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SUMMARY

Optimizing reaction conditions depends on expert chemistry knowl-
edge and laborious exploration of reaction parameters. To auto-
mate this task and augment chemical intuition, we here report
a computational tool to navigate search spaces. Our approach
(LabMate.ML) integrates random sampling of 0.03%–0.04% of all
search space as input data with an interpretable, adaptive ma-
chine-learning algorithm. LabMate.ML can optimize many real-
valued and categorical reaction parameters simultaneously, with
minimal computational resources and time. In nine prospective
proof-of-concept studies pursuing distinctive objectives, we
demonstrate how LabMate.ML can identify optimal goal-oriented
conditions for several different chemistries and substrates. Dou-
ble-blind competitions and the conducted expert surveys reveal
that its performance is competitive with that of human experts.
LabMate.ML does not require specialized hardware, affords
quantitative and interpretable reactivity insights, and autono-
mously formalizes chemical intuition, thereby providing an innova-
tive framework for informed, automated experiment selection
toward the democratization of synthetic chemistry.

INTRODUCTION

Chemistry and synthetic method development are central to successful chemical

biology, drug discovery, materials science, and engineering research programs.1,2

However, the identification of appropriate synthetic procedures requires expert

chemistry knowledge3 that may lead to suboptimal goal-oriented methods, given

predisposed assumptions.4,5 The selection of experiments toward a predefined

objective (e.g., optimal reaction conditions) remains a subjective/non-deterministic

task when performed by expert chemists.6 Moreover, traditional chemometrics and

full/fractional factorial design of experiments are laborious.7,8 Thus, the develop-

ment of computational technologies from minimal data can assist future discovery

chemistry by streamlining the identification of optimal reaction conditions and aug-

menting chemical knowledge.9,10

Formalizing decision making in machine circuits may reshape how science is carried

out,11,12 and its application in automated laboratories is expected to accelerate

drug development.12–19 Despite being an enabling technology in chemistry,20–22

current machine-learning implementations rely on harnessing massive datasets

coupled to black-box algorithms and retrospective benchmark statistics. In addition,

given the need of expert chemistry knowledge to effectively tackle non-routine

tasks, most algorithms have experienced questionable applicability to organic

chemistry practice.3,23 These hurdles have kept the optimization of chemical reac-

tion conditions toward a desired objective as a challenge with only a few significant
Cell Reports Physical Science 1, 100247, November 18, 2020 ª 2020 The Author(s).
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reported applications.24 For example, reaction feasibility can be predicted by clas-

sifiers,25 and substrate scoping (i.e., determining which building blocks react under

certain fixed conditions) is predictable by leveraging brute-force reaction screening

data.26,27 Similarly, the discovery of new chemical reactions has been automated,28

using thousands of data points (entries of reaction data) to teach a machine, which is

only feasible with the means for conducting/analyzing hundreds to thousands of re-

actions in parallel. However, these algorithm applications do not allow optimizing

reaction conditions to maximize product amounts and/or yields. To that end,

deep-learning architectures employing several thousand probability density func-

tions for simulated data pre-training have been used to optimize only three reaction

parameters over 40 iterations.21 More recently, a black-box algorithm was inte-

grated into a flow chemistry apparatus to enable fast feedback loops in reaction con-

dition optimizations. With said algorithm, up to five reaction variables, in multiple

chemical reactions, were optimized over 30–60 iterations.24,29 While these applica-

tions highlight the computational tractability of reaction condition optimization, we

hypothesized that reaction modeling routines can more efficiently navigate larger

parameter spaces than current state-of-the-art methods, leverage significantly less

data, and require manifold fewer optimization iterations.

Here, we report the development and application of a computational framework

(LabMate.ML) leveraging unbiased, random experiment selection for initialization

and adaptive machine learningto navigate unknown reactivity spaces. LabMate.ML

models an unprecedented number of reaction condition variables to augment hu-

man chemical perception, albeit being agnostic to the identity and mechanism of

the studied chemical transformation. This tool runs on a personal computer and

does not require any specific computational or laboratory equipment. By optimizing

distinct chemistries for a myriad of objectives, we provide validations for our compu-

tational routine. Namely, we apply LabMate.ML to multiple small-molecule, glyco-,

and protein chemistries that are relevant to scaffold generation and decoration as

well as late-stage functionalization. Our learning approach formalizes chemical intu-

ition and contrasts with methods built from big data and complex algorithms.21,26–28

Instead, the software relies on an easily accessible volume of information and a fully

traceable decision tree-based algorithm. Specifically, LabMate.ML uses small data

(5–10 data points; 0.03%–0.04% of search space) to navigate the reaction condition

space, and optimizes up to eight condition parameters simultaneously using only 1–

10 additional iterations/reactions. Our method identified optimal synthetic methods

toward a specified optimization objective and unveiled new chemistry insights ne-

glected by a panel of >40 expert chemists, endorsing the power of driverless ma-

chine learning in future organic synthesis and providing the first direct comparison

of automated reaction optimization with human reasoning. These operational fea-

tures provide substantial improvements and versatility over the current state-of-

the-art and advocate for the use of next-generation machine learning and chemo-

metrics tools in this space. Our data support the deployment and transferability of

the here-described and related technologies for a plethora of different types of

parameter optimizations, either as standalone tools for practitioners or integrated

with synthesis robots.
RESULTS AND DISCUSSION

Architecture of LabMate.ML

We designed our software (Figures 1 and S1) to mitigate automated reaction optimi-

zation limitations (e.g., small data availability, large number of variables, and no

specialized hardware required) by analyzing and providing a validation for its
2 Cell Reports Physical Science 1, 100247, November 18, 2020



Figure 1. Workflow for Reaction Optimization

LabMate.ML selects 5–10 random reactions for initialization (module 1/Initializer). The reactions are

performed and the collected data are used as an initial knowledge base. Subsequent reactions are

performed with computer-suggested conditions, based on active learning heuristics (module

2/Optimizer), and assessed by liquid chromatography–mass spectrometry/ultraviolet-visible (LC-

MS/UV-vis). The area under the curve (AUC) value for the required m/z or UV absorption peak is

used as the objective target value in machine learning. Specifically, the AUC is transformed

according to the objective of the optimization experiment and used as a proxy for the reaction

outcome (e.g., total product amount or yield). The reaction conditions are used as features for

LabMate.ML training in the Optimizer. LabMate.ML uses random forests (RFs) to generate models

that rationalize the available data and suggest a new condition set. The software is autonomous

and re-trainable after each iteration; with the additional data, the RF hyperparameters are

optimized using cross-validation. LabMate.ML runs for 5–10 min for a full cycle of re-training and

prediction on a single personal computer (e.g., Mac Pro and mid-range MacBook Pro).

See Figure S1 and Supplemental Experimental Procedures for details.
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reaction optimization concept. LabMate.ML is composed of two modules that are

responsible for generating small data for initialization (module 1/Initializer) and sug-

gesting experiments based on adaptive random forest (RF) heuristics (module

2/Optimizer). Crucially, LabMate.ML requires only 5–10 data points (reaction condi-

tions and respective outcomes) to provide the initial knowledge base—up to 400-

fold less data than previous methods28,30—to build a crude model from which a

new experiment is suggested. Neither prior assumptions nor pre-training are

required. Considering that each selected reaction is informative, the model changes

dynamically, as captured by changing ideal RF parameters. To adapt to new data,

LabMate.ML creates the best machine learning method on its own, evolving in an

autonomous and stepwise fashion. In doing so, it mimics on-the-fly learning31 by

synthetic chemists to efficiently detect patterns in small data and to obtain increas-

ingly better statistical models and predictions. To the best of our knowledge,

LabMate.ML pioneers small-data-enabled, adaptive machine learning inspired in

chemistry practice for reaction optimization. We implemented different machine

learning-based prioritization strategies in the Optimizer to evaluate efficiency and

speed to identify optimal reaction conditions for a pre-defined objective, among

commonly probed mechanism-agnostic reaction variables. In one case, the

LabMate.ML Optimizer uses predictive uncertainty measures rather than random

sampling to efficiently explore multidimensional search spaces; it selects reaction

conditions least understood by the model, irrespective of the predicted reaction

outcome. In doing so, we recognized that the random, small data gathered by the
Cell Reports Physical Science 1, 100247, November 18, 2020 3



Figure 2. Adaptive Machine Learning Optimizes Ugi Chemistry

(A) Studied chemical reaction for proof-of-concept. Conditions were selected within the depicted range.

(B) LabMate.ML Initializer selected 10 random reactions, which were performed to afford an initial model. Subsequent reaction conditions were

selected one at a time based on active learning heuristics, according to different criteria: (1) exploration of the reaction condition space (iterations 1–10,

red), and exploitation of the most promising region (iterations 11–20, red) and (2) full exploitation (iterations 1–10, blue).

(C) Projection of the multidimensional search space using the t-distributed stochastic neighborhood embedding (t-SNE) learning algorithm. The

background depicts the density of the conditions within the search space. White dots: random reactions (LabMate.ML Initializer); blue dots: exploitative
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LabMate.ML Initializer could be insufficient for an acceptable understanding of

chemical reactivity and identification of an optimized outcome. LabMate.ML then

adopts a balanced or exploitative approach to select the least (balanced) or most

confident (exploitative) of the perceived top 10 high-yielding reactions. The former

approach takes into account both the exploration and exploitation of the reaction

conditions’ space. Conversely, another LabMate.ML routine was pursued to obtain

high target values directly from the information enclosed in small data by using a

’’greedy’’/exploitative approach (see Method Details).
Proof-of-Concept with Ugi Chemistry

As an initial proof-of-concept and validation example, we selected an Ugi 3-compo-

nent reaction. This is a well-studied and tractable example that affords a privileged

structure32 in drug discovery, imidazopyridines (Figure 2A). Despite the fact that Ugi

reactions have a high substrate scope and reaction-condition tolerance, obtaining

good yields (>50% of limiting reagent conversion) is not straightforward,33 given

the multiple variables that must be optimized simultaneously. The area under the

curve (AUC) for the required product in liquid chromatography-mass spectrometry

(LC-MS) traces was used as a proxy for the reaction outcome—amount of product

formed—and, therefore, as target value for LabMate.ML. As an initial training set,

the LabMate.ML Initializer selected only 10 random conditions from the enumerated

search space. These represent a minute amount (10/27,000, or z0.04%) of a vast

multidimensional search space, here compressed to 27,000 discrete combinations

by chemistry-based understanding of the problem at hand. This amount of training

data sharply contrasts both ‘‘big data’’ and a recent active learning28 study. The 10

random reactions provided a range of product amounts, yet suboptimal and mostly

negative conditions for the proposed goal (Figure 2B; Tables S1 and S2) that are

devoid of anthropogenic biases.4 This underscores the complexity of finding

optimal reaction conditions and that random condition selection—the initialization

routine in LabMate.ML—may be impractical as the sole approach for optimizing

organic synthesis protocols. Between learning iterations 1–10 (red), the LabMate.ML

Optimizer informatively explored the reactivity space and selected conditions that

afforded imidazopyridine in various amounts. With the generated information,

LabMate.ML was then able to optimize the synthetic method in a stepwise fashion

toward a set of conditions that gave a 5-fold improvement in generated product

amount relative to the best randomly selected (training data) reaction. A similar

outcome was obtained through an exploitative (greedy) approach (blue) with the

benefit of minimizing synthetic effort (i.e., number of performed reactions relative

to the more explorative software counterpart). With only five trials, similar optimal

reaction conditions were achieved. The latter result is surprising because the use

of LabMate.ML for out-of-sample predictions led to the swift identification of pro-

ductive reactions. This was against our expectations, since we assumed that

preferred reaction conditions were out of the model’s domain of applicability, given

the suboptimal results in the small training dataset. The result suggests that the

initially provided small set of random conditions, with varying but low target values,

still captures the blueprints for a successful reaction outcome. With the collected

data in hand, we further analyzed the behavior of both software tools. By using

dimensionality reduction to visualize the trajectory of picked conditions in the

experimental space, it can be concluded that the exploitative LabMate.ML approach
approach reactions (LabMate.ML Optimizer); red dots: explorative reactions of the balanced approach (LabMate.ML Optimizer). The color gradients

mirror the iteration number. The data are normalized relative to the best-performing reaction.

(D) t-SNE of the optimized hyperparameters for LabMate.ML Optimizer, which is fully re-trainable to provide updated parameters and models for

improved performance. The color gradient shows the unsupervised, self-evolution of LabMate.ML. The model instances are labeled.

Cell Reports Physical Science 1, 100247, November 18, 2020 5



Figure 3. Active Machine Learning Is More Efficient at Optimizing Chemical Reactions Than Human Intuition

(A) Researchers with a non-identifiable descriptor vector optimize reaction conditions toward a maximized product amount in stepwise fashion, but

never reach the level of optimization achieved by the algorithm. Best-performing reactions (average value G confidence interval 95%)—LabMate.ML:

100% G 3%, n = 5; researcher 1: 90% G 1%, n = 3; researcher 2: 91% G 2%, n = 3; researcher 3: 90% G 3%, n = 3; researcher 4: 88% G 3%. p = 0.001

(researcher 1), p = 0.004 (researcher 2), p = 0.010 (researcher 3), Welch’s t test. Iteration 8 of LabMate.ML was not reproducible and thus considered an

outlier. The data are normalized relative to the best-performing reaction. Ten reactions with random conditions are performed for initial training.

(B) Distribution of the average Euclidean distances (relative to A) calculated between a given reaction and all previous iterations. The exploitative

LabMate.ML performs ‘‘condition hops’’ similar to the researchers (p > 0.10). The explorative LabMate.ML selects more dissimilar conditions. p <

0.0001, n = 10, unpaired 1-way ANOVA, Dunnett’s test.

(C) Heatmap of feature importance (relative to A) extracted from RFs fitted to reactions selected by exploitative LabMate.ML/human intuition.

Euclidean distances between exploitative LabMate.ML and researchers 1–3: 6.48 (14% match), 4.24 (43% match), and 3.16 (43% match), respectively.
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exclusively selects conditions fromwithin two islets with identical reaction outcomes.

The curiosity-driven selection method probes different regions in feature space, as

originally desired (Figure 2C).

It is apparent that the diverging selection strategies affect the fate of the suggested

experiments. Nonetheless, in this example, equivalent optimal conditions were ob-

tained regardless of the conceptually different search strategies used. The differ-

ence in these search strategies is also reflected in the self-evolution of optimized

RF parameters and predictive model architectures. The explorative selection

method more drastically modifies the model architecture, as measured through

RF feature importance changes (Tables S4 and S5). The exploitative counterpart is

more conservative in its changes, possibly due to a narrower view of the reaction

optimization problem (Figure 2D). We found that this can lead to a drastic difference

in retrospective prediction performance; whereas the balanced method model can

accurately predict reaction outcomes, the exploitative approach model is less accu-

rate in its predictions (Figure S3). Nevertheless, our prospective data suggest that

the latter method is able to correctly rank order well-performing reactions. Impor-

tantly, as a control experiment and to probe the accuracy of the method, we

confirmed that conditions predicted to afford no product were indeed experimen-

tally unable to produce the imidazopyridine (Table S3). Next, we studied whether

simpler machine learning methods could have performed equally well. Irrespective

of the selection approach, the predictive performance of LabMate.ML is superior to

linear regression methods, as assessed by different metrics (Figure S3), which sug-

gests that the use of adaptive random forests to chemistry optimization problems

is justified. In addition, we performed Y-randomization tests to confirm that

LabMate.ML does not simply overfit or memorize the training dataset, nor exploits

data artifacts, but instead learns meaningful relationships between the reaction con-

dition parameters and the obtained product amounts (Table S4, S5, and S17). Taken

together, the results suggest that both selection approaches are justified, and the

preference for a balanced (i.e. explorative/exploitative) or exploitative LabMate.ML

depends on the goal and available data (Figure S4).

We then compared the performance of the exploitative learning approach in

LabMate.ML to that of three researchers—a MSc without experience in organic syn-

thesis, and two experienced PhD-level organic chemists—in a double-blind setup.

The researchers were asked to propose conditions that would lead to large AUC

values, and we subsequently performed the proposed reaction to provide feedback

to the researchers for the next round of suggesting conditions (Figure S2; Tables

S6–S11). Descriptors were scaled and randomized for the researchers to disable

identification of the variables and thereby avoid drawing organic chemistry knowl-

edge into play that could bias the optimization process, according to previous expe-

rience. Surprisingly, in this narrow test, the software appeared to be competitive

with the three researchers at optimizing this Ugi reaction over 10 active learning

iterations (Figure 3A). Not only are the curves between LabMate.ML and the
(D) LabMate.ML quickly optimizes the yield of the reaction in a competitive manner to human intuition. Best-performing reactions at comparative

number of iterations (average value G confidence interval 95%)—LabMate.ML: 100% G 3%, n = 3; researcher 4: 79% G 3%, n = 3; researcher 5: 43% G

9%, n = 3; p = 0.0057 (LabMate.ML versus researcher 4), p = 0.0001 (LabMate.ML versus researcher 5), Welch’s t test. LabMate.ML versus researcher 4,

iteration 5: 100% G 1%, n = 3, p = 0.59; Welch’s t test. The data are normalized relative to the best-performing reaction.

(E) t-SNE of reaction condition space, showing the reactions selected by LabMate.ML, researcher 4, and researcher 5. The color gradient depicts the

iteration number, with the darkest color for the last iteration.

(F) Heatmap of feature importance (relative to D) extracted from RFs fitted to reactions selected by exploitative LabMate.ML/human intuition. Euclidean

distances between exploitative LabMate.ML and researchers 4 and 5: 4.47 (15% match) and 5.56 (30% match), respectively.

Cell Reports Physical Science 1, 100247, November 18, 2020 7
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researchers significantly different (p = 0.002, n = 4–6, Welch’s t test) but also the

best-performing reaction conditions suggested by LabMate.ML afford a signifi-

cantly better outcome than the optimal conditions identified by the researchers

(p = 0.001–0.010, n = 3–5, Welch’s t test). Moreover, when researcher 1, the best-

performing human in this benchmark test, was granted additional reactions (itera-

tions), no further progress was made toward identifying better reaction conditions.

These results support the idea that optimizing reaction conditions toward any given

objective is a pattern recognition problem accessible to an automated machine-

learning platform. For example, researcher 1 with no in-depth chemistry education

was able to find productive reaction conditions, which is in line with the above-

mentioned conclusion. More important, we controlled for and disproved the possi-

bility that the identified optimal conditions could be obtained by maximizing

reaction scale, i.e. using the maximum amount of building blocks and catalyst.

When performing the reaction with the highest value for each descriptor, we ob-

tained a significantly suboptimal solution (z84% of maximum amount of product

achieved by LabMate.ML: p = 0.0001, n = 3–5, Welch’s t test). Apparently,

LabMate.ML recognized this pattern by never suggesting a maximized parameter

reaction.

To rationalize how LabMate.ML navigates the chemical reaction space, we calcu-

lated the Euclidean distances between conditions for a given iteration against the

conditions of its predecessors. The results show that the ‘‘condition hop’’ in the hu-

man intuition-driven optimization is identical to that of the exploitative LabMate.ML

approach (p > 0.10, n = 10, unpaired 1-way ANOVA with Dunnett’s test; Figure 3B),

whereas the explorative strategy resulted in bigger changes to the reaction condi-

tions (p < 0.0001, n = 10, unpaired 1-way ANOVA with Dunnett’s test). Thus, our

data support the fact that informed decisions by learning algorithms may resemble

human intuition for small-sized datasets. Also, the data-driven yet chemically naive

selection by algorithms can provide an important advantage if short optimization cy-

cles are required. For example, explorative strategies may provide the means to

generate amore diverse dataset of conditions compared to human decision making.

To further understand human intuition, we generatedmodels of mental processes by

fitting different learning algorithms to data generated by all of the researchers (Fig-

ure S2; Tables S6–S8) to reveal that, in most cases, machine learning can interpret

the selected reactions. This is true with random forests, from which we extracted

feature importance ranks in the selection process (Figure 3C). Strikingly, the catalyst

amount was generally perceived and confirmed by the researchers as the most

important variable for optimizing the amount of product for the Ugi reaction,

whereas the pyridine amount was the least important. Interestingly, researchers

1–3 appeared to rank each feature differently, which may have affected their

selected reactions (Figure S2) and hints at the subjectivity of human-guided optimi-

zation campaigns and pattern recognition capabilities. The driverless evolution of

LabMate.ML was at least as competent as human intuition for the identification of

patterns in small-sized datasets. Thus, in some instances, true chemical knowledge

may not be strictly necessary for experiment optimization problems, but may be

augmented through statistical learning.

Although in this experiment we confirmed that optimization is possible on uncorrec-

ted AUC values, we recognized that maximizing reaction yields (i.e., scale-corrected

reaction outcomes) may be a more realistic use case for our software suite. There-

fore, we used the exploitative LabMate.ML approach in another optimization

campaign toward the same imidazopyridine. This time, we corrected the measured

target values from the training data according to the reaction scale (limiting reagent
8 Cell Reports Physical Science 1, 100247, November 18, 2020
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amount), thereby optimizing the yield (see Method Details). All of the iterative mea-

surements followed the same correction. Starting from the first iteration, the Opti-

mizer suggested a distinct optimization path (different selected conditions) relative

to what the algorithm had previously requested when optimizing for product

amounts (uncorrected AUC values, Tables S2 and S12). This indicates that the algo-

rithm changes the optimization campaign with respect to the desired objective and

is not simply driven by target-agnostic parameter exploration. Nevertheless, it took

only four iterations to identify a set of conditions that afforded complete conversion

of the limiting reagent (100% yield; Figure 3D) to the required imidazopyridine.

Apparently, the software is efficient at optimizing chemistry toward different objec-

tives by devising appropriate reaction scoring functions that fit the needs of the proj-

ect. This is achieved by including regularizers to minimize costs, reduce side prod-

ucts, and improve atom economy.

We then set out to contextualize the performance of the machine-learning algorithm

in LabMate.ML. Two additional human controls (researchers 4 and 5, both with PhD-

level experience in chemistry; Tables S15 and S16) had access to the same knowl-

edge base—this time, however, with fully identified descriptors and real valued

(i.e., non-normalized) reaction condition variables. Relative to this real-world com-

parison, LabMate.ML is at a disadvantage because it has no prior chemical knowl-

edge, so poorer performance for our chemical intuition formalization algorithm

was expected. Surprisingly, after the same number of optimization iterations (4),

LabMate.ML was able to more efficiently extract knowledge toward optimal reaction

conditions (p = 0.001–0.0006, n = 3, Welch’s t test; Figure 3D) than either researcher

(Tables S15 and S16). Interestingly, researcher 4 found a distinct local optimum in

the search space (p = 0.59, n = 3, Welch’s t test; Figure 3D; Table S15) but required

an additional reaction for its discovery. This implies the competitiveness of our

solution and that a different optimization strategy was used, which we confirmed

by projecting the reaction optimization trajectories onto the search space (Fig-

ure 3E). Even though the conservative strategy for prioritizing condition changes,

LabMate.ML does not appear to focus solely on one region of the search space.

Conversely, researchers 4 and 5 were more or less explorative, which suggests again

that the LabMate.ML performance is not exclusively a function of more or less

diverse sampling of conditions. The better performance of the algorithm may be

due to the difficulty for humans to identify subtle, yet desirable patterns in mostly

‘‘negative’’ training data. This corroborates our previous findings. The difference

between human and machine-driven optimization campaigns is also supported by

the diverging feature importance ranks between LabMate.ML and researchers

(z15%–30% match) that ultimately led to the obtained data (Figure 3F). Despite

the highly encouraging results in these chemical intuition benchmarking tests,

further evaluation with larger sets of human experts are required to statistically vali-

date such trends.

LabMate.ML Affords Insight into a C–N Cross-Coupling Reaction

As an additional validation test, we applied exploitative LabMate.ML to optimize the

yield of a C–N (Buchwald-Hartwig) cross-coupling reaction (Figure 4A),34 a relevant

transformation that was previously identified as a valuable but challenging reaction

in drug discovery.35 Here, we consider a reaction as ‘‘challenging’’ if it has under-

gone extensive optimization but still provides a poor yield, due to limitations in

substrate scope, irrespective of having a more or less well-studied mechanism.

Replicates of the literature reaction conditions consistently afforded a mixture of re-

gioisomers (C2–N and C4–N cross-couplings), as reported.34 These results served as

positive control (benchmarked as 100%; Figure 4B). Using the LabMate.ML Initializer
Cell Reports Physical Science 1, 100247, November 18, 2020 9
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to randomly sample only 10 reactions (0.03% of the reaction condition space; Fig-

ures 4A and 4B) offered a sparse dataset for training (Figure 4C). Conversion rates

were on average low for those reactions conditions (60% control), with two of

them yielding almost no product and one affording the required C2–N product

with conversion identical to that of the previously published conditions (100%). Us-

ing these data, the software was again able to gradually optimize the cross-coupling

reaction by building relevant models (Tables S18–S20). At its peak, the algorithm

suggested a protocol that provided an improved conversion (an additional 40%

yield) relative to the best literature reaction (p = 0.0008, n = 3; Welch’s t test; Figures

4B and 4C). These results could be replicated by an independent contract-research

organization (Figures S8–S11), which provides external validation for the reproduc-

ibility of the reaction suggested by LabMate.ML. Moreover, the computer-opti-

mized protocol was twice as base and time economical compared to the reported

conditions for the control protocol. As previously observed for the Ugi chemistry,

LabMate.ML evolved with each reaction (Figure 4D). The analysis of the feature/

parameter importance over the whole iterative experimentation and optimization

revealed that the base amount steadily grew as the most important feature for build-

ing predictive decision trees. Conversely, reaction time and palladium catalyst

amount were less informative in distinguishing good- from poor-yielding reactions.

More important, some parameters such as solvent amount and reaction temperature

dynamically changed during model evolution, with some experiments assigning

increasing or decreasing importance to these parameters. A similar dynamic had

been reported30 and highlights the adaptive character of iterative learning.

Intrigued by this result, which opposed our personal understanding of the most

important parameters for this type of chemical transformation, we surveyed 38 inde-

pendent organic chemistry experts from universities and industry in Europe and the

United States. We asked them to assign an importance rank for each of the features/

parameters of this reaction (e.g., temperature, solvent amount) based on their chem-

ical intuition. The results clearly show that LabMate.ML has an orthogonal vantage

point to all of the surveyed scientists in regard to themost important feature (amount

of Cs2CO3). This highlights the value of interpretable machine learning, wherein the

algorithm can identify data relationships that are currently unexpected. At the same

time, the algorithm’s and the experts’ opinions are in large agreement with respect

to the importance of xantphos, chloropyridine, and amine amounts (Figure S28). This

indicates that our method can rapidly reproduce established guidelines in organic

synthesis. The algorithm indirectly learned that an increased formation of

Pd(xantphos)2 is detrimental for the reaction conversion rate, potentially due to its

low activity as a pre-catalyst and high insolubility in dioxane.36 A head-to-head pair-

ing of the subjects’ answers to the LabMate.ML feature ranks shows a %50% match
Figure 4. LabMate.ML Optimizes a C–N Cross-Coupling Reaction

(A) Reaction optimized by LabMate.ML. The conditions were sampled within the depicted range. The median values correspond to literature

conditions.

(B) Optimization by exploitative LabMate.ML. The horizontal red line shows the conversion rate for the reaction as described in the literature.34

Reactions were assessed in relation to the average conversion for the literature protocol (average value G confidence interval 95%: 100% G 6%, n = 4).

The best suggested reaction affords a conversion rate that is significantly higher than the optimized literature protocol. Only the major product (C2–N

coupling) was taken into account for data analyses. p = 0.0008, Welch’s t test, n = 3–4. The data are normalized relative to the literature reaction.

(C) t-SNE of reaction condition space, which shows the focused selection of reactions by LabMate.ML. The color gradient depicts the iteration number,

with the darkest color corresponding to iteration 20.

(D) Spider plot showing adaptive feature importance as LabMate.ML evolves. Cyan: iteration 1; purple: iteration 10.

(E) Reaction protocol suggested by LabMate.ML is transferrable to other starting material combinations and lead to the requested product. The

literature values were obtained by reproducing the reported reaction conditions for the indicated building blocks.

(F) LabMate.ML can efficiently optimize the formation of different regioisomers from a self-suggested small training set. The optimization of reactions

conditions toward different products results in varying regioselectivities.

Cell Reports Physical Science 1, 100247, November 18, 2020 11
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in 89% of the cases. Also, calculating Manhattan distances, a vector comparison

metric, between the assigned reaction importance ranks and subsequently perform-

ing hierarchical clustering revealed LabMate.ML to be the ‘‘outlier’’ in this dataset

and underscores its distinct interpretation of the condition space relative to the hu-

man experts who were consulted (Figure S28). The observed general disagreement

between the surveyed experts with distinct clusters of chemical intuition reiterates

how subjective reaction troubleshooting routines can be. Conversely, LabMate.ML

offers a robust solution to make reaction optimization processes reproducible/

deterministic in the learning process while adding its unique chemical creativity

and innovation to problem solving. In this particular case, LabMate.ML advocates

for higher importance being assigned to the base amount for optimization of this

C2–N cross-coupling product, a realization that was ancillary to the expert chemists

(for whom 0% of answers included the base amount among the top two most impor-

tant features), but allowed for substantially improved reaction yields.

We wondered whether the identified conditions were specific to the investigated

reaction (ethyl 2-aminooxazole-4-carboxylate and 2,4-dichloropyridine) or could

be transferred to other educts. We confirmed the transferability of the machine-

designed synthesis protocol by readily obtaining both the C2–N and C4–N cross-

coupling products that result from reaction of 2-aminooxazole with 2,4-dichloropyr-

idine (Figure 4E). Despite being originally perceived as an out-of-scope reaction,34

the method proposed by LabMate.ML afforded the required C2–N molecule in

higher yield than the trace amount previously described (17% versus 0% yield; Fig-

ures S16 and S17). This effectively supports the utility of LabMate.ML for delving

search spaces for challenging chemistry.

Observing that formation of the C4–N cross-coupling product resulting from reac-

tion of ethyl 2-aminooxazole-4-carboxylate and 2,4-dichloropyridine did not vary

linearly with that of the C2–N adduct, we next deployed LabMate.ML to identify con-

ditions that promoted the formation of the former using the same condition search

space. Starting from the same unbiased training dataset, our computational routine

was able to identify reaction conditions that promoted the formation of the C4–N

cross-coupling product in just four iterations by diminishing the regioselectivity of

the reaction (Figure 4F; Tables S21–S23). Remarkably, feature importance ranks ob-

tained in this optimization campaign were highly disparate from those in the C2–N

cross-coupling optimization example. The mapping of model architectures through

feature ranks resulted in 60% of the maximum Euclidean or Manhattan distances

possible between each isomer optimization campaign. This clearly shows that

different determinants govern the formation of each isomer and that their correct

identification is equally tractable to LabMate.ML, which successfully tuned the reac-

tion conditions to promote one or the other product.

LabMate.MLHasWide Applicability to a Broad Range of Different Chemistries

Finally, to further challenge the scope of our technology, we optimized five addi-

tional, diverse chemistries of current interest in discovery chemistry, encompassing

different substrates, such as small molecules, glycosides, and proteins. The selected

chemistries—reductive amination, Horner-Wadsworth-Emmons olefination, photo-

catalytic C–H arylation,37 phenolic O-glycosylation,38 and aza-Michael ligation on

proteins 39—presented different challenges to LabMate.ML. In addition, all of the re-

action types have been either widely used40,41 or recently developed37–39 for the

construction/decoration of scaffolds and late-stage functionalization (Figure 5).

Here, we expanded the breadth of our computational routine by introducing cate-

gorical features as optimizable reaction parameters (e.g., identity of solvent, base
12 Cell Reports Physical Science 1, 100247, November 18, 2020
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and/or reactant type), which were one-hot encoded for machine learning. Moreover,

up to seven reaction variables were modeled and target values were extracted from

either LC-UV-vis (ultraviolet-visible) or ESI+ traces. While we took literature prece-

dents to define the search space in the case of the photocatalytic C–H arylation,

phenolic O-glycosylation, and aza-Michael ligation reactions, for the remaining ex-

amples the search space was defined based on our chemical intuition. LabMate.ML

was able to efficiently generate valid models from only 5–10 self-suggested, random

reactions (z0.03% of search space; Tables S24–S38) and identify productive condi-

tions over 3–9 iterations in all of the cases. These results corroborate our previous

observations and strongly support the wide utility of LabMate.ML as a complement

to human perception, both for augmenting it and/or assisting in unraveling the un-

known. The identified synthesis protocols were at least as efficient as their respective

literature precedents, despite focusing on different reaction condition sets. For

example, a Pd-catalyzed C–H functionalization using visible light photoredox Ru

catalysis was successfully achieved under similar literature conditions,37 for which

the amount of Ru(bpy)3Cl2 and diazo building block constituted the key parameters

for the outcome. In another case, O-glycosylation of tyrosine was achieved under

more diluted substrate conditions (0.4 versus 1.0 M), which promoted improved

dissolution of the substrate and an �28% higher yield relative to the reference

method.38

We have recently developed chemistry for the facile transformation of cysteine into

lysine residue mimics.39 Despite its general applicability, we have found important

limitations (optimized yield of 50% in the literature) in the installation of aminoal-

kynes for posterior functionalization of the C2Am protein, a protein that can be

used as an apoptosis marker to follow cancer treatments.42 This could be confirmed

here through the Initializer-suggested reactions: 70% of them afforded 0% yield of

modified protein (Table S36). Such a poor level of conversion can affect downstream

fluorophore installation and signal detection, as well as limit the translation of

labeled C2Am to clinics as diagnostics tool. More broadly, this inefficient labeling

restricts the scope of both imaging studies and payload conjugations.

LabMate.ML was able to mitigate this perceived limitation; it efficiently established

a protocol providing near-quantitative yield of the required C2Am-labeled product

(>95%) by searching for an appropriate reactant amine and reaction conditions.With

the exception of the amine concentration, which was assigned higher importance

(Table S38), LabMate.ML found all of the features to be equally important for the re-

action outcome. Optimization of the amine concentration, in conjunction with fine-

tuning of the reaction temperature, appears to be key; albeit an unwritten rule, this

correlation had not been previously identified and exploited.39 Our data show again

the ability of our probability-driven method in formalizing intuition and rapidly

learning guidelines for chemistry optimization from scratch and, more impressively,

from highly skewed and negative data. It is important to keep in mind that the

identified relationships are not necessarily universal for a certain type of chemistry

or even reaction, and that the number of initialization reactions suggested by

LabMate.ML may have to be adapted according to the descriptor dimensionality.
Figure 5. LabMate.ML Is Applicable to Diverse Chemistries

The LabMate.ML combination of random reaction selection (Initializer) with a machine learning routine (Optimizer) is applicable to scaffold building

and functionalization of small molecules, glycosides, and proteins, using minimal training data. The in silico tool identifies local maxima and is

competitive with chemical intuition, supporting the use of mechanism-agnostic descriptors and the self-evolving architecture of LabMate.ML. Optimal

parameters are highlighted in blue and yields obtained via literature methods are given in parentheses. The literature values were obtained by

reproducing the reported reaction conditions for the indicated building blocks.
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However, the results advocate that productively applicable local optima can be

identified from a given set of parameters.

In all of the examples, LabMate.ML was able to identify optimized reaction condi-

tions toward different pre-defined goals from small-size datasets and augment

chemical knowledge. Other types of models may be productively applied. For

example, neural networks have been tailored for reaction optimization problems

and may find applicability in these and similar use cases.43 Our method showed su-

perior prospective performance compared to an out-of-the-box, adaptive feed-for-

ward deep learning heuristics (p = 0.0008, n = 3,Welch’s t test; Table S13). Nonethe-

less, the choice of model may be driven by the researcher’s preference, the

computational and economical means, and the availability of data to train models

with varying complexity. LabMate.ML is robust and capable of optimizing a large

number of reaction variables simultaneously from limited, self-suggested training

data. Such modeling is beyond what is efficiently intelligible to humans44 and acces-

sible off-the-shelf to the gold standard statistics routine SNOBFIT.45 The perfor-

mance of our self-evolving heuristics is bound to different factors, such as a correct

pre-selection of reaction variables to optimize, their boundaries, and the number of

learning iterations allowed (i.e., the reaction budget), all of which are initially set by a

chemist. As an example, we optimized the Ugi reaction from a dataset of five random

reactions (5/27,000 or z0.02% of search space) instead of 10 (z0.04% of search

space; Table S14). Our workflow still identified conditions with significantly

increased yield compared to the best random reaction over five iterations. However,

these conditions were z50% inferior relative to the success of our preferred imple-

mentation relying on 10 training data points (p = 0.0005, n = 3, Welch’s t test; Tables

S12 and S14). The number of variables modeled in our proof-of-concept test cases is

appropriate for most chemistry optimization problems. Yet, the relationship be-

tween number of variables, size of training set, and search space is expected to

be critical for a good overall performance of LabMate.ML. Finally, we used the RF

feature importance to quantify changes in model architecture, track the computa-

tional optimization path, and compare the machine-based optimization to human

intuition. The generated insights could be confirmed by mutual information compu-

tations (Figure S29; Tables S39–S41; Note S1). For all of the performed optimiza-

tions, we observed dynamic changes in the feature importance values. In general,

the most important features for LabMate.ML differed from the intuition of the human

experts consulted.

Machine intelligence to enable sustainable and informed synthetic chemistry is of

high value and widespread interest. However, applications leveraging ‘‘big data,’’

complex algorithms and descriptors, and the absence of direct comparison to hu-

man performance may reduce trust/deployability and thereby hinder its implemen-

tation in daily laboratory routines. Here, we implemented a modular tool, coalescing

random reaction selection for unbiased initialization andmachine learning for knowl-

edge expansion and optimization. Active learning is the enabling concept for our al-

gorithm but remains underexplored in synthetic chemistry,46 despite its utility for the

design of experiments.43,47–50 We30,51 and others28,52,53 had previously used 5%–

10% of all of the available data in active learning applications to obtain proficient

models. In those cases, models were built with hundreds or thousands of data

points,28 which is not practical if quality data are not easily accessible or are

expensive to acquire. We have provided proof-of-concept for a software and ma-

chine-learning concept through its application in multiple relevant chemistries and

objectives. Our self-driving method can use as few as five data points together

with simple yet motivated real-valued/categorical descriptors. It leverages an
Cell Reports Physical Science 1, 100247, November 18, 2020 15
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interpretable algorithm to acquire chemical knowledge and navigate uncharted re-

action condition spaces. Ultimately, LabMate.ML identified optimized reaction con-

ditions, predicted conversion values, and provided hitherto neglected reactivity in-

sights. This was achieved by exploiting negative data or by fine-tuning already well-

performing yet serendipitous reactions from the initialization step. Our autonomous

learning approach is agnostic to the identity of the modeled reaction by virtue of the

descriptors used. Therefore, it may be applied to any chemical transformation, as

exemplified here. Furthermore, it is orthogonal to the big data requirement dogma

for successful machine learning deployment and the imperative need of expert

knowledge for chemistry optimization. LabMate.ML can be at least as proficient

and inventive as expert human chemists, thus opening new research avenues. This

does not refute the importance of true chemical expertise. Rather, it shows that

our technology can afford an alternative path to rapidly and efficiently identify opti-

mized reaction conditions by augmenting chemical perception. We expect that

coupling random experiments to active learning will find broad applicability to

accelerate discovery chemistry, democratize chemical syntheses with limited exper-

imental budget, eliminate non-informative experiments, minimize reagent feed-

stocks, and free chemists for non-routine tasks.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests should be directed to the Lead Contact, Dr Tiago

Rodrigues (tiago.rodrigues@ff.ulisboa.pt)

Materials Availability

Reactions were carried out as reported in the literature or as modified by the

LabMate.ML. No new materials were generated in this research.

Data and Code Availability

All of the data supporting the findings are presented within the article and the

Supplemental Information. Details on the LabMate.ML workflow are provided in

the Supplemental Experimental Procedures and code can be accessed at https://

github.com/tcorodrigues/ActiveLearning.
LabMate.ML

LabMate.ML entails two distinct modules whose combined goal is the identification

of optimized reaction conditions. The first module (Initializer) suggests a user-

defined number of random experiments (5 or 10 in this study) for initialization and

preliminary model building. The second module (Optimizer) uses active learning

heuristics for goal-oriented reaction optimization. Specifically, the Optimizer uses

RF regressors and exhaustively optimizes hyperparameters (number of trees [100–

1,000 with a step of 100], tree depth [0, 2, 4], and number of features [auto or

sqrt]) to build a prediction model that is subjected to leave-one-out or 10-fold

cross-validation, depending on the size of the training set. In total, >600,000 deci-

sion trees are screened, and a prediction and its variance can be calculated from

the final/best RF model. This model is then used to predict a target value from all

of the possible reaction conditions that have not yet been tested. The target value

is the amount of product formed (assessed through LC-UV-vis-MS traces), either un-

corrected or corrected according to reaction scale. Based on these predictions, the

next experiment is selected sequentially according to a pre-defined selection policy.
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In case of the first Ugi optimization, an exploration approach is taken for the first 10

iterations, LabMate.ML Optimizer (iterations 1–10), by selecting the conditions

whose reaction output prediction has the highest variance, irrespective of the pre-

dicted target value (a measured AUC in LC-MS traces). For the following iterations

(11–20), an exploitative (greedy) approach is pursued to maximize the target value

of the studied chemical reaction. This is carried out through distinct approaches:

If maximum target value (iterations 1–10) R 4 3 maximum target value (random

reactions 1–10):

Select reaction with lowest variance among the predicted top five high-yielding

reactions.

If maximum target value (iterations 1–10) < 4 3 maximum target value (random

reactions 1–10):

Select reaction with the highest variance among the predicted top 10 high-

yielding reactions.

Alternatively, LabMate.ML Optimizer follows only a greedy approach from iteration

1 by selecting the reaction with lowest variance among the predicted top five

high-target-value reactions (i.e., without any explorative component in the selection

policy). The LabMate.ML software evolves with each added data point by refining its

predictive model through full re-training. This involves hyperparameter selection,

model fitting, and updating predictions for all of the remaining conditions. The

LabMate.ML software and data analyses were fully implemented in Python 2.7.10,

using the NumPy 1.11.3, Pandas 0.19.2, and Scikit-learn 0.18.1 libraries, and was

run (5–10min) on an AppleMac Promachine (3.5 GHz 6 core processor, 32 Gb RAM).
Chemistry

For details on synthetic procedures and analytics see the Supplemental Experi-

mental Procedures section and Figures S5–S27.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.xcrp.

2020.100247.
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43. Häse, F., Roch, L.M., Kreisbeck, C., and Aspuru-
Guzik, A. (2018). Phoenics: a Bayesian optimizer
for chemistry. ACS Cent. Sci. 4, 1134–1145.

44. Halford, G.S., Baker, R., McCredden, J.E., and
Bain, J.D. (2005). How many variables can
humans process? Psychol. Sci. 16, 70–76.

45. Huyer, W., and Neumaier, A. (2008). SNOBFIT–
Stable Noisy Optimization by Branch and Fit.
ACM Trans. Math. Softw. 35, 9.
Cell Reports Phys
46. Reker, D., and Schneider, G. (2015). Active-
learning strategies in computer-assisted drug
discovery. Drug Discov. Today 20, 458–465.

47. Dragone, V., Sans, V., Henson, A.B., Granda,
J.M., and Cronin, L. (2017). An autonomous
organic reaction search engine for chemical
reactivity. Nat. Commun. 8, 15733.

48. Duros, V., Grizou, J., Xuan, W., Hosni, Z., Long,
D.L., Miras, H.N., and Cronin, L. (2017). Human
versus robots in the discovery and
crystallization of gigantic polyoxometalates.
Angew. Chem. Int. Ed. Engl. 56, 10815–10820.

49. Yoshida, M., Hinkley, T., Tsuda, S., Abul-Haija,
Y.M., McBurney, R.T., Kulikov, V., Mathieson,
J.S., Reyes, S.G., Castro, M.D., and Cronin, L.
(2018). Using evolutionary algorithms and
machine learning to explore sequence space
for the discovery of antimicrobial peptides.
Chem 4, 533–543.
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