the currently accepted values SI values, based on the 2018 CODATA (Committee on Data for Science and
Technology) recommendations [52]. In parentheses is the numerical value of the standard uncertainty referred to
the corresponding last digits of the SI values, when applicable.

Base Unit Atomic Unit representation SI value

Mass me 9.1093837015(28)× 10−31 kg
Length a0 5.29177210903(80)× 10−10 m
Charge e 1.602176634× 10−19 C
Action h̄ 1.054571817× 10−34 J s
Energy mee

4/h̄2 ≡ Eh 4.3597447222071(85)× 10−18 J
Time h̄/Eh 2.4188843265857(47)× 10−17 s
Velocity vB = αc 2.18769126364(33)× 106 m s−1

Potential Eh/e 27.211386245988(53) V
Electric dipole moment ea0 8.4783536255(13)× 10−30 C m
Magnetic dipole moment eh̄/me ≡ 2µB 1.85480201566(56)× 10−23J T−1

Permitivity e2/(a0Eh) ≡ 4πε0 1.11265005545(17)× 10−10 F m−1

2.3.1 Atomic structure for one-electron systems

To calculate the energy states and wavefunctions of the system, and hence obtain the atomic
structure, one must solve the Hamiltonian eigenvalue equation of the form:

HΨ = EΨ (2.24)

where H, Ψ and E represent the Hamiltonian, wavefunction and energy for a bound state.
Employing Dirac’s formalism [53, 54] to unsure Lorentz invariance of the electron in the

calculation, we can write the Hamiltonian for a single electron as follows

h = cα · p+ βc2 + VC (r) (2.25)

with c being the speed of light, p the linear momentum, VC(r) the nuclear radial potential and
α and β the usual Dirac matrices

α =

(
0 σ

σ 0

)
and β =

(
1 0

0 −1

)
(2.26)

Since the potential is, by nature, spherically symmetric, the interaction has to be both
invariant under rotations and reflections, making the solutions eigenfunctions of the angular
momentum operators J2, Jz and the parity operator Π. In addition, it is convenient to write
the wave function as a product of their radial and angular components:

φnκm(r,Ω) =
1

r

(
Pnκ(r)χκm(Ω)

iQnκ(r)χ−κm(Ω)

)
(2.27)

with n being the principal quantum number, κ the relativistic angular momentum related to
the total angular momentum by κ = (` − j)(2j + 1), m the magnetic quantum number. Here
we use Ω to account for the total angular component. The spherical spinors can be written in
terms of the known spherical harmonics like follows:
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χκm(Ω) =




√
`+ 1/2 +m

2`+ 1
Y

m−1/2
` (Ω)√

`+ 1/2−m

2`+ 1
Y

m+1/2
` (Ω)

 for j = `+ 1
2


√
`+ 1/2−m

2`+ 1
Y

m−1/2
` (Ω)

−
√
`+ 1/2 +m

2`+ 1
Y

m+1/2
` (Ω)

 for j = `− 1
2

(2.28)

By solving the eigenvalue equation using H = h from Equation (2.25) we can compute large
and small radial components Pnκ(r) and Qnκ(r) by solving the resulting coupled system of
differential equations

(
VC(r) + c2

)
Pnκ(r) + c

(
d

dr
− κ

r

)
Qnκ(r) = EnPnκ(r) (2.29a)

− c

(
d

dr
− κ

r

)
Pnκ(r) +

(
VC(r)− c2

)
Qnκ(r) = EnQnκ(r). (2.29b)

This system of equations has an analytical solution for the case where we are only considering
the Coulomb potential, which is given by the Sommerfield fine-structure formula [55].

E = −c2

1 + (Zα)2[
n− j − 1

2 +
[(
j + 1

2

)2 − (Zα)2
]1/2]2


−1/2

(2.30)

2.3.2 Multi-electron systems

The natural approach when taking a step to a many-electron system is to consider the sum of the
individual single-electron Hamiltonians and add a new term corresponding to the inter-electron
interactions [56]

H =
N∑
i

hi +
∑
i<j

V (ri, rj) (2.31)

with h given by Equation (2.25).
A caveat of extending the eigenvalue problem Equation (2.24) for many electrons is that we

do not have any exact solutions like Equation (2.30), nor is it solvable for 3 or more electrons.
In practice, and since the problem has a solution for a spherically symmetric potential, the
Hamiltonian may be divided into two different parts:

H = H0 +H1 (2.32)

H0 accounts for the nuclear potential and the central component of the inter-electronic
interactions while H1, which is taken to be much smaller than H0, accounts for all the
non-central two-body contribution of the inter-electronic interactions. Hence, we can write

H0 =
N∑
i=1

[hi + U (ri)] (2.33a)
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H1 =
N∑
i=1

[
− 1

ri
− U (ri)

]
+
∑
i<j

V (ri, rj) (2.33b)

where U(ri) corresponds to the average central potential, which accounts for all spherically
symmetric interactions. Many choices for U(ri) are possible. Independent of the chosen
potential, it is critical that it satisfies the boundary requirements that ensure that only the
charge from the nuclear interaction is felt near the nucleus, while at further distances, that
same charge is screened by the influence of N − 1 electrons.

Since we are dealing with fermions, the wavefunctions for an N electron system has to
be given by an antisymmetrized product of mono-electronic wavefunctions, due to the Pauli
exclusion principle. That restriction can be stated conveniently by means of a Slater determinant

ψ (r1, r2, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φa (r1) φb (r1) · · · φN (r1)

φa (r2) φb (r2) · · · φN (r2)
... . . . ...

φa (rN ) φb (rN ) · · · φN (rN )

∣∣∣∣∣∣∣∣∣∣
. (2.34)

However, a single Slater determinant is in most cases not an eigenfunction of J2 and Jz. To
make sure the wavefunctions satisfy that condition, the final wavefunction is written as a linear
combination of Slater determinants in what we define as a configuration state function (CSF)

Ψ(r1, . . . , rN ) =
∑
i

diψ
i (2.35)

2.3.3 Breit interaction and Radiative Corrections

Before proceeding, it’s important to note that, to assure the best precision of the calculations,
we must consider quantum electrodynamics (QED) contributions to the interactions. One of the
most important contributions, in particular for high Z atoms, is the so-called Breit interaction.
It adds a correction to the usual Coulomb repulsion that accounts for the exchange of a virtual
photon between two electrons. The interaction potential, including this correction, can be
compactly written as [57]

(2.36)

V (ri, rj) =
1

rij
Coulomb interaction

− αi ·αj

rij
cos (ωijrij) Gaunt term

+ (αi · ∇i) (αj · ∇j)
cos (ωijrij)− 1

ω2
ijrij

Breit retardation

with rij = |(ri)− (rj)| it’s the interelectronic distance and ωij denotes the energy of the photon
exchanged between the two electrons. Both the Gaunt magnetic term and the Breit retardation
(written in the Coulomb gauge) term make up the total contribution of the Breit interaction. In
the Coulomb gauge, the retardation term can be expanded in a power series. The lowest term,
of order α2, is

gR =
αi ·αj

2rij
− (αi · rij) (αj · rij)

2r3ij
(2.37)
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In addition to that, to avoid degeneracy on the energy over the relativistic eigenvalue κ, two
types of radiative corrections are also included: the self-energy contribution from the emission,
and promptly the absorption of a virtual photon by the electron; and vacuum polarization,
where spontaneously occurring electron-positrons pairs are polarized by the atom, changing the
effective nuclear charge felt by each electron. These two radiative terms make up the total Lamb
shift corrections to the system. The Feynman diagrams that represent these interactions are
shown in interactions are shown in Figure 2.2.

The contribution due to vacuum polarization can be written as an effective potential of the
form

VV P (r) =

∞∑
i=1,j=0

Vi,2j+1(r) (2.38)

with Vi,m=2j+1(r) being increasing contributions of the order αi(Zα)m, with α here representing
the fine structure constant.

As for the self-energy, for a hydrogenoid energy level the contribution takes the form:

∆ESE =
α(Zα)4

πn3
mc2F κ

n (Zα) (2.39)

which depends on the quantum number n and κ and where F κ
n (Zα) can be expanded in a power

series of Zα.
We note that, in this case, the shielding effect by other electrons of the nuclear charge must

be taken into account, in contrast to the vacuum polarization correction, where no adjustments
are needed since we are working with an effective potential.

These QED contributions are usually added as a perturbative correction to the final value
of the energy, regardless of the method used for its computation.

(a) Self-energy (b) Vacuum polarization

Figure 2.2: Feynman Diagrams for the main radiative quantum electrodynamics correction performed on atomic
structure calculations.

Last but not least, to these corrections we also must add that the nucleus is not infinitesimal,
but it does have a finite size. Many models exist to account for this, but here we highlight just
the main two that are used in most atomic codes. Assuming a spherically uniform charge
distribution, we can model the nuclear potential as

Vnuclear (r) =

{
− Z

Rnuc

(
3
2 − r2

2R2
nuc

)
for r ≤ Rnuc

−Z
r for r ≥ Rnuc

(2.40)

We can also model the nuclear charge by assuming a Fermi charge distribution

ρ(r) =
ρ0

1 + e(r−Rnuc)/a
(2.41)
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with a here being a parameter which accounts for the thickness of the distribution and ρ0 a
normalization constant.

2.3.4 Radiative processes

Once the atom is in an excited state, it can undergo radiative decay through the emission
of photons, or decay non-radiatively via Auger electron emission. The decay rate of the two
processes is important for the complete description of processes involving excited intermediate
states, such as two-electron recombination, collision excitation, and subsequent self-ionization
excitation. However, our primary interest at the moment is the computation of transition
wavelengths and oscillator strengths associated with photon absorption by the atom.

To be able to describe these quantities, we must first focus on studying the general
interaction between an atomic system and radiation, and it is evolution with time [58]. In this
particular section, Gaussian units are employed, as it is still the most used system to describe
electromagnetic phenomena since it makes the expressions more clear and transparent.

We can describe the radiation as electromagnetic plane waves, which propagate in the
direction k̂:

A±(r, ω) = ε̂λe
±ik·r (2.42)

where A±(r, ω) is the vector potential in the Coulomb gauge ω, ελ describes the radiation
frequency and the polarization vector, respectively, with the last one being always orthogonal
to the vector potential. The magnitude of propagating direction is k = |k|= ω/c. The general
solution of the time-dependent wave equation of a photon (in the Coulomb gauge), assuming
closed box boundary conditions in a volume V can hence be given by a superposition of plane
wavefunctions

A(r, t) =

√
h̄

2ε0ωV

∑
i

(
ciε̂λe

ik·r−iωt + c†i ε̂
∗
λe

−ik·r+iωt
)

(2.43)

with ci and c†i being the photon annihilation and creation operators.
To completely describe the interaction of the system with radiation, we must add to our

many-electron Hamiltonian H0 + V the terms coming from the electromagnetic field and the
interaction term

H = H0 + V +HEM +HI (2.44)

The Hamiltonian for the electromagnetic field is given by [58]

(2.45)

HEM =
ε0
2

∫
d3rE(r, t) ·E(r, t) +

1

2µ0

∫
d3rB(r, t) ·B(r, t)

=
∑
i

h̄ω

(
c†ici +

1

2

)
=
∑
i

h̄ω

(
Ni +

1

2

)

where c†ici simplifies to the number operator Ni.
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It is important to note that this particular expression accounts for the non-zero value of the
zero-point energy of the electromagnetic field in the vacuum, given as

E0 =
1

2

∑
i

h̄ωi. (2.46)

However, being that value not directly measurable, we can “normalize” the electromagnetic field
Hamiltonian simply to

HEM =
∑
i

ωNi (2.47)

Regarding the interaction Hamiltonian, the dominant term is

(2.48)
HI = −

N∑
i

e

mic
A · pi

= −
N∑
i

e

mic

∑
kλ

√
2πh̄

V ωk
(ekλ · pi)

[
ckλe

ik·r + c†kλe
−ik·r

]
which accounts for the interactions between the atom and one photon.

To calculate the transition rate, we can make use of the Fermi golden rule

Wfi =
2π

h̄
|Mfi|2 δ (Ef − Ei) , (2.49)

where Mfi can be computed from perturbation theory for a transition between a final (f) and
an initial (i) states using the interaction Hamiltonian in Equation (2.48)

Mfi = 〈f |HI | i〉+
∑
j

〈f |HI | j〉 〈j |HI | i〉
Ei − Ej

+ . . . . (2.50)

In first order, the transition matrix element Mfi and the correspondent transition rate are

Mfi = − e

mc

√
2πh̄c2

L3ωk

(√
nkλ + 1
√
nkλ

)〈
af

∣∣∣p · εkλe−ik·r
∣∣∣ ai〉 (2.51)

Wfi =
2π

h̄

( e

mc

)2 2πh̄c2
L3ωk

(
nkλ + 1

nkλ

)∣∣∣〈af ∣∣∣p̂ · εkλe−ik·r
∣∣∣ ai〉∣∣∣2 δ (Eaf + h̄ωk − Eai

)
, (2.52)

where the occupation numbers nkλ + 1 and nkλ are for the cases of photon emission and
absorption, respectively.

In order to compute the transition rate we must take into account the explicit dependence
on e−ikr We must recall, however, that for both atomic emission and absorption cases, we
are typically dealing with radiation in the UV and optical regions with h̄ω ∼ 10 eV making
kr ∼ 2π × 10−3 � 1. Therefore, we can expand the exponential in a power series

e−ikr = 1− ikr − 1

2
k2r2 + . . . ' 1. (2.53)

For most practical instances, we can truncate the expansion at the first value, resulting in
the electric dipole approximation (denoted by E1). In any case, the transition matrix element
Mfi is many times referred to as the multipole operator, denoted as OL with L denoting the
order of the expansion.
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The atomic line strength of a transition is simply the absolute value squared of the multipole
operator

Sfi =
∣∣< f

∥∥OL
∥∥ i >∣∣2 (2.54)

and is a useful quantity to measure the intensity of a transition, being symmetric on the initial
and final states.

At this point it is important to introduce the Einstein’s A and B coefficients to describe the
radiative transitions, since such formalism is still very prevalent in astrophysical
considerations. These coefficients depend only on intrinsic atomic properties and arise from
statistical considerations. In particular, considering a radiative process between two levels with
Ej > E1 , in equilibrium, the levels populations Nj and Ni will satisfy the following rate
equations:

− dnj
dt

=
dni
dt

= Ajinj −Bijρ(ωij)ni +Bjiρ(ωji)nj (2.55)

where ρ(ω) is the radiation density of the considered transitions.
Three different coefficients are used to describe the three different main radiative processes

that can occur: Aji for spontaneous decay, Bij for absorption of a photon and Bji for stimulated
(or induced) emission. They can be related to the Wij transitions rates given in Equation (2.52)

W s
ji = Ajinj (2.56a)

W i
ij = Bjiρ(ωij)ni (2.56b)

W i
ji = Bjiρ(ωji)nj (2.56c)

where the s and i superscripts are used to distinguish between spontaneous and induced
transitions.

Finally, and by using the intrinsic spontaneous emission rate given by Aji we can define the
dimensionless response function f which relates the emission rate of an atom with the emission
rate of a classical one-electron oscillator:

fji = −1

3
Aji/γcl (2.57)

with

γcl = e2ω2
21/
(
6πεomc

3
)

(2.58)

being the emission rate of the classical oscillator. We call this quantity the emission oscillator
strength of the transition (or simply the emission f -value). The absorption oscillator strength
is defined by means of detailed balance such that

gifij ≡ −gjfji ≡ gf (2.59)

with gi and gj are the degeneracy factors of lower and upper levels, respectively, obtained from
the total angular momentum J such that g = 2J + 1.
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Choice of gauge

It is important to keep in mind that all expressions derived above are presented in the
Coulomb gauge. Although this formulation is commonly also referred to as the velocity gauge
in the literature, the Coulomb gauge is a special case of the more general velocity gauge
formulation. In this case v = ∞ is fixed by imposing the condition ∇ · A = 0 on the vector
potential. Equivalent formulas can be deduced in different gauges simply by performing
unitary transformations. Of particular interest under the long wavelength approximation is the
length (or Göppert-Mayer)gauge, which relates to the Coulomb gauge by

H ′
L = Û †HV Û , Û = exp

[
i

h̄

e

c
A ·R

]
. (2.60)

where HL and HV represent the many-electron Hamiltonian in the length and velocity gauge,
respectively.

In principle, the use of any gauge is viable, as they should arrive at the same results. However,
this is only true when a complete basis set is used, which in practice is not possible for complex
systems. In most numerical applications, the length gauge representation is usually used, as
recent works suggest it to be more stable [59]. For this reason, the oscillator strengths presented
in this work are presented in the length gauge, unless otherwise specified.

2.4 Different methods of solving the many-electron Dirac
equation

Because we are dealing with nonlinear differential equations, solving the Dirac equation
analytically for a system with more than one electron is impossible, as we are dealing with a
three-body problem which even in classical physics does not have solution. There are two
general approaches to proceed with this calculation: perturbative methods, which use many
body perturbation theory (MBPT) [58], and variational methods [41, 60, 61], which focus on
constructing and minimizing an energy functional under a particular configuration subspace.
It is important to note that, regardless of the approach employed, the central component of
the Hamiltonian given in Equation (2.33a) can always be solved numerically without any
restrictions.

Each technique is briefly explained in the subsections that follow. In this work, however,
only variational techniques based on Relativistic Configuration Interactions (RCI) and Multi-
Configurational Dirac Fock (MCDF) were utilized. As a result, the methodologies and codes
used in this work are given particular attention.

2.4.1 Many Body Perturbation Theory (MBPT) methods

In a perturbative approach, the two-body contributions in Equation (2.33b) are added as a
perturbation to the central field approximation. The wavefunctions and eigenvalues are then
represented as a power series, which is utilized to produce a series of consecutive improvements
to the zeroth-order approximation through a recurrence relation
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(
H(0) − E(0)

)
Ψ(1) =

(
E(1) −Hpert

)
Ψ(0)(

H(0) − E(0)
)
Ψ(2) =

(
E(1) −Hpert

)
Ψ(1) − E(1)Ψ(0)(

H(0) − E(0)
)
Ψ(3) =

(
E(1) −Hpert

)
Ψ(2) − E(2)Ψ(2) − E(3)Ψ(0)

...

(2.61)

The complexity of the solutions, and the computing time, increases exponentially with the
order of the equations. For that reason, even if in theory corrections to an arbitrary order
are possible, in most cases only corrections up to third order are considered. It is also worth
stressing out that for the first correction to be considered, the potential of the nearest closed
shell is used.

2.4.2 Relativistic Configuration Interaction

In these methods, an energy functional is constructed for the spherically symmetric Hamiltonian.
Our main goal is to find a stable point, and more specifically a minimum, of that functional,

E[Ψ] =
〈Ψ|H|Ψ〉
〈Ψ | Ψ〉

(2.62)

which can be achieved by the introduction of different variational Lagrange-like parameters.
One must be careful when dealing with multi-electronic systems. Besides the mutually felt

interactions between the electrons, they are also not fully independent, since the movement of
the electrons is also influenced by the electronic structure of the system. The antisymmetrization
of the wavefunctions, with the use of a Slater determinant, prevents electrons with the same
quantum number to be found in the same point in space, accounting therefore for the Exchange
or Fermi correlations. To accurately define the wavefunction of the atom, we must also account
for the correlation between the position of the electrons due to their Coulomb repulsion (the
so-called Coulomb correlations). Thus, we define an atomic state functions (ASFs)to be a linear
combination of multiple CSFs with same symmetries,

ΨASF =
∑
k

ckΨk (r1, . . . , rN ) . (2.63)

Under our variational approach, we take the mixing coefficients ck as Lagrange parameters,
and so we look for the coefficients which minimize the energy as follows:

∂E

∂ck
=
∂〈Ψ|H|Ψ〉
∂ck〈Ψ | Ψ〉

= 0 (2.64)

The coefficients that are solutions to the above-mentioned set of differential equations define
a set of eigenvalues that are the best approximation in the space described by the basis of
CSF’s. Expanding the number of CSFs utilized would therefore enhance the accuracy of the
results; however, increasing indefinitely the basis set is clearly impractical and would increase
the computing time without significantly improving the results. For that reason, there are no
obvious criteria for selecting suitable configurations. This set may be determined by looking at
how the level energies converge as the number of configurations increases.
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2.4.3 Multi-configurational Dirac-Fock

In addition to varying the mixing coefficients ck the electronic Coulomb correlation can also be
taken into account by also applying variations to the mono-electronic wavefunctions, with the
idea of increasing the number of degrees of freedom of the variational method. This leads to the
Multiconfiguration Dirac-Fock (MCDF) method, or Multiconfiguration Hartree-Fock (MCHF)
method for its non-relativistic counterpart. In these methods, besides varying the coefficients
ck, we also minimize the energy by varying the mono-electronic φ wavefunctions in the following
way

∂
(
E[H]−

∑
ij εij 〈φi | φj〉

)
∂Pnκ(r)

∂
(
E[H]−

∑
ij εij 〈φi | φj〉

)
∂Qnκ(r)

(2.65)

where the εi,j are variational parameters introduced to explicitly induce orthonormalization
constraints of the wavefunctions. As in the case of a RCI calculation, the variation of the mixing
coefficients ck can be determined by diagonalization of the Hamiltonian. The variation of the
wavefunctions, on the other hand, will give rise to a system of coupled differential equations,
which we call the Dirac-Fock equations. For a particular wave-function, it can be written as
follows:

 d

dr
+
κA
r

−2c+
VA(r)

c

−VA(r)
c

d

dr
− κA

r

[PA(r)

QA(r)

]
=

1

c

∑
B

εA,B

[
PA(r)

QA(r)

]
+

[
XQ

A (r)

XP
A (r)

]
(2.66)

where VA(r) is the sum of the nuclear potential and the direct part of the Coulomb repulsion,
while the generalized exchange potentials XQ

A (r) and XP
A (r) include all the electronic

interactions. The sum over B accounts for all the orbitals, such that κB = κA is satisfied.
Since there is no analytical solution to this coupled system of equations, these are solved in a
self-consistent process until convergence is achieved.

In practice, a MCDF calculation starts by defining a set of trial orbitals, taking for example a
set of Thomas-Fermi orbitals. We then proceed to diagonalize the Hamiltonian matrix to obtain
the mixing coefficients, ck which are then used to solve Equation (2.66) until a self-consistent
field (SCF) is achieved. This iterative process is repeated until both the mixing coefficients and
the wavefunctions converge within a specified threshold.

We should note that, while this technique is an extension of the simpler RCI method, the
former differs in that it only requires a single diagonalization of the Hamiltonian as the orbitals
are fixed during the process and must be specified in advance. This increase in degrees of
freedom enabled by the MCDF method improves calculation accuracy in general, but it comes
at the cost of being considerably more computationally expensive.

2.4.4 Atomic Codes

During the last years, several codes were developed to achieve the atomic structure calculation
mentioned in the previous sections. Here we will be referencing the ones which are the more
relevant to this thesis.
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MCDFGME and GRASP2K

Regarding MCDF calculations, it’s worth noting that there are only two codes in which the
method is fully implemented, the Multiconfiguration Dirac-Fock and General Matrix Elements
(MCDFGME) [41] code developed by P. Desclaux and P. Indelicato at the Université Pierre et
Marie Curie, and the General-purpose Relativistic Atomic Structure Package(GRASP, being the
most recent version acronym GRASP2K) [4, 42], developed by I.P. Grant and Froese Fischer. For
the case of MCDFGME both the Coulomb and the Gaunt (magnetic) interaction are included
in the Hamiltonian used in the self-consistent approach being the remaining QED corrections,
including the Breit retardation, self-energy and vacuum polarization included in a perturbative
manner. In contrast, GRASP2K solves the Dirac-Fock equations in a SCF approach utilizing
only a Dirac-Coulomb Hamiltonian. The CSFs obtained by that manner are then used at a latter
stage for in a RCI calculation, in which Breit and QED leading order corrections are added. At
this step, a larger number of configurations that were not included in the MCDF SCF can be
included, in order to account for a larger contribution of the electronic correlations.

Another advantage of these codes is that individual levels can be optimized by making
the direct and exchange potentials in Equation (2.66) converge for a optimal solution for the
average energy of a specific level. This is known as the optimal-level (OL) scheme, with the
average energy being defined as

Eav =

nL∑
i=1

(2Ji + 1)E(Ji)

n1∑
i=1

(2Ji + 1)

(2.67)

MCDFGME employs this OL scheme for optimization of the levels with nL = 1. GRASP2K,
on the other hand, enables the possibility to extend the optimization to a sum of energies
(nL > 1), making use of an extended optimal-level scheme (EOL).

It is worth noting that this optimization of each individual level does not preserve the
orthogonality of the wavefunctions and so different methods are built within each code to deal
with this restriction.

The Flexible Atomic Code (FAC)

MCDF codes, despite providing more accurate results than other codes, the convergence
process is slower and require more computational power and resources. With that in mind,
most of the calculations for this work were performed using the Flexible Atomic Code
(FAC)[62]. Unlike the two previous codes, the wavefunctions remained fixed after the
diagonalization of the Hamiltonian, meaning that FAC uses and RCI method for the
calculation, assuming a parametric potential which is felt by all the electrons

UFAC(r) = −Z
r
+
N − 1

r

(
1− e−λr

1 + ar

)
, (2.68)

with λ and a as the two parameters to be determined.
Prior to the diagonalization procedure, the wavefunctions must also be optimized individually

and in advance. By taking advantage of the mutual dependence of the wavefunctions and the
radial potential, the set of Dirac-Fock-Slater differential equations are solved in a self-consistent
approach, using the orbitals determined in the previous iteration for the calculation of the
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potential used in the next step. The process is repeated until convergence (within a specified
threshold) is reached.

In addition to the RCI techniques, the accuracy of the computations can be improved further
by using Many Body Perturbation Theory methods, which are also accessible inside the FAC
code. However, the major benefit of this code over other codes, such as the previously stated
MCDF codes, is its great computational efficiency and ease of scriptability, thanks to the presence
of an optional Python interface. Not only is the input method easier than in other codes, but
it is also practical for extracting large amounts of data, which can subsequently be utilized in
other projects.

Lastly, FAC is also able to compute continuum processes, like ionization and recombination
in the Distorted Wave Born approximation. Such processes are also important in the modeling
of kilonovae, and, by using FAC to compute all these quantities within a single framework, we
can ensure self-consistency in the data from different calculations.

2.5 Classification of energy levels

In the central field approximation, only symmetric interactions between the electrons and the
nucleus are considered. This means that the energy of an atom is completely determined by the
assignment of the principal and orbital quantum numbers to all electrons. Under this approach,
ions with the same electron configuration n1l1, n2l2 . . . will be assumed to have the same energy.
The inclusion of non-spherical interactions is critical for a complete description of the system
and an accurate energy determination.

There are two main types of interactions which must be considered- the electrostatic
component of the electron-electron interaction that is not considered in the central
approximation, and the so-called spin-orbit interaction, which accounts for the interaction of
the electron’s spin with its motion inside the potential. Both of these interactions lead to a
splitting of nl levels into a multitude of different sublevels.

In practice, however, including both interactions with the same degree of impact on the
computation is exceedingly difficult. As a result, one usually must consider one of the interactions
to be much smaller than the other one, as both contributions are progressively considered in
the Hamiltonian, one after another. As a general guideline, one should start with the coupling
scheme that is closest to reality and then optimize it, in order to provide reliable results. While
electron interactions are dominant for low Z elements and low-lying energy states, spin-orbit
and other relativistic effects have a bigger impact in high Z elements and high-energy states.

A different notation is associated with each of these two different coupling schemes. When
the electrostatic correlation effects dominate, the total angular momentum L and total spin
S are sufficient to characterize the system, defining a LSJ coupling system with labels of the
type 2S+1LJ (with J = L+ S). As the relativistic contribution rises, LSJ labels can no longer
correctly represent the system, and the total momentum j = l+s of a single electron is the only
meaningful conserved variable. In this case, we refer to it as a jj type coupling. In principle, any
suitable coupling scheme can be used to represent and label the wave function in the structure
calculations. However, for consistency reasons, and since low-energy structures are easier to
achieve and have been more computed overall, the LSJ notation is the more commonly used in
different databases and in the literature. In order to get correct energy estimates for levels with
a high degree of relativistic effects, most MCDF and RCI programs are generally adapted to
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proceed with the computations using the jj-coupling scheme. For that reason, a transformation
between the two labeling systems is inbuilt in the most recent codes to facilitate the comparison
between different results from different codes and with experiment. Both MCDFGME and the
GRASP2K codes account for this transformation. However, the FAC code, being built with the
intention of providing an easy and scriptable code for calculations on highly ionized ions, does
not provide a way of performing this calculation within the code itself, and hence the output
for each level is identified with a jj type coupling label. This limitation of FAC has no effect
on the computations, but it makes direct comparisons between levels computed using FAC and
other codes considerably more difficult.

One possible workaround would be to not perform the coupling scheme transformation,
maintaining the output of the calculation using a jj-coupling scheme type label on the other
codes, namely, GRASP2K and MCDFGME. This would therefore make a comparison with
the results from FAC viable. Since the transformation is done automatically in the case of
MCDFGME, this would require accessing the unitary transformation matrix and performing an
inverse transformation on each calculated level. This is a highly time-consuming task and was
not done during this work.

It is also important to note that, as the levels are described as a linear combination of CSF’s,
the label of the leading CSF is typically used as the label of the level. For that reason, it is quite
typical for two or more levels to have the same leading CSF and therefore be assigned the same
label. The GRASP codes, with the use of the RATIP package [63] have developed a technique
to address this issue by utilizing CSF with a smaller component in the expansion when the
leading one’s label has already been utilized. Unfortunately, most literature and databases do
not yet employ this labeling method, making unambiguous level identification and comparison
more difficult.

Since most of the calculations of this work are done with FAC, direct comparison of energy
levels between different sets of calculations is not included. The main goal of this thesis, is
nevertheless to provide calculations for different atomic parameters which are relevant for
kilonovae modeling. As a result, we are more concerned with how the entire set of
computations affects the opacity calculations than the accuracy of particular levels.
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Structure Calculations on
Lanthanides and Actinides

As it was discussed in the previous sections, lanthanide and actinides, due to their open f -shell
structure, play a major role in the opacities of the kilonovae ejecta. However, these elements
are so complex that, despite their importance, little progress has been made in both theoretical
calculations and spectroscopy experiments. Looking at the NIST Atomic Spectra Database [64],
only a very small fraction of the lines for ions with Z > 57 have been computed, as it can be
seen in the diagram shown in Figure 3.1. That number is particularly low, considering that the
number of lines of f -shell elements is 3 to 4 orders of magnitude higher than the ones with an
open d-shell.

Due to the lack of atomic data, most preliminary studies of light curves for r-process
transients relied on online lists from iron group elements, for which extensive atomic
information is available. It can be thought as is it being a reasonable first approximation, as
Fe peak elements possess an open d-shell structure. However, recent studies [7, 65] suggest
that such an approach can give us, at most, a lower bound and that the expansion opacity for
lanthanides can differ from the ones of iron by 3 orders of magnitude [66].

A fresh wave of atomic structure computations on lanthanide ions has been published in
recent years [2, 3, 51, 67], with a special focus on ions considered most important to kilonova
opacities, such as Nd, Ce and Gd. Nonetheless, reliable computations using codes based on the
most advanced MCDF or MBPT techniques that can reach a high degree of precision might
take weeks or even months to complete. Using those codes, systematic calculations that take
into consideration a significant number of lines (from lanthanide and actinide ions) to generate
realistic models would still take a very long time. One of the main limitations is that these
detailed calculations are subject to convergence problems. Even though they are a small fraction
of the overall calculation, they result in several hundred cases that have to be treated individually,
which makes the process time-consuming and tedious[68].

As a result, recent studies from Tanaka et al. [2, 39, 69, 70] are now turning their attention
into using not so time-consuming atomic codes, so that a larger spectrum of ions can be computed
to give a more complete view of the ejecta. This comes at the cost of a less precise computation,
which may affect the opacities. RCI type codes, as the Hullac and Autostructure have been used
for this purpose. Although errors of the order of 10%−30% can arise in more complex elements,
calculations suggest that this difference is not really noticeable in the opacity. This is specially

33
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Figure 3.1: Diagram showing the number of the complete line holdings by the NIST Atomic Spectra Database
[64] per ion. The color code for the different amount of lines computed is shown at the bottom. Dark blue squares
imply that no data is available.

true in the early stages of the explosion, where the number of lines used in the model plays a
bigger role than the accuracy of the calculation. Nevertheless, this discussion is still at an initial
stage and there’s still a lack of agreement on results between different codes and methods used
for the calculations.

In this work we are interested, not only in providing reliable calculations for some of the
most relevant ions for kilonovae, but also in investigating some of the differences that may arise
between different codes, and on what is their impact in the final calculations of the opacities.
In the first phase, we started by performing MCDF calculations for the second charged state
of neodymium (Nd III) using the MCDFGME code. Neodymium was chosen not only because
of its large contribution to the kilonovae opacity, but also because it is one of the most studied
lanthanides. This means that data from other calculations is available in the literature to
which we could compare the results. This approach was also useful to develop efficient pre- and
post-processing scripts to handle the great amount of data that was gathered throughout this
work, from energy levels, to transition wavelengths, oscillator strength and finally, bound-bound
opacities.

In a second phase, the calculations for that same element were redone using FAC, and the
results were also compared with the literature. As will be addressed in detail in the following
sections, despite some notable differences in energy levels and oscillator strengths, we show that
only small differences are found for the expansion opacities.

Using the knowledge gathered from the FAC calculation on Nd III, and relying on the good
convergence of different atomic codes, particularly in the infrared region of the spectra, this work
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was extended to investigate the role of actinides on the opacity of the ejecta. This is especially
significant because there are just a few publications that incorporate actinides in their opacity
models. Yet there is strong evidence that their contribution to opacity may be greater than
in the case of lanthanides. With that in mind, calculations on U III were also performed, and
presented in light of the prior calculations for neodymium. These are relevant for contemporary
kilonovae models and may affect previous results relative to the mass fraction ratio of actinides
and lanthanides produced in NSM.

3.1 Calculations on Nd III

A summary of the configurations used in each of the calculations, including the total number of
levels and lines computed, is given in Table 3.1. For all calculations, a [Xe] ground configuration
was used for the core of the ion.
Table 3.1: Summary of the different set of configurations use on different calculations for Nd III, including
experimental results from NIST [64] and the DREAM [71] database. For the calculations of GRASP2K [4], only
the configurations from the multireference space are shown, which includes the configurations for which an MCDF
calculations was perfromed. The full active space of configurations used in that calculation is shown in [3].

Label
Configurations All

Even Odd #Levels #Lines

FAC (Calculation A) 4f4, 4f3 6p, 4f2 5d2

4f2 5d 6s, 4f3 5f 4f3 7p, 4f3 6f
4f3 5d, 4f3 6s,
4f3 6d, 4f3 7s

3206 708077

FAC (Calculation B) 4f4, 4f3 6p, 4f2 5d2

4f2 5d 6s, 4f3 5f 4f3 7p

4f3 5d, 4f3 6s,
4f3 6d, 4f3 7s

2702 579796

MCDFGME 4f4, 4f3 6p, 4f2 5d2

4f2 5d 6s
4f3 5d, 4f3 6s, 2232 178778

GRAPS2K(Gaigalas et al.) 4f4, 4f3 6p, 4f2 5d2

4f2 5d 6s, 4f3 5f 4f3 7p

4f3 5d, 4f3 6s,
4f3 6d, 4f3 7s

1453 148759

DREAM 4f4 4f3 5d - 51

NIST 4f4 4f3 5d 29 -

We performed two different FAC calculations (labeled accordingly as Calculation A and B)
which are distinguished only by the inclusion in the basis set of the configuration 4f3 6f in
Calculation A (and not in Calculation B).

Only a subset of the configurations used in the FAC calculations was used in the computation
performed with the MCDFGME code. Due to computational constraints, the electron-electron
correlation was also not fully incorporated. It is worth noting that this basic calculation with
MCDFGME required about 2 weeks of calculating time (not considering pre- and post-processing
of the data), whereas the simplest (and yet more complete than in the case of MCDFGME when
considering the full configuration space) computations with FAC took roughly 2 hours. Although
the efficiency of the FAC calculation was vastly superior to the calculation with MCDFGME, it
is important to note that this is only the case because the number of configurations included in
the RCI calculation of FAC is very low. Typically, RCI calculations must include thousands of
configurations to account for a larger extent of the electronic correlations. In such cases, RCI
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calculations may require a comparable computing time to MCDF calculations. However, and
in particular for the case of FAC, no convergence problems should arise for individual levels,
differing from a calculation using MCDFGME where levels are optimized individually.

We compare our results with structure calculations performed with the GRASP2K code by
Gaigalas et al. [3]. As mentioned in Section 2.4.4, in this code, MCDF calculations are followed
by RCI calculations that include the Breit interaction and leading order QED effects while also
including a larger number of configurations not included in the initial MCDF SCF. The full
details of the calculation and the construction of the active space are given in [3]. However, as
MCDF calculations are so computational expensive, it is possible to perform the calculations
entirely using an RCI approach. This is the case of Strategy C (with 5s and 5p) for Nd III use
in [3] and, in fact, these results are the ones which best match the NIST data. For that reason,
those were the results used for comparison in this work. In this strategy the wave functions
were computed using the usual MCDF+RCI approach of GRASP2K1 and were used in a full
RCI calculation, which also included the 5s and 5p shells in the configuration space. A more
in-depth analysis of the importance of these results by Gaigalas is given in Section 3.1.7. We
note that only the first 1453 levels, and all the respective E1 transitions between them, are
publicly available and only those are used in the opacities calculations provided in the same
paper.

Finally, we also compare our results with the NIST and the DREAM databases, with the
latter focusing only on experimental results for rare-earth elements. As expected, however, the
number of levels and lines measured experimentally in both databases is still very reduced.

3.1.1 Energy Levels

The results for the first 45 energy levels of Nd III using the FAC code are shown in Table 3.2.
The states are labeled according to the FAC classification which uses the leading composition
of computed eigenvectors in the jj-coupling scheme. In the notation adopted in this work, a
given subshell i is denoted as (nil

Ni
i+)Ji

or (nil
Ni
i−)Ji

. Here ni and li represent the usual principal
and angular momentum quantum numbers, Ni represents the number of equivalent electrons
within the same subshell while Ji denotes the total angular momentum that the electrons in the
subshell couple to. Finally, we adopt the + and − notation to denote j = l+1/2 and j = l−1/2,
respectively. The total angular momentum of the level given by the coupling of all subshells
J = J1 + J2 + . . . , is also indicated as a subscript. As an example, the ground level of Nd III is
labeled as ((4f3−)9/2 (4f

1
+)7/2)4 - in this case 3 equivalent electrons in a 4f5/2 subshell couple to

give J1 = 9/2 while there is only one electron with j = 7/2, and, therefore, J2 = 7/2. The level
has a total angular momentum of J = 4.

A visual comparison of the results with the results from Gaigalas et al. and with the NIST
data is shown in Figure 3.2 while the level density distribution for of all the calculations under
analysis can be seen in Figure 3.3.

1The results of this calculation were also studied in [3] and are labeled simply as Strategy C.



3.1. Calculations on Nd III 37

Table 3.2: First 45 energy levels for Nd III calculated using FAC for the approaches used in this work (Calculation
A and Calculation B) and described in the text. The states are labeled according to the FAC classification under
a jj-coupling scheme. A full description of the notation used in the level classification is given in Section 3.1.1.
The parity (P ) of each level and its statistical weight g = 2J + 1 are also shown.

Configuration Level P g
Calculation A Calculation B

Energy[eV] Energy [cm−1] Energy [eV] Energy [cm−1]
4f4 ((4f3−)9/2 (4f

1
+)7/2)4 + 9 0.000 0.00 0.000 0.00

4f4 ((4f3−)9/2 (4f
1
+)7/2)5 + 11 0.131 1059.29 0.142 1145.44

4f4 ((4f2−)4 (4f
2
+)6)6 + 13 0.254 2050.96 0.275 2222.25

4f4 ((4f1−)5/2 (4f
3
+)15/2)7 + 15 0.362 2927.57 0.395 3186.99

4f4 ((4f1−)5/2 (4f
3
+)15/2)8 + 17 0.451 3638.82 0.495 3995.87

4f4 ((4f3−)9/2 (4f
1
+)7/2)1 + 3 1.543 12448.83 1.510 12179.45

4f4 ((4f2−)4 (4f
2
+)4)2 + 5 1.574 12703.00 1.543 12448.29

4f4 ((4f2−)4 (4f
2
+)4)3 + 7 1.638 13215.90 1.614 13019.66

4f4 ((4f2−)2 (4f
2
+)4)2 + 5 1.695 13675.57 1.673 13500.64

4f4 ((4f2−)2 (4f
2
+)6)4 + 9 1.706 13763.62 1.687 13609.60

4f4 ((4f1−)5/2 (4f
3
+)15/2)5 + 11 1.792 14456.14 1.783 14384.55

4f4 ((4f3−)9/2 (4f
1
+)7/2)6 + 13 1.829 14756.54 1.799 14514.60

4f4 ((4f3−)9/2 (4f
1
+)7/2)7 + 15 1.927 15545.87 1.905 15367.47

4f4 ((4f4+)8)8 + 17 2.009 16206.81 1.99 16115.25
4f3 5d ((4f3−)9/2 (5d

1
+)3/2)6 − 13 2.089 16854.64 2.024 16327.18

4f4 ((4f4−)4)4 + 9 2.291 18483.69 2.026 16344.04
4f3 5d ((4f3−)9/2 (5d

1
+)3/2)5 − 11 2.297 18528.15 2.154 17379.52

4f4 ((4f3−)9/2 (4f
1
+)7/2)2 + 5 2.311 18641.07 2.230 17988.15

4f4 ((4f3−)9/2 (4f
1
+)7/2)3 + 7 2.435 19641.45 2.234 18022.07

4f4 ((4f2−)4 (4f
1
+)7/2)7 − 15 2.495 20125.32 2.250 18150.44

4f4 ((4f2−)4 (4f
2
+)4)5 + 11 2.516 20292.87 2.264 18261.27

4f4 ((4f2−)4 (4f
1
+)7/2)6 − 13 2.550 20569.32 2.361 19048.85

4f4 ((4f2−)4 (4f
2
+)6)4 + 9 2.571 20744.00 2.389 19268.46

4f4 ((4f2−)4 (4f
2
+)4)3 + 7 2.612 21070.00 2.447 19736.73

4f4 ((4f1−)5/2 (4f
3
+)15/2)6 + 13 2.643 21321.86 2.488 20070.13

4f4 ((4f2−)4 (4f
1
+)7/2)8 − 17 2.647 21352.68 2.496 20137.66

4f4 ((4f2−)4 (4f
2
+)6)5 + 11 2.657 21436.20 2.516 20293.78

4f4 ((4f2−)4 (4f
2
+)4)7 + 15 2.712 21876.84 2.536 20459.79

4f4 ((4f3−)9/2 (4f
1
+)7/2)2 + 5 2.745 22146.87 2.545 20529.55

4f4 ((4f2−)4 (4f
1
+)7/2)7 − 15 2.747 22156.90 2.579 20806.67

4f4 ((4f1−)5/2 (4f
3
+)9/2)4 + 9 2.771 22356.95 2.610 21058.01

4f4 ((4f1−)5/2 (4f
3
+)15/2)6 + 13 2.829 22824.79 2.624 21170.85

4f4 ((4f2−)4 (4f
2
+)6)8 + 17 2.868 23139.74 2.628 21202.258

4f4 ((4f2−)4 (4f
2
+)4)1 + 3 2.876 23199.21 2.652 21391.94

4f4 ((4f4+)5)5 + 11 2.897 23367.24 2.728 22006.49
4f4 ((4f1−)5/2 (4f

2
+)6)9 − 19 2.929 23624.77 2.728 22007.21

4f4 ((4f1−)5/2 (4f
3
+)15/2)9 + 19 2.967 23937.13 2.750 22185.03

4f4 ((4f2−)2 (4f
2
+)4)3 + 7 2.971 23970.13 2.780 22425.68

4f4 ((4f1−)5/2 (4f
2
+)6)8 − 17 3.083 24868.54 2.783 22449.98

4f4 ((4f2−)4 (4f
2
+)4)0 + 1 3.122 25182.27 2.811 22672.33

4f4 ((4f2−)4 (4f
2
+)4)8 + 17 3.154 25442.71 2.847 22969.56

4f4 ((4f3−)3/2 (4f
1
+)7/2)2 + 5 3.190 25730.02 2.873 23175.14

4f3 5d ((4f3−)9/2 (5d
1
+)5/2)5 − 11 3.197 25786.23 2.878 23218.22

4f4 ((4f1−)5/2 (4f
3
+)3/2)1 + 3 3.218 25957.35 2.925 23591.53

4f3 5d ((4f3−)9/2 (5d
1
+)5/2)3 − 7 3.242 26150.56 2.938 23699.34
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Figure 3.2: Energy levels for configurations of Nd III calculated with FAC and MCDFGME, compared with the
results from Gaigalas et al. obtained with the GRASP2K code and with NIST data.

We can clearly see that the FAC results for Calculation B appear to match reasonably well
the ones obtained with the GRASP2K code, specially for the lowest lying configurations. A less
accurate match is achieved for the 4f2 5d2 and 4f2 5d 6d as FAC seems to underestimate the
energies values of those configurations. However, we also note that only data for the ground
state and for 4f3 5d is available in NIST. Not any other database were found for the energy
levels of Nd III and hence, no reliable experimental data exists for configurations beyond 4f35d.

One important point that becomes clear from the FAC results is how sensitive RCI
calculations are to the configurations used when the number of configurations included in the
basis set is very small. A more precise calculation would require the study of the convergence
of the results with the successive inclusion of more configurations in the basis set. In our
particular case, the disparity of results from Calculations A and B of FAC alerts for the fact
that the energy levels have not yet converged, despite the good results obtained with
Calculation B. Hence, although RCI codes can provide a very time efficient calculations when
only few configurations are included, which allow for systematic calculations of many ions (as
achieved in [2]) one should note that the inclusion of a much higher number of configurations
can have a significant impact in the calculation. Moreover, energetic configurations including
electrons in a 6f shell and beyond, may have a particular high impact in the opacity at high
frequencies, as it will be discussed in Section 3.1.6. For all these reasons, we plan to do a more
in-depth calculation of Nd III (and of U III) in the future, and assess the impact of the
inclusion of different shells in the calculations.

In the case of MCDFGME calculations, the energy levels computed have significantly lower
energy than the ones obtained with GRASP2K and FAC. This was to be expected given that
neither electron-electron nor core correlations were accounted for in the MCDF self-consistence
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(a) FAC Calculation A (b) FAC Calculation B

(c) MCDFGME (d) GRASP2K (Gaigalas et al.)

Figure 3.3: Level density for the two different calculations performed with FAC and MCDFGME, and also
performed by Gaigalas et al. with GRASP2K

process. However, one should notice that, for the most excited levels for each configuration,
where the impact of the electronic correlations is at its lowest, a reasonable agreement with
Calculation B from FAC was reached. The agreement is particularly good for 4f3 5d and 4f2 5d2.

3.1.2 Lines and oscillator strengths for NdIII

LTE opacity estimates depend, not only, on the energy level structure of the ions but are also
dependent on the oscillator strengths associated between the possible transitions between the
levels. In this work, we mainly focused on dipole electric transitions (E1). These so-called
“allowed transitions” make up the major contribution of the opacity at the visible, in particular
at visible and infrared wavelengths. However, the inclusion of E2 and M1 transitions should
also be considered for a complete description. This is specially important for singly ionized
rare-earth ions, where many of the low-lying levels have similar parity. Only considering the
allowed E1 transitions in this case is not sufficient for a reliable model, as this would allow a
lack of lines in the infrared and near-infrared part of the spectra [39]. Although this effect has
been shown to affect the doubly-ionized counterparts of lanthanides and actinide elements, it
is at a much lower degree however and, therefore, should not have an impact on the particular
shape of the spectra.
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Table 3.3: Wavelength and gf -values for 45 E1 transitions of Nd III. The states are labeled according to the
FAC classification under a jj-coupling scheme. A full description of the notation used in the level classification
is given in Section 3.1.1.

Upper Level Lower Level Calculation A Calculation B

Wavelength [Å] gf Wavelength [Å] gf

((4f 3
−)9/2(4f

1
+)7/2)5 ((4f 3

−)9/2(5d
1
−)3/2)6 6586.85 5.12635e-04 4742.12 5.14952e-04

((4f 2
−)4(4f

2
+)6)6 ((4f 3

−)9/2(5d
1
−)3/2)6 7089.71 9.17549e-05 4976.13 8.85317e-05

((4f 1
−)5/2(4f

3
+)15/2)7 ((4f 3

−)9/2(5d
1
−)3/2)6 7610.23 1.08729e-05 5203.10 9.92447e-06

((4f 3
−)9/2(4f

1
+)7/2)4 ((4f 3

−)9/2(5d
1
−)3/2)5 5753.89 4.62713e-02 4310.49 4.54245e-02

((4f 3
−)9/2(4f

1
+)7/2)5 ((4f 3

−)9/2(5d
1
−)3/2)5 6159.88 4.61819e-03 4516.72 4.52448e-03

((4f 2
−)4(4f

2
+)6)6 ((4f 3

−)9/2(5d
1
−)3/2)5 6597.49 2.35935e-04 4728.52 2.25520e-04

((4f 2
−)4(4f

2
+)6)6 ((4f 2

−)4(4f
1
+)7/2)11/2 6278.17 6.97646e-04 4562.21 6.87585e-04

((4f 1
−)5/2(4f

3
+)15/2)7 ((4f 2

−)4(4f
1
+)7/2)11/2 6682.95 1.54606e-04 4752.27 1.46919e-04

((4f 1
−)5/2(4f

3
+)15/2)8 ((4f 2

−)4(4f
1
+)7/2)11/2 7064.85 2.73724e-05 4918.52 2.40736e-05

((4f 3
−)9/2(4f

1
+)7/2)5 ((4f 2

−)4(4f
1
+)7/2)11/2 5585.52 5.39831e-02 4200.04 5.28228e-02

((4f 2
−)4(4f

2
+)6)6 ((4f 2

−)4(4f
1
+)7/2)11/2 5942.97 7.22953e-03 4382.58 6.98763e-03

((4f 1
−)5/2(4f

3
+)15/2)7 ((4f 2

−)4(4f
1
+)7/2)11/2 6304.43 4.49451e-04 4557.68 4.19743e-04

((4f 1
−)5/2(4f

3
+)15/2)5 ((4f 2

−)4(4f
1
+)7/2)11/2 21439.46 3.11041e-07 9603.93 5.31843e-07

((4f 3
−)9/2(4f

1
+)7/2)6 ((4f 2

−)4(4f
1
+)7/2)11/2 22054.38 1.26130e-04 9889.24 2.08548e-04

((4f 1
−)5/2(4f

3
+)15/2)7 ((4f 2

−)4(4f
1
+)7/2)11/2 5899.47 1.15339e-04 4342.20 1.05825e-04

((4f 1
−)5/2(4f

3
+)15/2)8 ((4f 2

−)4(4f
1
+)7/2)11/2 6195.10 3.76938e-05 4480.58 3.37839e-05

((4f 3
−)9/2(4f

1
+)7/2)7 ((4f 2

−)4(4f
1
+)7/2)11/2 20963.52 2.10244e-08 9604.78 5.10794e-08

((4f 4
+)8)8 ((4f 2

−)4(4f
1
+)7/2)11/2 24860.75 5.94364e-07 10255.84 3.61562e-07

((4f 3
−)9/2(5d

1
−)3/2)6 ((4f 2

−)4(4f
2
+)4)7 24197.77 1.11615e-05 18672.64 5.32891e-07

((4f 2
−)4(4f

2
+)6)6 ((4f 2

−)4(4f
1
+)7/2)11/2 5380.85 6.73868e-02 4069.10 6.54916e-02

((4f 1
−)5/2(4f

3
+)15/2)7 ((4f 2

−)4(4f
1
+)7/2)11/2 5675.47 6.00890e-03 4219.62 5.72248e-03

((4f 1
−)5/2(4f

3
+)15/2)8 ((4f 2

−)4(4f
1
+)7/2)11/2 5948.55 2.20483e-04 4350.18 1.98772e-04

((4f 3
−)9/2(4f

1
+)7/2)6 ((4f 2

−)4(4f
1
+)7/2)11/2 15893.03 5.14218e-07 8424.73 8.86755e-08

((4f 3
−)9/2(4f

1
+)7/2)7 ((4f 2

−)4(4f
1
+)7/2)11/2 18385.05 5.23607e-05 9024.87 8.41816e-05

((4f 4
+)8)8 ((4f 2

−)4(4f
1
+)7/2)11/2 21315.53 5.07535e-05 9597.34 6.66135e-05

((4f 3
−)9/2(5d

1
−)3/2)6 ((4f 1

−)5/2(4f
3
+)15/2)6 20645.52 2.33688e-08 8583.36 6.92959e-07

((4f 3
−)9/2(5d

1
−)3/2)6 ((4f 4

+)5)5 17607.78 1.53302e-07 9435.64 1.73604e-06
((4f 3

−)9/2(5d
1
−)3/2)5 ((4f 4

+)5)5 21612.42 1.33552e-06 4134.26 4.62949e-04
((4f 1

−)5/2(4f
3
+)15/2)8 ((4f 1

−)5/2(4f
2
+)6)13/2 5552.05 4.57795e-04 8605.78 1.40322e-05

((4f 4
+)8)8 ((4f 1

−)5/2(4f
2
+)6)13/2 16972.29 8.07336e-06 3946.00 8.15943e-02

((4f 1
−)5/2(4f

3
+)15/2)7 ((4f 1

−)5/2(4f
2
+)6)13/2 5191.30 8.46519e-02 4059.94 2.32216e-03

((4f 1
−)5/2(4f

3
+)15/2)8 ((4f 1

−)5/2(4f
2
+)6)13/2 5418.84 2.50939e-03 7859.28 9.25200e-06

((4f 3
−)9/2(4f

1
+)7/2)7 ((4f 1

−)5/2(4f
2
+)6)13/2 14119.28 5.20736e-07 8289.90 1.98868e-05

((4f 4
+)8)8 ((4f 1

−)5/2(4f
2
+)6)13/2 15786.00 1.36057e-05 3443.77 7.38009e-05

((4f 2
−)4(4f

1
+)7/2)11/2 ((4f 2

−)4(4f
2
+)4)8 20750.67 2.21069e-04 3574.15 1.38681e-02

((4f 3
−)9/2(4f

1
+)7/2)4 ((4f 3

−)9/2(5d
1
+)5/2)5 4306.96 1.18367e-04 3705.49 6.71190e-03

((4f 3
−)9/2(4f

1
+)7/2)5 ((4f 3

−)9/2(5d
1
+)5/2)5 4530.46 1.51748e-02 6546.95 1.59650e-03

((4f 2
−)4(4f

2
+)6)6 ((4f 3

−)9/2(5d
1
+)5/2)5 4762.81 7.20786e-03 6857.87 7.17004e-05

((4f 2
−)2(4f

2
+)6)4 ((4f 3

−)9/2(5d
1
+)5/2)5 10407.32 1.77735e-03 7002.13 7.15491e-03

((4f 1
−)5/2(4f

3
+)15/2)5 ((4f 3

−)9/2(5d
1
+)5/2)5 11320.33 7.15782e-05 8207.98 2.10026e-02

((4f 3
−)9/2(4f

1
+)7/2)6 ((4f 3

−)9/2(5d
1
+)5/2)5 11489.48 5.69308e-03 9618.30 1.58838e-03

((4f 4
−)4)4 ((4f 3

−)9/2(5d
1
+)5/2)5 14547.20 1.57793e-02 3387.64 1.74943e-02

((4f 2
−)4(4f

2
+)4)5 ((4f 3

−)9/2(5d
1
+)5/2)5 20173.69 1.03360e-03 5946.70 1.33552e-05

((4f 3
−)9/2(4f

1
+)7/2)4 ((4f 3

−)9/2(5d
1
+)5/2)3 4219.52 1.88523e-02 6133.79 6.35647e-05

((4f 2
−)4(4f

2
+)4)2 ((4f 3

−)9/2(5d
1
+)5/2)3 8888.05 8.86343e-06 6311.75 2.04236e-06



3.1. Calculations on Nd III 41

Table 3.3 displays the results for the wavelength and gf -values 45 transitions of the two FAC
calculations. In Figure 3.4 a plot of the weighted oscillator strengths (gf -values) as a function of
wavelength is shown, including comparisons with the GRASP2K data set and the experimental
lines available in the DREAM database.

Figure 3.4: Comparison of the results for the oscillator strengths of Nd III, plotted as a function of the
wavelength, for the different calculations performed with FAC and MCDFGME and with the results from Gaigalas
et al. with the GRASP2K code and experimental lines of the DREAM database.

At first glance, it appears that in this situation, FAC is calculating significantly larger
values for oscillator strengths than the generality of the other codes. Unlike when we looked at
individual energy levels, the similarity between the results of GRASP2K code and FAC is not
as apparent, and the results from MCDFGME appear to provide a better match. However, the
number of lines computed by FAC is significantly higher than that of the other codes. As a
result, a portion of the gf -values produced by FAC are related to lines for which no data is
available.

After carefully analyzing the data, we were able to determine that the cluster of values that
arises around λ ∼ 15000 Å is mostly produced by oscillator strengths of transitions between
the configurations 4f3 6d and 4f3 7p. A plot of the weighted oscillator strengths related to
the E1 transitions between these two configurations is displayed in Figure 3.5. As predicted
by our previous discussion, the number of levels computed by the GRASP2K computation is
much lower than in the case of FAC. For instance, for 4f3 7p, just two levels are provided in the
paper published by Gaigalas et al. Consequently, and accounting for the fact that a line by line
comparison is not viable and potentially not accurate in this case (as discussed in more detail
in) Section 2.5) this renders the results produced by both codes incomparable.

The oscillator strengths from MCDFGME for this 6d → 7p transition do appear to
reproduce better the GRASP2K data for this same transitions. As it was previously stated, the
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calculations from MCDFGME do not take into consideration correlation effects, so the results
are less accurate than any of the other calculations considered in this discussion. However,
from Equations (2.52), (2.56) and (2.57) we see that f -values only directly depend on the
energy difference between two levels and not on the specific energy of the levels. Furthermore,
we notice that the difference between the energy of the ground levels of both configurations is
roughly the same. In particular, for GRASP2K the energy difference of the ground levels of the
4f3 6d and 4f3 7pis ∆E6d→7p

GRASP2K=1.38 eV while for MCDFGME is of ∆E6d→7p
MCDFGME=1.31 eV. For

this reason we believe that a comparison between the results of MCDFGME and of GRASP2K
is legitimate despite the energy differences we find when comparing the energy levels directly.

Figure 3.5: Comparison of the results of the different calculations for the oscillator strengths of Nd III, plotted
as a function of the wavelength, for all the transitions that occur between the 4f3 6d and the 4f3 7p.

It is worth noting that some convergence problems were found for some levels computed with
MCDFGME. In any case, and given the previously stated assumptions, we notice that we still
obtain larger gf -values for both FAC calculations that are not replicated by the MCDFGME
calculation. Furthermore, for λ > 5000 Å, the general pattern of oscillator strengths found with
GRASP2K appears to resemble the one obtained with MCDFGME.

Taken together, this analysis shows that, regardless of the reduced number of lines
computed in GRASP2K for the 6d → 7p transition, the MCDFGME calculations do replicate
the calculations from Gaigalas et al. more accurately than the FAC ones. Although there can
be some contribution of lines that did not converge in the MCDFGME calculation to explain
part of the FAC values, it would not be enough to explain the total number of lines with
gf > 10−1, in particular in IR at λ ∼ 15000 Å and in UV part of the spectrum. Furthermore,
the energy difference between the ground states of this transition for FAC is lower when
compared with the results of both MCDFGME and GRASP2K, as ∆E6d→7p

FAC =0.78 eV.
For this reason, one must assume that, in the worst-case scenario, FAC is overestimating
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the oscillator strengths for 6d → 7p transition. Therefore, we must proceed with care with the
opacity calculations. In the next section, we investigate how the gf -values actually impact the
expansion opacities.

3.1.3 Contribution of lines to the opacity

Since the previous analysis was not fully conclusive on the accuracy of the FAC calculations
regarding the oscillator strengths and the gf -values, it becomes natural to look into how
differences in these values can affect the final opacity calculations. As we are only focused on
the timescales of tej . 1 day, the optical depth can be calculated under an LTE approximation.
From Equation (2.13) we have that

τk =

(
πe2

mec

)(
ntexp
g0

)
λkgkfke

−Ek/kBT =

(
πe2

mec

)(
ntexp
g0

)
Γk. (3.1)

Here, we can clearly see that the variation of τ for a specific ion in the ejecta is all contained
in the new defined variable Γ. Moreover, Γ only depends on atomic parameters - the wavelength
of the transition λk, the weighted absorption oscillator strength gkfk ≡ (gf)k and the energy of
the lower level of the transition Ek. This implies that a specific line will have a bigger impact
on the shape of the ejecta the greater Γ is.

In the line of study of kilonovae opacities, we define a line to be “strong” if it has a
significant contribution to the expansion opacities of the ejecta. In practice, this means that
the probability of photons being absorbed by those transitions is high enough to be relevant to
the final spectrum. Previously published work [3, 67, 70] has estimated the effective line
strength contribution or line strength of the transition just by taking the gf -values weighted
by the Boltzmann factor, i.e., gfe−Ek/kBT . In this work we propose the use of Γ(λ) as a more
solid quantity to quantify the line strength. There are two main arguments for this particular
choice. Firstly, Γ takes into account the full range of atomic parameters relevant to the
description of the opacities under the LTE approximation. For that reason, it can be used to
compare the effective atomic contribution of different ions to the opacity. Furthermore, any
threshold used to distinguish between a “strong” and a “weak” transition will be wavelength
independent, in contrast to the case where the wavelength is not considered in the definition.

In the particular case of this work, we are considering strong lines with Γk > 10−10 cm. This
is comparable to the more usual definition of gf exp(−Ek/kBT ) > 10−5 in the visible region, and
corresponds to an optical depth of τk & 1 for both lanthanides and actinides. Nevertheless, this
threshold is just used as a visual cue for facilitating the comparison between different results, as
all the lines calculated were used for the opacity calculations. In any case, a solid definition of line
strength is important because using a whole set of lines becomes problematic as the complexity
of kilonovae models increases and more ions are needed for a more complete description. f -block
elements are of particular importance due to their large number of lines. This issue becomes
even more critical as we approach the far infrared and radio wavelengths. Nevertheless, even in
the NIR region the number of strong lines considered, depending on the definition used and the
threshold defined can differ, for nearly one order of magnitude, as it will be seen in Section 3.2.2
when we examine calculations for U III.

From the point of view of the atomic calculations, this definition is also important as it can
be used as estimator to investigate and quantify the impact of the inclusion of more energetic
configuration in the basis set of the RCI or MCDF calculations. Moreover, the number of strong
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lines can be used to compare the impact of different ions and/or of different calculations on the
opacity spectra, without the need of performing simulations for specific models.

Although Γk(λ) depends on an equilibrium level population distribution, the features of this
function for comparing the atomic contribution of a single ion to the opacities should still hold
even at lower temperatures. Most ions in the media will deexcite and remain at lower energy
levels as the medium expands and freezes with time. At most, the level density distribution will
be sharper than the Boltzmann factor’s expected exponential distribution. Here, collisional and
photoionization rates are crucial in determining the precise level distribution.

3.1.4 Γ(λ) for Nd III

Figure 3.6: Plot of Γ(λ), with T = 10000 K for the results obtained by the different FAC calculations and
MCDFGME and comparison with the results of GRASP2K for Nd III.

A plot of Γ as a function of the wavelength, for Nd III is shown in Figure 3.6. Based
on previous work for doubly ionized ions [2, 3, 67], and in order to facilitate comparisons, a
temperature of T = 10000 K is used. Here we see that the picture is very different from when
we were considering the gf -values. To begin with, we can see that the evolution of this quantity
with wavelength is consistent across all codes, appearing to decay as transitions become less
energetic. This is explained by the dependency of Γk(λ) on the exponential Boltzmann factor,
which in turn is only dependent on the energy of the transition’s lowest level. As a result of
their higher occupancy density in equilibrium, lower energy states have a bigger contribution to
the opacity.

Looking at the level distribution in Figure 3.3 we find that the density of levels is larger
for excitation energies between Ek ∼ 10 and Ek ∼ 20 eV. This explains why Γk(λ) is higher
in the visible and UV part of the spectrum, as most transitions to lower energies levels will be
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conducted at lower wavelengths. On the other hand, despite the very high density of levels of
neodymium, the density of low-lying levels (with E < 5 eV) is particularly low. This implies
that infrared transitions, although accounting for the vast majority of transitions, have a much
lower impact on the opacities. In fact, after 10000 Å, only a few transitions are found with
Γk & 10−10 cm. For Γk < 10−10 cm, τ < 1, the contribution of such transitions to the opacity
calculations is highly suppressed.

Taking into considering the strengths of the lines and their contribution to the optical depth,
we can now safely conclude that any overestimation of the FAC values for the 6d→ 7p transition,
as discussed in Section 3.1.2 won’t have any measurable impact in the final opacity spectra. As
it can be seen from fig. 3.7 all E1 transitions between both configurations have Γk < 10−10 cm,
except for the results obtained with MCDFGME. Due to the lack of electronic correlations in
the MCDFGME calculation, and consequent underestimation of the energy levels, we do expect
Γk to be overestimated for this particular calculation. Thus, we can confidently conclude, from
the low values of Γk, that the impact of 6d → 7p transitions will be negligible and, therefore,
any overestimation of the gf -values in the FAC calculation won’t affect the final spectra.

Figure 3.7: Plot of Γ(λ), with T = 10000 K, or the results obtained by the different FAC calculations and
MCDFGME and comparison with the results of GRASP2K for the 6d → 7p transition of Nd III.

The impact of the results obtained for the different codes on the opacities calculations can
be measured by looking at the number of strong lines. The total number of strong transitions
(fulfilling Γk > 10−10 cm at T = 10000 K) for 3 main wavelength ranges is shown in Table 3.4
while a plot of the dependence of the number of strong lines with the wavelength is shown in
Figure 3.8.

As predicted, the number of strong lines greater is in the UV and visible regions of the
spectrum for FAC’s and GRASP2K calculations due to the higher contribution of low-lying levels
to Γk. For the case of the MCDFGME calculation, as the energy of the levels are underestimated
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Figure 3.8: Number of strong transitions for Nd III as a function of the wavelength obtained with both FAC
calculations and with the MCDFGME calculations compared with the results of GRASP2K of Gaigalas et al.

due to the lack of correlations, we see an increase of the number of strong IR transitions when
compared to the other results, also associated with a very low number of strong lines in the
UV. Moreover, we see the effect of the inclusion of the 4f36f configuration in Calculation A
of FAC when compared with Calculation B. The upwards shift of the energy levels induced by
the inclusion of a 6f shell in the basis set increases, in general, the energy of the transitions,
reducing the number of strong lines in the IR and visible regions while increasing that number
in the UV.

3.1.5 Ionic density population of Nd III

The accuracy of the opacity calculations, not only relies on the accurate calculation of atomic
parameters described in the previous sections, but also depends on the mass fraction of that
element present in the ejecta. Thereby comparing the results of simulations with the observed
spectra from different events, we can directly infer the presence of different species in the plasma
and correct the current models.

The determination of the ionic density in the plasma is, however, also dependent atomic
properties of the elements under consideration. In particular, in LTE, ionic balance is
established and can be calculated by means of the Saha equation given in Equation (2.21),
which depends on the ionization potential energies χN−1 on the partition functions UN .
Although the ionization energies are usually easy to calculate or even measured experimentally
for specific ions, the partitions functions involve a weighted sum over all the energy levels of
that ion. While the contribution of high-lying levels is usually negligible, as their weight to the
sum decreases exponentially, an accurate and extensive knowledge of the energy of low-lying
levels is required to ensure the accurate calculation of the partitions functions and,
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Table 3.4: Number of strong lines computed for the 4 calculations under analysis, FAC-A, FAC-B, MCDFGME
and GRASP2K, for 3 wavelength ranges: UV (0 - 4000 Å), Visible (4000 - 8000 Å) and IR (8000 - 25000 Å)

Code Number of lines

UV
(0-4000) Å

Visible
(4000-8000) Å

IR
(8000 - 25000) Å

FAC-A 75724 2049 375
FAC-B 67878 3008 924

MCDFGME 1620 1686 2162
GRASP2K 26537 2423 1234

consequently, of the density of ions present in the medium.
The impact on the ionic density calculations from the lack of extensive atomic data can be

seen in Figure 3.9 where the ionization-stage fraction (z) for a pure Nd gas is plotted using the
available data from NIST. We note that for a pure gas of an element X, the number density is
simply given by

nX =
NA

MX
ρ (3.2)

where NA = 6.02214076 × 1023 mol −1 is the Avogadro constant, MX is the molar mass of the
element X and ρ is the mass density of the gas. According to the NIST estimates of the partition
functions, virtually no Nd III is found at T = 10000 K, accounting for an ionization fraction
zNdIII = nNdIII/nNd ≈ 10−5. However, when larger datasets are used, ionization fractions of the
order of zNdIII ≈ 0.01 at T = 10000 K are predicted [72].

Figure 3.9: Ionization-stage fraction (z) for a pure neodymium gas for a density ρ = 1 × 10−13 based on the
atomic data for Nd I - IV found in NIST.

During the time period of this work, we only produced and analyzed data for doubly ionized
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neodymium. For that reason, no reliable calculations of the partitions functions were produced.
Nevertheless, we noticed that the opacity calculations for Nd III computed by Gaigalas and
co-workers was better reproduced by using zNdIII ≈ 0.01. Considering that the Gaigalas et
al. calculations are one of the most relevant ones regarding lanthanides and that an extensive
comparison between the results from this work and their data for Nd III is performed in this
work, we decided to use an ionization fraction z(T = 10000 K)NdIII = 0.01 for the opacity
calculations presented. We are working on atomic calculations for the neutral Nd and for the
singly and triply ionized species to be able to provide a full computation of the ionic density
populations of this ion until temperatures of T ∼ 15000 K.

3.1.6 Opacity of Nd III

The preceding discussion concerning the precision of the various codes may be easily extended
to the opacities. The expansion opacity was calculated using the LTE approximation over a
time period of one day following the explosion, when the medium density is about ρ = 10−13

cm−3 [33]. Additionally, a temperature of T = 10000 K was specified based on prior estimates
for doubly ionized ions [2, 70]. The ionic density population of zNdIII = 0.01 was used based on
the discussion on Section 2.2. The results are shown in Figure 3.10.

Figure 3.10: Expansion opacity calculations for all the calculations done with FAC and MCDFGME and
comparison with the results from Gaigalas et al. with GRAPS2K. The opacity was evaluated at t = 1 day for the
typical density and temperature values of ρ = 10−13 cm−3and T = 10000 K assumed by other calculations.

Two clearly distinct regions can be immediately identified in the plot based on overall the
convergence of the codes on the behavior of the curves: A UV/Visible region with
λ . 7000 Å, where less agreement is found between calculations; and an infrared region with
λ & 7000 Å, where we notice a general decrease in the opacity, with far greater agreement
between calculations.
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In the lower wavelength region we find not only a discrepancy in the absolute value of the
opacities (with the highest opacity output provided by the FAC calculation) but also differences
in the structure of the curves. We notice that even when using the same code, in this case FAC,
the position of the first peak in the high-UV region does not match between Calculations A and
B. This may be explained by the increased energy difference between the excited and ground
states as a result of the 4f3 6f configuration being included in the Calculation A. Additionally,
while the position of the first peak in the GRASP2K calculation appears to be similar to that
in FAC Calculation B, the shape of the curve at λ ∼ 2000 Å is completely different with two
bumps instead of one. Finally, as predicted from prior considerations, particularly the number of
strong lines in the UV region, the MCDFGME calculation’s output opacity is significantly lower
than the output of the other calculations. These discrepancies demonstrate that the calculations
in this region are highly dependent not only on the number of lines calculated, but also on the
set of configurations used in the calculation.

This higher sensitivity of the opacity curve in the UV/visible region, although it forces
further optimization of the calculations in order to provide accurate results and comparisons to
experiment, it can also be seen as advantageous since certain spectral features, characteristic
of different ions, could, in principle, be seen in the and studied in this region. This requires
great precision on energies for low-lying levels, as they are the ones that most contribute to
a line’s strength but, but in particular, it requires great accuracy on the wavelength of the
transitions that may induce these features. Identification of these transitions is, therefore, of
utmost importance in order to reduce the number of calculations needed, and consequently
computation time required in the study of such spectral features.

On the other hand, in the IR range, we observe that the calculations agree far better than
they do in the ultraviolet and visible range. Indeed, the curve appears to behave consistently
throughout all calculations, with MCDFGME outputs having greater values than those from
the other codes. This is not surprising, as the number of strong transitions in this region for
MCDFGME is greater than any of the other codes. Nevertheless, we can see the effect of a lower
number of transitions with Γ ∼ 10−10 cm. Even though the number computed by FAC (in both
approaches) is largely superior to the number used in the Gaigalas et al. calculation, the actual
number of lines that actively contribute to the opacity is similar, as could be estimated by the
number of strong displayed in Table 3.4.

Contrary to what occurs in the UV areas, the IR region is significantly less sensitive to the
quality or the amount of computed lines. Additionally, we can observe that the dispersion of
values is considerably greater in the higher wavelength region than in the lower wavelength zone.
As τ ∼ 0 for small Γk, we have that 1− eτ ≈ τ and hence

κexp ≈ 1

ρctexp

∑
k

λk
∆λ

τk ∼ Γk. (3.3)

This implies that when the optical depth decreases, the linear dependency of the opacities on
Γk rises. This large fluctuation in opacity with wavelength is thus associated with the large
dispersion of points we find for the gf -values and, consequently for Γk as seen in Figure 3.4 and
Figure 3.6.

In any case, the employment of extremely precise, but computationally expensive, atomic
codes in this region may be superfluous as no spectral features seem to be noticeable in this
region. Calculations with RCI codes, even without the most appropriate basis set, can yield
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results comparable to theoretically more accurate codes like GRASP2K and a systematic
calculation for a large number of lanthanides and actinides ions might be accomplished
considerably more quickly.

3.1.7 Impact of the choice of the active space in the calculations

Considering that one of the objectives of this study is to offer an assessment of the
performance of various methods, it is critical to examine this scenario in which RCI
calculations outperform MCDF calculations in terms of accuracy. The sole difference between
the active space of configurations utilized in Strategies C and C with 5s and 5p in the Gaigalas
et al. calculations with GRASP2K [3] is that the latter case includes 5s and 5p orbitals. While
for Strategy C energy levels are computed using MCDF calculations followed by RCI
calculations which include the Breit interactions and QED corrections, Strategy C with 5s and
5p uses the wave functions computed in Strategy C in a full RCI calculation with the addition
of configurations in the basis set, including the 5s and the 5p shells. Despite the latter
calculation performing a full RCI calculation, the addition of the 5s and the 5p shells in the
configuration space dramatically changed their results.

As demonstrated by Cowan et al. in [66], the collapse of the 4f radial function occurs
considerably more rapidly than that of other orbitals. As a result, the radii of the 4f orbital is
extremely small, making the orbital even tighter and closer to the core than the orbitals of 5s
and 5p. For that reason 4f orbitals have comparable (and even lower) energies to 5s and 5p.
As such, it is critical to include those shells in the active space in order to ensure an accurate
description. This, however, would make MCDF computations unreasonably expensive. What
this is actually showing is that the inclusion of these orbitals to the active space has a greater
effect on the calculations than the individual optimization performed by MCDF techniques. RCI
techniques can thus offer a more accurate description of the system at a significantly reduced
computational cost, if the active space is selected appropriately.

These same general considerations should hold when considering actinides. It is worth noting,
that 5f orbitals extend further from the core and are more diffuse than 4f orbitals. As a result,
the 6s and 6p orbitals are unlikely to have as much influence on the calculations as they do in
the case of lanthanides. In this case, due to the larger 5f radii, interactions with 7s and 7p

orbitals tends to be stronger. On the other hand, 5f electrons are less bound to the core than
in the case of 4f electrons, which cause many more actinides to have a d or an s electron in the
ground configuration [73].

3.2 Calculations on U III

While lanthanide should account for the majority of f -shell elements produced in kilonovae via
the r-process, the contribution of actinides to the ejecta’s opacity cannot be overlooked. Indeed,
their properties are very similar to those of lanthanides, having a similar shell structure with
all principal quantum numbers increased by one. Therefore, most of the conclusions discussed
previously will also apply for actinides. The main difference lies in the higher radius of the
5f shell when compared to the 4f . Therefore, 5f electrons tend to be less deeply buried in
the core and less shielded from the effect of outer valence electrons than 4f electrons. This
effect associated to the higher Z of actinide elements can, in theory, contribute to a smaller gap
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between the ground state and the first few excited levels. Hence, we expect a higher density of
levels closer to the core, which may have a sizable impact in the opacities of those ions.

The narrow radii of the 4f orbitals of lanthanides lead the 4f electrons to be extremely
close together, resulting in significant mutual Coulomb repulsions. This impact is mitigated by
the larger dispersion of the 5f orbitals in actinides. On the other hand, spin-orbits interactions
increase because of the higher Z, which increase the impact of relativistic corrections.

In addition, it is worth mentioning that the vast majority of actinide elements (as all the
elements past uranium in the periodic table) do not have any stable isotopes. As a result,
the overall mass fraction of actinides in the kilonovae ejecta is expected to me lower than of
lanthanides [74]. Nevertheless, it is important to remember that even these radioactive species
have isotopes with half-lives of hours or even days, and thus, the opacity contribution of these
elements on such timescales cannot be disregarded.

For all of these reasons, and based on our prior Nd III results, we opted to proceed with an
FAC calculation for doubly-ionized uranium. The choice of this ion is self-explanatory, as it is
the actinide with the most comparable shell structure to Nd III. In this way, we can compare
these two ions directly and, hopefully, draw conclusions that can be applied to the rest of the
elements in the f -block. Furthermore, uranium is one of the most researched actinides and one
of the few for which structure calculations in weakly ionized species have been performed.

At the time of writing, the only experimental data available for actinide ions is from Blaise
et al. from 1992 [75]. Furthermore, two independent groups from the Los Alamos institute have
developed calculations for the first ionized states of Uranium using the CI-MBPT [76] and the
ATOMIC codes [77]. Only the data from Savukov et al. [5], who used a many body perturbation
theory approach, is publicly available. Finally, Sultana N. Nahar of the Ohio State University’s
Astronomy Department hosts and maintains the NORAD-Atomic-Data database [78], which
contains calculations for a broad range of structure calculations for important astrophysical
ions, including uranium, using the SUPERSTRUCTURE [79] algorithm. In that database,
however, only highly ionized elements are available.

3.2.1 Energy Levels

Based on the similarities between the shell structure of NdIII and UIII, as an initial approach
to the calculations, the basis set for the FAC RCI calculations was determined by raising the
principal quantum number n of the configurations used in the Nd III by one. The configuration
set of Calculation B of Nd III was chosen since that calculation produced the best results when
compared to the experimental NIST data.

Table 3.5 provides an overview of the FAC calculation achieved in the work as well as the
prior calculations for U III with the CI-MBPT code from Savukov et al. and of the experimental
data from Blaise et al. The first 45 energy levels calculated with FAC are shown in Table 3.6.

Although the name of the code used by Savukov et al. suggests the use of a variation of
a MBPT approach, the vast majority of the results published in [5], and that are used for
comparison in this work were performed using a hybrid configuration interaction (CI) plus
linearized coupled cluster (LCC) methods described in [6]. Despite having calculated a total of
192 levels and 3024 transitions, only the energies of 96 levels and the gf -values of 20 lines are
published. For the case of the experimental data provided by Blaise et al. only the data from
123 identified levels is available.
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Table 3.5: Summary of the different set of configurations use on the FAC calculation for U III. An overview of
the experimental data from Blaise et al. [75] and the calculations produced by Savukov et al. [5] using a hybrid
configuration interaction (CI) plus linearized coupled cluster (LCC) methods, described in [6], also shown. For
the CI+LCC calculations, we only show the configurations for which levels and lines data was published.

Label
Configurations All

Even Odd #Levels #Lines

FAC 5f4, 5f3 7p, 5f2 6d2

5f2 6d 7s, 5f3 6f 5f3 8p

5f3 6d, 5f3 7s,
5f3 7d 5f3 8s

2702 542264

CI+LCC - Savukov et al. 5f4, 5f26d2a 5f3 6d, 5f3 7sa 192b 3024c

Exp. - Blaise et al. 5f4, 5f37p, 5f26 d2

5f2 6d 7s
5f3 6d, 5f3 7s 123 -

a Only configurations for published levels and lines are shown.
b Only the energies for 96 levels are published.
c Only the gf -values for 20 lines are published.

Figure 3.11: Energy levels for configurations of U III calculated with FAC. The excitation energies are compared
with the experimental results from Blaise et al. [75] and the CI-MBPT from Savukov et al. [5].

We can observe from Figure 3.11 that, as with Nd III, we were able to reproduce the lowest
lying levels fairly accurately when compared to both experimental and computational data.

From spectroscopic studies, Blaise et al. determined 5f4 to be the ground configuration for U
III. On the other hand, the CI+LCC calculations suggest an electron in the 6d shell in the ion’s
lowest energy state. Our FAC calculations do provide better agreement with the experimental
data when it comes to the ground state and give the even 5f4 configuration has the ground
state of U III. This disparity between calculations, however, is not surprising given the high
diffuseness of the 5f shell, which makes the excitation energies of 5f and 6d exceedingly close
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Table 3.6: First 45 energy levels for U III calculated using FAC for the approaches used in this work (Calculation
A and Calculation B) and described in the text. The states are labeled according to the FAC classification under
a jj-coupling scheme. A full description of the notation used in the level classification is given in Section 3.1.1.
The parity (P ) of each level and its statistical weight g = 2J + 1 are also shown.

Configuration Level P g Energy [eV] Energy[cm−1]
5f4 ((5f4−)4)4 + 9 0.000 0.00

5f3 6d ((5f3−)9/2 (6d
1
−)3/2)11/2 − 13 0.131 1059.29

5f4 ((5f3−)9/2 (5f
1
+)7/2)5 + 11 0.254 2050.96

5f3 6d ((5f3−)9/2 (6d
1
−)3/2)5 − 11 0.362 2927.57

5f4 ((5f2−)4 (5f
2
+)6)6 + 13 0.451 3638.82

5f3 6d ((5f2−)4 (5f
1
+)7/2)7 − 15 1.543 12448.83

5f4 ((5f2−)4 (5f
2
+)6)7 + 15 1.574 12703.00

5f3 6d ((5f2−)4 (5f
1
+)7/2)6 − 13 1.638 13215.90

5f3 6d ((5f3−)3/2 (6d
1
−)3/2)3 − 7 1.695 13675.57

5f4 ((5f1−)5/2 (5f
3
+)15/2)8 + 17 1.706 13763.62

5f3 6d ((5f3−)3/2 (6d
1
−)3/2)0 − 1 1.792 14456.14

5f3 6d ((5f2−)4 (5f
1
+)7/2)8 − 17 1.829 14756.54

5f4 ((5f4−)2)2 + 5 1.927 15545.87
5f4 ((5f3−)9/2 (5f

1
+)7/2)1 + 3 2.009 16206.81

5f3 6d ((5f2−)4 (5f
1
+)7/2)6 − 13 2.089 16854.64

5f3 6d ((5f2−)4 (5f
1
+)7/2)7 − 15 2.291 18483.69

5f3 6d ((5f3−)9/2 (6f
1
−)5/2)5 − 11 2.297 18528.15

5f4 ((5f4−)4)4 + 9 2.311 18641.07
5f3 7s ((5f3−)9/2 (7s+1)1 − 9 2.435 19641.45
5f3 6d ((5f3−)9/2 (6f

1
−)5/2)4 − 9 2.495 20125.32

5f4 ((5f3−)3/2 (5f
1
+)7/2)3 + 7 2.516 20292.87

5f4 ((5f3−)3/2 (5f
1
+)7/2)2 + 5 2.550 20569.32

5f3 7s ((5f3−)9/2 (7s
1
+)1)5 − 11 2.571 20744.00

5f4 ((5f3−)9/2 (5f
1
+)7/2)2 + 5 2.612 21070.00

5f3 6d ((5f3−)9/2 (6f
1
−)5/2)3 − 7 2.643 21321.86

5f3 6d ((5f2−)2 (5f
1
+)7/2)1 − 3 2.647 21352.68

5f3 6d ((5f3−)3/2 (6f
1
−)5/2)4 − 9 2.657 21436.20

5f4 ((5f3−)9/2 (5f
1
+)7/2)3 + 7 2.712 21876.84

5f3 6d ((5f1−)5/2 (5f
2
+)6)9 − 19 2.745 22146.87

5f4 ((5f3−)9/2 (5f
1
+)7/2)6 + 13 2.747 22156.90

5f3 6d ((5f2−)2 (5f
1
+)7/2)2 − 5 2.771 22356.95

5f4 ((5f2−)2 (5f
2
+)6)4 + 9 2.829 22824.79

5f3 6d ((5f1−)5/2 (5f
2
+)6)8 − 17 2.868 23139.74

5f4 ((5f3−)3/2 (5f
1
+)7/2)5 + 11 2.876 23199.21

5f3 6d ((5f3−)9/2 (6f
1
−)5/2)2 − 5 2.897 23367.24

5f3 6d ((5f2−)4 (5f
1
+)7/2)7 − 15 2.929 23624.77

5f3 6d ((5f2−)4 (5f
1
+)7/2)11/2 − 12 2.967 23937.13

5f4 ((5f3−)9/2 (5f
1
+)7/2)7 + 15 2.971 23970.13

5f3 6d ((5f2−)4 (5f
1
+)7/2)6 − 13 3.083 24868.54

5f3 6d ((5f3−)9/2 (6f
1
−)5/2)3 − 7 3.122 25182.27

5f3 6d ((5f3−)3/2 (6d
1
−)3/2)2 − 5 3.154 25442.71

5f3 6d ((5f2−)4 (5f
1
+)7/2)5 − 11 3.190 25730.02

5f4 ((5f1−)5/2 (5f
3
+)15/2)5 + 11 3.197 25786.23

5f4 ((5f2−)4 (5f
2
+)6)4 + 9 3.218 25957.35
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and susceptible to relativistic effects. Similarly, we calculated lower values for the level energies
of 5f2 6d2 when compared to the other results, arguably due to this same effect. Furthermore,
as discussed for the calculations on Nd III, the number of configurations included in the FAC
calculation for U III is not enough to ensure a convergence of the results nor the inclusion of
the most important correlation effects to a full extent. For this reason, these results can still be
improved in further calculations with a larger basis set.

Nonetheless, we are convinced that the FAC calculations are reasonably accurate, since only
slight discrepancies of ∆E ∼ 1 eV were observed for the few levels for which experimental data
is available, which is within the uncertainty of the FAC code.

It is important to notice that, as predicted, the level density of low-lying levels is significantly
greater when compared to the previously discussed calculations on Nd III, as it can be seen
from Figure 3.12. Despite the fact that the same number of levels were calculated in both
situations (due to the identical structure of the configurations utilized in the basis set), we
notice a considerably greater level density at energies below 10 eV. This is specially important
for the opacity calculations, as the population of low-lying levels is favored in LTE conditions.

Figure 3.12: Level density distribution of U III as calculated from FAC.
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Table 3.7: Wavelength and gf -values for 45 E1 transitions of U III. The states are labeled according to the FAC
classification under a jj-coupling scheme. A full description of the notation used in the level classification is given
in Section 3.1.1.

Upper level Lower Level Wavelength [Å] gf

((5f4−)4)4 ((5f3−)3/2(6d
1
−)3/2)3 12680.5979 1.22721e-04

((5f4−)4)4 ((5f3−)9/2(6d
1
+)5/2)5 10663.76 3.22539e-06

((5f4−)4)4 ((5f3−)9/2(7s
1
+)1/2)4 10358.21 1.18116e-04

((5f4−)4)4 ((5f3−)9/2(6d
1
+)5/2)4 10032.12 1.38784e-03

((5f4−)4)4 ((5f3−)9/2(7s
1
+)1/2)5 8723.27 1.04805e-05

((5f4−)4)4 ((5f3−)9/2(6d
1
+)5/2)3 8628.18 1.51141e-05

((5f4−)4)4 ((5f3−)3/2(6d
1
+)5/2)4 8438.50 4.28958e-04

((5f4−)4)4 ((5f2−)4(5f
1
+)7/2)11/2 7358.66 9.24586e-05

((5f3−)9/2(6d
1
−)3/2)6 ((5f2−)4(5f

2
+)6)7 18907.42 1.81441e-05

((5f3−)9/2(6d
1
−)3/2)6 ((5f3−)9/2(5f

1
+)7/2)6 8959.30 2.58323e-03

((5f3−)9/2(6d
1
−)3/2)6 ((5f3−)3/2(5f

1
+)7/2)5 8707.04 5.96741e-06

((5f3−)9/2(6d
1
−)3/2)6 ((5f3−)9/2(5f

1
+)7/2)7 7884.79 5.29508e-04

((5f3−)9/2(5f
1
+)7/2)5 ((5f2−)4(5f

1
+)7/2)11/2 24616.32 6.74774e-03

((5f3−)9/2(5f
1
+)7/2)5 ((5f2−)4(5f

1
+)7/2)9/2 14596.76 6.42041e-05

((5f3−)9/2(5f
1
+)7/2)5 ((5f3−)9/2(6d

1
+)5/2)5 13942.13 3.02563e-03

((5f3−)9/2(5f
1
+)7/2)5 ((5f3−)9/2(7s

1
+)1/2)4 13424.40 2.38481e-05

((5f3−)9/2(5f
1
+)7/2)5 ((5f3−)9/2(6d

1
+)5/2)4 12881.73 6.02619e-04

((5f3−)9/2(5f
1
+)7/2)5 ((5f3−)9/2(7s

1
+)1/2)5 10800.83 4.97735e-05

((5f3−)9/2(5f
1
+)7/2)5 ((5f3−)3/2(6d

1
+)5/2)4 10367.64 3.26256e-03

((5f3−)9/2(5f
1
+)7/2)5 ((5f2−)4(5f

1
+)7/2)11/2 8783.97 1.00619e-04

((5f3−)9/2(5f
1
+)7/2)5 ((5f2−)4(5f

1
+)7/2)11/2 8493.11 1.40892e-06

((5f3−)9/2(6d
1
−)3/2)5 ((5f4−)4)4 15363.97 1.50968e-05

((5f3−)9/2(6d
1
−)3/2)5 ((5f3−)9/2(5f

1
+)7/2)6 11039.26 2.17988e-03

((5f3−)9/2(6d
1
−)3/2)5 ((5f2−)2(5f

2
+)6)4 10944.77 6.31478e-05

((5f3−)9/2(6d
1
−)3/2)5 ((5f3−)3/2(5f

1
+)7/2)5 10658.78 3.79072e-05

((5f2−)4(5f
2
+)6)6 ((5f2−)4(5f

1
+)7/2)9/2 20992.04 1.39145e-04

((5f2−)4(5f
2
+)6)6 ((5f2−)4(5f

1
+)7/2)11/2 19670.06 1.00509e-02

((5f2−)4(5f
2
+)6)6 ((5f3−)9/2(6d

1
+)5/2)5 19664.21 3.68230e-04

((5f2−)4(5f
2
+)6)6 ((5f3−)9/2(7s

1
+)1/2)5 13944.23 3.97217e-06

((5f2−)4(5f
2
+)6)6 ((5f2−)4(5f

1
+)7/2)11/2 11371.44 7.32052e-04

((5f2−)4(5f
2
+)6)6 ((5f2−)4(5f

1
+)7/2)11/2 10755.87 1.32505e-04

((5f2−)4(5f
2
+)6)6 ((5f2−)4(5f

1
+)7/2)11/2 10322.97 2.00939e-03

((5f2−)4(5f
1
+)7/2)11/2 ((5f3−)9/2(5f

1
+)7/2)6 13264.12 3.33829e-07

((5f2−)4(5f
1
+)7/2)11/2 ((5f3−)9/2(5f

1
+)7/2)7 11037.30 2.78824e-04

((5f2−)4(5f
2
+)6)7 ((5f1−)5/2(5f

2
+)6)13/2 16335.50 1.49941e-02

((5f2−)4(5f
2
+)6)7 ((5f2−)4(5f

1
+)7/2)11/2 14630.58 1.97670e-04

((5f2−)4(5f
2
+)6)7 ((5f2−)4(5f

1
+)7/2)11/2 12939.67 5.02753e-06

((5f2−)4(5f
1
+)7/2)11/2 ((5f3−)9/2(5f

1
+)7/2)6 17075.34 3.11473e-05

((5f2−)4(5f
1
+)7/2)11/2 ((5f3−)3/2(5f

1
+)7/2)5 16181.88 1.91769e-05

((5f2−)4(5f
1
+)7/2)11/2 ((5f3−)9/2(5f

1
+)7/2)7 13554.82 1.40039e-03

((5f3−)3/2(6d
1
−)3/2)3 ((5f3−)9/2(5f

1
+)7/2)3 24986.33 2.94600e-04

((5f3−)3/2(6d
1
−)3/2)3 ((5f2−)2(5f

2
+)6)4 23169.99 1.22704e-05

((5f1−)5/2(5f
3
+)15/2)8 ((5f1−)5/2(5f

2
+)6)13/2 23364.53 1.02539e-03

((5f1−)5/2(5f
3
+)15/2)8 ((5f2−)4(5f

1
+)7/2)11/2 20026.63 1.07978e-03

((5f2−)4(5f
1
+)7/2)11/2 ((5f3−)9/2(5f

1
+)7/2)7 18951.30 5.40646e-06
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3.2.2 Oscillator Strengths and Γ(λ) for U III

Figure 3.13: Results for the weighted oscillator strengths of U III and comparison with the results of Calculation
B of Nd III

Looking at the gf -values of doubly ionized uranium, we notice that the distribution of points
is almost identical as in the case of Nd III. To facilitate this comparison, the gf -values for both
the FAC calculation of U III and for the FAC Calculation B of Nd III are shown in Figure 3.13.
This is not surprising given the identical shell structure of both ions. Hence, the possible E1
transitions of U III will be analogous to those computed for Nd III, with the only difference being
the principal quantum numbers of the upper and lower levels. The only noticeable difference on
the distribution of the gf -values lies on the two peaks found at around λ ∼ (8000 − 9000) Å .
In the case of U III the first peak appears at a lower wavelength than in the case of Nd III. The
wavelength and

We must recognize that the FAC gf -values for the 7d → 8p transitions in U III may be
overestimated, analogously to the 6d → 7p transition in Nd III. In any case, just like in the
neodymium case, for most the transitions between these two shells Γk(λ) < 10−10 cm, making
the atomic contribution of this specific transition negligible when compared to the overall
contribution of U III E1 transitions. As a result, even if the contribution of these lines is larger
than in the case of Nd III, it will still not offer any important contribution to the expansion
opacities.

Despite the similarities of both ions on the oscillator strength distributions, the atomic
contribution of those lines to the opacity, which we quantify using the Γ(λ) parameter, is
significantly larger in the case of the actinide, as we can see from Figure 3.14. In fact, for an
analogous E1 transition k in U III and Nd III, we find that in general EUIII

k < ENdIII
k . Hence,

higher density of low-lying levels in U III contributes to an overall increase of Γk(λ) which has
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Figure 3.14: Plot of Γ(λ) for the results obtained by the FAC calculations for UIII compared with Calculation
B of Nd III.

a significant impact in the opacities, as it will be seen in Section 3.2.3 . We observe that this
discrepancy is considerably greater at infrared wavelengths.

Ion Number of lines

UV
(0-4000)Å

Visible
(4000-8000)Å

IR
(8000 - 25000)Å

U III (FAC) 150425 32126 21441
Nd III (FAC-B) 67878 3008 924

Table 3.8: Comparison between the number of strong lines computed with FAC for UIII and NdIII (Calculation
B) in the UV, visible and IR wavelength ranges.

A better way to quantify this difference in Γk(λ) and assess the atomic contribution of each
ion is to count the number of strong lines under the wavelength range of interest. As one can see
from Section 3.2.2, where a systematization of the number of strong lines (with Γk(λ) > 10−10 cm
according to this work) is provided, the number of strong lines in U III is greater to the number
of strong lines in Nd III by at least one order of magnitude, consistently through all wavelength
ranges. Greater differences are found, once again, in the visible and in the IR which indicates
that the main differences in the opacity spectra between these two elements should be found at
these two wavelength ranges.

Finally, as it is depicted in Figure 3.16, our characterization of strong lines by defining a
threshold on Γ(λ)k, Γk(λ) > 10−10 cm, actually accounts for significantly more lines than the
definition used in other works ([2, 3, 39, 70]). The difference is particularly noticeable for
uranium, since the total number of strong lines decreases more steadily with the wavelength
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Figure 3.15: Comparison of the results of the different calculations for the oscillator strengths of Nd III, plotted
as a function of the wavelength, for all the transitions that occur between the 4f36d and the 4f37p.

than for neodymium. Although this discrepancy should only have a measurable impact at the
highest IR wavelengths, it is important to keep this effect in mind when filtering the atomic
data, for instance, to reduce the computation time when modeling the luminosity of kilonovae.
Nevertheless, and independently of the definition of “strong lines” used, in this astrophysical
context one should never consider only a line’s gf -value as a measure of its strength as this
could lead to erroneous interpretations.

3.2.3 Opacity of U III

Just as in the case of Nd III, the expansion opacity of U III was calculated under the LTE
approximation over a time period of one day after the explosion at a temperature of T = 10000K
for a density ρ = 10−13 cm−3. Following the discussion in Section 3.1.5, and to provide a more
reliable comparison to the results of neodymium, a ionic density of zUIII = 0.01 was used for the
calculations. The results are presented in Figure 3.17, along with a comparison to the results
for the expansion opacity of Nd III according to the FAC Calculation B.

As is readily apparent, the opacity of U III is nearly and order of magnitude greater than in
the case of Nd III, as it was predicted by the analysis of the atomic contribution of each ion in
the previous section. The difference is especially prominent in the visible, and while it remains
significant in the IR, it is less noticeable because of the large fluctuations in the opacity of Nd
III.

Furthermore, the opacity fluctuations with wavelength are considerably reduced in the case
of U III. The high Γk for uranium minimize the opacity’s dependency on the optical depth since
1 − e−τ ∼ 1 for Γ & 10−10cm. Not only does this decrease dispersion on the opacities for a
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Figure 3.16: Number of strong lines for Nd III and U III, by Γ > 10−10 cm−1 (filled lines) and by gfe−E/kBT >

10−5 (dotted lines).

given wavelength bin, but it also reduces the opacities’ sensitivity to specific Γk and oscillator
strength values. In this limit, the expansion opacity can, be approximated by

κexp ≈ 1

ρctexp

∑
k

λk
∆λ

(3.4)

Additionally, if we neglect the variation of wavelength within a specific bin

κexp ≈ 1

ρctexp
λ
∑
k

1

∆λ
=

1

ρctexp
λ
N

∆λ
(3.5)

Equation (3.5) emphasize the importance of the number lines taken into account in these
calculations. Given a high optical depth and under LTE conditions, the major contribution to
opacity comes from the ion’s line count per unit of wavelength and not from individually
strong transitions. As a result, the precision of individual lines will be negligible in
environments where the density of levels is sufficiently high to sustain local thermodynamical
equilibrium and a high optical depth. These insights are particularly pertinent in the case of
lanthanides and actinides, owing to their extremely complicated shell structure, which makes
accurate computation extremely difficult to achieve within a reasonable amount of time and
computer resources.

Another interesting observation is that the number of lines of both actinide and lanthanide
elements seems to vary smoothly with the wavelength. In particular, we found that after the
initial peak at λ ∼ 1000 Å that the number of transitions decreases smoothly with N ∼ λ−2,
specially at infrared wavelengths. Substituting the number of transitions by its wavelength
dependence in, Equation (3.5) we can obtain a parametrization of the opacities with the
wavelength:
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Figure 3.17: Expansion opacity for U III from the calculations performed with FAC. The results are compared
with the with opacity for Nd III obtained with Calculation B from FAC and a sum of the contribution of both ions
to the opacities is shown in black. The opacity was evaluated at t = 1 day for the typical density and temperature
values of ρ = 10−13 cm−3and T = 10000 K assumed by other calculations. The black dashed line highlights the
wavelength dependence of the opacity following approximately a λ−1 power law

κexp =
1

ρctexp
λ
λ−2

∆λ
∼ λ−1 (3.6)

This power law parametrization of the opacities, which is also highlighted in, Figure 3.17,
describes particularly well the evolution of the opacity spectra for U III, since the number of
lines that have an important contribution to the opacity is consistently high in the considered
wavelength range. For the case of Nd III, with a much lower number of strong lines, this
parametrization gives, at most, a upper limit of the expansion opacity spectra.

Nonetheless, this parametrization can be useful in differentiating the contributions of
actinides and lanthanides to the opacity ejecta. The high density of low-energy levels should
be consistent for the different actinides, Hence, a high dependence of their opacities with the
number of transitions is expected which makes this parametrization possibly valid. This effect
won’t be so notorious for lanthanides due to the fluctuations of the opacities at high
wavelengths caused by a low optical depth, which increases the opacities’ dependence on the
gf -values.
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Figure 3.18: Total number of lines for Nd III and U III as a function of the wavelength. The power law
dependence with the wavelength is highlighted.





Chapter 4

Conclusions and future prospects

The roots of this work lie in the change of paradigm in r-process research associated with the
direct observational data from kilonovae explosions. The observation of the kilonova
electromagnetic transient associated with the gravitational wave signal GW170817, provide the
first indication that heavy r-process elements, in particular lanthanides and actinides, are
produced in NSM. In this work we have tried, not only, to supply reliable data for two
representative rare-earth ions, Nd III and U III, but, most importantly, we have analyzed some
of the caveats of these calculations that must be taken into consideration when large-scale
calculations are achieved.

With the computational expense of the calculations in mind, the FAC code has been used
to compute level energies and transitions wavelengths and oscillator strengths for electric dipole
(E1) transitions for the two mentioned ions. We have noticed a reasonable agreement of the
energies of low-lying levels with experimental data as well as with other theoretical calculations
achieved with the GRASP2K code (for Nd III) and with the CI+LCC method (for U III).
Furthermore, when compared to the calculations available in the literature using other methods,
we were able to compute a substantially larger quantity of data and in a fraction of the time
required by those approaches.

Although some discrepancies were found for the gf -values of Nd III when compared with
calculations from MCDFGME and GRASP2K, we have shown that they should not have any
measurable impact in expansion opacities. In fact, the opacity spectra of Nd III obtained in [3]
using the atomic data supplied by GRASP2K was fully reproduced in the IR, and differences in
the UV are explained by the inclusion of higher energy states in our calculation.

In any case, it is important to remember that the FAC calculations achieved in this work only
include a very small number of configurations in the basis set of the RCI calculation. Although
this approach is in line with other works (for instance [2]) it does not guarantee the convergence
of the results and, hence, the level energies may vary significantly with the inclusion of a larger
number of configurations. A more detailed study of the electronic correlation of different shells
and more precise structure calculations for Nd III, U III and other relevant ions are planned for
future works. Nevertheless, we have demonstrated that FAC calculations, even with the inclusion
of only a few configurations in the basis set, may provide a viable alternative for calculation of
the atomic parameters in large-scale opacity calculations, specially at redder wavelengths.

It is important to mention that this is one of the very first few works that takes into account
the impact that actinides can have in the kilonovae opacity spectra. In this work, we predict the
opacity of U III to be roughly an order of magnitude higher than of Nd III, in all wavelength
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ranges of interest. Moreover, the larger number of strong transitions of uranium makes the
spectra extremely reliant on the number of transitions included in the making, making the
precision of individual lines negligible. Due to the higher density of levels characteristic of
actinide elements when compared to lanthanides, we predict these differences to extend beyond
Nd III and U III. Therefore, despite the predictions of very low mass fractions of actinides to
be present in the kilonovae ejecta [74], the impact of these ions must not be neglected as they
could have a measurable impact in the evolution of the flux and light-curves.

These predictions must be validated by including this atomic data into radiative transfer
simulations of kilonovae. Furthermore, additional calculations of various lanthanide and actinide
ions are still required, as are accurate calculations of collisional excitation cross sections and
photoionization rates for realistic modeling in non-LTE regimes. All of these tasks must be
addressed in future works.
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