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Abstract

A structure with a total order that is dense without end-points is o-minimal if every definable set in dimension 1

is a finite union of intervals and points. This notion materialized from observations that many of the proprieties of
semialgebraic sets were deduced from very simple axioms, the ones that now define o-minimal structures. Indeed,
o-minimality establishes strong regularity results of the definable sets. In this way, o-minimality can be viewed as
a candidate to “topologie modérée” mentioned by Grothendieck in his Esquisse d’un programme.

In the context of this dissertation, despite of its intrinsic richness, we study the property of quantifier elimination
(abbreviated QE) as a way of proving o-minimality of a given structure.

The goal of this dissertation was to study proofs of o-minimality and QE by studying a concrete example, the
real closed ordered fields (abbreviated rcof).

In Chapter 1, we begin by defining basic notions of first-order logic. We present some examples that will
be useful later, such as the theory of rcof. We alude to the usefulness of different axiomatizations, such as the
universal axiomatization, and simplifications of formulas, such as QE, that make the theories much more easier
to understand. We present some criterias for a theory to admit QE. We present a geometrical perspective of the
definable sets in general and the special case of o-minimality.

In Chapter 2 we prove that the theory of rcof has QE. As a consequence we prove that every rcof is o-minimal.
In Chapter 3 we study proprieties of o-minimal structures.
In Chapter 4 we study the theory Tan of rcof with restricted analytic functions. We state that Tan has QE in

the language Lan(−1) and as a consequence we show that Tan admits an universal axiomatization in the language
Lan(−1, ( n

√
)n=2,3,...).

In Chapter 5 we establish the result that every model of Tan can be seen as a substructure of a power series field
R((tΓ)). We use this fact to deduce key results concerning valuations on these structures and use these to prove
that Tan(exp) admits QE and universal axiomatization, both in the language Lan(exp, log). In the last section of
this chapter we begin by noting that, provided the theory admits QE, o-minimality is equivalent to regularity of the
signal (whether it is greater, less or equal to zero) “at infinity” of the definable functions in one variable. This leads
us to consider Hardy fields and using properties from these fields we prove that Tan(exp) is o-minimal.

Keywords: o-minimality, quantifier elimination, universal axiomatization, real closed ordered fields, restricted
analytic fields
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Resumo

Diz-se que uma estrutura com uma ordem total, densa e sem extemidades, é o-minimal se qualquer conjunto
definı́vel em dimensão 1 é união finita de intervalos e pontos. Esta noção tem origem na observação de que
muitas das propriedades dos conjuntos semialgébricos são deduzidas de axiomas muito simples, essencialmente os
axiomas que definem as estruturas o-minimais. De facto, a o-minimalidade permite estabelecer resultados muito
fortes quanto à regularidade dos conjuntos definı́veis. Deste modo, a o-minimalidade pode ser vista como um
candidato à “topologie modérée” mencionada por Grothendieck no seu Esquisse d’un programme.

No contexto desta dissertação, não obstante a sua importância intrı́nseca, estudamos a propriedade da eliminação
de quantificadores como uma das vias para provar a o-minimalidade duma estrutura.

O objectivo desta dissertação consiste em estudar provas de o-minimalidade e eliminação de quantificadores
através do estudo dos corpos ordenados reais fechados (abreviado rcof).

Acompanhámos de perto o livro [1] para os capı́tulos 2 e 3, e o artigo [2] para os capı́tulos 4 e 5.
No Capı́tulo 1 começamos por definir noções básicas da lógica de primeira ordem. Apresentamos alguns

exemplos de teorias que vão ser úteis posteriormente, como por exemplo a teoria dos rcof.
Quanto a teorias aludimos à vantagem de diferentes axiomatizações através de propriedades da axiomatização

universal.
Pode-se associar um noção de complexidade das fórmulas consoante o número de quantificadores que tem.

Uma fórmula sem quantificadores é geralmente de fácil tratamento. Se numa estrutura todos os conjuntos definı́veis
são definidos à custa de fórmulas sem quantificadores dizemos que a estrutura tem eliminação de quantificadores
(abreviado QE). Se todas os modelos duma teoria tiverem QE, dizemos que a teoria tem QE. Apresentamos e
provamos dois critérios para que uma teoria admita QE que usaremos no último capı́tulo.

Apelamos para uma perspectiva geométrica dos conjuntos definı́veis por fórmulas e notamos um caso impor-
tante de regularidade destes conjuntos - a o-minimalidade.

No capı́tulo 2 provamos que a teoria dos rcof admite QE e como consequência concluı́mos que todo o rcof é o-
minimal. SejaR = (R,<,+,−, ·, 0, 1) um rcof. Os conjuntos definı́veis mais elementares emR são os conjuntos
semialgébricos, conjuntos da forma

V = {x ∈ Rn : f1(x) = ... = fk(x) = 0, g1(x) > 0, ..., gl(x) > 0},

onde f1, ..., fk, g1, ..., gl ∈ R[X], X = (X1, ..., Xn). Note-se que estes conjuntos são definidos por fórmulas
(equações e inequações) sem quantificadores. É de fácil verificação que estes conjuntos são fechados para a união,
intersecção e complementação. Provaremos que são fechados para as projecções, o que implicará de imediato que
todos os conjuntos definı́veis emR são precisamente os conjuntos semialgébricos e portanto queR admite QE. Sai
assim queR é o-minimal pois os conjuntos semialgébricos em dimensão 1 são união finita de pontos e intervalos.

No capı́tulo 3 estudamos algumas das propriedades mais importantes das estruturas o-minimais. SejaR = (<

, ...) uma estrutura o-minimal. Na primeira secção provamos os seguintes teoremas:

TEOREMA (Monotonicity Theorem). Seja f : I → R uma função definı́vel. Então existem constantes
a1, ..., ak tais que I = (a1, a2) ∪ ... ∪ (ak−1, ak) ∪ {a1, ..., ak} e, em cada intervalo (ai, ai+1), f é constante
or estrictamente monótona e contı́nua.

LEMA (Finiteness Lemma). Seja A um subconjunto definı́vel de R2 e suponha-se que para cada x ∈ R,

Ax = {y ∈ R : (x, y) ∈ A}

v



é finito (A é finito sobre R). Então existe n ∈ N tal que |Ax| < n para todo x ∈ R (A é uniformemente finito
sobre R).

Na segunda secção generalizamos o resultado anterior para qualquer dimensão n ∈ N:

TEOREMA. Sejam A,A1, ..., Ak ⊆ Rn e Y ⊆ Rn+1 conjuntos definı́veis. Então

• (Uniform finiteness - UFn) Se Y é finito sobre Rm então é uniformemente finito sobre Rm;

• (Cell decomposition - CDn) Existe uma decomposição de Rn e A1, ..., Ak em células.

• (Piecewise continuity - PCn) Seja f : A → R uma função definı́vel. Existe uma decomposição de Rn e A
em células tal que para cada célula C ⊆ A, f |C é contı́nua.

No capı́tulo 4 passamos a estudar a teoria de rcof com novos sı́mbolos de função. Este tipo de considerações
é natural numa tentativa de generalizar resultados e existe muito trabalho feito neste sentido. Seja R{X1, ..., Xm}
o subanel das séries de potências de coeficientes reais que convergem numa vizinhança de Im, onde I = [−1, 1].
Para f ∈ R{X1, ..., Xm} seja f̃ : Rm → R definido por:

f̃(x) =

{
f(x), se x ∈ Im,
0, se x /∈ Im.

Denominamos este tipo de funções f̃ por funções analı́ticas restritas. Neste capı́tulo estudamos a teoria Tan dos
reais como corpo ordenado com funções analı́ticas restritas. Denominamos uma estrutura desta teoria por corpo
analı́tico restrito. Começamos por propor no inı́cio do capı́tulo uma axiomatização para esta teoria e provaremos
no fim do capı́tulo que de facto assim o é. Na primeira secção introduzimos a noção de valoração. Dado um corpo
K e um grupo abeliano totalmente ordenado Γ, uma função sobrejectiva v : K → Γ ∪ {∞} diz-se uma valoração
se

• v(x) =∞↔ x = 0;

• v(xy) = v(x) + v(y);

• v(x+ y) ≥ min(v(x), v(y)).

Pode-se provar que existe uma valoração num corpo K se e só se existe um domı́nio de integridade O ⊆ K com a
propriedade

∀x ∈ K(x /∈ O → x−1 ∈ O).

Um corpo analı́tico restrito K admite valoração pela existência do domı́nio de integridade

Fin(K) := {x ∈ K : existe q ∈ Q tal que |x| < q}.

As valorações são aqui consideradas como uma ferramenta de estudo de Tan.
Na segunda secção provamos algumas propriedades das valorações e referimos sem prova o resultado de que

Tan admite QE na linguagem Lan(−1). Usando este resultado e as propriedades das valorações provamos que Tan
admite uma axiomatização universal na linguagem Lan(−1, ( n

√
)n=2,3,...).

No capı́tulo 5 começamos por observar brevemente propriedades das séries de potências. Dado um corpo k e
um grupo abeliano totalmente ordenado, uma série de potência é um objecto da forma

x =
∑
γ∈Γ

aγt
γ ,

onde γ ∈ Γ (“expoentes”) e aγ ∈ k (“coeficientes”), tais que o suporte de x, definido por supp(x) := {γ ∈ Γ :

aγ 6= 0}, é um subconjunto bem ordenado de Γ. O conjunto das séries de potências k((tΓ)) admite uma estrutura
de corpo definindo as operações

• x+ y =
∑
γ∈Γ(aγ + bγ)tγ ;
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• x · y =
∑
γ∈Γ(

∑
γ1+γ2=γ aγ1bγ2)tγ .

A função ord : k((tΓ))× → Γ, ord(x) = min supp(x) é uma valoração. Estabelecemos na secção 2 o resul-
tado de que todo o modelo de Tan se pode ver como uma subestrutura dum corpo de séries de potências R((tΓ)).
Usamos este facto para deduzir resultados-chave acerca destas estruturas através de valorações e provamos que
Tan(exp) admite QE e axiomatização universal na linguagem Lan(exp, log). Na última secção começamos por
notar que para as teorias que admitem QE, a o-minimalidade é equivalente à regularidade do sinal (positivas, neg-
ativas ou iguais a zero) “no infinito” das funções definı́veis a uma variável. Isto leva-nos a considerar corpos de
Hardy e usando propriedades destes corpos provamos que Tan(exp) é o-minimal.

Palavras-chave: o-minimalidade, eliminação de quantificadores, axiomatização universal, corpos reais fecha-
dos ordenados, corpos analı́ticos restritos.
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Chapter 1

Preliminaries of Model Theory

In this chapter we lay down some basic notions from model theory.

1.1 First-order languages and interpretation

In this section we define the notion of first-order languages, formulas, structures and truth of formulas by
Tarski’s definition of truth.

DEFINITION 1.1.1. A first-order language L is a list constituted by:

• A type σ = (I, J,K, ρ, µ), where I, J,K are sets and ρ : I → N, µ : J → N are functions.

• Logical symbols

– A countable set of variable symbols v1, v2, ...;

– The equality symbol =;

– The connective symbols ¬, ∧, ∨,⇒ and⇔;

– The existential quantifier symbol ∃ and universal quantifier symbol ∀;

– Parentheses (, ) and commas ,.

• Non-logical symbols

– For each i ∈ I , an ρ(i)-ary relation symbol Ri;

– For each j ∈ J , an µ(j)-ary function symbol fj;

– For each k ∈ K, a constant symbol ck.

We write L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) followed by indication of the arities.

NOTE 1.1.2. We may use different notations for the variable symbols. The correspondence to the index number
of the usual variable symbol will be self-evident. For example x, y, z to denote v1, v2, v3, or x1, x2, ... to denote
v1, v2, ....

NOTE 1.1.3. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) be a first-order language with arities ρ : I → N, µ : J →
N. We may use different notations for the non-logical symbols. For example if σ = ({a}, {a}, {0, 1}, ρ(a) =

2, µ(a) = 1) we may write L = ({<}, {sin}, {0, 1}) instead of , L = ({Ra}, {fa}, {c0, c1}). We may also drop
the brackets and write L = (<, sin, 0, 1) or drop it partially like L = (<, sin, {0, 1}). Sometimes the discourse is
independent of the arities or those are implicit so, in such cases, we will invoke languages without mentioning the
arities.

We now establish the syntax of the language, or in other words, the allowed sequences of symbols given by the
language.

1



DEFINITION 1.1.4. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) be a first-order language with arities ρ : I → N,
µ : J → N. We define the notion of L-term by induction:

• If v is a variable symbol then v is an L-term;

• If ck is a constant symbol then ck is an L-term;

• If fj is a function symbol and τ1, ..., τµ(j) are L-terms, then fj(τ1, ..., τµ(j)) is an L-term;

• Nothing else is an L-term.

The set of L-terms is denoted by T .

DEFINITION 1.1.5. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) be a first-order language with arities ρ : I → N,
µ : J → N. We say that φ is an atomic L-formula if φ is either

• τ1 = τ2 where τ1, τ2 ∈ T (which should be read as “τ1 equal to τ2”), or

• Ri(τ1, ..., τρ(i)) where τ1, ..., τρ(i) ∈ T and Ri is a predicate symbol.

DEFINITION 1.1.6. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) be a first-order language with arities ρ : I → N,
µ : J → N. We define the notion of L-formulas by induction:

• If φ is an atomic L-formula then φ is an L-formula;

• If φ is an L-formula then ¬φ is an L-formula (which should be read as “not φ”);

• If φ, ψ are L-formulas then φ∨ψ, φ∧ψ, φ⇒ ψ, φ⇔ ψ are L-formulas (which should be respectively read
as “φ or ψ”, “φ and ψ”, “if φ then ψ”, “φ if and only if ψ”);

• If φ is an L-formula then ∃vφ and ∀vφ are L-formulas for all variable symbols v (which should be respec-
tively read as “there is v such that φ” and “for all v we have φ”);

• Nothing else is an L-formula.

The strings of symbols considered in a language are precisely the L-formulas.
Now we turn to the semantics of the language. The semantics adopted in first-order model theory is based on

Tarski’s definition of truth.

DEFINITION 1.1.7. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) be a first-order language with arities ρ : I → N,
µ : J → N. An L-structureM is a list constituted by:

• A set M called the domain ofM, and sometimes denoted dom(M);

• For each i ∈ I , a ρ(i)-ary relation RMi ⊆Mρ(i);

• For each j ∈ J , a µ(i)-ary function fMj : Mµ(j) →M ;

• For each k ∈ K, an element ck ∈M .

NOTATION. Let L be a first-order language. Sometimes we will use the notation of the non-logical symbols to
denote the correspondent relations, functions and constants of an L-structure whenever ambiguity of the discourse
can be avoided. For example, let L = (<,+,−, ·, 0, 1) where < is a binary relation, + and · are binary functions,
− is an unary function, 0 and 1 are constants. We may invoke an L-structure asR = (R, <,+,−, ·, 0, 1).

NOTATION. Given a set M we denote

Mω := {a = (a1, ..., ap, ...) : ai ∈M for all i ∈ N}

Let f : Mn → M be an n-ary function, R ⊆ Mn an n-ary relation and a ∈ Mω . We write f(a) to mean
f(a1, ..., an); we write a ∈ R to mean (a1, ..., an) ∈ R.

2



DEFINITION 1.1.8. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) be a first-order language with arities ρ : I → N,
µ : J → N. Let τ be an L-term. Let M = (M, {RMi }i∈I , {fMj }j∈J , {cMk }k∈K) be an L-structure. The
interpretation of τ inM is the function

τM : Mω →M

defined inductively for all a ∈Mω by:

• If τ is ck then τM(a) = cMk ;

• If τ is vp then τM(a) = ap;

• If τ is fj(τ1, ..., τµ(j)) and τM1 , ..., τMµ(j) are defined, then τM(a) = fMj (τM1 (a), ..., τMµ(j)(a)).

NOTATION. Let M be a set. Let a ∈Mω . Let p ∈ N. We write

a(p/b) := (a1, ..., ap−1, b, ap+1, ...)

DEFINITION 1.1.9 (Tarski’s definition of truth). Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) be a first-order lan-
guage with arities ρ : I → N, µ : J → N. LetM = (M, {RMi }i∈I , {fMj }j∈J , {cMk }k∈K) be a L-structure. Let
φ be an L-formula. Let a ∈Mω . We defineM � φ(a) inductively:

• If φ is τ1 = τ2 for some τ1, τ2 ∈ T thenM � φ(a) if and only if τM1 (a) = τM2 (a);

• If φ is Ri(τ1, ..., τρ(i)) thenM � φ(a) if and only if (τM1 (a), ..., τMρ(i)(a)) ∈ RMi ;

• If φ is ¬ψ thenM � φ(a) if and only if we don’t haveM � ψ(a);

• If φ is ψ ∨ χ thenM � φ(a) if and only ifM � ψ(a) orM � χ(a);

• If φ is ψ ∧ χ thenM � φ(a) if and only ifM � ψ(a) andM � χ(a);

• If φ is ψ ⇒ χ thenM � φ(a) if and only if, wheneverM � ψ(a) thenM � χ(a);

• If φ is ψ ⇔ χ thenM � φ(a) if and only if, wheneverM � ψ(a) thenM � χ(a), and wheneverM � χ(a)

thenM � ψ(a);

• If φ is ∃vpψ thenM � φ(a) if and only if there is b ∈M such thatM � φ(a(p/b));

• If φ is ∀vpψ thenM � φ(a) if and only if for all b ∈M we haveM � φ(a(p/b)).

M � φ(a) should be read as “the formula φ is true inM whenever we replace the ordered variables by the
values of a respectively”.

NOTE 1.1.10. Given an L-formula φ(v1, ..., vn) and an L-structure we will sometimes say that an element
a ∈Mn satisfies φ(v) to meanMvDashφ(a).

NOTE 1.1.11. Whenever a language L is implicit or the discourse is independent of it, we will drop the “L”
part of designations involving “L” (so, for example, an L-formula will sometimes be called more succintly a
“formula”).

DEFINITION 1.1.12. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) be a first-order language with arities ρ : I → N,
µ : J → N. We say that a variable v is free in a term τ ∈ T if one of the following occurs:

• τ is v;

• τ is fj(τ1, ..., τµ(j)) and v is free in τr for some 1 ≤ r ≤ µ(j).

We say that a variable v is free in an atomic L-formula φ if one of the following occurs:

• φ is τ1 = τ2 for some τ1, τ2 ∈ T and v is free in τ1 or τ2;

• φ is Ri(τ1, ..., τρ(i)) and v is free in τr for some 1 ≤ r ≤ ρ(i).

3



We say that a variable vp is free in an Lσ-formula φ if one of the following occurs:

• φ is an atomic formula and vp is free in φ;

• φ is ¬ψ and vp is free in ψ;

• φ is ψ ∧ χ, ψ ∨ χ, ψ ⇒ χ or ψ ⇔ χ and vp is free in ψ or χ;

• φ is ∃vqψ or ∀vqψ, p 6= q and vp is free in ψ.

Otherwise we say that vp is bound in φ. An L-formula with no free variables is called an L-sentence.

PROPERTY 1.1.13. Let τ be a term. LetM be a structure. Suppose vq1 , ..., vqn are the free variables in τ and
let a, b ∈Mω such that aqi = bqi for i = 1, ..., n. Then τ(a) = τ(b).

Proof. We prove this by induction on the terms. If τ is a constant symbol then it is obvious. If τ is a variable
symbol, then τ = vqi for some i = 1, ..., n, therefore τ(a) = aqi = bqi = τ(b). Suppose τ = fj(τ1, ..., τµ(j)) and
the property is valide for τr, r = 1, ..., n. Then,

τM(a) = fMj (τM1 (a), ..., τMµ(j)(a))

= fMj (τM1 (b), ..., τMµ(j)(b))

= τM(b).

PROPERTY 1.1.14. Let φ be a formula. LetM be a structure. Suppose vq1 , ..., vqn are the free variables in φ
and let a, b ∈Mω such that aqi = bqi for i = 1, ..., n. ThenM � φ(a) if and only ifM � φ(b).

Proof. We prove this by induction on formulas. If φ is τ1 = τ2 for some τ1, τ2 ∈ T or Ri(τ1, ..., τρ(i)) then it
is obvious by Property 1.1.13. If φ is ¬ψ thenM � φ(a) if and only if we don’t haveM � ψ(a). By inductive
hypothesis, M � ψ(a) if and only if M � ψ(b). Thus M � φ(a) if and only if M � φ(b). If φ is ∃vpψ,
where p 6= qr for all r = 1, ..., n, then M � φ(a) if and only if there is d ∈ M such that M � ψ(a(p/d)).
We have a(p/d)q = b(p/d)q for every q = q1, ..., qn so, by inductive hypothesis,M � ψ(a(p/d)) if and only if
M � ψ(b(p/d)). ThusM � φ(a) if and only ifM � φ(b). The other cases are similar.

NOTATION. A term τ and a formula φ with free variables v1, ..., vn will sometimes be denoted τ(vq1 , ..., vqn)

and φ(vq1 , ..., vqn).

We will see in some sense that the number of quantifiers in a formula and whether both the existential and
universal quantifiers or just one of them occurs gives an account of the complexity of the formula.

DEFINITION 1.1.15. We say that a formula φ is quantifier-free if the logical symbols ∀, ∃ don’t occur in φ.

DEFINITION 1.1.16. We say that a sentence φ is an universal L-sentence if

φ = ∀v1...∀vnψ(v1, ..., vn),

where ψ(v1, ..., vn) is a quantifier-free formula.

DEFINITION 1.1.17. We say that an L-formula φ is an existential L-formula if

φ = ∃vq1 ...∃vqnψ

where ψ is a quantifier-free formula.
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1.2 Homomorphisms and formulas

In this section we define homomorphisms between L-structures and its relations to formulas.

DEFINITION 1.2.1. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K) with arities ρ : I → N and µ : J → N. LetM
and N be L-structures. We say that π :M→N is an L-homomorphism if:

• π : M → N is a function;

• for each i ∈ I and every (a1, ..., aρ(i)) ∈Mρ(i), if (a1, ..., aρ(i)) ∈ RMi then (π(a1), ..., π(aρ(i))) ∈ RNi ;

• for each j ∈ J and every (a1, ..., aµ(i)) ∈Mµ(i), π(fMj (a1, ..., aµ(j))) = fNj (π(a1), ..., π(aµ(j)));

• for each k ∈ K, π(cMk ) = cNk .

We say that π :M→N is an L-embedding if:

• π is an L-homomorphism;

• π is injective;

• for each i ∈ I and every (a1, ..., aρ(i)) ∈Mρ(i), if (π(a1), ..., π(aρ(i))) ∈ RNi then (a1, ..., aρ(i)) ∈ RMi .

We say that π :M→N is an L-isomorphism if:

• π is an L-embedding;

• π is surjective.

DEFINITION 1.2.2. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K). LetM and N be L-structures. If π : M → N is
an L-embedding and M ⊆ N , we say thatM is a substructure of N or, equivalently, that N is an extension of
M. In this case, we writeM⊆ N .

Homomorphisms commute with interpretations of terms:

PROPERTY 1.2.3. LetM and N be L-structures and π :M→ N an homomorphism. Let τ(vq1 , ..., vqn) be
a term. Then

π(τM(aq1 , ..., aqn) = τN (π(aq1), ..., π(aqn)).

Proof. By induction on the terms.

Homomorphisms preserve truth of atomic formulas:

PROPERTY 1.2.4. Let π :M→N be an homomorphism. Then

M � φ(a1, ..., an)⇒ N � φ(π(a1), ..., π(an))

for every atomic formula φ(v1, ..., vn) and a1, ..., an ∈M .

Proof. By induction on the atomic formulas.

DEFINITION 1.2.5. We say that an homomorphism π :M→ N satisfies the transfer principle for a formula
φ if for all a ∈Mω

M � φ(a1, ..., an)⇔ N � φ(π(a1), ..., π(an)).

Embeddings satisfy the transfer principle for all quantifier-free formulas:

PROPERTY 1.2.6. Let π :M→N be an embedding. Then

M � φ(a1, ..., an)⇔ N � φ(π(a1), ..., π(an))

for every quantifier-free formula φ(v1, ..., vn) and a1, ..., an ∈M .

5



Proof. By induction on the quantifier-free formulas.

EXAMPLE 1.2.7. Let L = (<,+). LetM = (Z, <,+) andN = (Q, <,+). The map π :M→N defined by
π(m) = m is an embedding. Let φ(x, y) = (x < y ⇒ ∃z(x < z < y)). We have N � φ(1, 2) butM 2 φ(1, 2).

Embeddings preserve truth of existential formulas.

PROPERTY 1.2.8. Let π :M→N be an embedding. Then

M � φ(a1, ..., an)⇒ N � φ(π(a1), ..., π(an))

for every existential formula φ(v1, ..., vn) and a1, ..., an ∈M .

We now consider embeddings that satisfy the transfer principle for all formulas.

DEFINITION 1.2.9. LetM and N be L-structures. We say that π :M→N is an elementary L-embbedding
if

• π is an L-embedding;

• for every formula φ(v1, ..., vn) and all a1, ..., an ∈M ,

M � φ(a1, ..., an)⇔ N � φ(π(a1), ..., π(an)).

If in addition M ⊆ N , then we say that M is an elementary substructure of N or that N is an elementary
extension ofM. We writeM� N .

The next definition is useful when we want to construct embeddings and elementary embeddings.

DEFINITION 1.2.10. Let M be an L-structure. We denote by LM the language extension of L obtained by
adding constant symbols m for each m ∈ M . The atomic diagram of M is Diag(M) = {φ(a) : M � φ(a),
a ∈ Mω , φ is an atomic L-formula or the negation of an atomic L-formula}. The elementary diagram ofM is
Diagel(M) = {φ(a) :M � φ(a), a ∈Mω , φ is an L-formula}.

LEMMA 1.2.11. LetM be an L-structure. Let N be an LM -structure. Then, viewing N as an L-structure

1) If N � Diag(M) thenM⊆ N .

2) If N � Diagel(M) thenM� N .

Proof. Lemma 2.3.3 of [3].

1.3 Theories

In this section we set a basic apparatus to study mathematical theories in general. We will also present some
examples that will be useful later.

DEFINITION 1.3.1. Given a language L, an L-theory is any set of L-sentences.
LetM be an L-structure and T an L-theory. We say thatM models T , or equivalently thatM is a model

of T , if M � φ for every φ ∈ T . We write M � T . We say that an L-sentence φ is a logical consequence of
an L-theory T , and write T � φ, if every model of T is a model of φ. We say that an L-theory T is satisfiable
if T has a model. We say that a class of L-structures is an elementary class if there is an L-theory T such that
K = {M :M � T}. In this case we call the sentences in T the axioms for the class K. The set of L-sentences φ
such thatM � φ is called the theory ofM, denoted Th(M). We say that an L-theory T ′ is an axiomatization of
T if for every L-structureM,M � T if and only ifM � T ′. We say that a theory is complete if for every sentence
φ, either φ ∈ T or ¬φ ∈ T .

Now follows some examples of elementary classes.
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EXAMPLE 1.3.2. LetL = (<), where< is a binary relation symbol. We will denote the formula x < y∨x = x

by x ≤ y. The theory of ordered sets is axiomatized by

• ∀x(x ≤ x);

• ∀x∀y(x ≤ y ∧ y ≤ x);

• ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z).

The theory of linearly ordered sets is axiomatized by the axioms for ordered sets and

∀x∀y(x ≤ y ∨ y ≤ x).

The theory of dense ordered sets without extremities is axiomatized by the axioms for ordered sets and

• ∀x∀y(x < y → ∃z(x < z ∧ z < y)) (density);

• ∀x∃y∃z(z < x ∧ x < y) (“without end points”).

EXAMPLE 1.3.3. Let L = (·, e), where · is a binary function symbol and e is a constant symbol. The theory
of groups is axiomatized by

• ∀x∀y∀z((x · y) · z = x · (y · z));

• ∀x(x · e = e · x = x);

• ∀x∃y(x · y = e).

For the theory of abelian groups we replace the symbol · by + and e by 0. This theory is axiomatized by the
groups axioms (as (+, 0)-sentences) and

• ∀x∀y(x+ y = y + x).

The theory of ordered abelian groups is axiomatized by the abelian groups axioms, the linearly ordered sets
axioms and

• ∀x∀y∀z(x < y → x+ z < y + z) (compatibility with the order).

The theory of ordered divisible abelian groups is axiomatized by the axioms for ordered abelian groups and

• ∀x∃y(x = ny), for each natural n (divisibility),

where ny means y + ...+ y with y occurring n times.

Now follows an example of logical consequence.

EXAMPLE 1.3.4. Let L = (<,+, 0). Let T be the L-theory of ordered abelian groups. Then T � ∀x(x 6=
0⇒ x+ x 6= 0)

Proof. LetM � T . Let 0 6= x ∈ M . Thus x < 0 or 0 < x. If x < 0 then x + x < x < 0 and if x > 0 then
x+ x > x > 0.

In general, to show that T � φ, we give an informal mathematical proof as above that M � φ whenever
M � T using sentences from T . Lemma 1.3.6 tells us that there is always a finite subset of T that “works” for all
models of T . To show that T 2 φ, we usually construct a counterexample.

The following theorem is the cornerstone of model theory.

THEOREM 1.3.5 (Compactness Theorem). Let T be a theory. Then T is satisfiable if and only if every finite
subset of T is satisfiable.

Proof. Consult pp.34-39 of [3].
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The next lemma is an easy consequence of the Compactness Theorem and says that whenever a sentence φ is a
logical consequence of a theory T , there is a finite subset of sentences ∆ ⊆ T such that every model of ∆ is also a
model of φ. Thus it is always possible “to argue” using only a finite set of sentences that φ is a logical consequence
of T .

LEMMA 1.3.6. Let T be an L-theory and φ an L-sentence. If T � φ then there is a finite subset ∆ ⊆ T such
that ∆ � φ.

Proof. Suppose not. Let ∆ ⊆ T be finite. Then ∆ ∪ {¬φ} is satisfiable. Since ∆ is arbitrary, this implies that
every finite subset of T ∪ {¬φ} is satisfiable, so, by 1.3.5, T ∪ {¬φ} is satisfiable, contradicting T � φ.

The axioms we choose for a theory may allow an easier study of the theory.

DEFINITION 1.3.7. We say that a theory T has an universal axiomatization if it admits an axiomatization with
exclusively universal sentences.

THEOREM 1.3.8. A theory T has an universal axiomatization if and only if whenever N � T andM ⊆ N
thenM � T .

Proof. Consult Theorem 2.3.9 of [3].

We present further three elementary classes that will be important for our exposition.

EXAMPLE 1.3.9. Let L = (+,−, ·, 1, 0). The theory of fields is axiomatized by the abelian groups axioms as
(+, 0)-sentences, by the groups axioms as (·, 1)-sentences and

• ∀x(0 · x = 0);

• ∀x∀y∀z(x · (y + z)) = (xy + xz);

• ∀x∀y∀z((x+ y) · z) = (xz + yz);

• ∀x∀y(x · y = y · x);

• ∀x(x = 0 ∨ ∃y(x · y = 1).

Let L = (+,−, ·, 1, 0). The theory of algebraically closed fields (acf) is given by the axioms for fields and

∀x0∀x1...∀xn−1∃x : xn +

n−1∑
i=0

xix
i = 0.

EXAMPLE 1.3.10. Let L = (<,+,−, ·, 1, 0). The theory of real closed ordered fields (rcof) is axiomatized
by the fields axioms, the linearly ordered sets axioms and

• ∀x∀y∀z(x < y → x+ z < y + z);

• ∀x∀y∀z((x < y ∧ z > 0)→ x · z < y · z);

• ∀x1...∀xn(x2
1 + ...+ x2

n 6= −1), for each n ∈ N;

• ∀x∃y(x = y2 ∨ x+ y2 = 0);

• ∀x0...∀x2n∃y(y2n+1 +
∑2n
i=0 xiy

i = 0), for each n ∈ N,

where yk means y · ... · y with y occuring k times.
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1.4 Definable sets and quantifier elimination

We now turn our attention to sets defined by formulas. This will give a geometric point of view of formulas.

DEFINITION 1.4.1. Let M = (M, ...) be an L-structure. We say that X ⊆ Mm is definable if and only if
there is an L-formula φ(v1, ..., vm, vm+1, ..., vm+n) and b ∈Mn such that

X = {a ∈Mm :M � φ(a, b)}.

We say that φ(v1, ..., vm, b) defines X .

NOTE 1.4.2. Given a formula φ(x) and a structureM we will sometimes write {a ∈ Mn : φ(a)} to mean
{a ∈Mn :M � φ(a)}.

We now give a geometric characterization of the definable sets. An important feature is that a set defined
by a formula with an existential quantifier can be thought of as the projection of some definable set in a higher
dimension.

LEMMA 1.4.3. LetM be an L-structure.
Let (Dn)n∈N be the sequence of sets defined by

1. Mn ∈ Dn;

2. For each n-ary function symbol f , the graph of the function fM is in Dn+1;

3. For each n-ary relation symbol R, RM ∈ Dn;

4. For each i, j ≤ n, {(x1, ..., xn) ∈Mn : xi = xj} ∈ Dn;

5. Each Dn is closed under complement, union, and intersection;

6. If X ∈ Dn then M ×X ∈ Dn+1;

7. If X ∈ Dn+1 and π : Mn+1 → Mn is the projection map (x1, ..., xn, xn+1) 7→ (x1, ..., xn), then π(X) ∈
Dn;

8. If X ∈ Dn+m and b ∈Mm, then {a ∈Mn : (a, b) ∈ X} ∈ Dn.

Then X ⊆Mn is definable if and only if X ∈ Dn.

Proof. Consult Proposition 1.3.4 of [3].

DEFINITION 1.4.4. LetM be an L-structure. Let A ⊆M . The set

〈A〉 := {x ∈M : ∃y1, ..., yn ∈ A(x = tM(y1, ..., yn)), for some t ∈ L-terms}

is called the definable closure of A.

NOTE 1.4.5. Let L = ({Ri}i∈I , {fj}j∈J , {ck}k∈K). LetM be an L-structure. Let A ⊆ M . Then 〈A〉 is the
domain of a substructure ofM.

We can attribute a notion of complexity to definable sets (and by extension to formulas) by the number of
quantifiers present in the formula that defines the set. Usually the fewer the quantifiers the easier the treatment of
the definable set.

DEFINITION 1.4.6. We say that an L-structureM has quantifier elimination (QE) if for every formula φ(v)

there is a quantifier-free formula ψ(v) such that

M � ∀v(φ(v)⇔ ψ(v)).

We say that a theory T has QE if every model of T has QE.
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We have a simpler sufficient condition for QE

PROPERTY 1.4.7. Let T be an theory. Suppose that for every quantifier-free L-formula θ(v, w) there is a
quantifier-free formula ψ(v) such that T � ∀v(∃wθ(v, w)⇔ ψ(v)). Then T has quantifier elimination.

Proof. Consult Lemma 3.1.5 of [3].

An immediate feature of a theory with QE is the following

PROPERTY 1.4.8. Let T be a theory with QE. LetM,N � T . Then

M⊆ N ⇒M� N .

Proof. This is obvious by 1.2.6.

PROPERTY 1.4.9. Let T be a theory with QE that has an universal axiomatization. Let N � T . Then

M⊆ N ⇒M� N .

Proof. By 1.3.8M⊆ N impliesM � T . By 1.4.8M� N .

Sometimes it is useful to add new symbols to the language.

DEFINITION 1.4.10. Let L′ be an extension of a language L. LetM′ be an L′-structure. The L-structureM
obtained fromM′ by ignoring the interpretations of the symbols in L′ \L is called a reduct ofM′ andM′ is said
to be an expansion ofM.

The following property illustrates a technique using a new constant symbol in a language.

PROPERTY 1.4.11. Let T be an L-theory. Let ψ1(v), ..., ψk(v), φ(v) be L-formulas. Let d be a new constant
symbol. The following are equivalent

1) T ∪ {ψ1(d), ..., ψk(d)} � φ(d).

2) T � ∀v(
∧k
i=1 ψi(v)⇒ φ(v)).

Proof. 2)⇒ 1) Obvious.
1) ⇒ 2) LetM � T . Independently of the interpretation dM ∈ M , if we assumeM �

∧k
i=1 ψi(d

M), we
get M � T ∪ {ψ1(d), ..., ψk(d)}, and so M � φ(d). Since this is valid for all interpretations of d, we have
M � ∀v(

∧k
i=1 ψi(v)⇒ φ(v)).

Next follows a quantifier elimination criteria that will be useful later.

THEOREM 1.4.12. LetL be a language with a constant symbol c and T anL-theory. Let φ(v) be anL-formula.
The following are equivalent

1) T � ∀v(φ(v)⇔ ψ(v)) for some quantifier-free formula ψ(v).

2) IfM,N � T and σM : A → M, σN : A → N are embeddings, then for all a ∈ An,M � φ(σM(a)) if
and only if N � φ(σN (a)).

Proof. 1) ⇒ 2) Let A be a common substructure ofM and N . By 1.2.6, for all quantifier-free formulas ξ and
a ∈ Aω we have A � ξ(a)⇔M � ξ(σM(a)) and A � ξ(a)⇔ N � ξ(σN (a)). In particular

M � φ(σM(a))⇔M � ψ(σM(a))

⇔ A � ψ(a)

⇔ N � ψ(σN (a))

⇔ N � φ(σN (a)).
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2) ⇒ 1) We want a quantifier-free formula ψ(v) such that T � ∀v(φ(v) ⇔ ψ(v)). If T � ∀vφ(v) then
T � ∀v(φ(v) ⇔ c = c), so ψ can be c = c. If T � ∀v¬φ(v) then T � ∀v(φ(v) ⇔ c 6= c), so ψ can be c 6= c.
Therefore we can assume that both T ∪ {∃v¬φ(v)} and T ∪ {∃vφ(v)} are satisfiable. Let

Γ(v) = {ψ(v) ∈ L-formula : ψ(v) is quantifier-free and T � ∀v(φ(v)⇒ ψ(v))}.

Let d1, ..., dn be new constant symbols and let d = (d1, ..., dn). We will show that T∪Γ(d) � φ(d). This concludes
the proof for the following reason: By 1.3.6, there will be a finite subset ∆ ⊆ T and ψ1(d), ..., ψk(d) ∈ Γ(d) such
that

∆ ∪ {ψ1(d), ..., ψk(d)} � φ(d).

By 1.4.11, we have

∆ � ∀v(

k∧
i=1

ψi(v)⇒ φ(v)).

In particular

T � ∀v(

k∧
i=1

ψi(v)⇒ φ(v)).

Thus establishing

T � ∀v(
k∧
i=1

ψi(v)⇔ φ(v)).

We proceed with the proof of T ∪Γ(d) � φ(d). Suppose T ∪Γ(d) 2 φ(d). LetM be a (L, d1, ..., dn)-structure
such that M � T ∪ Γ(d) ∪ {¬φ(d)} and let A be the substructure generated by {dM1 , ..., dMn }. Let Σ = T∪
Diag(A) ∪ {φ(d)}. If Σ is not satisfiable then

T ∪ Diag(A) � ¬φ(d)

and by compactness, there are formulas ψ1(d), ..., ψk(d) ∈Diag(A) such that

T � ∀v(

k∧
i=1

ψi(v)⇒ ¬φ(v)),

or equivalently, putting ψ(v) =
∧k
i=1 ψi(v)

T � ∀v(φ(v)⇒ ¬ψ(v)).

Note that ψ(d) is quantifier-free. Thus ¬ψ(d) ∈ Γ(d), implying M � ¬ψ(d). But Diag(A) � ψ(d), implying
M � ψ(d), which is absurd. Thus Σ is satisfiable. Let N � Σ. Since Diag(A) ⊆ Σ, by 1.2.11, A ⊆ N . Since
N � φ(d

N
), by the hypothesis we would haveM � φ(d

M
) which is absurd.

Besides structures with quantifier elimination we will also study structures with the property of o-minimality,
where the definable sets have interesting geometrical properties.

DEFINITION 1.4.13. Let R = (R,<, ...) be a linearly ordered dense set without end points. We say that R
is o-minimal if every definable set in R is a finite union of points and open intervals. A theory T is o-minimal if
every model of T is o-minimal.

We will prove in the next chapter that any rcof is o-minimal and has QE.

1.5 Brief digression on types

Throughout this section letM be an L-structure and A ⊆ M . Let LA denote the extension of the language L
by constant symbols for each a ∈ A or symbolically LA = (L, {a}a∈A). Note thatM can naturally be viewed as
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an LA-structure by interpreting each new constant symbol in the obvious way. ThA(M) denotes the LA-theory
ofM.

DEFINITION 1.5.1. Let Σ(x) be a set of L-formulas having at most n free variables x = (x1, ..., xn). We
say that Σ(x) is satisfiable if there is an L-model N and an element c ∈ Nn such that N � φ(c) for every
φ(x) ∈ Σ(x). In this case we say that N realizes or satisfies Σ(x).

In the setting of ordered fields, Q doesn’t satisfy the intermediate value theorem. For example x2 − 2 = 0

doesn’t have a solution in Q. Nevertheless we can ponder about the existence of such a solution in an extension of
Q. The following notion allow us to talk about hipothetical elements that satisfy a set of formulas.

DEFINITION 1.5.2. Let Σ(x) be a set of LA-formulas having at most n free variables x = (x1, ..., xn). The
set Σ(x) is an n-type ofM over A if there is N � ThA(M) satisfying Σ(x). A 1-type is simply called a type.

NOTE 1.5.3. When dealing with types we can omit the structure or the subset whenever it is implicitly under-
stood, so we can call Σ(x) an n-type instead of an n-type ofM over A.

Following the comment about the equation x2−2 = 0 in the ordered fieldQ, we know that R has two elements
that solve the equation, namely

√
2 and −

√
2. If we add the condition x > 0 we get a unique element that solves

the equation.

DEFINITION 1.5.4. We say that an n-type Σ(x) is a complete n-type if φ(x) ∈ Σ(x) or ¬φ(x) ∈ Σ(x) for
every LA-formula φ(x) with n free variables. We let SMn (A) be the set of all complete n-types ofM over A.

DEFINITION 1.5.5. Let b ∈Mn. The type of b over A is defined by

tp(b/A) := {φ(v) ∈ LA-formulas :M � φ(b)}.

PROPERTY 1.5.6. Let Σ(x) be a type ofM over A. There is an elementary extensionN ofM realizing Σ(x).

Proof. Consult Proposition 4.1.3 of [3].

PROPERTY 1.5.7. A type Σ(x) ofM over A is a complete type realized by N if and only if there is b ∈ Nn

such that Σ(x) = tp(b/A).

Proof. Consult Corollary 4.1.4 of [3].

In the case of the ordered field Q,
√

2 is uniquely defined in R by the formulas x2 − 2 = 0 and x > 0. So,
although the type of

√
2 over Q is a complete type, it can be uniquely determined by just two formulas. Another

example is the following.

PROPERTY 1.5.8. LetM be an o-minimal structure, A ⊆ M and y ∈ M . The type tp(y/A) is determined by
the cut y makes in the ordering of A.

Proof. Consult Proposition 4.1.13 of [3].

DEFINITION 1.5.9. LetM be a model in some first-order language and k a finite or infinite cardinal. We say
thatM is k-saturated if for all subsets A ⊆ M such that |A| < k, M realizes all complete types over A. The
modelM is called saturated if it is |M |-saturated.

The main characteristic of saturated models is that we can do things in the model that we usually could only
do in an elementary extension.

LEMMA 1.5.10. Let T be an L-theory k be an infinite ordinal. SupposeM � T is k-saturated. If N � T and
|N | < k, then there is an elementary embedding of N intoM.
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Proof. Suppose {nα ∈ N : α < k} enumerates N . Let Aα = {nβ ∈ N : β < α}. We construct a chain of
functions fα : Aα → M and take its union to end up with the embedding from N toM. For α = 0 let f0 = ∅.
For a limit ordinal α let fα =

⋃
β<α fβ . Suppose α is an ordinal such that fα is a well defined function with the

property
N � φ(a1, ..., an)⇔M � φ(fα(a1), ..., fα(an))

for all L-formulas φ and a1, ..., an ∈ Aα. Note that if Aα is the domain of a substructure of M then fα is an
elementary embedding of Aα into N . If already Aα = N then put fα+1 = fα. Otherwise, let

Γα(v) = {φ(v) ∈ LAα -formulas : N � φ(nα)}.

Since |Aα| < k andM is k-saturated, Γ(v) is realized by some b ∈ M (where the constant symbols a ∈ Aα in
each φ(v) have the interpretation aM = fα(a)). Put

fα+1 = fα ∪ {(nα, b)}.

This function is well defined and preserves truth of formulas. Hence
⋃
α<k fα : N → M is an elementary

embedding.

Saturated models can be used to test if a theory has quantifier elimination.

THEOREM 1.5.11. If L is a language containing a constant symbol and T is an L-theory, then T has quantifier
elimination if and only if wheneverM � T ,N � T is |M |+-saturated, A is a substructure ofM and σ : A → N
is an embedding, then σ extends to an embedding ofM into N .

Proof. (⇒) Since T has QE, σ : A → N is an elementary embedding. The results follows by making a similar
construction as in the proof of 1.5.10, replacing f0 by σ.

(⇐) LetM,M′ � T . Let σM : A → M and σM′ : A → M′ be embeddings. Let N � T be an |M |+-
saturated model and τ :M′ → N an elementary embedding. Since A ⊆M′ � N , the map σN : A → N , a 7→
τ(σM′(a)) is an embedding. By hypothesis σN extends to an embedding σ̃N :M→N .

We will prove that for every a ∈ An

M′ � ∃wφ(σM′(a), w)⇔M � ∃wφ(σM(a), w)

and use 1.4.12 to conclude that there is a quantifier-free formula ψ(v) such that T � ∀v(∃wφ((v), w)⇔ ψ(v)).
Let φ(v, w) be a quantifier-free formula. Let a ∈ An. Suppose M � ∃wφ(a,w) and let b ∈ M such that

M � φ(a, b). Thus N � φ(σN (a), σ̃N (b)). This implies N � ∃wφ(τ(σM′(a)), w). Since M′ � N , M′ �
∃wφ(σM′(a), w). Reciprocally, assumingM′ � ∃wφ(σM′(a), w), we can make a similar argument considering
an elementary embedding τ ′ :M→N and σ′N : A → N , a 7→ τ ′(σM(a)), to concludeM � ∃wφ(a,w).
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Chapter 2

QE for the theory of rcof

Trhoughout this chapter letR = (R,<,+,−, ·, 0, 1) be a rcof. It is easy to see that any quantifier-free formula
defines onR a subset

V = {x ∈ Rn : f1(x) = ... = fk(x) = 0, g1(x) > 0, ..., gl(x) > 0},

where f1, ..., fk, g1, ..., gl ∈ R[X], X = (X1, ..., Xn). A set of this form is called a semialgebraic set. It is easy
to see that the semialgebraic sets are closed under boolean operations. We will see that they are also closed under
projections, which proves that the theory of rcof has QE. This result is known as the Tarski-Seidenberg theorem.
We start with some considerations about the roots of polynomials with coefficients in R. We will consider the
algebraic closure R̄ of R. This algebraic closure behaves essentially in the same way as C does to R in the sense
that R̄ = R[i], where i2 = −1, and so we can talk about a norm in R̄ (|z|2 = |a+ bi|2 = a2 + b2, where a, b ∈ R).
This norm in R̄ is compatible with the usual interval topology in R:

DEFINITION 2.0.1. An interval in R is a set of the form

(a, b) := {x ∈ R : a < x < b} with −∞ ≤ a < b ≤ +∞.

We equip R with the interval topology (the intervals form a base), and each product Rm with the corresponding
product topology. A box in Rm is a cartesian product of m intervals. Note that Rm is a Hausdorff space with this
topology.

NOTATION. The following sets are not intervals

(a, b] := {x ∈ R : a < x ≤ b} with −∞ ≤ a < b < +∞;

[a, b) := {x ∈ R : a ≤ x < b} with −∞ < a < b ≤ +∞;

[a, b] := {x ∈ R : a ≤ x ≤ b} with −∞ < a ≤ b < +∞.

2.1 Roots of polynomials in R[X]

In this section we lay out some properties about the roots of polynomials in R[X]. Unless specified, whenever
we mention a root, we are considering a root in R̄. If we mean a root in R we will call it a real root. Another word
for root is zero.

LEMMA 2.1.1. Let α be a root of the monic polynomial

f(T ) = a0 + a1T + ...+ ad−1T
d−1 + T d ∈ R̄[T ].

Then |α| < 1 + max{|ai| : i = 0, 1, ..., d− 1}

14



Proof. f(α) = 0 is equivalent to:

αd = −(a0 + a1α+ ...+ ad−1α
d−1).

Let M = max{|ai| : i = 0, 1, ..., d− 1}. Then

|α|d ≤M(1 + |α|+ ...+ |α|d−1|

= M
|α|d − 1

|α| − 1
.

If |α| > 1 +M , then

|α|d < M
|α|d − 1

M

= |α|d − 1

which is absurd.

LEMMA 2.1.2 (Continuity of roots). Let f(T ) = a0+a1T+...+adT
d ∈ R[T ] be a polynomial. For every ε > 0

there is δ > 0 such that if |ai−bi| ≤ δ for i = 0, ...d, then for every root β of g(T ) = b0 +b1T + ...+bdT
d ∈ R[T ]

there is a root α of f such that |α− β| < ε.

Proof. Let f(T ) = a0 + a1T + ...+ adT
d. We can write

f(T ) = ad(T − α1)...(T − αd) for some α1, ..., αd ∈ R̄.

Let ε > 0 and let

M = 2 + 2 max
0≤i≤d−1

(
|ai|
|ad|

)
;

0 < δ < min
0≤i≤d−1

(
|adεd|

|
∑d
k=0M

k|
,
|ad|
2
,
|ai|
|ad|

, |ai|

)
;

g(T ) = b0 + b1T + ...+ bdT
d such that |ai − bi| < δ.

We have |bd| > |ad| or |bd| > ||ad| − δ|: Suppose |bd| ≤ |ad|. Then |ad| − |bd| ≤ |ad − bd| < δ. So
|bd| > |ad| − δ. Since δ ≤ |ad|2 we have |bd| > ||ad| − δ| as we wanted.

Let β be a root of g(T ). We now prove that whether |bd| > |ad| or |bd| > ||ad| − δ| we have β < M . By
Lemma 2.1.1,

|β| < 1 + max
0≤i≤d−1

(
|bi|
|bd|

)
.

Suppose |bd| > |ad|. Then

|bi|
|bd|

<
|bi|
|ad|

≤ |bi − ai|+ |ai|
|ad|

≤ |ai|
|ad|

+
δ

|ad|

≤ 2
|ai|
|ad|

.

So β < M .
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Suppose now |bd| > ||ad| − δ|. Then

|bi|
|bd|

<
|bi − ai|+ |ai|
|ad − δ|

<
|ai|+ δ

|ad − δ|

≤ |ai|+ δ

|ad − |ad|2 |

≤ 2
|ai|
|ad|

+ 1

and so again β < M .
Observe now that

|f(β)| = |f(β)− g(β)| ≤
d∑
i=0

|ai − bi||β|i < δ

d∑
i=0

M i < |ad|εd.

On the other hand, f(β) = ad(β−α1)...(β−αd), so at least one of the factors |(β−αi)| has to be less than ε.

We will say something more in the line of the previous lemma. For the rest of this section X will denote
a topological space and E a ring of continuous functions f : X → R, equipped with pointwise addition and
multiplication. If we endow the product topology to X ×R, we can consider the ring of polynomials E[T ] where
each polynomial

f(T ) = f0 + f1T + ...fdT
d

is interpreted as the continuous function (x, t) 7→ f0(x) + f1(x)t+ ...fd(x)td. In this way, X ×R is a topological
space and E[T ]) is a ring of continuous functions f(T ) : X × R → R, equipped with pointwise addition and
multiplication. The pair (X ×R,E[T ]) should be thought as an extension of the pair (X,E).

NOTATION. Let A = (A0, ..., Ad) be a tuple of distinct variables and let

f(A, T ) = A0 +A1T + ...+AdT
d ∈ Z[A, T ].

Let a ∈ R̄d+1. We denote by
Z=k(f(a, T ))

the proposition “the number of distinct roots (in R̄) of f(a, T ) is = k”. We will also use the notationsZ<k(f(a, T ))

and Z≤k(f(a, T )) with the obvious meanings.

LEMMA 2.1.3. Suppose X is connected. Let f = f0 + f1T + ...+ fdT
d ∈ E[T ], and suppose e ≤ d is such

that for every x ∈ X , Z=e(f(x, T )). Then the number of distinct real roots of f(x, T ) is also constant as x ranges
over X . Writing ζ1(x) < ... < ζk(x) for these real roots, the functions ζi : X → R are continuous.

Proof. Let x0 ∈ X and z1, ..., ze be the distinct roots of f(x0, T ). For each i ∈ {1, ..., e} let Bi ⊂ R̄ be a closed
ball with zi ∈ Bi, Bi ∩Bj = ∅ whenever i 6= j and Bi ∩R = ∅ whenever zi ∈ R̄ −R. Let U be an open subset
of X such that x0 ∈ U and, for each x ∈ U , f(x, T ) has exactly one root in Bi for each i ∈ {1, ..., e} (Lemma
2.1.2). Let ξi : U → Bi be the function that sends x ∈ U to the unique root of f(x, T ) in Bi.
Claim: ξi is continuous
Proof: Let δ > 0. We will prove the existence of an open set V ⊂ U with a ∈ V such that for all x ∈ V ,
|ξ(x) − ξ(a)| < δ. Let ε > 0 such that for every b0, ..., bd ∈ R̄ with |bi − fi(a)| < ε, there is a root β of
g(T ) = b0 + b1T + ...+ bdT

d with |β − ξ(a)| < δ (Lemma 2.1.2). Let Vi ⊂ U be an open set with a ∈ Vi such
that for all x ∈ Vi, |fi(x) − fi(a)| < ε (continuity of each function fi). Let V =

⋂
Vi. Since for every x ∈ U

there is a unique root of f(x, T ), we have that for every x ∈ V , |ξ(x)− ξ(a)| < δ as we wanted.
The coefficients of f(x, T ) are real so the set {ξ1(x), ..., ξe(x)} is closed under “complex” conjugation. This

implies that if ξi(x0) = zi ∈ R then ξi(x) ∈ R for all x ∈ U . This shows that the number of real roots is locally
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constant. Since X is connected, we can extend ξi to a continuous function ζi : X → R and so the number of zeros
is also constant in X .

2.2 Semialgebraic cell decomposition

In this section we evidence the relationship between the zero-sets of polynomials and the semialgebraic sets.

NOTE 2.2.1. Let p(T ) = a0 +a1T + ...+adT
d be a polynomial in R̄[T ]. Suppose p(T ) = (T −T1)n1 ...(T −

Tm)nm , where Ti’s are the distinct roots of p. Then

degree( gcd(p,
∂p

∂T
) ) = d−m;

degree( lcm(p,
∂p

∂T
) ) = d+m− 1.

LEMMA 2.2.2. Let A = (A0, ..., Ad) be a tuple of distinct variables and let

f(A, T ) = A0 +A1T + ...+AdT
d ∈ Z[A, T ].

Let e ∈ {0, ..., d} ∪ {∞}. Then the set

{a ∈ R̄d+1 : Z=e(f(a, T ))}

is a finite union of sets of the form

{a ∈ R̄d+1 : p1(a) = ... = pk(a) = 0, q(a) 6= 0}

where pi(A), q(A) ∈ Z[A].

Proof. Let d > 0 and a = (a0, ..., ad) ∈ R̄d+1. Let m be the number of distinct zeros of f(a, T ). The degree of
lcm(f(a, T ), ∂f∂T (a, T )) is d+m− 1. Let 0 < k < d. Then

f(a, T )q(x, T ) = ∂f
∂T (a, T )r(x, T ), for some nonzero

x = (x0, ..., x2k+1) ∈ R̄2k+1, where

q(x, T ) = x0 + x1T + ...+ xk−1T
k−1, and

r(x, T ) = xk + xk+1T + ...+ x2kT
k

is equivalent to the condition d + m − 1 ≤ d + k − 1, that is to m ≤ k. This is equivalent to Z≤k(f(a, T )). We
have

f(a, T )q(x, T )− ∂f

∂T
(a, T )r(x, T )

= β0(a, x) + β1(a, x)T + ...+ βd+k−1(a, x)T d+k−1

for some bilinear functions β0, ..., βd+k−1 : R̄d+1 × R̄2k+1 → R̄. Hence the previous condition is equivalent to

β0(a, x) = ... = βd+k−1(a, x) = 0

for some nonzero x ∈ R̄2k+1, that is, to the condition that the linear map

x 7→ (β0(a, x), ..., βd+k−1(a, x))

has nontrivial kernel. This in turn, is equivalent to the vanishing of all (d + k − 1) × (d + k − 1) minors of the
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matrix of this linear map. This expresses the set

{a ∈ R̄d+1 : ad 6= 0 ∧ Z≤k(f(a, T ))}

as the intersection of {a ∈ R̄d+1 : ad 6= 0} with the zero set of certain polynomials in Z[A]. We obtain the
conclusion of the lemma by considering the intersection of the previous set with the complementary of {a ∈
R̄d+1 : ad 6= 0 ∧ Z≤k−1(f(a, T ))}.

DEFINITION 2.2.3. A set A ⊆ X is an E-set if A is a finite union of sets of the form

{x ∈ X : f(x) = 0, g1(x) > 0, ..., gk(x) > 0}

with f, g1, ..., gk ∈ E.

We can think about theE-sets as a generalization of the semialgebraic sets. Note that theE-sets form a boolean
algebra of subsets of X . An easy application of lemma 2.2.2 is the following:

LEMMA 2.2.4. Let f(T ) = f0 + f1T + ...+ fdT
d ∈ E[T ]. Then the set

{x ∈ X : Z=e(f(x, T ))}

is an E-set.

Proof. Let g(A, T ) =: A0 +A1T + ...+AdT d ∈ Z[A, T ]. The set

{f̄(x) = (f0(x), ..., fd(x)) ∈ Rd+1 : Z=e(g(f̄(x), T ))}

is contained in {a ∈ R̄d+1 : Z=e(g(a, T ))} which by lemma 2.2.2, is given by a finite union of sets of the form

{a ∈ R̄d+1 : p1(a) = ... = pk(a) = 0, q(a) 6= 0}.

Thus
{x ∈ X : Z=e(f(x, T ))}

is given by a finite union of sets of the form

{x ∈ X : p1(f̄(x)) = ... = pk(f̄(x)) = 0, q(f̄(x)) 6= 0}

Note that for every polynomial p we have p ◦ f̄ ∈ E.

Now follows an easy lemma that will be useful to prove the next theorem.

LEMMA 2.2.5 (Thom’s lemma). Let f1, ..., fk ∈ R[T ] be nonzero polynomials such that if f ′i 6= 0, then
f ′i ∈ {f1, ..., fk}. Let ε : {1, ..., k} → {−1, 0, 1}, and put

Aε = {t ∈ R : sign(fi(t)) = ε(i), i = 1, ..., k}.

Then Aε is empty, a point, or an interval. If Aε 6= 0, then its closure is given by

cl(Aε) = {t ∈ R : sign(fi(t)) = {ε(i), 0} i = 1, ..., k}.

Proof. We prove by induction. If k = 1 then f ′1 = 0 so f1 is constant and the result holds. Suppose the results holds
for k ≥ 1. Let {f1, ..., fk+1} be a set with the conditions of the lemma, and let ε′ : {1, ..., k, k + 1} → {−1, 0, 1}
be an application. Let ε be the restriction of ε′ to {1, ..., k}. We have

Aε′ = Aε ∩ {t ∈ R : sign(fk+1(t)) = ε′(k + 1)}.
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If Aε is either empty or a point Aε′ is also of that form. Suppose Aε is an interval. If f ′k+1 = 0 then {t ∈ R :

sign(fk+1(t)) = ε′(k + 1)} is either empty or the whole R, which proves the result. Suppose i ∈ {1, ..., k} such
that f ′k+1 = fi 6= 0. We have that f ′k+1 is constant in Aε, and so fk+1 is strictly monotone in Aε. It is now easy to
see that Aε′ is either empty, a point or an interval.

NOTATION. Let R∞ := R ∪ {−∞,+∞}. Given functions f, g : X → R∞ we put

(f, g)X := {(x, r) ∈ X ×R : f(x) < r < g(x)}

We write f < g to indicate f(x) < g(x) for all x ∈ X . We will simply write (f, g) instead of (f, g)X whenever
X is implicitly understood.

The next theorem is the central result of this section.

THEOREM 2.2.6. Given f1(T ), ..., fM (T ) ∈ E[T ], we can expand this set to f1(T ), ..., fN (T ) ∈ E[T ] with
M ≤ N , and partition X into a finite union of E-sets Xi such that for each connected component C of Xi there
are continuous real valued functions ξC,1 < ... < ξC,µ(C) on C with the following properties:

1. each fi has constant sign (−1,0 or 1) on each of the sets Γ(ξC,j) (1 ≤ j ≤ µ(C)) and (ξC,j , ξC,j+1)

(0 ≤ j ≤ µ(C)) where ξC,0 = −∞ and ξC,µ(C)+1 = +∞.

2. each of the sets Γ(ξC,j) and (ξC,j , ξC,j+1) is of the form {(x, t) ∈ C × R : sign(fi(x, t)) = ε(i), i =

1, ..., N} for some function ε : {1, ..., N} → {−1, 0, 1}.

Proof. Take d (big enough) such that every fm (1 ≤ m ≤M ) can be written as

fm(T ) = fm,0 + fm,1T + ...+ fm,dT
d

for some fm,i ∈ E.
For each ∆ ⊆ {1, ...,M} × {0, ..., d}, let

f∆ =
∏

(m,r)∈∆

∂rfm
∂T r

∈ E[T ].

Note that the degree of each f∆ never exceeds Md2. Consider also sets of the form

Z∆,e = {x ∈ X : Z=e(f∆)}.

For each ∆ fixed, letting e range over {0, ...,Md2,∞}, we obtain a finite partition of X by these Z∆,e’s, which
are E-sets by lemma 2.2.4. Since E-sets form a boolean algebra, we can choose a partition X = X1 ∪ ...∪Xk (by
taking intersections of Z∆,e’s) such that for every ∆ there is some e such that each Xi is contained in some Z∆,e .
Augment f1, ..., fM to f1, ..., fN (M ≤ N ) such that

{f1, ..., fN} = {∂
rfm
∂T r

: 1 ≤ m ≤M, 0 ≤ r ≤ d}.

We will prove that the partition X = X1 ∪ ... ∪ Xk and the functions f1, ..., fN satisfy the conclusion of the
theorem.

Let C be a connected component of some Xi. Let

∆(C) = {(m, r) :
∂rfm
∂T r

does not vanish identically on C ×R}.

We have that C is contained in Z∆(C),e for some e. This e is finite: otherwise, one of the factors in f∆(C)

would have infinite zeros for some x ∈ C, which is absurd by definition. Lemma 2.1.3 implies the existence of
continuous real valued functions ξC,1 < ... < ξC,µ(C) on C such that

{(x, t) ∈ C ×R : f∆(C)(x, t) = 0} = Γ(ξC,1) ∪ ... ∪ Γ(ξC,µ(C)).
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We now prove that these ξC,i satisfy the conclusion of the theorem.

Claim 1: each function ∂rfm
∂T r has constant sign on each set Γ(ξC,i) (1 ≤ i ≤ µ(C)) and (ξC,i, ξC,i+1)

(0 ≤ i ≤ µ(C)) with ξC,0 = −∞ and ξC,µ(C)+1 = +∞.
Proof: If (m, r) /∈ ∆(C), then ∂rfm

∂T r vanishes identically on C, which makes the claim obvious. Suppose
(m, r) ∈ ∆(C). The set C is contained in Z{(m,r)},e for some e. The zero-set of ∂rfm

∂T r on C × R is given by a
finite union of graphs of real valued continuous functions on C, and since ∂rfm

∂T r is one of the factors in f∆, these
functions have to be among the ξC,i’s.

We have established that ∂
rfm
∂T r has constant sign on each of the sets mentioned in the claim. Now we prove

that, fixed the connected component C, these sets can be defined uniquely by a sign condition on the ∂rfm
∂T r for

(m, r) ∈ {1, ...,M} × {0, ..., d}.

Claim 2: Suppose A is either Γ(ξC,i) (for some 1 ≤ i ≤ µ(C)) or (ξC,i, ξC,i+1) (for some 0 ≤ i ≤ µ(C)).
Put ε(m, r) := sign(∂

rfm
∂T r ) on A. Let

A′ = {(x, t) ∈ C ×R : ε(m, r) = sign(
∂rfm
∂T r

(x, t)), 1 ≤ m ≤M, 0 ≤ r ≤ d}.

Then A = A′

Proof: Clearly A ⊆ A′. Suppose A 6= A′. Take (x, t′) ∈ A′ \ A. Let (x, t) ∈ A and assume, without loss of
generality, t < t′. Observe that the set ∆(C) has the property that if fi has a corresponding index in ∆(C) and
f ′i does not vanish identically in C × R then f ′i also has a corresponding index in ∆(C). This property and the
fact that C is connected implies (by lemma 2.2.5) that the set {t ∈ R : (x, t) ∈ A′} must be an interval, and so
{x} × [t, t′] ⊆ A′. But (x, t′) /∈ A, so A′ must have non-empty intersection with Γ(ξC,i) and (ξC,i, ξC,i+1) for
some i, hence changing the signal of f∆(C), which is absurd since f∆(C) is a product of ∂

rfm
∂T r ’s.

DEFINITION 2.2.7. We say that the pair (X,E) has the Łojasiewicz property if every E-set has only finitely
many connected components and each connected componet is also an E-set.

COROLLARY 2.2.8. If (X,E) has the Łojasiewicz property, then
(X ×R,E[T ]) also has the Łojasiewicz property. Moreover, for each E[T ]-set, its projection onto X is an E-set.

Proof. Let S be anE[T ]-set and let f1, ..., fM be the polynomials inE[T ] involved in the definition of S. Applying
theorem 2.2.6, we can augment these polynomials to f1, ..., fN and get a partition of X into a finite union of E-
sets Xi with the property that for every i, each connected component C of Xi gives a finite partition of C × R
described solely by sign conditions on the fj’s, hence a finite partition of C ×R into E[T ]-sets. Since (X,E) has
the Łojasiewicz property we can assume the Xi’s to be connected. And so S has only a finite number of connected
components, each of them being an E[T ]-set. It is obvious that projection of S onto X just gives a finite union of
the Xi’s which is an E-set.

Observe that the R[T1, ..., Tn]-sets are exacly the semialgebraic sets of Rn. For n = 0, Rn is just a point and
R[T1, ..., Tn] is just R, hence (R0, {0}) has the Łojasiewicz property. By induction, using the previous corollary,
(Rn, R[T1, ..., Tn]) has the Łojasiewicz property, and the projection of a semialgebraic set inRn+1 ontoRn is still
a semialgebraic set.

COROLLARY 2.2.9. Let R = (R,<,+,−, ·, 0, 1) be a rcof. The definable sets are exactly the semialgebraic
sets.

Proof. The atomic formulas define semialgebraic sets. The semialgebraic sets are closed under boolean operations
and, by the aforementioned property, they are also closed under projections. By lemma 1.4.3 it is now obvious the
result.

We have shown

THEOREM 2.2.10. The theory of rcof has QE.
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And in particular

COROLLARY 2.2.11. Any rcof is o-minimal.
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Chapter 3

O-minimality

In this chapter we present some fundamental results of o-minimality and some interesting applications. Through-
out this chapterR = (R,<, ...) is an o-minimal structure.

PROPERTY 3.0.1. Let U ⊆ R and A ⊆ B ⊆ Rm be definable sets. Then

1. inf(U) and sup(U) exist in R∞;

2. The boundary of U =: bd(U) is finite, and if u1 < ... < uk are the points of bd(U) then each interval
(ui, ui+1), where u0 = −∞ and uk+1 = +∞, is either contained in U or disjoint from U ;

3. cl(A) and int(A) are definable.

Proof. Consult Lemmas 3.3 and 3.4 of [1].

DEFINITION 3.0.2. A set X ⊆ Rm is called definably connected if X is definable and X is not the union of
two nonempty definable disjoint subsets that are open in X .

PROPERTY 3.0.3. The image of a definably connected set X ⊆ Rm under a definable continuous map f :

X → Rn is definably connected.

Proof. Suppose f(X) = A ∪ B, where A,B are definable open sets in f(X) and A ∩ B = ∅. Then X =

f−1(A)∪f−1(B). The sets f−1(A), f−1(B) are definable and disjoint. The function f ′ : X → f(X), x 7→ f(x)

is continuous, so f−1(A), f−1(B) are open in X . Since X is a definably connected set, either f−1(A) = ∅ or
f−1(B) = ∅.

PROPERTY 3.0.4. If (R,<, ·, 1) is an ordered group, then (R, ·, 1) is abelian, divisible and torsion-free.

Proof. Consult Proposition 4.2 of [1].

PROPERTY 3.0.5. If (R,<,+,−, ·, 0, 1) is an ordered ring, then (R,<,+,−, ·, 0, 1) is a real closed field.

Proof. Consult Proposition 4.6 of [1].

From these properties and the results in the previous section we have

THEOREM 3.0.6. An ordered ring is a rcof if and only if it is o-minimal.

Regardless of whether R is a rcof, we will see an intuitively similar result to the Tarski-Seidenberg theorem,
regarding continuous functions instead of polynomials.
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3.1 Monotonicity Theorem and Uniform Finiteness

The monotonicity theorem is a crucial result for the development of o-minimality. We follow closely Chapter
3 of [1].

THEOREM 3.1.1 (Monotonicity Theorem). Let f : I → R be a definable function. Then there are constants
a1, ..., ak such that I = (a1, a2)∪ ...∪ (ak−1, ak)∪ {a1, ..., ak} and, for each interval (ai, ai+1), f is constant or
strictly monotone and continuous.

To prove this theorem we rely on the following three lemmas. For these lemmas assume f : I → R is a
definable function.

LEMMA 3.1.2. There is a subinterval of I where f is constant or injective.

LEMMA 3.1.3. If f is injective, then f is strictly monotone on some subinterval.

LEMMA 3.1.4. If f is strictly increasing, then f is continuous on some subinterval.

Assume I = (a, b). Here is how we use the lemmas to prove 3.1.1:

Proof of Monotonicity Theorem: Let Φ0,Φ↗,Φ↘ be formulas defined by

Φ0(x) := f “is constant on some subinterval of I containing x”;

Φ↗(x) := f “is strictly increasing on some subinterval of I containing x”;

Φ↘(x) := f “is strictly decreasing on some subinterval of I containing x”.

Let

X0 := {x ∈ I : Φ0(x)};
X↗ := {x ∈ I : Φ↗(x)};
X↘ := {x ∈ I : Φ↘(x)};

X = X0 tX↗ tX↘.

If I \X is infinite, then it must contain an interval J ⊂ I \X . Applying the Lemmas 3.1.2, 3.1.3 and 3.1.4 to J ,
we conclude that there is an interval J ′ ⊂ J such that J ′ ⊂ X which is absurd. Thus I \X is finite. We can write

I = (a0, a1) ∪ ... ∪ (an−1, an) ∪ {a0, a1, ..., an},

such that I \X = {a1, ..., an} and for each i ∈ {0, ..., n− 1} either

• for all x ∈ (ai, ai+1), Φ0(x) or

• for all x ∈ (ai, ai+1), Φ↗(x) or

• for all x ∈ (ai, ai+1), Φ↘(x).

Suppose the first case happens for some i ∈ {0, ..., n− 1}. Take x0 ∈ (ai, ai+1) and put

s := sup{x ∈ (ai, ai+1) : x0 < x < ai+1, f is constant on [x0, x)}.

Then s = ai+1, since s < ai+1 implies that f is constant on an interval containing s which is absurd. Therefore f
is constant on (ai, ai+1).

Suppose the second case happens for some i ∈ {0, ..., n− 1}. Take x0 ∈ (ai, ai+1) and put

s := sup{x ∈ (ai, ai+1) : x0 < x < ai+1, f is strictly increasing on [x0, x)}.
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Then s = ai+1, since s < ai+1 implies that f is strictly increasing on an interval containing s which is absurd.
Therefore f is strictly increasing on (ai, ai+1).

The third case has a similar result as the second case.

Now we prove the lemmas.

Proof of Lemma 3.1.2: Let us denote I = (a, b). If f−1(y) is infinite for some y ∈ f [I], since f−1(y) is definable,
it must contain an interval, which gives us the result.
Suppose then f−1(y) is finite for every y ∈ f [I]. This implies that f [I] is infinite. Let g(y) = min{x ∈ I :

f(x) = y}. Then g : f [I] → I is definable and clearly injective. This implies that the range of g is infinite, so
it must contain an interval. Evidently f is injective on that interval. Replacing I by that interval, we can assume
injectivity of f .

Proof of Lemma 3.1.3: Let u ∈ I . Consider the definable sets

I+(u) = {x ∈ (a, u) : f(x) > f(u)};
I−(u) = {x ∈ (a, u) : f(x) < f(u)}.

Since f is injective, we can write (a, u) = I+(u)tI−(u). At least one of the subsets must be infinite, so it contains
an interval of the form (c, u). This rationale is also valid for (u, b). Thus it is true that every element of I satisfies
one of the following formulas Φ−+,Φ++,Φ+−,Φ−−:

Φ−+(x) =: ∃c1, c2 ∈ I∀y((c1 < y < x⇒ f(y) < f(x)) ∧ (x < y < c2 ⇒ f(y) > f(x)));

Φ++(x) =: ∃c1, c2 ∈ I∀y((c1 < y < x⇒ f(y) > f(x)) ∧ (x < y < c2 ⇒ f(y) > f(x))).

The formulas Φ+−(x),Φ−−(x) are defined similarly. Let I−+ =: {x ∈ I : Φ−+(x)} and define I+−, I++, I−−
similarly. We have I = I−+tI+−tI++tI−−, so there is a subinterval of I on which every element satisifes only
one of the above formulas. Replace I by that subinterval. If I = I−+ or I = I+−, then f is strictly monotone. We
now prove that any subset satisfying either Φ++ or Φ−− must be finite. Suppose by contradiction that I = I++.
Let B = {x ∈ I : ∀y(x < y ⇒ f(x) < f(y)}. If B is infinite, then B contains an interval. Replacing I by that
interval completes the proof. So let’s assume B is finite. Replacing I by (max(B),+∞) ∩ I we have

∀x ∈ I∃y ∈ I(x < y ∧ f(y) < f(x)). (3.1)

Let c ∈ I . We claim that there is d ∈ I such that for all y ∈ (d, b) we have f(y) < f(x): Let

Y = {y : y > c ∧ f(y) < f(c)}

and
Y ′ = {y : y > c ∧ f(y) > f(c)}.

Since f is injective we have
(c, b) = Y t Y ′.

By o-minimality, either Y or Y ′ contains an interval (d, b). Suppose by contradiction that Y doesn’t contain such
interval. We have c < supY < b. But by 3.1, there is w > supY such that f(w) < f(supY ) < f(c). Hence
w ∈ Y which is absurd.

Let y(c) be the least element of [c, b) such that for all y ∈ (y(c), b) we have f(y) < f(c). Note that Φ++(c)

implies that c < y(c) and f(y(c)) < f(c).
Let

Ψ+−(v) =: ∃v1, v2 ∈ I ∀z1, z2(v1 < z1 < v < z2 < v2 ⇒ f(z1) > f(z2)).

Then y(c) satisfies Ψ+− since otherwise there would be an element z ∈ (c, y(c)) such that f(z) ≤ f(y) < f(c)

for some y ∈ (y(c), b) which contradict the minimality of y(c).
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Since c was arbitrary we have shown ∀c ∈ I ∃v ∈ I(v > c ∧ Ψ+−(v)). We have that Ψ+−(v) holds for all
v ∈ (d, b) for some d ∈ I . Replace I by this interval (d, b).

Instead of B, defining B′ = {x ∈ I : ∀y(x > y ⇒ f(x) < f(y)}, then proceeding with similar arguments,
and replacing I by an even smaller subinterval, we conclude that both Ψ+− and Ψ−+ hold for all x ∈ I which is
absurd.

The case that Φ−− hold for all x ∈ I is similar.

Proof of Lemma 3.1.4: Let J be an interval in f [I]. We show that f−1(J) is an interval. Clearly f−1(J) ⊆
(inf f−1(J), sup f−1(J)). Let x be an element of (inf f−1(J), sup f−1(J)). If x /∈ f−1(J) then we could
partition J in two intervals which is absurd. Hence f is continuous.

DEFINITION 3.1.5. Let A ⊆ Rm+1 be definable. We say that A is finite over Rm if for each x ∈ Rm the
fiber Ax = {y ∈ R : (x, y) ∈ A} is finite. We say that A is uniformly finite over Rm if there is n ∈ N such that
|Ax| < n for every x ∈ Rm.

LEMMA 3.1.6 (Finiteness Lemma). Let A be a definable subset of R2 and suppose A is finite over R. Then A
is uniformly finite over R.

Proof. We will call a pair (a, b) ∈ R2 normal if there is a box I × J around (a, b) such that either I × J doesn’t
intersect A or, when it does, there is a continuous function f : I → J such that Γ(f) = (I × J) ∩A. We will also
call a pair (a,+∞) ∈ R × R∞ normal if there is a box I × J disjoint from A such that a ∈ I and J = (b,+∞)

for some b. (analogous for (a,−∞) ∈ R×R∞).
Note that the following sets are definable

{(a, b) ∈ R2 : (a, b) is normal };
{a ∈ R : (a,−∞) is normal };
{a ∈ R : (a,+∞) is normal }.

We define a function fn by

dom(f) := {x ∈ R : |Ax| ≥ n};
fn(x) := nth element of Ax.

Note that fn is definable.

Let a ∈ R and take n ≥ 0 maximal such that f1, ..., fn are defined and continuous on an interval containing a.
We call the point a good or bad, according to

a /∈ cl(dom(fn+1))− “good”;

a ∈ cl(dom(fn+1))− “bad” .

Let G be the set of good points and B the set of bad points. Note that if a ∈ G then (with n as above) the
domain of fn+1 is disjoint from an entire interval around a on which f1, ..., fn are defined and continuous. This
shows that for a ∈ G we have

• |Ax| is constant on an interval around a;

• (a, b) is normal for all b ∈ R∞.

We want to prove that G and B are definable. For this we shall prove

• If a ∈ B then there is some b ∈ R such that the pair (a, b) is not normal.

25



Let a ∈ B. Define functions λ−, λ+, λ0 : B → R∞ by

λ−(a) := lim
x→a−

fn+1(x) if fn+1 is defined on a interval (t, a) for some t < a,

:= +∞ otherwise;

λ+(a) := lim
x→a+

fn+1(x) if fn+1 is defined on a interval (a, t) for some t > a,

:= +∞ otherwise;

λ0(a) := fn+1(a) if a ∈ dom(fn+1),

:= +∞ otherwise.

Let β(a) = min{λ−(a), λ+(a), λ0(a)}. In this way β(a) is the least element such that (a, β(a)) is not normal.
So we have that G and B are definable by

G := {a ∈ R : ∀b ∈ R∞((a, b) is normal)};
B := {a ∈ R : ∃b ∈ R∞((a, b) is not normal)}.

If B is finite then the rest of the proof is easy: Let

B = {a1, ..., ak} with −∞ = a0 < a1 < ... < ak < ak+1 = +∞.

Let x ∈ G. Suppose |Ax| = n for some n ∈ N. Since |Ay| = n for every y in some interval around x, the set
{x ∈ R : |Ax| = n} is open and definable. For the same reason the set {x ∈ R : |Ax| 6= n} is also open and
definable. So Ax = (ai, ai+1) for some i = 0, ..., k. This proves the lemma.

Now let’s conclude the proof by showing that B can’t be an infinite set: Suppose by contradiction that B is
infinite. Define

B− := {x ∈ B : ∃y(y < β(x) ∧ (x, y) ∈ A};
B+ := {x ∈ B : ∃y(y > β(x) ∧ (x, y) ∈ A}.

Let β− : B− → R and β+ : B+ → R be defined by

β−(x) := max{y : y < β(x) ∧ (x, y) ∈ A};
β+(x) := min{y : y > β(x) ∧ (x, y) ∈ A}.

Since B is infinite one of the sets B−∩B+, B−−B+, B+−B−, B− (B−∪B+) is also infinite. Suppose B−∩B+

is infinite (the other cases are proved in similar way). Since β, β−, β+ are definable, by the Monotoniciy Theorem,
there is an interval I contained in B− ∩ B+ where each of the functions β, β−, β+ are continuous. We can write

I = {x ∈ I : (x, β(x)) ∈ A} t {x ∈ I : (x, β(x)) /∈ A}.

One of the sets in this partition of I must be infinite. Replacing I by that interval we get Γ(β|I) ⊆ A or Γ(β|I) ∩
A = ∅. By continuity of β, β−, β+ in I we have x, x1, x2, y0, y1, y2, y3 ∈ R such that

x ∈ (x1, x2) ⊆ I
y0 < β−(x) < y1 < β(x) < y2 < β+(x) < y3

β−(x1, x2) ⊆ (y0, y1)

β(x1, x2) ⊆ (y1, y2)

β+(x1, x2) ⊆ (y2, y3).

This gives either (x1, x2)× (y1, y2) ∩ A = ∅ or (x1, x2)× (y1, y2) ∩ A = Γ(β|(a,b)), implying (x, β(x)) to be a
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normal point, which is absurd.

Combining the Monotonicity Theorem and the Finiteness Lemma we get the following property:

PROPERTY 3.1.7. Let A ⊆ R2 be a definable set such that Ax is finite for each x ∈ R. Then there are
points a1 < ... < ak in R such that the intersection of A with each vertical strip (ai, ai+1) × R has the form
Γ(fi,1) ∪ ... ∪ Γ(fi,n(i) for certain definable continuous functions fi,j : (ai, ai+1) → R with fi,1(x) < ... <

fi,n(i)(x) for x in (ai, ai+1) (where a0 := −∞ and ak+1 := +∞).

3.2 Cell decomposition

NOTATION. For each definable set X in Rm we put

C(X) := {f : X → R : f is definable and continuous };
C∞(X) := C(X) ∪ {−∞,+∞},

where we regard −∞ and +∞ as constant functions on X .

DEFINITION 3.2.1. Let (i1, ..., im) be a sequence of zeros and ones of lenght m. An (i1, ..., im)-cell is a
definable subset of Rm defined by induction on m as follows:

1. A (0)-cell is a point {r} ⊆ R, a (1)-cell is an interval (a, b) ⊆ R;

2. Suppose (i1, ..., im)-cell is already defined. Then an (i1, ..., im, 0)-cell is the graph Γ(f) of a funciton
f ∈ C(X), where X is an (i1, ..., im)-cell; an (i1, ..., im, 1)-cell is a set (f, g)X where f, g ∈ C∞(X) and
X is an (i1, ..., im)-cell.

PROPERTY 3.2.2. Each cell is homeomorphic to an open cell under a coordinate projection.

Proof. Let i = (i1, ..., im) be a sequence of zeros and ones. Define pi : Rm → Rk as follows: let λ(1) < ... <

λ(k) be the indices λ ∈ {1, ...,m} such that iλ = 1 and k = i1 + ...+ im. Put

pi(x1, ..., xm) := (xλ(1), ..., xλ(k)).

We show by induction on m that pi maps homeomorphically each i-cell A to an open cell pi(A) in Rk. If m = 1

then it is obvious. Let j = (j1, ..., jm, jm+1) and j′ = (j1, ..., jm). If jm+1 = 0 then a j-cell is Γ(f) for some
f ∈ C(X), where X is a j′-cell. We have that X is homeomorphic to Γ(f) under the projection pj . By the
inductive hypothesis X is homeomorphic to the open cell pj′(X). So Γ(f) is homeomorphic to the open cell
pj′pj(Γ(f)). Suppose now jm+1 = 1. Then a j-cell is of the form (f, g)X where f, g ∈ C(X) and f < g. Let
x ∈ X and f(x) < y < g(x). Then pj(x, y) = (pj′(x), y). So we have pj [(f, g)X ] = (f ◦ p−1

j′ , g ◦ p
−1
j′ )pj′ (X).

Note that (f ◦ p−1
j′ , g ◦ p

−1
j′ )pj′ (X) is an open cell because pj′(X) is an open cell by hypothesis. Since pj′ defines

an homeomorphism we have (f, g)X ' (f ◦ p−1
j′ , g ◦ p

−1
j′ )pj′ (X).

PROPERTY 3.2.3. Each cell is definably connected.

DEFINITION 3.2.4. A decomposition of Rm is a special kind of partition of Rm into finitely many cells. The
definition is by induction on m:

1. A decomposition of R is a collection

{(a0, a1), ..., (ak, ak+1), {a1}, ..., {ak}}

where a1, ..., ak are points in R and a0 = −∞, ak+1 = +∞;

2. A decomposition of Rm+1 is a finite partition of Rm+1 into cells A such that the set of projections π(A) is
a decomposition of Rm. (Here π : Rm+1 → Rm is the usual projection map).
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DEFINITION 3.2.5. A decomposition D of Rm is said to partition a set S ⊆ Rm if each cell in D is either part
of S or disjoint from S

Now follows three fundamental properties of o-minimal structures:

THEOREM 3.2.6. Let A,A1, ..., Ak ⊆ Rn and Y ⊆ Rn+1 be definable sets. Then

• (Uniform finiteness - UFn) If Y is finite over Rm then it is uniformly finite over Rm;

• (Cell decomposition - CDn) There is a decomposition of Rn partitioning A1, ..., Ak;

• (Piecewise continuity - PCn) Let f : A→ R be a definable function. Then there is a cellular decomposition
of Rn adapted to A such that for each cell C ⊆ A, f |C is continuous.

The proof is by induction. If n = 1, UF1 is the finiteness lemma, CD1 follows immediately from o-minimality
and PC1 is the monotonicity theorem. Let n > 1 and suppose UFm, CDm and PCm hold for every 1 ≤ m < n.

Proof of UFn. A box B ⊆ Rm will be called Y -good if for each point (x, r) ∈ Y there is an interval I with r ∈ I
such that Y ∩ (B × I) = ∅ or Y ∩ (B × I) = Γ(f) for some continuous function f : B → I . It is obvious that if
the latter case happens then f is uniquely determined by Y , B and I , and is definable.

Claim 1: Suppose the box B ⊆ Rm is Y -good; then there are continuous definable functions f1 < ... < fk in
C(B) such that Y ∩ (B ×R) = Γ(f1) ∪ ... ∪ Γ(fk).

To see this, let us fix x ∈ B and write Yx = {r1, ..., rk} with r1 < ... < rk. Take intervals Ii around ri , and
continuous functions fi : B → R such that Y ∩ (B × Ii) = Γ(fi), for each 1 ≤ i ≤ k.

Subclaim 1.1: f1 < ... < fk.
We will prove only f1 < f2. The other cases follow in the same way. Suppose there is a point p ∈ B

such that f1(p) = f2(p). Then I1 ∩ I2 6= ∅ and A ∩ (B × I1) ∩ (B × I2) = Γ(f1) ∩ Γ(f2). This implies
{p ∈ B : f1(p) = f2(p)} = f−1[I1 ∩ I2]. By continuity this set is open. We can write B as a disjoint union of
{p ∈ B : f1(p) = f2(p)}, {p ∈ B : f1(p) < f2(p)} and {p ∈ B : f1(p) > f2(p)} and these are all definable open
sets. Since B is definably connected the subclaim follows easily.

Subclaim 1.2: Y ∩ (B ×R) = Γ(f1) ∪ ... ∪ Γ(fk).
Let (y, s) ∈ Y ∩ (B × R) be arbitrary. Let f : B → R be definable continuous such that f(y) = s and

Γ(f) ⊆ Y . We have f(x) = ri = fi(x) for some i since Γ(f) ⊆ Y . By a similar argument as in Subclaim 1.1, we
conclude f = fi.

A point x ∈ Rm will be called Y -good if it belongs to a Y -good box B ⊆ Rm. Note that the set of Y -good
points is definable.

Claim 2: If A ⊆ Rm is a definably connected set and its points are all Y -good then there are continuous
functions f1 < ... < fk in C(A) such that

Y ∩ (A×R) = Γ(f1) ∪ ... ∪ Γ(fk).

Let k ∈ N. Consider the set Ak = {a ∈ A : |Ya| = k}. By Claim 1 and the definition of good point, for every
a ∈ Ak there is a Y -good boxB such thatB ⊆ Ak. SoAk is open inA. Note that in this case there are continuous
functions f1 < ... < fk in C(Ak) such that Y ∩ (Ak × R) = Γ(f1) ∪ ... ∪ Γ(fk). By arbitrariness of k, Ack is
also open in A. So Ak is both open and closed in A. So if Ak 6= ∅ then Ak = A. Supposing k is in fact such that
k = |Yx| for every x ∈ A, we get Claim 2.

Claim 3: Each open cell in Rm contains a Y -good point.
It is enough to show that each box B in Rm contains a Y -good point. Write

B = B′ × (a, b), B′ a box in Rm−1.

For each point p ∈ B′ consider the set

Y (p) := {(r, s) ∈ R2 : a < r < b ∧ (p, r, s) ∈ Y }.
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Note that Y (p) is finite ove R. Applying Property 3.1.7 we conclude that the set {r ∈ R : r is not Y (p)-good } is
finite. Therefore the definable set

Badp(Y ) := {(p, r) ∈ B : r is not Y (p)-good }

has empty interior. By the inductive hypothesis CDm there is a decomposition of Rm which partitions B and
Badp(Y ). Take an open cell C of this partition such that C ⊆ B, so that C ∩Badp(Y ) = ∅. Replace B with a box
contained in C so we reduce to the case that Badp(Y ) = ∅. In this way, fixed a point p ∈ B′ and applying Claim 2
to the box B′ and considering Y (p)-good points instead of Y -good points we conclude that there is k(p) ∈ N such
that for every r ∈ (a, b) we have |Yx| = k(p) where x = (p, r). Next we have to show that there is a finite bound
on the numbers k(p), p ∈ B′. Choose r ∈ (a, b) and consider the set

Y r := {(p, s) : (p, r, s) ∈ Y } ⊆ Rm.

Since Y is finite over Rm, Y r is finite over Rm−1, so by the inductive hypothesis UFm−1, Y r is uniformly finite
over Rm−1. Thus for some r ∈ (a, b) there is a number N ∈ N such that for every p ∈ B′, |Y(p,r)| ≤ N . Thus we
have shown that for every p ∈ B′, k(p) ≤ N .

For each i ∈ {0, ..., N} let Bi := {x ∈ B : |Yx| = i}, and define the functions fi,1, ..., fi,i on Bi by
fi,1(x) < ... < fi,i(x) and Yx = {fi,1(x), ..., fi,i(x)}. Applying PCm to each function fi,j separately, and then
using CDm to find a common refinement of the decomposition obtained via PCm, we get a decomposition D of
Rm partitioning each of the sets Bi, such that for each A ∈ D, if A ⊆ Bi, then fi,j |A is continuous, j = 0, ..., i.
Since B is open there is an open cell A ∈ D with A ⊆ B. Now B =

⋃
iBi, so A ⊆ Bi for some i, therefore the

functions fi,1, ..., fi,i are continuous on A. Hence each point in A is Y -good. This establishes Claim 3.

The proof of the lemma now proceeds as follows. Take a decomposition D of Rm partitioning the set of Y -
good points. Let A ∈ D. If A is open then by claim 3 it contains a Y -good point, and so all points of A are
Y -good. By claim 2 there is a number NA ∈ N such that Yx ≤ NA for all x ∈ A. If A is not open, we still have a
definable homeomorphism pA to an open cell of lesser dimension (Property 3.2.2) validating also the existence of
such a number NA. Now take N = max{NA ∈ N : A ∈ D}. Then |Yx| ≤ N for all x ∈ Rm.

Proof of CDn. For a definable set A ⊆ Rm+1 we put

bdm(A) := {(x, r) ∈ Rm+1 : r ∈ bd(Ax)}

and we note that bdm(A) is definable and by o-minimality finite over Rm. Recall Property 3.0.1, to note that if
r1, r2 are two consecutive boundary points of Ax then either (r1, r2) ⊆ Ax or (r1, r2) ⊆ Acx. Let A1, ..., Ak be
definable subsets of Rm+1 . Put

Y := bdm(A1) ∪ ... ∪ bdm(Ak).

Then Y ⊆ Rm+1 is definable and finite over Rm, so by UFm there is M ∈ N such that |Yx| ≤M for all x ∈ Rm.
For each i ∈ {0, ...,M} put Bi := {x ∈ Rm : |Yx| = i} and define fi,1, ..., fi,i functions on Bi by

Yx = {fi,1(x), ..., fi,i(x)}, fi,1(x) < ... < fi,i(x).

Further put fi,0 = −∞ and fi,i+1 = +∞ (functions on Bi). Finally we define for each λ ∈ {1, ..., k}, i ∈
{0, ...,M} and j ∈ {1, ..., i}

Cλ,i,j := {x ∈ Bi : fi,j(x) ∈ (Aλ)x}},

and for each λ ∈ {1, ..., k}, i ∈ {0, ...,M} and j ∈ {0, ..., i}

Dλ,i,j := {x ∈ Bi : (fi,j(x), fi,j+1(x)) ⊆ (Aλ)x}.

Using the inductive assumptions CDm and PCm, we now take a decomposition D of Rm which partitions each
set Bi, each set Cλ,i,j and each set Dλ,i,j , and which has also the following property: if E ∈ D is contained in Bi,
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then fi,1|E , ..., fi,i|E are continuous functions. For each E ∈ D we let DE be the following partition of E ×R

DE := {(fi,0|E , fi,1|E), ..., (fi,i|E , fi,i+1|E),Γ(fi,1|E), ...,Γ(fi,i|E)},

where i ∈ {0, ...,M} is such that E ⊆ Bi. Then D∗ :=
⋃
{DE : E ∈ D} is a decomposition of Rm+1 which

partitions each set A1, ..., Ak.

We will use the following lemma to prove PCn.

LEMMA 3.2.7. LetX be a topological space (R1, <, ...), (R2, <, ...) dense linear orderings without endpoints.
Let (p, r) ∈ X ×R1 and suppose f : X ×R1 → R2 is such that

(i) For every x ∈ X , f(x, ·) : R1 → R2 is continuous and monotone on R1;

(ii) For every r ∈ R1, f(·, r) : X → R2 is continuous at p.

Then f is continuous at (p, r).

Proof. Let (p, r) ∈ X × R1 and J an interval in R2 containing f(p, r). By (i) there are r− < r < r+ such
that f(p, r−), f(p, r+) ∈ J . By (ii) there is a neighbourhood U of p such that f(U × {r−}) and f(U × {r+})
are contained in J . Let x ∈ U and r− < r′ < r+. Assume f(x, ·) is increasing (the decreasing case goes
the same way). Then f(x, r−) < f(x, r′) < f(x, r+), and since both f(x, r−) and f(x, r+) are in J we have
f(x, r′) ∈ J .

Proof of PCn. Let A ⊆ Rm+1 be definable and f : A → R a definable function. We have to show that f
is ”cellwise“ continuous. By CDm+1 there is a finite partition of A into cells. So we can consider A to be a
cell. If A is not open, then we consider the definable homeomorphism pA : A → U , with U ⊆ Rn an open
cell for some 1 ≤ n ≤ m. By the inductive assumption PCn we have a decomposition of U into finitely
many cells U1, ..., Uk ⊆ Rn such that f ◦ p−1

A |U1 , ..., f ◦ p−1
A |Uk are continuous. This gives a decomposition

A = p−1
A (U1) ∪ ... ∪ p−1

A (Uk), such that f |p−1
A (U1), ..., f |p−1

A (Uk) are continuous.
Suppose now that A is an open cell. Call a point (p, r) ∈ A well-behaved if there is a box C ⊆ Rm and an

interval I = (a, b) such that

(i) (p, r) ∈ C × I and C × I ⊆ A;

(ii) for all x ∈ C, f(x, ·) is continuous and monotone on I;

(iii) f(·, r) is continuous at p.

Denote by A∗ the set of well-behaved points. This set is definable.
Claim: A∗ is dense in A.
Let C be a box in Rm and I = (a, c) an interval such that C × I ⊆ A. We will show that C × I intersects

A∗. For each x ∈ C fixed we can apply PC1 to f(x, ∗) to obtain a maximum element λ(x) ∈ (a, c] such that
f(x, ·)|(a,λ(x)) is monotone and continuous. The function λ : C → R is definable, hence by PCm there is a box
C ′ contained in C such that λ|C′ is continuous. Replacing, if necessary, C ′ by a smaller box, we can assume for
every x ∈ C ′, λ(x) ≥ b for some b ∈ (a, c). Now applying PCm to f(·, r) for some r ∈ (a, b) there is a box
B ⊆ C ′ such that f(·, r)|B is continuous. So for any p ∈ B, (p, r) is a well-behaved point. This proves the claim.

Now, using CDm+1, we take a decomposition D of Rm+1 that partitions both A and A∗. Let D ∈ D be an
open cell contained in A. This implies D ⊆ A∗. We’ll show that f is continuous on D. Let (p, r) be an arbitrary
point in D. Let C × I ⊆ D be a neighbourhood of (p, r) such that for every x ∈ C, f(x, ·) is continuous and
monotone on I . Note that for every (p, r′) ∈ D, the function f(·, r′) is continuous at p and in particular, this is
true for r′ ∈ I . So by Lemma 3.2.7, f |C×I is continuous at (p, r), which proves continuity of f at (p, r).

DEFINITION 3.2.8. Let X be a definable subset of Rm. A subset U ⊆ X is said to be a definably connected
component of X if it is definable and a maximal definably connected subset of X .

PROPERTY 3.2.9. Let X be a nonempty definable subset of Rm. Then X has only finitely many definably
connected components. These sets are open and closed in X and form a finite partition of X .
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Proof. Let {C1, ..., Cn} be a decomposition of X into k disjoint cells. For each I ⊆ {1, ..., k} let CI =
⋃
i∈I Ci.

Let C ′ be one of the 2k − 1 sets CI be maximal with respect to being definably connected. Let Y be a definably
connected set such that Y ∩ C ′ 6= ∅. We will prove Y ⊆ C ′. For this let CY :=

⋃
{Ci : Ci ∩ Y 6= ∅}. Since the

C ′is cover X we have Y ⊆ CY , and so the set CY is definably connected. The set C ′ ∩ CY is nonempty since it
contains C ′ ∩ Y , and so C ′ ∪CY is definably connected. By maximality CY ⊆ C ′, and so Y ⊆ C ′ as we wanted.
It follows that C ′ is a definably connected component of X . The closure of a definably connected subset of X is
also definably connected so C ′ is closed. Sets of the form C ′ obviously partition X finitely. Since each one of
these sets is closed, it follows that each one of these sets is also open.

31



Chapter 4

The theory of restricted analytic fields

We have seen that every rcof has quantifier elimination and as a consequence we verified o-minimality. What if
we consider an extension of rcof, coupling it with some class of functions? This type of considerations has already
a vast field of knowledge and it is still a very active area of research. Let R{X1, ..., Xm} denote the subring of
real power series that converge in a neighbourhood of Im, with I = [−1, 1]. For f ∈ R{X1, ..., Xm} we let
f̃ : Rm → R be given by:

f̃(x) =

{
f(x), for x ∈ Im,
0, for x /∈ Im.

We call the f̃ ’s restricted analytic functions.
Let Lan = (<, 0, 1,+,−, ·, {f}f∈R{X1,...,Xm}) be the language of ordered rings augmented by a new function
symbol for each function f̃ . Let Ran = (R, <, 0, 1,+,−, ·, {f̃}f∈R{X1,...,Xm}) be the reals with its natural Lan-
structure and let Tan be the theory of Ran. We will show that Tan admits an universal axiomatization in the language
(Lan,−1 , ( n

√
)n=2,3,...).

Recall the definition of a real analytic function as well as some important properties.

DEFINITION 4.0.1. Let U be an open subset of Rm. We say that a function f : U → R is a real analytic
function if for every (a1, ..., am) ∈ U there is a neighbourhood V of (a1, ..., am) and a sequence of coefficients
ci ∈ R with i = (i1, ..., im) ∈ Nm such that for every x = (x1, ..., xm) ∈ V

f(x) =
∑

ci(x− x1)i1 ...(x− xm)im

An analytic function is infinitely differentiable and its power expansion coincides with the Taylor series.

PROPERTY 4.0.2. Considering the same notation as in definition 4.0.1, we can write the coefficients ci as

ci =
1

|i|!
∂|i|f

∂xi11 ...∂x
im
m

(a) =
1

|i|!
∂|i|f

∂xi
(a)

where |i| = i1 + ...+ im.

Proof. Consult Remark 2.2.4 of [12].

PROPERTY 4.0.3. If f : U ⊂ Rn → R, g : V ⊂ Rn → R are analytic, then f + g and f · g are real analytic
on U ∩ V .

Proof. Consult Proposition 2.2.2 of [12].

PROPERTY 4.0.4. If f : U ⊂ Rm → R, g1, ..., gk : V ⊂ Rn → R are analytic such that g = (g1, ..., gm) :

V → Rm with g(V ) ⊂ U , then f ◦ g : V → R is analytic.

Proof. Consult Proposition 2.2.8 of [12].
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Another useful fact is that the implicit function theorem applied to a real analytic function gives a real analytic
function.

PROPERTY 4.0.5. Let U ⊂ Rm and V ⊂ R be open sets. Suppose F : U × V → R is analytic and for some
(a, b) ∈ U × V , ∂F

∂xm+1
(a, b) 6= 0. Then there is an open neighbourhood W ⊂ U of a and an analytic function

f : W → V such that
F (x, f(x)) = F (a, b), for every x ∈W

Proof. Consult Theorem 2.3.5 of [12].

In the next sections we introduce the concepts and results to prove the following theorem

THEOREM 4.0.6. The theory Tan is axiomatized by the axioms of ordered fields, the axiom saying that each
positive element has an nth root for each n = 2, 3, ..., and the universal axioms:

• AC1: For f, g ∈ R{X1, ..., Xm}, with m ∈ N and x = (x1, ..., xm)

f̃ + g(x) = f̃(x) + g̃(x);

f̃g(x) = f̃(x) · g̃(x);
m∧
i=1

|xi| ≤ 1→ 0̃(x) = 0 ∧ 1̃(x) = 1;

m∨
i=1

|xi| > 1→ 0̃(x) = 0 ∧ 1̃(x) = 0,

where 0̃ and 1̃ are the function symbols corresponding to the elements 0 and 1 of R{X1, ..., Xm};

• AC2:

m∧
i=1

|xi| ≤ 1→ X̃j(x) = xj ;

m∨
i=1

|xi| > 1→ X̃j(x) = 0,

where Xj is considered as an element of R{X1, ..., Xm}, for j = 1, ...,m;

• AC3: For f ∈ R{X1, ..., Xn} and g1, ..., gn ∈ R{X1, ..., Xm} such that gi(0) = 0, f(g1, ..., gn) ∈
R{X1, ..., Xm} and g(Im) ⊂ In, where g = (g1, ..., gn) : Rm → Rn:

m∧
i=1

|xi| ≤ 1→ ˜f(g1, ..., gn)(x) = f̃(g1(x), ..., gn(x));

• AC4: For f, g ∈ R{X1, ..., Xm}, 0 < ε ∈ R, a = (a1, ..., am) ∈ Im, such that g = fa(εX1, ..., εXm),
where fa =

∑
1
|i!|

∂|i|

∂Xi (a)Xi ∈ R〈X1, ..., Xm〉 is the Taylor series of f at a:

(

m∧
i=1

|xi| ≤ 1 ∧
m∧
i=1

|ãi + ε̃xi| ≤ 1)→ f̃(ã1 + ε̃x1, ..., ãm + ε̃xm) = g̃(x).

NOTE 4.0.7. Let K be a non-trivial ordered field, viewed as an Lan-structure, satisfying AC1 from Theorem
4.0.6. We show that K must contain a copy of R. Note that, since 1̃K = 1K , the interpretation of the symbols
q̃, corresponding to q ∈ Q viewed as elements of R{X1, ..., Xm}, are exactly the rationals embedded in K. Let

x ∈ R such that x > 0. Then x =
√
x
√
x. By AC1, x̃K =

√̃
x
K√̃

x
K
> 0. Now suppose x, y ∈ R such that
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x > y. Then x− y > 0 and by the previous reasoning ˜(x− y)
K

> 0, and so x̃K > ỹK . Thus the interpretation of
the symbols x̃ with x ∈ R viewed as an element of R{X1, ..., Xm} in K must preserve the natural order present
in R. This implies that K contains a copy of R.

4.1 Valuations

Valuations are an important tool in the context of this paper.

DEFINITION 4.1.1. Let K be a field. We say that an integral domain O ⊆ K is a valuation ring if

∀x ∈ K(x /∈ O → x−1 ∈ O).

We denote its units by O×.

DEFINITION 4.1.2. LetK be a field and Γ a totally ordered abelian group. A surjective map v : K → Γ∪{∞}
is called a valuation if

• v(x) =∞↔ x = 0;

• v(xy) = v(x) + v(y);

• v(x+ y) ≥ min(v(x), v(y)).

where∞ is larger than any element of Γ and α +∞ = ∞ + α = ∞, for every α ∈ Γ. The additive subgroup
v(K×) is called the value group. The pair (K, v) is called a valued field.

Now follows some properties that can help grasp the notion of valuation as well as some useful identities.

PROPERTY 4.1.3. Let (K, v) be a valued field. Then

i) v(x) = v(−x)

ii) v(x−1) = −v(x).

iii) v(x+ y) = min{v(x), v(y)} if and only if v(x) 6= v(y).

iv) v(x) = v(y)⇔ x− y ∈ µ(K).

DEFINITION 4.1.4. Let (K, v) be a valued field. The ring of valuation of v is given by

Ov := {x ∈ K : v(x) ≥ 0}.

PROPERTY 4.1.5. Let (K, v) be a valued field. Then

1 Ov is a subdomain of K;

2 mv := {x ∈ Ov : v(x) > 0} is the unique maximal ideal of Ov;

3 O×v = {x ∈ Ov : v(x) = 0} is the set of units of Ov .

Proof. For (2) consult Corollary 6.4 of [7]. The rest of the proof is elementary.

NOTE 4.1.6. We refer to mv as the set of infinitesimals. If K is a real closed field, we refer toOv as the reals.

PROPERTY 4.1.7. Let K be a field and O ⊂ K a valuation ring. There is an ordered abelian group Γ and a
valuation v : K → Γ ∪ {∞} such that

O = Ov.

Moreover, this valuation is unique in the sense that if Γ′ is another ordered abelian group and w : K → Γ′ ∪{∞}
is a valuation on K such that Ow = O, then there is an isomorphism of ordered groups φ : Γ → Γ′ such that for
every x ∈ K×, w(x) = φ(v(x)).
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Proof. Existence: Let Γ = K×/O×. Its elements xO× are of the form {xy : y ∈ O×}. Define an operation by
xO× + yO× = (xy)O×. This operation is obviously associative and commutative, with identity 1O = O, and
inverse −(xO×) = x−1O×. This makes (Γ,+,O) an abelian group. Define a relation ≤ on Γ by

xO× < yO× ↔ x−1y ∈ O \ O×

which is equivalent to
xO× ≤ yO× ↔ x−1y ∈ O

• ≤ is transitive: Suppose xO× < yO× < zO×. We have x−1y, y−1z ∈ O \ O×, so x−1yy−1z = x−1z ∈
O and also y−1x /∈ O. Suppose by contradiction x−1z ∈ O×. We get z−1x ∈ O×, which implies
y−1zz−1x = y−1x ∈ O×, and hence a contradiction.

• ≤ is antisymmetric: Suppose xO× ≤ yO× and yO× ≤ xO×. Then x−1y, y−1x ∈ O and so xy−1 ∈ O×

which is equivalent to xO× = yO×.

• ≤ is a total order: Suppose yO× � xO×. We get y−1x /∈ O, so (y−1x)−1 = x−1y ∈ O \O×, which gives
xO× < yO×.

• ≤ is compatible with +: Suppose xO× < yO×. We have x−1y = (xz)−1yz ∈ O \ O× which gives
xO× + zO× < yO× + zO×.

So (Γ,≤,+,O) is an ordered abelian group. Define v : K → Γ ∪ {∞} by v(x) = xO× if x 6= 0 and v(0) =∞.
We have

• v(xy) = xyO× = xO× + yO× = v(x) + v(y).

• v(x + y) ≥ min(v(x), v(y)): Suppose v(x) ≤ v(y). So x−1y ∈ O. Since 1 ∈ O, we have 1 + x−1y =

x−1(x+ y) ∈ O, which gives v(x) ≤ v(x+ y).

So v is a valuation on K. Now it is very easy to see that Ov = O, since 0 = v(1) ≤ v(x) if and only if x ∈ O.
Uniqueness: Let Γ′ be an ordered abelian group and w : K → Γ′ ∪ {∞} be a valuation on K such that

O = Ow. The application w× : K× → Γ′ defined by w×(x) = w(x) is an homomorphism of groups between
(K×, ·) and (Γ′,+). We have Ker(w×) = O×. So we get an isomorphism φ : K/O× → Γ′, defined by
φ(xO×) = w(x) which gives the uniqueness property.

DEFINITION 4.1.8. Let (K, v) be a valued field. The field

Kv := Ov/mv

is called the residue class field of v.

EXAMPLE 4.1.9. Let

Fin(K) := {x ∈ K : there is q ∈ Q such that |x| < q}.

Then

1. Fin(K) is a valuation ring;

2. The maximal ideal of Fin(K) is given by the infinitesimals of K, which we denote by µ;

Proof. (1): Let x ∈ K. Then, for some q ∈ Q, either x ≤ q or x−1 ≤ q, otherwise we can choose a rational q > 1

such that x > q and x−1 > q. This implies |xx−1| = |x||x−1| > q2 ≥ 1 which is absurd.
(2): Let I be the unique maximal ideal of Fin(K). For every infinitesimal y ∈ Fin(K), Fin(K)y is a proper

ideal since y−1 /∈ Fin(K), so Fin(K)y ⊂ I . This means that I contains every infinitesimal. Let x ∈ Fin(K)− µ
and suppose by contradiction x ∈ I . We have x−1 ∈ Fin(K). Let u be any element of Fin(K). Then ux−1 ∈
Fin(K) and so ux−1x = u ∈ I , implying Fin(K) = I which is absurd.
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We will call the valuation implicit in example 4.1.9 the usual valuation.

DEFINITION 4.1.10. Let (K, v) be a valued field. Consider

res :Ov[x]→ Kv[x]

f(x) = a0 + a1x+ ...+ anx
n 7→ res(f)(x) = ā0 + ā1x+ ...+ ānx

n

where āi is the class of ai in Kv . This map is called residue map.

DEFINITION 4.1.11. Let (K, v) be a valued field. We say that K satisfies the hensel property if whenever
f(x) ∈ Ov[x] and ᾱ ∈ Kv is such that res(f)(ᾱ) = 0̄ and res(f ′)(ᾱ) 6= 0̄, there is β ∈ Ov such that β ∈ ᾱ and
f(β) = 0. In this case the valued field K is called henselian.

An important property of henselian valued fields is the following

THEOREM 4.1.12. Let (K, v) be a henselian valued field. If the residue field Ov/mv is real closed and the
value group v(K) is divisible, then K is real closed.

Proof. Consult Theorem 8.6 of [8].

This gives in particular a non-standard model of rcof.

4.2 Ordered fields as Lan-structures

Let K be a non-empty ordered field. We have seen in 4.0.7 that if K satisfies the axiom AC1 from Theorem
4.0.6, then K contains a copy of R. In this section we assume that K satisfies a more flexible version of the
axioms AC1, AC2 and AC3 to prove some important properties and to show a natural way of interpreting the
function symbols f̃ ∈ R{X1, ..., Xn} in K. This will allow us to see K as an Lan-structure containing Ran as a
substructure. We will denote this structure by Kan. This natural interpretation is essentially the content of axiom
AC4. It will allow us to show that the flexible versions of AC1, AC2 and AC3 that we assumed for K are actually
equivalent to those axioms and to prove quantifier elimination of Th(Kan) in an extended language. Once these
results are established the proof of Theorem 4.0.6 will be an easy consequence.

Let R〈X1, ..., Xn〉 denote the ring of power series in X1, ..., Xn over R which converge in a neighbourhood of
0. Denote the infinitesimals of K by µ and let v be the usual valuation on K.

For each f ∈ R〈X1, ..., Xn〉, n ∈ N, suppose we can associate a function fK : µn → K such that

C1) (f + g)K = fK + gK and (f · g)K = fK · gK for f, g ∈ R〈X1, ..., Xn〉. The constant functions 0 : x 7→ 0

and 1 : x 7→ 1 are respectively associated to 1K : x→ 1K and 0K : x 7→ 0K .

C2) (Xi)K : µn → K is the ith coordinate function (x1, ..., xn) 7→ xi, for Xi ∈ R〈X1, ..., Xn〉;

C3) If f ∈ R〈X1, ..., Xn〉 and g1, ..., gn ∈ (X1, ..., Xm)R〈X1, ..., Xm〉 (i.e., the gi have constant term zero),
then

f(g1, ..., gn)K(x) = fK(g1(x), ..., gn(x)), for all x ∈ µm.

Observe that, as in Note 4.0.7, C1 implies that R ⊂ K. Since K contains R, Kv is arquimedian and contains R.
In the other way R contains a copy of every arquimedian field. So Kv = R.

From C1, C2 and C3 we prove the following two lemmas:

LEMMA 4.2.1. Let f ∈ R〈X1, ..., Xn〉. Then

fK(µn) ⊂ f(0) + µ ⊂ Fin(K).

Proof. Let 0 < ε ∈ R. The power series f − f(0) + ε ∈ R〈X1, ..., Xn〉 has constant term ε > 0. Let F (x, y) =

y2−(f(x)−f(0)+ε). Then F (0,
√
ε) = 0 and ∂F

∂y (0,
√
ε) = 2

√
ε. By the Implicit Function Theorem there exists

g ∈ R〈X1, ..., Xn〉 such that F (x, g(x)) = 0 for x in some neighbourhood of 0. We can write g2 = f − f(0) + ε.
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We get f = f(0) − ε + g2 and so by C1, fK = f(0) − ε + (gK)2. Thus fK(x) ≥ f(0) − ε, for all x ∈ µn. In a
similar way we get fK(x) ≤ f(0) + ε, for all x ∈ µn. Since ε was arbitrary, this proves the lemma.

LEMMA 4.2.2. The valued field (K, v) is henselian.

Proof. Let f(x) = a0 + a1x + ... + anx
n ∈ Ov[x]. For each 0 ≤ i ≤ n, let ai = ri + ξi, where ri ∈ R and

ξi ∈ µ. We have
f(x) = (r0 + r1x+ ...+ rnx) + (ξ0 + ξ1x+ ...+ ξnx

n).

Then res(f)(x) = r0 + r1x+ ...+ rnx
n. Suppose α ∈ R is such that res(f)(α) = 0 and res(f ′)(α) 6= 0. Let

F (x, y) = (r0 + r1x+ ...+ rnx
n) + (y0 + y1x+ ...+ ynx

n).

Then F (α, 0, ..., 0) = 0 and ∂F
∂x (α, 0, ..., 0) = res(f ′)(α) 6= 0. By the implicit function theorem there is g ∈

R〈y0, ..., yn〉 such that g(0, ..., 0) = α and F (g(y0, ..., yn), y0, ..., yn) = 0. In particular g(ξ0, ..., ξn) is a root of
f(x) and by Lemma 4.2.1, g(ξ0, ..., ξn) ∈ Ov .

With this we get

COROLLARY 4.2.3. If each positive element of K has an nth root, for n = 2, 3, ..., then K is real closed.

Proof. Let x ∈ K be a positive element. Let n be an integer greater than 2. Then v((x)
1
n ) = 1

nv(x) which implies
that the value group is divisible. Since Kv = R, by Theorem 4.1.12, K is real closed.

For each open U ⊂ Rn let

UK := {x ∈ Kn : x− a ∈ µn for some a ∈ U} =
⋃
a∈U

a+ µn.

For open, nonempty U ⊂ Rn, let An(U) be the R-algebra of real analytic functions f : U → R. We assign to each
f ∈ An(U) a function fK : UK → K as follows: given a ∈ U let

fa(X) =
∑ 1

i!

∂|i|f

∂Xi
(a)Xi ∈ R〈X〉

be the Taylor series of f at a. Then we put

fK(a+ x) = (fa)K(x)

for x ∈ µn.

PROPERTY 4.2.4. Regarding functions of the form fK : UK → K, for open, nonempty U ⊂ Rn and f ∈
An(U) we have

C1)U (f + g)K = fK + gK and (f · g)K = fK · gK for f, g ∈ An(U), and cK is the constant function x 7→ c for
c ∈ R ⊂ An(U);

C2)U If (Xi)K : µn → K is the ith coordinate function (x1, ..., xn) 7→ xi, from U to R, then (Xi)K is the ith

coordinate function from UK to K.

C3)U,V If f ∈ An(U) and g1, ..., gn ∈ R[X1, ..., Xm], and V ⊂ Rm is open and nonempty with g(V ) ⊂ U for
g = (g1, ..., gn) : V → Rn, the function f ◦ g ∈ An(V ) satisfies

(f ◦ g)K(x) = fK(g1(x), ..., gn(x)), for all x ∈ VK
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Proof. C1)U : Let a ∈ U and x ∈ µn. Then

(f + g)K(a+ x) = ((f + g)a)K(x)

= (fa + ga)K(x)

= (fa)K(x) + (ga)K(x).

C3)U,V : Let a ∈ V and x ∈ µn. We use the fact that (f ◦ g)a = fg(a)(ga − g(a)).

(f ◦ g)K(a+ x) = ((f ◦ g)a)K(x)

= (fg(a))K(x)((ga)K(x)− g(a)K)

= (fg(a))K(x)((ga)K(x))− (fg(a))K(x)g(a)K

= (fa)K(g1(x), ..., gn(x))

= fK(g1(a+ x), ..., gn(a+ x)).

Recall that R{X1, ..., Xn} is the subring of R〈X1, ..., Xn〉 whose elements converge on a neighbourhood of
In, I = [−1, 1]. We now present a way to assign for each series f ∈ R{X1, ..., Xn} a function f̃K : Kn → K.
Let f̂ ∈ An(U) be any analytic function on an open set U ⊂ Rn containing In, such that f̂(x) = f(x) for x ∈ In.
Put

f̃K(x) =

{
f̂K(x) for x ∈ I(K)n

0 for x /∈ I(K)n

where IK = {x ∈ K : −1 ≤ x ≤ 1}.
In this way we can turn K as an Lan-structure such that Ran ⊂ K. We denote it by Kan. Sometimes we

will also be interested to consider K as an Lan(−1)-structure, where −1 is a unary function symbol interpreted as
multiplicative inverse, with 0−1 = 0.

In the seminal paper [10] it is proved that (Ran,−1 ) admits quantifier elimination. The proof can be adapted to
(Kan,

−1 ), provided K is real closed:

THEOREM 4.2.5. Suppose K is a non-empty real closed ordered field containing R. For every Lan(−1)-
formula φ(x1, ..., xm) there is a quantifier-free Lan(−1)-formula φ′(x1, ..., xm) such that (Kan,

−1 ) � φ↔ φ′.

As a corollary we get

COROLLARY 4.2.6. If K is a non-empty real closed ordered field containing R, then Ran � Kan

Proof. We have that (Ran,−1 ) is a substructure of (Kan,
−1 ). By Theorem 4.2.5, this implies Ran � Kan.

Now we are ready to prove Theorem 4.0.6.

Proof of Theorem 4.0.6. Let T be the set of axioms described in the theorem. Let K be an Lan-strucutre such
that K � T . The axioms AC1, AC2, AC3 and the existence of nth-root for each positive element x ∈ K imply
that K is real closed (Corollary 4.2.3). AC4 implies that Ran is a substructure of K and, with the fact that K is
real closed, it also gives QE of K in the language (Lan,

−1 ) (Theorem 4.2.5). So Th(K) = Tan and since K � T

was chosen arbitrarily, this implies that T is an axiomatization of Tan.

By section 4 of [2] we have quantifier elimination in the language Lan(−1) for the theory Tan adding the axiom

∀x(x · x−1) = 1.

Adding the unary function symbols n
√ for n = 2, 3, ... to the language Lan(−1) and write the axioms

∀x(x > 0⇒ (( n
√
x)n = x ∧ n

√
x > 0)) ∧ (x ≤ 0⇒ n

√
x = 0),

for each n = 2, 3, ... to the axioms of Tan we get an universal axiomatization for Tan.
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Chapter 5

The theory of Ran(exp)

In this chapter we prove that the theory of restricted analytic fields with exponentiation defined everywhere
(Ran(exp)) is o-minimal. Along the way we show that Th(Ran(exp)) has quantifier elimination in the language
Lan(exp, log).

5.1 Power series fields

We will see in the next section that every model of Tan can be viewed as a subfield of a very specific form of
power series field. Throughout this section k denotes a field and Γ is an ordered abelian group. We will consider
formal power series, objects of the form

x =
∑
γ∈Γ

aγt
γ ,

where γ ∈ Γ (“exponents”) and aγ ∈ k (“coefficients”), such that the support of x, defined as supp(x) := {γ ∈
Γ : aγ 6= 0}, is a well-ordered subset of Γ. We will denote the set of formal power series by k((tΓ)).

We define an addition and multiplication on k((tΓ)). Let x =
∑
γ∈Γ aγt

γ and y =
∑
γ∈Γ bγt

γ . Then

• x+ y =
∑
γ∈Γ(aγ + bγ)tγ ;

• x · y =
∑
γ∈Γ(

∑
γ1+γ2=γ aγ1bγ2)tγ .

With these two operations k((tΓ)) is a field (consult [13]) We consider k as a subfield of k((tΓ)) by identifying
c ∈ k with ct0. Consider the map ord : k((tΓ))× → Γ, ord(x) = min supp(x). The map ord defines a valuation
on k((tΓ)) with valuation ring

k[[tΓ]] = {x ∈ k((tΓ)) : if γ ∈ supp(x) then γ ≥ 0}

maximal ideal
µ = {x ∈ k((tΓ)) : if γ ∈ supp(x) then γ > 0}

and residue field k. This valuation is henselian (consult [14]). If k is an ordered field, then we consider k((tΓ))

with the following order: Let x =
∑
aγt

γ and y =
∑
bγt

γ . Then x < y if aγ < bγ where γ is least such that
aγ 6= bγ .

NOTE 5.1.1 (Ring of power series). Let k[[X1, ..., Xn]] denote the ring of power series
∑
ciX

i where i =

(i1, ..., in) ∈ Nn, ci ∈ k and Xi = Xi1
1 · · ·Xin

n . Let µn = µ × ... × µ ⊂ k[[tΓ]]n. If a = (a1, ..., an) ∈ µn and
f =

∑
ciX

i ∈ k[[X1, ..., Xn]], then f(a) =
∑
cia

i is a well-defined element of k((tΓ)) since only finitely many
terms ciai contribute a nonzero coefficient to a given monomial tγ and the union of the supports of the elements
cia

i is well-ordered (consult [13]). It is easy to see that the map f(X) 7→ f(a) is a k-algebra homomorphism from
k[[X1, ..., Xn]] into k((tΓ)).
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5.2 Models of Tan as power series fields

In this section we will prove a key fact about valuations in models of Tan.
LetM⊂ N be models of Tan. If y ∈ N \M , we denote by M〈y〉 the definable closure of M ∪{y}. Note that

M〈y〉 � N . Since Tan is o-minimal, tp(y/M) is determined by the cut y makes in the ordering of M (see 1.5.8).
We denote the field generated by M ∪ {y} by

M(y) := {f(y)/g(y) : f, g ∈M [X], g(y) 6= 0}

We want to prove that v(M〈y〉×) = v(M(y)
×

), where M(y) is the real closure of M(y).

NOTE 5.2.1. v(M(y)
×

) = 〈v(M(y)×)〉, where 〈v(M(y)×)〉 denotes the divisible hull of v(M(y)×).

Proof. Let 〈M(y)〉 be the field generated byM(y) and all nth-roots of positive elements inM(y). Then v(〈M(y)〉×) =

〈v(M(y)×)〉. By Corollary 4.2.3, 〈M(y)〉 = M(y) and so 〈v(M(y)×)〉 = v(M(y)
×

).

DEFINITION 5.2.2. Let (K, v) be an ordered valued field and Γ = v(K×). We call s : Γ → K a section if it
is an homomorphism of groups, considering K as a multiplicative group, and v(s(g)) = g for all g ∈ Γ.

NOTE 5.2.3. Let K be an ordered field such that every positive element of K has an nth-root for all n ∈ N.
Then there is always a section s : v(K×)→ K.

Proof. Let (gj)j∈J be a basis for Γ = v(K×) as a Q-vector space. Let bj > 0 such that bj = v(gj) for each
j ∈ J . Define a section s by s(

∑
qjgj) =

∏
b
qj
j .

LEMMA 5.2.4. LetM,N � Tan withM ⊂ N . Let Γ = v(M×). Let s : Γ → M be a section and suppose
we have an Lan-embedding τ : M → R((tΓ))an such that τ(s(g)) = tg for all g ∈ Γ. If y ∈ N \ M and
v(M(y)×) = Γ, then we can extend τ to an Lan-embedding from M〈y〉 into R((tΓ))an.

Proof. Identify M as a subset of R((tΓ)). We will find an element w ∈ R((tΓ)) making the same cut in the order-
ing ofM as y does, which by property 1.5.8 proves the lemma. For this we construct a sequence of approximations
to y, (xα ∈ M : α < γ) for some limit ordinal γ yet to be determined. Recall that the residue field of N and M
are both R.

Let x0 = res(y). Suppose xα is defined for some ordinal α. Let gα = v(y − xα) and aα = res(y−xαtgα ). Put
xα+1 = xα + aαt

gα . Note that v(y − xα+1) = min{v(y − xα), aαt
gα) = gα = v(y − xα).

Consider now a limit ordinal α such that for all β < α, xβ is defined. If there isn’t z ∈ M such that for all
β < α, v(y − xβ) < v(y − z) then let α = γ. Otherwise pick such z and put xα = z. Iterate until there isn’t such
element. This gives us the sequence (xα : α < γ).

Note that for two limit ordinals α, β < γ such that α < β, we have v(y − xα) < v(y − xβ).
Fix α, β < γ such that α < β and write xα =

∑
aα,gt

g , xβ =
∑
aβ,gt

g . Note that

v(xβ − xα) = v(xβ − y + y − xα)

= min{v(xβ − y), v(y − xα)}
= gα

This implies aα,g = aβ,g for g < gα. Now we define w =
∑
bgt

g by putting bg = aα,g whenever g < gα for some
α < γ, and bg = 0 otherwise. The support of w is well-ordered since any decreasing sequence (gn) in supp(w) is
contained, ignoring the first few elements if necessary, in supp(xα) for some α < γ. So w is well defined. Note
that for every α < γ, v(y − xα) < v(y − w). This element w defines the same cut in M as y does: Suppose not.
Let z ∈ M such that w < z < y. But then v(y − w) < v(y − z), which would contradict the existence of some
α < γ such that v(y − z) < v(y − xα).

Now follows a general fact about extensions of real closed fields.

LEMMA 5.2.5. Let K and L be real closed fields with K ⊂ L. Let y ∈ L \K. If v(K(y)×) 6= v(K×), then
there is some element a ∈ K such that v(y − a) /∈ v(K×).
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Proof. There are polynomials p(X), q(X) ∈ K[X] such that v(p(y)
q(y) ) = v(p(y) − v(q(y)) /∈ v(K×). Thus there

is a polynomial p(X) ∈ K[X] such that v(p(y)) /∈ v(K×). Since K is real closed

p(y) =

m∏
i=1

(y − ai)
n∏
j=1

((y − bj)2 + c2j )

for some a1, ..., am, b1, ..., bn, c1, ..., cn ∈ K. Suppose that for all i = 1, ...,m and j = 1, ..., n, v(y − ai), v(y −
bj) /∈ v(K×). Then for some j, v((y − bj)

2 + c2j ) /∈ v(K×). We have v(y − bj) = v(cj) since otherwise
v((y − bj)2 + c2j ) = min{2v(y − bj), 2v(cj)}, which is absurd. Moreover v((y − bj)2 + c2j ) > 2v(cj). On the
other hand (y − bj)2 + c2j > c2j > 0 which imply v((y − bj)2 + c2j ) ≤ 2v(cj), a contradiction.

NOTE 5.2.6. Let M,N,Γ, s and τ be as in 5.2.4. Let y ∈ N \M and suppose v(M(y)×) 6= Γ. We construct
an embedding τ ′ : M〈y〉 → R((tΓ

′
))an for a reasonable group Γ′. By 5.2.5 there is some a ∈ M such that

v(y − a) /∈ Γ. Without loss of generality we assume v(y) /∈ Γ. We also assume y > 0. We let Γ′ be the divisible
subgroup of v(N) generated by Γ and v(y). We extend s to s′ : Γ′ → M〈y〉 by s′(g + qv(y)) = s(g)yq for
g ∈ Γ and q ∈ Q. Let m ∈ M with m > 0. Note that since v(y) /∈ v(M×), we have m < y (in N ) if and
only if v(m) > v(y). On the other hand if m < tv(y) then v(m) > v(y), and reciprocally if m < tv(y) then
v(m) < v(y), so v(m) > v(y) if and only if m < tv(y). In other words, tv(y) makes the same cut in M as y does,
so 〈τ(M) ∪ {tv(y)}〉 ⊂ R((tΓ

′
)) is isomorphic to M〈y〉.

The Lan-embedding τ ′ : M〈y〉 → R((tΓ
′
))an defined by τ ′(m) = τ(m) for m ∈ M and τ ′(y) = tv(y)

extends τ and for arbitrary h = g + qv(y) ∈ Γ′ with g ∈ Γ and q ∈ Q, we have

τ ′(s′(g + qv(y)) = τ ′(s(g)yq)

= τ(s(g))τ ′(yq)

= tgtqv(y)

= tg+qv(y).

Note that v(M〈y〉×) = Γ′.

COROLLARY 5.2.7. LetM � Tan and v(M×) = Γ. For every section s : Γ→M there is an Lan-embedding
τ : M → R((tΓ))an such that τ(s(g)) = tg for all g ∈ Γ.

Proof. Let M0 = Ran �M, Γ0 = 0, s0(0) = 1 and τ0 the identity. Iterate 5.2.4 and 5.2.6 accordingly.

The main result of this section

COROLLARY 5.2.8. LetM,N � Tan and supposeM ⊂ N . Let y ∈ N \M . Then v(M〈y〉×) = 〈v(M(y)×)〉.

Proof. Let Γ = v(M×). EmbedM into R((tΓ))an through τ and let s be its section such that τ(s(g)) = tg . If
v(M(y)×) = Γ, then by 5.2.4 we can extend τ to an embedding of M〈y〉 into R((tΓ))an, giving v(M〈y〉×) = Γ.
If v(M(y)×) 6= Γ, let Γ′ be the divisible subgroup of v(N×) generated by v(M(y)×). Then 5.2.6 allows us to
extend τ to an embedding of M〈y〉 into R((tΓ

′
))an, giving v(M〈y〉×) = Γ′.

NOTE 5.2.9. Let M,N � Tan and suppose M ⊂ N . Let Γ = v(M×). Let y ∈ N \ M . By 5.2.8
v(M〈y〉×) = 〈v(M(y)×)〉. If v(M(y)×) = v(M×), then v(M〈y〉×) = v(M(y)×). If v(M(y)×) 6= v(M×),
following the construction from 5.2.6,

v(M〈y〉×) = {g + qv(y) : g ∈ Γ, q ∈ Q}.

Thus the Q-linear dimension of v(M〈y〉×) over v(M×) is either 0 or 1.

5.3 The theory of Ran(exp) and quantifier elimination

LetLan(exp) be the languageLan with a new unary function symbol exp. Let Tan(exp) be the theory obtained
by adding to Tan the universal closures of the following axioms
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E1) exp(x+ y) = exp(x) exp(y)

E2) x < y → exp(x) < exp(y)

E3) x > 0→ ∃y exp(y) = x

E4n) x > n2 → exp(x) > xn, for each n ∈ N

E5) −1 ≤ x ≤ 1 → exp(x) = E(x), where E is the function symbol of Lan corresponding to the exponential
power series

∑
1
n!X

n ∈ R{X}

Let Lan(exp, log) be the language Lan(exp) with a new unary function symbol log. Let Tan(exp, log) be the
theory obtained by adding to Tan(exp) the universal closures of the following axiom

L) (x > 0→ exp(log(x)) = x) ∧ (x ≤ 0→ log(x) = 0).

In this section we will prove that Tan(exp) has quantifier eimination in the language Lan(exp, log).
Let K � Tan. We write F ⊂an K to indicate that F is an Lan substructure of K.

DEFINITION 5.3.1. We say that F ⊂an K is log-closed if for every x ∈ F , log(x) ∈ F .

DEFINITION 5.3.2. If L � Tan(exp), F ⊂an K, and F is log-closed, we say that σ : F → L is a log-
preserving embedding if σ is an Lan-embedding and log(σ(x)) = σ(log(x)) for all x ∈ F .

The quantifier elimination result will be an easy consequence of the following theorem

THEOREM 5.3.3. Suppose K � Tan(exp), F0 ⊂an K is log-closed and F0 � Tan. If L is a |K|+-saturated
model of Tan(exp) and σ0 : F0 → L is a log-preserving Lan-embedding, then σ0 can be extended to a log-
preserving Lan(exp)-embedding of K into L.

COROLLARY 5.3.4. Tan(exp) admits quantifier elimination in the language Lan(exp, log).

Proof. We use 1.5.11 to prove that Tan(exp, log) has QE. Let K,L � Tan(exp, log) and suppose L is |K|+-
saturated. Let F be a substructure of K and let σ0 : F → L be an embedding. It is sufficient to show that F is a
model of Tan since 5.3.3 implies that σ0 is extended to a log-preserving Lan(exp)-embedding σ : K → L, which
is an Lan(exp, log)-embedding and so by 1.5.11 Tan(exp, log) has quantifier elimination.

By 4.0.6 it is sufficient to show that F is closed under −1 and nth-root for all positive elements. For x > 0,
x−1 = exp(− log(x)) and n

√
x = exp( log x

n ). For x < 0, x−1 = − exp(− log(−x)).

COROLLARY 5.3.5. Tan(exp) is a complete axiomatization of Th(Ran(exp)) and admits a universal axiom-
atization in the language Lan(exp, log).

Proof. Let M � Tan(exp). M contains an Lan-substructure isomorphic to R so we consider without loss of
generality Ran(exp) ⊆M. By quantifier elimination, Ran(exp) �M. This proves that Tan(exp) is complete.

Since Tan has a universal axiomatization replacing E3) by the equivalent axiom

∀x > 0(exp(log(x)) = x)

we see that Tan(exp, log) admits a universal axiomatization.

Theorem 5.3.3 will follow from three lemmas on extensions of embeddings.
For F ⊂an K and y ∈ K \ F , we let F 〈y〉 denote the Tan-definable closure of F ∪ {y} in K.
Throughout the rest of this section let K,L, F0 and σ0 be as in 5.3.3. The first lemma says that σ0 can be

extended to F0〈x〉 for x ∈ K \ F0 in the case that v(F0(x)×) = v(F×0 ), moreover it is proved that F0〈x〉 is
log-closed. We then iterate that process until we get a log-closed field F ⊃ F0, a log-preserving Lan-embedding
σ : F → L extending σ0 and for all x ∈ K \ F , v(F (x)×) 6= v(F×) = v(F×0 ). The second lemma extends σ0

to a field F closed to log and exp. Finally the third lemma considers the case that F is closed to log and exp, and
for all x ∈ K \ F , v(F (x)×) 6= v(F×), extending σ0 to a log-preserving Lan-embedding σ : F ′ → L, where
F ′ ⊃ F 〈x〉 and F ′ is log-closed.

The following property of valuations will be useful:
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PROPERTY 5.3.6. Let F1 and F2 be ordered fields with F1 ⊂ F2 and v(F1) = v(F2). Let w ∈ F2 \ F1. Then
there is an infinitesimal ε ∈ F2 and z ∈ F1 such that

w = z(1 + ε)

Proof. Let z′ ∈ F1 such that v(z′) = v(w). Then there are r ∈ (F2)v and an infinitesimal ε′ ∈ F2 such that
w = z′(r + ε′). Let z = z′/r and ε = ε′/r. This gives w = z(1 + ε).

LEMMA 5.3.7. Suppose x ∈ K \ F0 and v(F0(x)×) = v(F×0 ). Let F = F0〈x〉. Then F is log-closed and σ0

can be extended to a log-preserving Lan-embedding σ : F → L.

Proof. Since F0 � Tan, v(F×0 ) is divisible and so is v(F0(x)×). By 5.2.8 and the divisibility of v(F0(x)×) we
have v(F0〈x〉×) = 〈v(F0(x)×)〉 = v(F0(x)×). Thus v(F×) = v(F×0 ).

We now prove that F is log-closed. Let 0 < w ∈ F . Since v(F×) = v(F×0 ), by 5.3.7, there are z ∈ F×0 and
an infinitesimal ε ∈ F such that w = z(1 + ε). Then

log(w) = log(z) + log(1 + ε)

Since F0 is log-closed, log(z) ∈ F0. Since log is analytic at 1, there is l ∈ R{X} such that for v(δ) > 0,
log(1 + δ) = l(δ). Thus log(1 + ε) ∈ F and so log(w) ∈ F . Hence F is log-closed.

Let z ∈ L realize the type tp(y/M). Then we have an Lan-isomorphism σ of M〈y〉 onto M〈z〉 fixing σ. Thus
σ can be seen as an Lan-embedding of M〈y〉 onto L extending σ0.

For w ∈ F choose z and ε as above. Then σ(w) = σ(z)σ(1 + ε). Since σ0 is log-preserving, σ(log(z)) =

σ0(log(z) = log(σ0(z)) = log(σ(z)). Since σ is an Lan-embedding, σ(log(1 + ε)) = σ(l(ε)) = l(σ(ε)) =

log(1 + σ(ε)) = log(σ(1 + ε)). Thus

σ(log(w)) = σ(log(z)) + σ(l(ε))

= log(σ(z)) + l(σ(ε))

= log(σ(z(1 + ε)))

= log(σ(w)).

LEMMA 5.3.8. Suppose that v(F0(x)×) 6= v(F×0 ) for all x ∈ K \ F0. Suppose x is an element of F0 such
that exp(x) /∈ F0. Let F = F0〈exp(x)〉. Then F is log-closed and there is an extension of σ0 to a log-preserving
Lan-embedding σ : F → L with σ(exp(x)) = exp(σ(x)).

Proof. First we show that v(exp(x)) /∈ v(F×0 ). Suppose not. There are z ∈ F0 and an infinitesimal ε ∈ F such
that exp(x) = z(1 + ε). Recalling log(1 + ε) = l(ε), where l ∈ R{X}, we have x = log(z)l(ε) ∈ F0 which is
absurd.

Now we show that F is log-closed. We can write v(F×) = v(F×0 ) ⊕ Qv(exp(x)). Let w ∈ F . There
are z′ ∈ F0 and q ∈ Q such that v(w) = v(z′) + qv(exp(x)) = v(z′exp(qx)). Thus there are r ∈ R and an
infinitesimal ε′ ∈ F such that w = z′exp(qx)(r + ε′). Putting ε = ε′/r and z = z′r we get

w = z(1 + ε)exp(qx).

Thus
log(w) = log(z) + qx+ l(1 + ε) ∈ F

Now we show an extension of σ0 to a log-preserving Lan-embedding commuting with exp. For this we show
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that exp(σ0(x)) realizes the image under σ0 of the cut of exp(x) over F0. Let 0 < z ∈ F0. Then

z < exp(x)⇔ log(z) < x

⇔ σ0(log(z)) < σ0(x)

⇔ log(σ0(z)) < σ0(x)

⇔ σ0(z) < exp(σ0(x))

Thus σ0 can be extended to an Lan-embedding σ : F → L with σ(exp(x) = exp(σ(x)). The map σ is also
log-preserving: let w ∈ F and write as above w = z exp(xq)(1 + ε). Then

σ(log(w)) = σ(log(z)) + σ(xq) + σ(l(ε))

= log(σ(z)) + log(exp(σ(xq))) + l(σ(ε))

= log(σ(z exp(σ(xq))(1 + ε)))

= log(σ(w)).

LEMMA 5.3.9. Suppose that F0 is closed under exponentiation and v(F0(x)×) 6= v(F×0 ) for all x ∈ K \ F0.
Let x ∈ K \ F0. There is a log-closed F � Tan such that

F0(x) ⊆ F ⊆an K

and a log-preserving embedding σ : F → L extending σ0.

Proof. We outline the proof

(i) We construct a sequence (xn)n∈N ⊂ K such that for all n ∈ N, v(xn) < v(xn+1) < 0, v(xn) /∈ v(F×0 ) and
xn > 0.

(ii) Moreover, this sequence (xn)n∈N is Q-linearly independent over v(F×0 ).

(iii) Defining Fn+1 = Fn〈xn〉, F =
⋃
Fn is log-closed.

(iv) We construct a sequence (yn)n∈N ⊂ L such that for each i ∈ N, yi realizes the image under σ0 of the cut of
xi over F0. For all n ∈ N, v(yn) < v(yn+1) < 0, v(yn) /∈ v(F×0 ) and yn > 0.

(v) We construct a sequence of Lan-embeddings, (σn : Fn → L)n∈N, each term extending the previous one,
such that σn(xi) = yi for each n ∈ N and each i < n . The Lan-embedding σ =

⋃
σn : F → L is

log-preserving.

Proof of (i): Let x ∈ K \F0. We can assume without loss of generality that x > 0, v(x) < 0 and by 5.2.5 we
can also suppose that v(x) /∈ v(F×0 ). Put x0 = x. Suppose that xn is defined and for all k ≤ n, xk is also defined.
Note that, given xk, v(F0(log(xk))×) * v(F×0 ), since, otherwise, log(xk) ∈ F0 and because F0 is closed under
exponentiation, xk ∈ F0, a contradiction.

We build an auxiliary sequence (βn)n∈N ⊂ F0. Given xn, using 5.2.5, we define βn ∈ F0 such that
v(log(xn)− βn) /∈ v(F×0 ). We define xn+1 = | log(xn)− βn|, so log(xn) = βn + εnxn+1, where εn ∈ {−1, 1}.

Note that v(xn) < v(log(xn)): Since v(xn) < 0, we have

∀m ∈ N xn > m2 ⇒ ∀m ∈ N exp(xn) > xmn

⇒ ∀m ∈ N xn > m log(xn)

⇒ ∀m ∈ N xn
log(xn)

> m

where the first implication is due to axiom E4m for each m ∈ N. This implies v( xn
log(xn) ) < 0, so v(xn) <

v(log(xn)).
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Note that v(log(xn)) ≤ v(xn+1): If v(log(xn)) 6= v(βn), then v(xn+1 = v(log(xn)−βn) = min{v(log(xn)), v(βn)} =

v(log(xn), where the last equality is justified by the contradiction that would rise from equality with v(βn). If
v(log(xn)) = v(βn), then log(xn) = βn(1 + δ) for some δ such that v(δ) > 0. This implies v(log(xn)− βn) =

v(βn) + v(δ). Thus v(log(xn)) ≤ v(xn+1).

Note that v(xn+1) < 0: otherwise, v(exp(xn+1)) = 0 and

v(xn) = v(exp(log(xn)))

= v(exp(βn) exp(εnxn+1))

= v(exp(βn)) + v(exp(xn+1))

= v(exp(βn)) ∈ v(F×0 ), which is absurd.

Proof of (ii): Suppose not. Let m,n ∈ N such that

v(xm) =

n∑
i=m+1

qixi + v(w)

where qi ∈ Q and w ∈ F0. Let c ∈ K such that v(c) = 0 and

xm = cw

n∏
i=m+1

xqii .

Thus

log(xm) = βm + εmxm+1 = log(c) + log(w) +

n∑
i=m+1

qi log(xi).

Rearranging, we get

εmxm+1 = log(c) + log(w)− βm +

n∑
i=m+1

qi log(xi).

We have for all m ∈ N, v(xm+1) < v(log(xm+1) ≤ v(xm+2) < v(logm+2), so, for all i ≥ m + 1, v(xm+1) <

v(log(xi)). Also v(log(c)) = 0 > v(xm+1). Since

v(xm+1) ≥ min{v(log(c)), v(log(w)− βm), v(log(xm+1), ..., v(log(xn))},

we have v(xm+1 = v(log(w)− βm) ∈ v(F×0 ), a contradiction.

Proof of (iii): By (ii) we have

Fn+1 = F0 ⊕Qv(x0)⊕ ...⊕Qv(xn)

Let 0 < w ∈ Fn+1. By 5.3.7 there are u ∈ F0, q0, ..., qn ∈ Q and an infinitesimal ε ∈ Fn+1 such that
w = u(1 + ε)

∏n
i=0 x

qi
i . Then

log(w) = log(u) + log(1 + ε) +

n∑
i=0

qi log(xi)

= log(u) + l(ε) +

n∑
i=0

qi(εixi+1 + βi) ∈ Fn+2.

where l ∈ R{X}, such that for all x ∈ [−1, 1], l(x) = log(1 + x).

Proof of (iv): Let y0 ∈ L realize the image under σ0 of the cut of x over F0. Assuming yn is defined and
realizes tp(xn/F0), put

εnyn+1 = log(yn)− σ0(βn),

where εn is already defined in terms of xn and βn. We must prove that yn+1 realizes tp(xn+1/F0). Without loss
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of generality we can assume εn = 1. Let w ∈ F0. Then

w < xn+1 ⇔ w + βn < xn+1 + βn = log(xn)

⇔ σ0(w) + σ0(βn) < σ0(log(xn)) = log(σ(xn)) = log(yn) = yn+1 + σ0(βn)

⇔ σ0(w) < yn+1.

The proof that For all n ∈ N, v(yn) < v(yn+1) < 0, v(yn) /∈ v(F×0 ) and yn > 0 is the same as in (i) for (xn).
Proof of (v): Suppose σn : Fn → L is defined.
We prove that yn realize the image under σ0 of the cut of xn over Fn.
Let w ∈ Fn. By (ii) v(F×n ) = v(F×n−1) ⊕ Qv(xn−1). Let z ∈ Fn−1, ε ∈ Fn with v(ε) > 0 and q ∈ Q such

that
w = z(1 + ε)xqn−1.

Then

xn < w ⇔ x−qn−1 < z(1 + ε)x−1
n

⇔ xn−1 < zq(1 + ε)qxq−1
n

⇔ log(xn−1)− βn−1 < q log(z)− βn−1 + q log(1 + ε) + (q − 1) log(xn)

⇔ εn−1xn < q log(z)− βn−1 + q log(1 + ε) + (q − 1) log(xn).

We have v(xn) > v(log(xn)) > v(log(1 + ε)) and similarly v(yn) > v(log(yn)) > v(log(σn(1 + ε))). Thus

xn < w ⇔ εn−1xn < q log(z)− βn−1 + q log(1 + ε) + (q − 1) log(xn)

⇔ εn−1xn < q log(z)− βn−1

⇔ log(xn−1)− βn−1 < q log(z)− βn−1

⇔ log(yn−1)− σ0(βn−1) < q log(σn(z))− σ0(βn−1)

⇔ log(yn−1) < q log(σn(z)) + q log(σn(1 + ε)) + (q − 1) log(yn)

⇔ yn−1 < σn(zq)σn(1 + εq)yq−1
n

⇔ yn < σn(w).

We define σn+1 : Fn+1 → L as the unique Lan-embedding up to isomorphism extending σn and σn+1(xn) = yn.
Let σ =

⋃∞
n=1 σn : F → L.

We prove that σ is log-preserving by induction: Assume that σn is log-preserving. Let 0 < w ∈ Fn+1 and
z ∈ Fn, ε ∈ Fn+1 with v(ε) > 0, q ∈ Q such that w = z(1 + ε)xqn. Then

σ(log(w)) = σ(log(z) + log(1 + ε) + q log(xn))

= log(σ(z)) + σ(l(ε)) + qσ(εnxn+1 + βn)

= log(σ(z)) + l(σ(ε)) + q(εnyn+1 + σ(βn))

= log(σ(z)) + log(1 + σ(ε)) + q log(yn)

= log(σ(w)).

5.4 O-minimality and Hardy fields

In this section we will show that Ran(exp) is o-minimal.
Let L = (<,+,−, ·, 0, 1, ...) be an expansion of the languange of ordered rings with only function and constant

symbols. R = (R, <,+,−, 0, 1, ...) be an L-structure expanding the ordered field of real numbers and let T =

Th(R).
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We refer to L-terms with parameters from R as R-terms.
Now follows an equivalent characterization of o-minimality for T , whenever T has quantifier elimination.

LEMMA 5.4.1. Suppose T has quantifier elimination. Then T is o-minimal if and only if for each R-term t(x)

in one variable x, there is m ∈ R such that either t(x) > 0, t(x) < 0 or t(x) = 0 for all x > m.

Proof. (⇒) This is clear by the Monotonicity Theorem 3.1.1.
(⇐) Let S be a definable set. By quantifier elimination S is a boolean combination of sets of the form {x :

t(x) = 0}, {x : t(x) > 0} and {x : t(x) < 0}, where t is an R-term in one variable. Thus, there is an m ∈ R
such that either (m,+∞) ⊆ S or (m,+∞) ∩ S = ∅. Note that fractional linear transformations x 7→ ax+b

cx+d are
definable as {(x, y) ∈ R2 : ∃z((cx + d)z = 1 ∧ y = (ax + d)z)}. Applying fractional linear transformations to
S, we conclude that there is m > 0 such that

i) Either (m,+∞) ⊆ S or (m,+∞) ∩ S = ∅;

ii) Either (−∞,m) ⊆ S or (−∞,m) ∩ S = ∅;

and for each r ∈ R, there is ε > 0 such that

iii) Either (r, r + ε) ⊆ S or (r, r + ε) ∩ S = ∅;

iv) Either (r − ε, r) ⊆ S or (r − ε, r) ∩ S = ∅.

This implies that bd(S) is closed, bounded and contains only isolated points. Hence bd(S) is finite. Thus S is a
finite union of points and intervals.

This lemma hints about the importance of the germs of functions at infinity. By o-minimality the germs of
functions at infinity are actually C∞ functions “at infinity” (consult 3.2, chapter 2 of [1]).

DEFINITION 5.4.2. If f, g : R → R, we say that f and g have the same germ at +∞ if there is m ∈ R such
that f(x) = g(x) for all x > m.

We denote by G the ring of germs at +∞ of functions f : R→ R. We use the term “ultimately” whenever we
want to say “for all sufficiently large real numbers”.

DEFINITION 5.4.3. A subring A of G is called a G-domain if for each f ∈ A either ultimately f(x) > 0,
ultimately f(x) < 0, or ultimately f(x) = 0.

Note that if A is a G-domain, then A is an integral domain. We will consider the following ordering for a
G-domain A: f > 0 if and only if ultimately f(x) > 0.

DEFINITION 5.4.4. If a G-domain is also a field, then it is called a G-field.

Note that if A is a G-domain then it has a unique fraction field in G. We identify R with the G-field of germs
of constant functions. We consider the ring of polynomials R[x] as G-domain in the obvious way and its fraction
field R(x) as a G-field.

If f is an n-ary function symbol of L we define fG : Gn → G by fG(f1, ..., fn) as the germ at +∞ of the
function x 7→ f(f1(x), ..., fn(x)). For each term t(x1, ..., xn) we define tG : Gn → G by letting tG(f1, ..., fn)

be the germ of the function x 7→ t(f1(x), ..., fn(x)).

DEFINITION 5.4.5. A G-field closed under fG for every function symbol f in L is called anR-field.

Now we can state an easy consequence that links the abstract view of the L-structure R as a G-field and its
possible o-minimality.

LEMMA 5.4.6. If T has quantifier elimination and there is an R-field containing the identity function x 7→ x,
thenR is o-minimal.

Proof. We have that for every R-term t(x) either ultimately t(x) > 0, or ultimately t(x) < 0, or ultimately
t(x) = 0. Since T has quantifier elimination, by Lemma 5.4.1R is o-minimal.
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From now on we make two assumptions on T .

i) T has quantifier elimination.

ii) T has a universal axiomatization.

Note that if N � T andM⊆ N , thenM� N (1.3.8 and 1.4.8).
Note also that these two assumptions on T hold in Tan(−1, ( n

√
)n=2,3,...) and Tan(exp, log).

LEMMA 5.4.7. IF K is anR-field then, viewed as an L-structure, K � T .

Proof. Consult Lemma 5.8 of [2].

DEFINITION 5.4.8. If K is an R-field and g ∈ G, we say that g is comparable to K if for each f ∈ K either
ultimately g(x) < f(x), or ultimately g(x) > f(x), ultimately g(x) = f(x).

LEMMA 5.4.9. Suppose T is o-minimal. Let K be anR-field. If g ∈ G is comparable to K then

K〈g〉 := {tG(f1, ..., fn, g) : t(x1, ..., xn+1) is a term and f1, ..., fn ∈ K}

is the smallestR-field containing K ∪ {g}.

Proof. Consult Lemma 5.9 of [2].

Now we turn to Hardy fields.

DEFINITION 5.4.10. We say that an element g ∈ G is a C1-germ if the function g : R→ R is ultimately C1.

DEFINITION 5.4.11. For a C1-germ g ∈ G, we define its derivative g′ as the derivative of the C1-function
g : (m,+∞)→ R for some m > 0.

DEFINITION 5.4.12. A Hardy field is a G-field K such that every f ∈ K is a C1-germ and f ′ ∈ K. We say
that K is aR-Hardy field if it is anR-field which is also a Hardy field.

Note that, ifR is o-minimal then the ring H(R) of R-definable functions f : R→ R is anR-Hardy field. We
state, without proof, two facts about Hardy fields.

LEMMA 5.4.13. Let K be a Hardy field and f ∈ K. Then

i) ef ∈ G is comparable to K.

ii) If f > 0, then log(f) is comparable to K.

Proof. Consult Lemma 5.1.2 of [2].

The next lemma asserts that every R-Hardy field can be extended to an R-Hardy field that is closed under
exponentiation and under taking logarithms of positive elements.

LEMMA 5.4.14. Suppose T is o-minimal. Let K be anR-Hardy field and f ∈ K. Then K〈ef 〉 is anR-Hardy
field, and if f > 0, then K〈log(f)〉 is anR-Hardy field.

Proof. Consult Lemma 5.1.3 of [2].

THEOREM 5.4.15. (Ran, exp) is o-minimal.

Proof. Let R = (Ran,−1 , ( n
√

)n=2,3,...). The structure R is o-minimal and its theory has quantifier elimination
and an universal axiomatization. Let H(R) be the Hardy field of definable functions. By 5.4.14 we can extend

H(R) to an R-field H̃(R) that is closed under exponentiation and under taking logarithms of positive elements.

Thus H̃(R) is an (R, exp, log)-Hardy field containing the identity function id: R → R, x 7→ x. Recall that the
theory of (R, exp, log) admits quantifier elimination. Thus (R, exp, log) is o-minimal by 5.4.6, and in particular
(Ran, exp) is o-minimal.
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[13] B.H. Neumann, On ordered division rings. Trans. Amer. Math. Soc. 66(1949), 202-252

[14] I. Kaplansky, maximal fields with valuations. Duke Math. J. 9(1942), 303-321

49


	1 Preliminaries of Model Theory
	1.1 First-order languages and interpretation
	1.2 Homomorphisms and formulas
	1.3 Theories
	1.4 Definable sets and quantifier elimination
	1.5 Brief digression on types

	2 QE for the theory of rcof
	2.1 Roots of polynomials in R[X]
	2.2 Semialgebraic cell decomposition

	3 O-minimality
	3.1 Monotonicity Theorem and Uniform Finiteness
	3.2 Cell decomposition

	4 The theory of restricted analytic fields
	4.1 Valuations
	4.2 Ordered fields as Lan-structures

	5 The theory of Ran(exp)
	5.1 Power series fields
	5.2 Models of Tan as power series fields
	5.3 The theory of Ran(exp) and quantifier elimination
	5.4 O-minimality and Hardy fields


