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Abstract 

Molecular dynamics (MD) simulations are a well-established 

technique to characterize the structural motions of biological 

systems at atomic resolution. However, accessing, viewing, and 

sharing MD trajectories is typically restricted by large file sizes and 

the need for specialized software, which limits the audience to 

which this data is available. The aim of this thesis is to extend the 

outreach of MD simulations by providing online resources that 

facilitate the dissemination, visual inspection, and analysis of this 

data. For that, we present GPCRmd and SCoV2-MD, two online 

resources focused on proteins with high biomedical interest: G 

protein-coupled receptors (GPCRs) and the proteome of the Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), 

respectively. We also showcase the capabilities of GPCRmd and 

SCoV2-MD for exploring key aspects of protein dynamics. Overall, 

these platforms have the potential to promote data “Findability, 

Accessibility, Interoperability, and Reusability” in the MD field, 

supporting the FAIR principles for scientific data management. 
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Resum 

Les simulacions de dinàmica molecular (MD, per les seves sigles en 

anglès) són una tècnica ben establerta per caracteritzar els 

moviments estructurals de sistemes biològics amb una resolució 

atòmica. No obstant això, l'accés, la visualització i la compartició de 

trajectòries de MD solen estar restringits per la gran mida dels seus 

fitxers i la necessitat de programari especialitzat, que limita el 

públic al qual estan disponibles aquestes dades. L'objectiu d'aquesta 

tesi és ampliar la difusió de les simulacions de MD proporcionant 

recursos en línia que facilitin la compartició, inspecció visual i 

anàlisi d'aquestes dades. Per això, presentem GPCRmd i SCoV2-

MD, dos recursos en línia centrats en proteïnes d'alt interès 

biomèdic: els receptors acoblats a proteïnes G (coneguts com a 

GPCRs, per les seves sigles en anglès) i el proteoma del coronavirus 

2 de la síndrome respiratòria aguda greu (SARS-CoV-2), 

respectivament. També mostrem les capacitats de GPCRmd i 

SCoV2-MD per explorar aspectes clau de la dinàmica de proteïnes. 

En definitiva, aquestes plataformes tenen el potencial de promoure 

la cercabilitat, l'accessibilitat, la interoperabilitat i la reutilització de 

dades en l'àmbit de la MD, donant suport als principis FAIR 

(acrònim de l’anglès Findable, Accessible, Interoperable and 

Reusable) per a la gestió de dades científiques. 
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Preface 

Molecular dynamics (MD) simulations are a widely established 

method for exploring time-resolved motions of biological systems 

at an atomic level. This technique has proven useful to incorporate 

the missing information on protein flexibility into experimentally 

solved structures and provide high-resolution details of molecular 

mechanisms that are difficult to capture with experimental 

techniques. Despite the value of these insights for many research 

fields, the access, analysis, and even the visual inspection of MD 

data is restricted by large file sizes and the need to install 

specialized software. Ultimately, this limits the audience of MD 

simulations to specialists in this field. Moreover, the publication of 

studies involving MD simulations in scientific journals is often not 

accompanied by the generated atomic trajectories, which reduces 

transparency, reusability, and the understanding of the described 

molecular processes. 

To maximize the potential of MD research, the data generated 

should be “Findable, Accessible, Interoperable, and Reusable”, as 

described by the FAIR principles for scientific data management. A 

promising step towards this goal is the development of online 

repositories that facilitate the collection and dissemination of MD 

data and metadata. When paired with online tools for the visual 

inspection and analysis of the simulations, these repositories 

promote the study of MD simulations for experts and non-experts 

likewise. Consequently, this triggers knowledge exchange and 

multidisciplinarity, opening new avenues for research.  

Due to the technical challenges associated with MD data, the 

number of such online platforms is limited. For this reason, this 

thesis was devoted to the implementation of two online resources 

for the collection, dissemination, and analysis of MD simulations. 

Each of the developed platforms is focused on a group of proteins 

with particular biomedical interest: G protein-coupled receptors 

(GPCRs) and the proteome of the Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2).  

On the one hand, GPCRs are a major class of drug targets, and 

modulating their signaling can produce a wide range of 
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physiological outcomes. Their functionality is highly determined by 

their flexibility and ability to transition between distinct 

conformations. Thus, exploring the structural dynamics of GPCRs 

is crucial for understanding their molecular mechanisms, as well as 

for the rational design of new ligands targeting them. For that, we 

developed GPCRmd (www.gpcrmd.org), a community-driven 

online resource that provides access to a vast number of GPCR MD 

simulations, as well as the associated metadata. To simplify the 

inspection of the data, GPCRmd is equipped with a comprehensive 

set of intuitive online tools for the interactive visualization and 

analysis of MD simulations. Moreover, it includes a meta-analysis 

tool to compare and cluster the available simulations, or a subset of 

interest, based on their interaction patterns. 

On the other hand, the study of the proteome of the SARS-CoV-2, 

the causative agent of the Coronavirus disease 2019 (COVID-19) 

pandemic, is crucial for the fight against this disease. Capturing the 

structural dynamics of the viral proteins can provide a clearer 

picture of the molecular processes in which they are involved, 

including cell infection, evasion of the host’s immune system, and 

replication. This information can also be helpful to understand the 

impact of amino acid substitutions found in emerging viral variants 

and to find new therapeutic strategies. Thus, our second platform, 

SCoV2-MD (www.scov2-md.org), aims to integrate, cross-

reference, and share MD dynamics data and metadata of the SARS-

CoV-2 proteome. As GPCRmd, this resource includes visualization 

and analysis tools to explore the simulation data. Additionally, an 

important asset of SCoV2-MD is that it provides tools to analyze 

the functional impact of variant substitutions that have emerged 

during the progression of the pandemic, which is achieved based on 

a combination of static and MD-derived descriptors. 

All in all, with the platforms presented in this thesis, we aim to 

make a step forward towards reproducibility and transparent 

dissemination in the field of MD simulations. Ultimately, our goal 

is to broaden the outreach of protein dynamics to researchers of all 

fields. 

http://www.gpcrmd.org/
http://www.scov2-md.org/
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1. INTRODUCTION 

1.1. Biological background 

This thesis tackles two groups of proteins with particular 

biomedical interest. First, we introduce G protein-coupled receptors 

(GPCRs), which are one of the most successful therapeutic targets 

for a broad spectrum of diseases. Then, we examine the proteome of 

the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2), the causative agent of the Coronavirus disease 2019 

(COVID-19) pandemic, whose understanding is crucial for the fight 

against this disease. In both cases, a full comprehension of the 

physiology and pharmacology of these proteins requires the study 

of their structural dynamics and, consequently, the effective 

dissemination of this information. 

1.1.1. G protein-coupled receptors (GPCRs) 

GPCRs are one of the largest families of membrane protein in 

eukaryotes, with over 800 identified members in the human 

proteome1. Such diversity allows GPCRs to respond to a wide range 

of extracellular stimuli including light, changes of pressure, 

odorants, neurotransmitters, hormones, and metabolites, among 

others. These stimuli are able to trigger GPCRs to initiate 

intracellular signaling cascades which are involved in many 

physiological processes. In fact, signal transduction by GPCRs is 

fundamental for most physiological processes in the human body, 

spanning from vision, smell, and taste to neurological, 

cardiovascular, endocrine, and reproductive functions2.  

Because of their abundance, GPCRs are also involved in a wide 

variety of human diseases. Thus, GPCRs have been of long-

standing interest as pharmacological targets, and more than 30% of 

all drugs approved by the United States Food and Drug 

Administration (FDA) target a GPCR, accounting for a global sales 

volume of over 180 billion US dollars annually3. Still, the drugs 

approved so far target only 27% of the human non-olfactory 

GPCRs, indicating that this protein family still has immense 

potential for future drug development4,5. 
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Human GPCRs can be classified into six main families (or classes) 

based on sequence homology and phylogenetic analyses: rhodopsin 

(A), secretin (B1), adhesion (B2), glutamate (C), frizzled (F), and 

taste 26,7. Among them, class A is by far the largest, including 

important receptors like the archetypal GPCR rhodopsin, as well as 

olfactory, dopamine, opioid, adrenergic, chemokine, angiotensin, 

histamine, and adenosine receptors, along with many others. 

Although research efforts have focused on humans, GPCRs or 

GPCR-like proteins are expressed in multiple eukaryotes, including 

not just animals but also plants8, fungi9, and protozoa10. 

1.1.1.1. The conserved structural architecture of GPCRs 

Despite the large number of GPCR family members, they all share a 

common structural architecture (Figure 1): seven transmembrane 

helices (TM1-7), linked by three extracellular loops (ECL1-3) and 

three intracellular loops (ICL1-3). The N-terminus of GPCRs is 

located at the extracellular side, and the C-terminus locates 

intracellularly. The N-terminus and the extracellular loops are 

responsible for recognizing ligands and modulating their access into 

the orthosteric binding pocket, which is located deeper within the 

receptor bundle and formed primarily by transmembrane helices. 

The residues of the transmembrane helices constitute the machinery 

for signal transduction across the membrane11. Finally, the 

intracellular regions interact with cytosolic signal transducers, such 

as G proteins, arrestins, and G protein-coupled receptor kinases 

(GRKs). 

This conserved scaffold makes it possible to index GPCR residues 

according to their sequence or structure alignment, establishing 

generic GPCR residue numbering schemes (Figure 2). Sequence-

based generic GPCR residue numbering schemes12 exist for class A 

(Ballesteros-Weinstein), B1 and B2 (Wootten13), C (Pin14), and F 

(Wang15). In these systems, residues are indexed by two numbers 

separated by a dot (e.g. 2.50), where the first number indicates the 

helix (1-7) and the second the residue position relative to the most 

conserved residue in the helix, which is assigned the number 50. 

The reference conserved residue of the helices differs between the 

GPCR classes.  
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Figure 1. The conserved GPCR structure. GPCRs share a common structural 

architecture, consisting of seven transmembrane helices (TM1-7) connected by 

alternating intracellular and extracellular loops, with the amino terminus located 

at the extracellular side and the carboxyl terminus at the intracellular side. Here, 

we show the A2A receptor (PDB ID: 3UZA), embedded in a membrane in a water 

box. Alpha helices are highlighted in magenta, transmembrane helices are 

numbered according to the conserved GPCR architecture. 

GPCR crystal structures revealed that GPCR helices can have 

distortions such as bulges (one additional residue) and constrictions 

(one absent residue) in the helical turns16. These distortions offset 

the sequence-based generic residue numbers of the following 

residues when compared to an undistorted helix, and thus 

structurally equivalent residues no longer have the same number. To 

tackle this issue, GPCRdb implemented a complementary scheme 

based on structure alignments, instead of sequence12. GPCRdb 

numbers are distinguished by the separator “x” and may be used 



4 

alone, e.g. 2x56, or together with one of the sequence-based 

schemes, e.g. 2.57x56 (Figure 2). 

 

Figure 2. Sequence-based and structure-based GPCR residue numbering 

schemes. In GPCR residue numbering schemes, residues are indexed by two 

numbers, indicating the helix (1-7) and the residue position relative to the most 

conserved residue in the helix, which is assigned the number 50. Sequence-based 

schemes, such as Ballesteros-Weinstein (BW), are indicated with a “.” between 

the two numbers (e.g. 2.50), while structure-based use a “x” (e.g. 2x50). Bulges 

(one additional residue) and constrictions (one absent residue) in the helical turns 

offset the sequence-based generic residue numbers of the following residues 

when compared to an undistorted helix, while structure-based generic residue 

numbers are not affected. (a) A bulge in helix 2 of the β2-adrenoceptor (β2AR, 

magenta, PDB ID: 2RH1) compared to the P2Y12 receptor (P2Y12, grey, PDB ID: 

4NTJ). (b) A constriction in helix 4 of the histamine H1 receptor (H1, green, PDB 

ID: 3RZE), compared to the β1-adrenoceptor (β1AR, grey, PDB ID: 4AMJ). 

Sequence alignments were generated with GPCRdb17,18. 

1.1.1.2. The impact of ligand binding on the GPCR conformational 

equilibrium 

GPCRs exhibit variable basal activities in the absence of bound 

ligands. For a given GPCR, each ligand has a characteristic capacity 

to activate or deactivate its target, which is commonly referred to as 

its efficacy. According to their efficacies, we can differentiate 

several types of ligands19: full agonists, which induce maximal 

response; partial agonists, which induce submaximal response; and 

inverse agonists, which decrease basal activity. Furthermore, 
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antagonists are ligands that do not initiate a signaling response and 

prevent agonist binding by occupying the binding pocket. 

GPCRs are highly flexible proteins that exist in an equilibrium 

between multiple structural conformations (Figure 3a). Within their 

conformational landscape, distinct populations are linked to a 

specific physiological response. The binding of a ligand in the 

orthosteric site can shift the conformational equilibrium, altering the 

overall signaling response20,21. For instance, an orthosteric agonist 

would shift the equilibrium towards active conformations. This can 

be mediated by two mechanisms. On the one hand, the agonist can 

bind to inactive or intermediate states and induce structural 

rearrangements towards active conformations (agonist-induced 

activation, Figure 3b). On the other hand, the agonist can directly 

sample the active conformations and stabilize them. By doing this, 

it shifts the conformational equilibrium towards active-like states 

(conformational selection, Figure 3c). Both mechanisms may 

contribute to receptor activation to a different extent depending on 

the ligand and receptor type. Finally, active receptors demonstrate a 

higher propensity to interact with intracellular coupling partners, 

known as transducers, leading to the initiation of signaling 

cascades. 

Different GPCR ligands can modulate signaling differently, for 

instance causing coupling preference to G proteins over arrestin, or 

one G protein subtype over the others, which leads to the activation 

of different signaling pathways (1.1.1.3. Signal transduction 

through GPCRs)22,23. This phenomenon of preferential signaling is 

known as “biased signaling” or “functional selectivity”, and the 

ligands that demonstrate it are “biased ligands" (Figure 4)22,24. 

Biased ligands are remarkably promising for drug design, since they 

can be used to selectively modulate disease-associated pathways 

while not engaging non-pathological pathways, avoiding side 

effects. As an example, β-arrestin biased ligands of the AT1 receptor 

show an improved therapeutic profile when compared to 

conventional AT1 blockers, which antagonize both G protein and β-

arrestin recruitment. This is the case of TRV120027, currently in 

clinical trial for the treatment of hypertension25,26, that shows 

vasodilating effects similar to conventional blockers but, unlike 

them, avoids side effects such as decreased cardiac performance27.  
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Figure 3. GPCR activation and signaling. (a) GPCRs exist in an equilibrium 

between multiple conformational states. From a structural perspective, there are 

two mechanisms by which an agonist (blue) can mediate GPCR activation. (b) 

On the one hand, the agonist can bind to inactive or intermediate states and 

induce structural rearrangements towards active conformations. (c) On the other 

hand, the agonist can directly sample the active conformations and stabilize them. 

Both mechanisms may contribute to receptor activation to a different extent 

depending on the ligand and receptor type. Active receptors interact with 

intracellular coupling partners, initiating signaling cascades. 
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Figure 4. Biased signaling. Biased agonists show preference for certain 

downstream coupling partners over the others, and thus engage certain signaling 

pathways over the others. In this respect, A G protein-biased agonist (a) shows 

preference for G proteins, while an arrestin-biased agonist (b) shows preference 

for arrestin.  

The phenomenon of biased signaling could be explained by the idea 

that biased agonists stabilize the receptor in a subset of active 

conformations (“biased” conformations) with a particular capacity 

to couple to specific intracellular signal transducers28–30. This 

theory, which is supported by experimental observations31–33, has 

opened new questions for structure-based drug discovery. 

Deciphering how subtle variations in ligand structure can translate 

into important changes in receptor signaling, as well as 

understanding how ligands stabilize different GPCR conformational 

ensembles leading to a specific intracellular coupling, could 

promote the discovery of safer drugs. 

Finally, it is worth noting that GPCRs can not only recognize 

orthosteric ligands but are also affected by allosteric modulators, 

including small molecules, lipids, ions, and sterols34–41. Allosteric 

modulators bind to regions spatially distinct from the orthosteric 

binding pocket and modulate the affinity and/or efficacy of 

orthosteric ligands42. Allosteric binding pockets present greater 

sequence divergence between receptor subtypes, which makes these 

modulators promising therapeutic targets with improved selectivity. 

Moreover, they provide a strategy to fine-tune the response 
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triggered by the orthosteric ligand, avoiding severe effects on the 

cell43,44. 

1.1.1.3. Signal transduction through GPCRs  

The classical signal transduction through GPCRs is dependent on 

receptor-mediated activation of G proteins (Figure 5, left), which 

are composed of three subunits –Gα, Gβ, and Gγ. Based on 

sequence homology between human Gα isotypes, we can 

differentiate four major G protein families (Gs, Gi/o, Gq/11, and 

G12/13), each with potentially varying signaling properties45–47. 

 

Figure 5. GPCR signal transduction. Simplified diagram of GPCR signaling, 

including G protein-dependent and G protein-independent signaling48. GIRK 

channel, G-protein-coupled inwardly rectifying potassium channel; GRK, G 

protein-coupled receptor kinase; MAPK, mitogen-activated protein kinase. 

Created with BioRender.com. 

Receptor activation promotes the engagement, and consequent 

activation, of the G protein, which causes the dissociation of the Gα 

and Gβγ subunits49. Both dissociated components modulate the 

activity of different downstream effector proteins. By this, Gα 

modulates the production of second messengers such as cyclic 

adenosine monophosphate (cAMP)50, and Gβγ regulates ion 

channels and phospholipases, among others51,52, propagating the 

signaling cascade. After some time, the Gα subunit returns to an 

inactive-like conformation, regaining affinity for the Gβγ dimer. 

Once the heterotrimeric G protein is reformed, it can bind again to 

file:///C:/Users/Mariona/AppData/Roaming/Microsoft/Word/BioRender.com


 

9 

GPCRs in active conformations, completing the G protein 

activation circle.  

Apart from interacting with G proteins, activated GPCRs may be 

phosphorylated by GRKs24, which stimulates the coupling of 

arrestin to the receptor (Figure 5, right)53. Arrestin coupling leads to 

desensitization and internalization of the receptor. Moreover, some 

researchers propose that arrestin coupling also stimulates G protein-

independent signal transduction through activation of downstream 

effector proteins like mitogen-activated protein kinases (MAPKs) or 

SRC kinases48. However, it is still under debate which of those 

pathways are independent of G-protein coupling54. To date, only 

four types of arrestin have been identified: arrestin-1 and arrestin-4, 

which exist exclusively in the visual system55, and β-arrestin 1 and 

2, which regulate GPCRs not involved in sight56.  

1.1.1.4. The importance of three-dimensional structures for the 

understanding of GPCR biology 

Given the complex structure-function relationships involved in 

GPCR signaling, GPCR structures are key for understanding the 

details of GPCR functioning, as well as for the identification of new 

GPCR drugs. Thus, the study of GPCRs has been very linked to the 

pursuit of novel high-resolution GPCR structures. 

The first high-resolution crystal structure of a GPCR was published 

in the year 2000, consisting of bovine rhodopsin57. This 

achievement was key to triggering the first structural analyses of 

class A GPCRs. After seven years of extensive research and 

technology development, the first crystal structure of a human 

GPCR, β2-adrenoceptor (β2AR), was published58,59. Importantly, 

this was the first structure of a GPCR bound to a diffusible (not 

covalently bound) ligand, providing valuable information on the 

basis of ligand binding in GPCRs. Another important breakthrough 

in GPCR structural biology was the first active-state GPCR 

structure of ligand-free rhodopsin (known as opsin), stabilized with 

a peptide derived from the G protein Gα subunit60. Moreover, 

shortly after that, the crystal structure of the active state β2AR in 

complex with the Gs heterotrimer was published, being the first 

high-resolution view of the complete signal transduction 

machinery61. Since then, important advances in protein engineering, 
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X-ray crystallography, and cryo-electron microscopy (cryo-EM) 

have led to an exponential growth in GPCR structure determination. 

Consequently, to date, there are over 500 GPCR structures available 

(Figure 6), spanning all receptor classes, and including complexes 

with many different ligand types and signal proteins17. 

 

Figure 6. Progression in GPCR crystal structure determination in the past 

decades. Accumulated number of GPCR structures available in GPCRdb17. 

This large dataset shed unprecedented light on the structural 

similarity and diversity of the GPCR superfamily, as well as the 

molecular basis of GPCR ligand recognition, activation, allosteric 

modulation, and dimerization, among others62. Importantly, this has 

opened new opportunities for structure-based drug design4,63,64. 

The success of high-resolution GPCR structures has also revealed 

the need to complement this data with information derived from 

different techniques. The data that can be extracted from structures 

is limited to the analysis of static protein snapshots isolated from 

their functional context. Thus, details of GPCR intrinsic flexibility 

and conformational plasticity can only be partially derived from 

them. These limitations have stimulated the use of a series of 

biophysical and computational approaches to study GPCRs from a 

more dynamic perspective65–67. Among them are molecular 
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dynamics (MD) simulations, which will be discussed in more detail 

in section 1.2. Molecular dynamics (MD) simulations. 

1.1.2. The Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2) 

The SARS-CoV-2 is a novel virus of the family Coronaviridae and 

the causative agent of the COVID-19. The COVID-19 was first 

identified in late December 2019, when a cluster of patients was 

diagnosed with pneumonia of unknown cause68. Soon after, the 

disease spread globally, leading to the declaration of the COVID-19 

pandemic by the World Health Organization (WHO). As of the 16th 

of September 2021, the disease has spread to 221 countries and 

territories, with more than 225 million confirmed cases and 4.6 

million deaths69. As a result, COVID-19 has become a serious threat 

to global human health and socioeconomic stability.  

1.1.2.1. Genome organization and proteome 

The SARS-CoV-2 is an enveloped virus with a positive-sense 

single-stranded RNA (+ssRNA) genome70,71 with multiple open 

reading frames (ORFs), which allow the expression of the different 

viral genes72 (Figure 7a). The viral +ssRNA can act as a messenger 

RNA (mRNA) from which coding sequences are directly translated 

into polyproteins by the cell translation machinery, namely the 

ribosomes. Particularly, two large polyproteins are translated from 

ORF1a and ORF1b. After proteolytic cleavage, the polyproteins 

give rise to 16 proteins known as the nonstructural proteins (nsp1-

16), involved in the replication and transcription of viral RNA73.  

They contain multiple enzymatic functions, including proteases 

(nsp3, nsp5), RNA-dependent RNA polymerases (nsp12), RNA 

helicase (nsp13), and the proofreading exonucleases (nsp14)74. 

After some viral replication, the virus expresses subgenomic 

mRNA, encoding other proteins. This gives rise to the four main 

structural proteins of the virus (the spike glycoprotein, envelope 

protein, membrane protein, and nucleocapsid protein) as well as 

several accessory proteins (orf3a, orf3b, orf6, orf7a, orf7b, orf8b, 

orf9b, orf9c, orf10)75. 
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Figure 7. SARS-CoV-2 genome organization and configuration of the 

structural proteins. (a) The SARS-CoV-2 contains a positive-sense single-

stranded RNA (+ssRNA) genome, including the open reading frame (ORF) 1ab 

(ORF1a and ORF1b) that code for nonstructural proteins, followed by the spike 

glycoprotein (S), envelope protein (E), membrane protein (M), nucleocapsid 

protein (N), and non-structural ORFs that code for accessory proteins. ORF1ab is 

expressed by direct genome translation, while the rest is expressed from 

subgenomic messenger RNA (mRNA) (b) Configuration of the four main 

structural proteins of SARS-CoV-2. The spike, nucleocapsid, and membrane 

proteins are embedded in the virus envelope, while the nucleocapsid protein binds 

to the viral genome. The spike protein recognizes and binds to the human 

angiotensin-converting enzyme-2 (ACE2) of the host cells. Created with 

BioRender.com. 

file:///C:/Users/Mariona/AppData/Roaming/Microsoft/Word/BioRender.com
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Among the structural proteins, the spike, membrane, and envelope 

proteins are embedded in the membrane and involved in cell 

recognition and entry (Figure 7b). Particularly, spike proteins are 

glycosylated trimers that protrude from the virus envelope, giving 

coronaviruses their characteristic appearance. Their role is to 

mediate recognition and entry to the host cell by binding to the 

angiotensin-converting enzyme-2 (ACE2) on the surface of the 

human cell76,77. The spike protein is also the main target of 

neutralizing antibodies generated following infection by SARS- 

CoV-278,79, and a component of both mRNA and adenovirus-based 

vaccines currently licensed for use, as well as others awaiting 

regulatory approval80. Also embedded within the virion envelope 

are membrane proteins, which are dimeric complexes believed to 

anchor ribonucleoprotein complexes to the envelope and give the 

virion its spherical shape81,82.  Similarly, the envelope protein is 

thought to be a transmembrane protein that forms pentameric ion 

channels and contributes to viral budding83. Unlike the other 

structural proteins, the nucleocapsid protein is located inside the 

membrane84, organizing the RNA into a ribonucleoprotein core85,86. 

Finally, accessory proteins play important roles in viral interaction 

with host cells, helping the virus to evade the immune system and 

enhancing its virulence87. 

1.1.2.2. Emergence of variants 

As an RNA virus, SARS-CoV-2 has a relatively high mutation rate. 

Although most mutations are expected to be either deleterious and 

rapidly purged or relatively neutral, a small proportion will provide 

a fitness advantage to the virus88. Since late 2020, the emergence of 

sets of phenotype-enhancing mutations has been detected, likely in 

response to the changing immune profile of the human population89. 

These sets of mutations, showing increased pathogenicity, 

infectivity, transmissibility, and/or antigenicity, were termed 

‘variants of concern’. For example, the B.1.1.7 (Alpha) variant, 

initially detected in the UK showing augmented pathogenicity and 

transmissibility, quickly become a dominant strain in many 

countries90. Currently, this variant has de-escalated, with the 

worldwide spread of other variants such as B.1.351 (Beta)91–93, P.1 

(Gamma)94,95, and B.1.617.2 (Delta)96,97, all of which show 

evidence for impact on severity, transmissibility, and immunity. 
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Understanding how these variants affect immune recognition and 

thus can cause an increased risk of reinfection or vaccine failures is 

of major importance. In this respect, mutations affecting the spike 

protein, which is a primary antigen, are of particular interest (Figure 

8). Similarly, spike mutations affecting the binding to the host cell 

can affect the severity of the disease. Information on how spike 

mutations affect antigenic profiles and other functional 

characteristics of the virus can be derived from structural 

studies78,79,98–100, site-directed mutagenesis101,102, and deep 

mutational scanning103–105, among others. For example, the 

structural study of the spike protein in complex with the antigen-

binding fragment of multiple antibodies showed that the spike 

receptor-binding domain (RBD) is an immunodominant target78,99. 

Moreover, deep mutational scanning experiments showed that the 

mutations that cause a stronger reduction of antibody binding occur 

at a relatively small number of RBD residues103. 

 

Figure 8. Key spike mutations in SARS-CoV-2 variants106. Spike mutations 

related to increased fitness in previous (B.1.1.7 or Alpha) and current SARS-

CoV-2 variants of concern in September 2021 (B.1.351 or Beta, P.1 or Gamma, 

and B.1.617.2 or Delta). Mutations occur in the three spike subunits but are only 

highlighted in one for clarity. 
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The integration of data regarding the functional effect of mutations 

with the surveillance of emerging variants has the potential to 

facilitate the automated detection of potential variants of concern 

before they spread widely. Early detection would help to guide the 

implementation of targeted control measures and further 

experimental characterization107. Importantly, this strategy strongly 

benefits from close international collaboration, stressing the 

importance of rapid and open sharing of data.  

1.1.2.3. Protein structures and their relevance in finding 

pharmacological interventions against SARS-CoV-2 

Unveiling the structural basis of SARS-CoV-2 infection has been a 

key priority since the emergence of the COVID-19 disease. 

Structural information of the proteins that constitute the virus, as 

well as proteins with which the virus interacts (e.g. ACE2) helps to 

further elucidate their mechanisms of action and find new molecular 

therapeutics that can impact their activity108. To this end, the 

structural biology community has made enormous efforts to rapidly 

build models of SARS-CoV-2 proteins and the complexes they 

form using cryo-EM and x-ray crystallographic techniques109–115. 

Consequently, over 1400 structures of over 20 different SARS-

CoV-2 proteins have been deposited in the protein data bank (PDB, 

rcsb.org)116, as of September 2021. Numerous druggable targets for 

the inhibition of SARS-CoV-2 have been proposed based on these 

structures117.  

There are three viral proteins that are particularly promising as 

targets for pharmacological intervention, and thus their structures 

have been of special interest: the spike protein, the main viral 

protease (nsp5, also known as Mpro and 3-CLpro), and the RNA-

dependent RNA polymerases (nsp12) (Figure 9). 

As mentioned before, the spike protein is responsible for the 

recognition and entry to the host cell76,77, and a major target for 

vaccine development, as well as neutralizing antibodies78–80. The 

spike forms highly glycosylated trimers on the surface of the virion 

(Figure 9a). Its activation requires the cleave by a host cell protease, 

which produces two subunits: S1 and S2109,112,118. The S1 subunit 

largely contains the RBD and the amino-terminal domain, and is 
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responsible for binding to the host cell-surface receptor, ACE2111 

(Figure 9b).  

 

Figure 9. Three-dimensional structure of SARS-CoV-2 proteins with high 

pharmacological interest. (a) Full-length model of the spike protein119, where 

each monomer is represented in a different color (green, orange, or magenta) and 

glycans are shown in violet licorice. (b) Each spike monomer can be divided into 

two subunits: S1 and S2. The S1 subunit contains the amino-terminal domain 

(NTD, cyan) and the receptor-binding domain (RBD, blue), while the S2 includes 

the central helix (CH, magenta), fusion peptide (FP, orange), connecting domain 

(CD, green), heptad repeat 2 domain (HR2, red), transmembrane domain (TM, 

pink), and cytoplasmic tail (CT, purple). (c) Structure of nsp5 (PDB ID: 7BB2), 

which is active as a homodimer. Monomers are shown in light and dark blue. (d) 

Structure of the nsp7-nsp8-nsp12-nsp13 replication/transcription complex (RTC, 

PDB ID: 6XEZ), including nsp12 (green), nsp7 (magenta), double-stranded RNA 

(red), two copies of nsp8 (orange and yellow), and two copies of nsp13 (purple 

and light blue).  
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The S2 is the transmembrane subunit, and it mediates membrane 

fusion (Figure 9b). Based on the RBD position, the spike protein 

structure can take two conformational states: closed or open (Figure 

10). The closed state is the predominant one, in which the RBDs are 

buried to evade immunosurveillance mechanisms. Contrarily, the 

open state exposes the RBD, enabling binding to ACE2. The 

binding of one of the three RBDs to ACE2 progressively induces 

the opening of the others, until a fully open, three-ACE2-bound 

structure is formed120. This triggers the activation of the S2 subunit, 

which undergoes dramatic structural rearrangements. These 

rearrangements involve shedding the S1 subunit, insertion of an S2 

domain known as the fusion peptide into the host membrane, and 

refolding into a needle-shaped, hairpin-like structure that opens a 

fusion pore76. 

Nsp5 (Figure 9c), the main protease, is an essential cysteine 

protease required for cleaving the viral precursor polyproteins, 

which include the precursors of the SARS-CoV-2 replication and 

transcription machinery121. Viral proteases have been successfully 

targeted to treat other viral infections, such as those caused by the 

human immunodeficiency virus (HIV) and hepatitis C virus (HCV). 

This protease is highly conserved between SARS-CoV-2 and other 

beta-coronaviruses such as SARS-CoV but differs from host 

proteases, which makes it a highly attractive drug target. In fact, 

many of the previously identified inhibitors against SARS-CoV and 

MERS-CoV nsp5 were found to be also active against SARS- CoV-

2122. From a structural perspective, nsp5 functions as an active 

homodimer. Interestingly, the SARS-CoV-2 nsp5 dimer is tighter 

than in SARS-CoV, which results in a higher catalytic efficiency115. 

Currently, there are over 250 high-resolution structures deposited in 

the PDB for SARS-CoV-2 nsp5, including complexes with various 

inhibitors, which help to understand the molecular basis of the 

interaction115,123.  

Nsp12, the RNA-dependent RNA polymerases, is the main 

component of the SARS-CoV-2 replication and transcription 

machinery, known as the replication/transcription complex (RTC, 

Figure 9d). It is a key target for antiviral inhibitors, mainly 

nucleotide analogs such as remdesivir, which has been reported to 

effectively inhibit SARS-CoV-2 proliferation124. In fact, viral RNA 

polymerases have been successfully targeted for the treatment of 
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numerous viral infections, including those caused by HCV, HIV, 

and the influenza virus125–127. The high-resolution structure of the 

RTC, consisting of nsp12 and the cofactors nsp7 and nsp8, was 

determined by several research groups128–132. Among them, the 

model of remdesivir binding to nsp12 within the RTC was revealed, 

providing insights into its mechanism of action131. Several cryo-EM 

structures also managed to capture the RTC bound to other 

cofactors –what is known as the extended RTC–133,134, revealing the 

importance of the interaction with nsp13 and nsp9 to modulate the 

complex activity. These structures were critical for understanding 

the complete architecture of the RTC, as well as potential means of 

inhibiting nsp12 activity. 

 

Figure 10. Closed and open conformations of the spike protein. Three-

dimensional structures of the spike protein in the closed (PDB ID: 6ZGE) and 

open (PDB ID: 6ZGG) conformations, shown with a trimer axis vertical view 

(top) and an orthogonal top-down view along this axis (bottom). Spike monomers 

are colored in green, orange, and magenta. In the open conformation, one of the 

three receptor-binding domains (RBDs), in green, is erect, enabling the binding to 

ACE2.  
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Despite the undeniable value of structural information of these and 

other SARS-CoV-2 proteins, there are limits to what they can tell 

us. As happens with GPCRs (1.1.1.4. The importance of three-

dimensional structures for the understanding of GPCR biology), it 

is well established that the function of a protein is dictated by the 

full range of conformations it can access, many of which remain 

hidden to experimental static structures. Capturing this range of 

conformations for SARS-CoV-2 can provide a clearer picture of the 

molecular mechanism of processes in which they are involved, 

including cell infection, evasion of host’s immune system, and 

replication. This can also present new therapeutic opportunities, 

such as cryptic pockets that are absent in experimental snapshots 

but provide novel targets for drug discovery. Several techniques can 

be used to capture this conformational plasticity, including MD 

simulations, which will be discussed in more detail in the next 

section (1.2. Molecular dynamics (MD) simulations). 

1.2. Molecular dynamics (MD) simulations 

Static three-dimensional structures derived from experiments via X-

ray crystallography or cryo-EM provide high-resolution information 

about specific protein conformational states. However, we need to 

be aware that these structures represent low energetic 

conformational states that are obtained under experimental 

conditions that often deviate from native-like conditions25. Several 

approaches can be used to study the three-dimensional structure of 

proteins from a more dynamic perspective, incorporating 

information on their intrinsic flexibility and conformational 

plasticity. While experimental techniques such as nuclear magnetic 

resonance (NMR)67, double electron-electron resonance (DEER)135, 

or single-molecule fluorescence energy transfer (smFRET)66 have 

provided relevant insights into the dynamics and flexibility of 

proteins such as GPCRs, MD simulations have emerged as the most 

promising opportunity to study the complexity of protein 

conformational dynamics in atomistic detail65,136. 

The first MD simulation of a macromolecule of biological interest 

was published in 1977, consisting of a 9.2-ps trajectory of a small 

protein, the bovine pancreatic trypsin inhibitor, in vacuum. This 

achievement was instrumental in replacing the view of proteins as 
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relatively rigid structures with the understanding that they are 

dynamic systems137. Interestingly, the first MD simulation of a 

GPCR was published more than 10 years later, before the first 

GPCR crystal structure was resolved. It corresponded to an 80 ps 

long trajectory of a rat dopamine D2 receptor, modeled from its 

sequence138. From that point forward, thanks to continuous 

advances in both methodology and computational resources, MD 

simulations have gradually extended to larger systems and longer 

timescales. A major breakthrough for the MD field was the 

development of algorithms optimized for graphical processor units 

(GPUs), a technology first designed to improve video game 

performance139,140. This enabled researchers to perform on 

commodity hardware calculations that were previously only 

possible with the use of supercomputing clusters. High-performance 

computing has also contributed to making simulations more 

powerful and accessible141–143. Along with these technological 

advances, the underlying physical models and methods have also 

improved over the years to address ever more complex biological 

and chemical questions144,145. Moreover, the expansion of free and 

user-friendly software for the input preparation (e.g., CHARMM-

GUI146, HomolWat147, HTMD148) and analysis (e.g., 

MDAnalysis149,150, MDTraj151) of MD simulations has greatly 

contributed to the broad application of this technique. As a result, 

MD simulations have become a well-established technique (Figure 

11), able to resolve mechanistic elements at a spatio-temporal 

resolution and conditions that are not always accessible with 

experimental techniques20,152. 

MD simulations provide a prediction of the time-resolved motions 

of a molecular system (Figure 12). Molecular systems for protein 

MD simulations include a protein model, obtained by the curation 

of experimentally solved structures or homology modeling. In the 

case of membrane proteins, the model is embedded in a lipidic 

membrane. This system is solvated and ionized to a physiological 

concentration, and other molecules such as ligands may be 

included. In classical MD simulations, each atom of the molecular 

system is represented as a point particle with its corresponding 

connectivity to other atoms. The movements of all the atoms are 

predicted by iteratively solving Newton’s equations of motion. For 

that, the forces that act on each atom are calculated based on 

bonded (bonds, angles, and torsions) and non-bonded (Lennard 
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Jones and Coulomb) interactions. This is possible thanks to force 

fields, which are potential energy functions along with the 

associated parameters that define the interactions of different 

atoms153,154. A variety of force fields have been developed155–159, 

based on quantum mechanical calculations and experimental 

measurements. Based on the obtained forces, the atomic positions 

and velocities after a defined time interval are updated. This process 

of calculating atomic forces, solving Newton’s equations of motion, 

and updating atomic velocities and position after a time interval is 

repeated in an iterative cycle until the final simulation time is 

reached. With this, the coordinates of each atom over time, so-

called trajectories, are obtained, describing the behavior of the 

simulated molecules. The analysis of these trajectories can lead to 

the identification of functionally relevant dynamic processes. 

 

Figure 11. Popularity of MD simulations. The exponential growth of successful 

MD-based research is evidenced by the rapid upsurge in the number of 

publications per year indexed at Thomson Reuters’ Web of Science with the 

topics molecular dynamics and proteins (blue). This trend is also found in the 

field of GPCRs (green, search topics: molecular dynamics, proteins, and GPCR or 

GPCRs). Moreover, since the COVID-19 outbreak, researchers have also resorted 

to MD simulations for the study of SARS-CoV-2-related proteins (red, search 

topics: molecular dynamics, proteins, and SARS-CoV-2). 
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Figure 12. Molecular system for protein molecular dynamics (MD) 

simulations. Example of a molecular system, including the δ opioid receptor 

(magenta) with the ligand naltrindole (green) in the orthosteric binding pocket 

and embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

membrane (white licorice). The system is solvated with water (red and white 

CPK) and ionized with sodium ions (yellow) and chloride (blue). 

Despite the broad capabilities of MD simulations, this technique has 

some limitations that must be taken into account. Firstly, to reduce 

the computational cost and complexity, force fields contain 

approximations and thus are imperfect. Studies comparing 

simulation results with experimental data indicate that force fields 

have improved significantly over the past decade160, but more 

remains to be done to achieve increased accuracy. Moreover, most 

MD simulations do not consider quantum effects, such as changes 

in atom charges or the dissolution/formation of covalent bonds. 

Therefore, in classic MD simulations protonation states of titratable 

amino acid residues are fixed, as well as disulfide bonds. Thus, they 

need to be set carefully at the beginning of the simulation161. 

Another limitation of MD techniques is the amount of 

computational resources necessary to simulate a system for a 
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biologically relevant amount of time. Simplified models like coarse-

grained, where groups of atoms are represented as beads to reduce 

the level of description, can extend accessible timescales by orders 

of magnitude, as they are less expensive computationally162,163. 

Still, the problem with long-timescale events is that they often 

imply the transition between free energy states that are separated by 

high-energy barriers. In this situation, classical MD simulations 

tend to get trapped in the local minimum-energy states for a long 

time, which restrains the sampling process and leads to poor 

characterization of the protein’s dynamic behavior164. A useful 

strategy to tackle this problem is the application of enhanced 

sampling techniques. Enhanced sampling simulations, including 

replica-exchange MD, metadynamics, and simulated annealing, are 

able to efficiently overcome energetic barriers and access additional 

conformational states by including an external bias165. Nevertheless, 

the capabilities of MD simulations are constantly increased by 

improvements in simulation algorithms and computer hardware. 

Thus, it is expected that the timescales accessible to classical, all-

atom MD simulations will continue expanding166–168.   

MD simulations have been key for the study of the two types of 

proteins examined in this thesis –GPCRs and SARS-CoV-2 

proteins. In the case of GPCRs, MD simulations have proven useful 

to complement static structural data, improving our understanding 

of the physiology and pharmacology of this protein family, as 

reviewed in168–170. In this respect, MD simulations provide valuable 

information on processes such as the binding of small molecules or 

drugs to orthosteric171–175 or allosteric43,176–179 receptor sites. In the 

case of biased ligands, MD simulations are useful to explore how 

they stabilize different GPCR conformational ensembles that lead to 

a specific intracellular coupling180–187. With this technique, we can 

also determine how a GPCR will respond to perturbations such as 

mutations188–191, post-translational modifications192,193, and the 

composition of the cell membrane194–198. In addition, we can reveal 

important insights into the activation and inactivation mechanism of 

GPCRs, such as the conformational rearrangements that occur 

during receptor (in)activation and the formation of metastable 

receptor states along the transition pathways199–203. We can also 

explore the interaction with intracellular coupling partners204,205. 

Moreover, MD simulations have the ability to monitor diffusion and 

binding events of water molecules, and thus can be used to 
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determine the role of water molecules in receptor functioning and 

dynamics206–212. Similarly, they helped to shed light on the role of 

ions for GPCR function, such as the molecular mechanism of 

sodium-induced allosteric modulation35,36,213,214. Even larger-scale 

processes such as receptor dimerization/oligomerization, which has 

been implicated in fine-tuning GPCR signaling, can be investigated 

using different MD techniques, typically with coarse-

graining38,215,216. 

Regarding the study of SARS-CoV-2-related proteins, the increased 

availability of structural data has triggered the use of MD 

simulations to study them, often after immense modeling and 

computational efforts217–219, with the goal of supporting research 

against the pandemic. Obtained MD data have provided highly 

relevant information that helped to describe the functional dynamics 

of the viral proteome. Particularly, many MD studies have been 

directed to the understanding of the dynamics of the spike protein, 

due to its important role in the SARS-CoV-2 infection mechanism 

and immune response. These studies shed light on aspects such as 

the role of the spike glycan shield119,219–221, which not only acts as a 

mechanism to evade the host immune system but also is an essential 

structural element to modulate the conformational dynamics of the 

RBD. MD simulations can also be used to determine the effect of 

environmental conditions on the structure of proteins. This revealed 

that the spike is sensitive to temperature, acquiring an open 

conformation, which enables receptor binding, at lower 

temperatures (20-40 ºC) and a closed conformation at higher 

temperatures (> 40 ºC)222. Other important findings were the 

conformational changes that take place during the closed-to-open 

transition of the spike’s RBD, granting useful information for the 

design of vaccines and antivirals217,219,223. MD simulations also 

provided relevant insights into the spike-ACE2 binding224–229 that 

explain the higher infectivity of the virus in humans. Moreover, 

they showed how spike interacts with antibodies230 and with 

surfaces of different materials231, as well as the binding of small 

molecules to the RBD-ACE2 complex232. Applied to other viral 

proteins, MD simulations were able to elucidate cryptic and 

allosteric pockets that are absent in experimental structures but 

provide novel targets for drug discovery217,233. They also helped to 

clarify the effect and binding modes of potential drugs234–237. 

Another strength of this technique is that it can help rationalize the 
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structural/functional impact of sequence variability in the spike238–

241 or other proteins242. This is particularly useful when the 

relationship between mutation location and activity is not obvious, 

for example when the mutation is distant from the protein’s active 

center. Finally, beyond the simulation of specific proteins, it was 

possible to construct a coarse-grained model of the SARS-CoV-2 

virion from the available structural and atomistic simulation data on 

SARS-CoV-2 proteins218. All this information has helped accelerate 

COVID-19 research and has improved our knowledge of SARS-

CoV-2 biology. 

1.3. Sharing MD simulations 

The dynamics obtained by MD simulation often contain much more 

information than what is analyzed in the scope of a single 

publication or study. However, the publication of MD studies is 

often not accompanied by the obtained trajectories. Instead, results 

are frequently shared as text, tables, plots, figures, and, at best, 

videos. This reduces the dynamic information contained in a 

simulation to a static or very focused view of the simulated process, 

losing valuable information on the way. Even in the cases when the 

simulation data is made available online, these are usually hosted at 

disparate sites, hardly discoverable, and not amenable to systematic 

analysis. In practice, this limits the ability of researchers to find 

these resources, and even to reuse the trajectories in large-scale 

efforts, e.g. for dynamic docking243,244, discovering transient 

pockets245, or associating variants with phenotypes246. 

There is an urgent need to find effective systems to share MD 

data247,248 and to do so following the FAIR principles: Findable, 

Accessible, Interoperable, and Reusable249. Effectively sharing the 

simulation data not only is key to achieving transparency and 

reproducibility in the field of MD, but also enables researchers to 

reuse published data, avoiding the need to duplicate efforts and, in 

turn, accelerating research250.  

Fortunately, the research community is becoming more and more 

aware of the benefits of data sharing251. In general, we are 

witnessing a growing effort to make science more open, not only by 

researchers themselves but also, increasingly, by funders and 
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journals. Some disciplines, such as protein crystallography or 

genomics, have achieved to integrate open data into their workflow. 

However, in the case of MD simulations, these practices still have 

not become widely adopted. This is partly because of technical 

difficulties such as the large size of MD output files, but also 

because best-practice guidelines on how to share MD simulations 

are still being defined247,252. 

General-purpose data repositories like Zenodo (https://zenodo.org), 

FigShare (https://figshare.com), and Open Science Framework 

(https://osf.io), among others, provide an opportunity for 

researchers to deposit their simulation data. They accept a wide 

range of data types in a large variety of formats and provide global 

access to them. However, these resources sometimes do not provide 

enough space to sustainably store unfiltered MD simulation outputs. 

Moreover, they do not aim to integrate, harmonize, validate, or 

standardize the deposited data, and appropriate references and 

metadata are often not available. Thus, it can be difficult to filter 

suitable data from the huge variety of deposited files and databases. 

In this sense, special-purpose MD sharing platforms that provide 

indexed and curated data are a promising solution. Particularly, 

platforms focused on simulations related to a specific research area 

or protein family, rather than a general database for all MD 

simulations, have more chance of success. This is because focused 

resources reduce hurdles like deposition space problems or too 

general and likely unused analysis and search options. Still, this 

type of resource comes with challenges as well, such as the 

difficulty to ensure the maintenance of the resource, usually 

requiring the support of a research community247. Likely due to the 

technical challenges associated with MD data and the mentioned 

sustainability limitations, only a modest number of online resources 

cover MD simulations (Table 1), as reviewed in refs. 247,253. 

Moreover, to achieve effective sharing and dissemination of MD 

data, it is not enough with depositing the simulation files and 

trajectories in a repository. Even though this provides access to the 

simulation data, to analyze or even only to visually inspect this data 

on a local computer requires significant storage resources, as well 

as the installation and execution of specialized software. This 

typically increases the barrier for non-experts to extract the 

https://zenodo.org/
https://figshare.com/
https://osf.io/
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underlying information. This issue can be solved by integrating 

web-based visualization and analysis tools into MD repositories254, 

allowing an easy and interactive study of MD simulations for 

experts and non-experts likewise. Until recently, interactive 

visualization of MD simulations on the web has been hindered by 

the file sizes of trajectories. However, this is now possible thanks to 

software such as MDsrv255,  HTMoL256, Mol*257, and Mol-mil258, 

which take advantage of the Web Graphics Library (WebGL) 

application programming interface (API) to provide fast three-

dimensional graphics online253. With this, online repositories of MD 

data can not only contribute to making research more open, but also 

increase the reliability and understanding of this technique. In the 

end, this paves the way for data exchange between researchers of 

different fields, enhancing collaborative efforts and 

multidisciplinary. 

Table 1. Selection of specialized MD databases 

Name  Focus Trajectory 

visualization 

Analysis 

tools 

Refs. 

BIGNASim Nucleic acids Yes Yes 259 

BioExcel-CV19 COVID-19-related 

proteins 

Yes Yes 260 

COVID-19 

Molecular Structure 

and Therapeutics 

Hub 

COVID-19-related 

proteins 

No No 261 

Cyclo-lib Cyclodextrins No Yes 262 

GPCRmd GPCRs Yes Yes 263 

MemProtMD Membrane proteins No Yes 264 

MoDEL-CNS Central nervous 

system proteins 

Yes Yes 265 

MoDel/ 

MDWeb 

Monomeric soluble 

proteins 

No Yes 266 

NMRlipids Lipid bilayers No No 267 

SCoV2-MD COVID-19-related 

proteins and variant 

data 

Yes Yes 268 

TMB-iBIOMES Nucleosome No No 269 

 



 



 

 



 



 

31 

2. OBJECTIVES 

Given the relevance of MD simulations for the understanding of 

protein functionality and the benefits of making this data accessible 

to the research community, easy-to-use and efficient tools to share 

and inspect MD data are needed. This PhD thesis aims at the design 

and development of open-access online resources for the 

dissemination, visualization, and analysis of MD simulations, 

focusing on two types of pharmacologically relevant proteins: 

GPCRs and SARS-CoV-2-related proteins. Ultimately, these 

resources have the potential to boost transparency, reproducibility, 

and multidisciplinarity in the MD field. 

In order to reach this goal, the following specific objectives were 

established: 

1. To examine state-of-the-art knowledge on the capabilities 

and limitations of MD simulations for the understanding of 

the functionality of pharmacologically relevant proteins, 

focusing on GPCRs. 

2. To design and implement the GPCRmd database, a 

community-driven online resource that provides access to 

MD simulations of most GPCR structures solved to date 

together with a set of tools to simplify the visualization and 

analysis of this data. 

3. To design and implement the SCoV2-MD database, an 

online resource that integrates MD simulations of SARS-

CoV-2 proteins from different resources and provides 

visualization and analysis tools with special emphasis on the 

prediction of the impact of known mutations on protein 

functionality. 

4. To showcase the potential of GPCRmd and SCoV2-MD for 

exploring key aspects of protein dynamics related to GPCR 

and SARS-CoV-2 function.  

The first objective of this thesis (objective 1) was accomplished by 

performing a set of comprehensive reviews (publications 3.1, 3.2, 

and 3.3) of the applications, strengths, and challenges of protein 
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MD simulations. With this in mind, objectives 2 and 3 were 

addressed, respectively, in publications 3.4 and 3.5, where the 

implemented MD platforms are presented. Finally, objective 4 was 

approached, again, based on both publications 3.4 and 3.5. 
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3. PUBLICATIONS 

3.1. Application of Biomolecular Simulations to 
G Protein-Coupled Receptors (GPCRs) 

In this book chapter, we aim to introduce readers to the application 

of classical MD simulations for the study of GPCR functionality.  

As described in the Introduction section, the functionality of 

GPCRs is highly determined by their flexibility and ability to 

transition between distinct conformations. MD simulations can 

provide a high-resolution view of these structural motions. 

However, this technique has limitations. Here, we examine some of 

the challenges of classical MD simulations, focusing on the 

difficulties of sampling the whole conformational landscape of a 

GPCR and the limitation of accessible simulation timescales. We 

also provide some notions on how simulation data can be analyzed. 

Next, we outline several phenomena related to GPCR functionality 

that can be clarified with the application of MD simulations, and 

how this can positively impact the discovery of new and safer 

drugs. Moreover, we revise the history of MD simulations, 

discussing how the capabilities of this technique have expanded 

since the publication of the first protein simulation. Taking this into 

account, we finally address the future of the field, speculating how 

the potential of simulations could increase in the following years. 
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Abstract 

G protein-coupled receptors (GPCRs) are known to be highly 

dynamic proteins, which can exist in multiple distinct 

conformational states. This chapter focuses on atomistic unbiased 

simulations, which provide detailed and reliable structural 

information but face a series of challenges, such as simulating long 

molecular events. It discusses the challenges that molecular 

dynamics (MD)-based studies of GPCRs still face and how MD can 

provide unique insights into GPCR research. Given the fact that 

GPCRs are crucial drug targets, the insights yielded by MD 

simulations are especially relevant for the discovery of new and 

safer drugs. In this respect, drug designers are interested in 

understanding phenomena such as drug binding pathways, drug-

receptor interaction, receptor subtype selectivity, conformational 

changes related to receptor (in)activation, and the role of lipids in 

GPCR modulation. The chapter reviews the advances of MD-based 

GPCR research since its origin and speculate about its future. 

1. Introduction 

G protein-coupled receptors (GPCRs) are major targets for the 

pharmaceutical industry and present an immense potential for future 

drug development [1]. Although GPCRs have been extensively 

studied over the past decades, the underlying molecular and 

structural mechanisms responsible for many critical regulatory 
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processes of this protein superfamily remain elusive, including 

signal transduction, allosteric modulation, functional selectivity, 

and activation [2]. 

GPCRs are known to be highly dynamic proteins, which can exist in 

multiple distinct conformational states. In fact, the signaling profile 

of GPCRs in response to a ligand depends critically on their ability 

to transition between different states [3]. Because of this, a 

promising approach to elucidate the molecular basis of GPCR 

functionality are molecular dynamics (MD) simulations, a potent 

computational technique capable of generating atomic-resolution 

simulations of the structural motions of a molecular system [4–6]. 

Importantly, these motions can be observed over timescales ranging 

from femtoseconds to milliseconds. As a consequence, MD 

provides, simultaneously, a temporal and structural resolution 

greater than what, currently, is achievable by experimental methods 

[7]. This is especially true for membrane proteins such as GPCRs, 

for which the experimental characterization of structural dynamics 

is particularly challenging [2, 8]. For this reason, and thanks to 

ongoing technology advances, MD simulations are increasingly 

being applied to the study of GPCR molecular systems, as reflected 

by the rapid upsurge of the number of publications per year 

concerning this topic (see Figure 1) [2, 6]. 

 

Figure 1. Number of publications per year indexed at Thomson Reuters’ Web of 

Science that contain the topics “molecular dynamics” and (“GPCR” or 

“GPCRs”). The exponential growth of successful GPCR MD-based research is 

evidenced by the rapid upsurge in the number of publications per year related to 

this subject. 
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Different state-of-the-art simulation methods can be applied for the 

study of GPCRs, depending on the features of the receptor to be 

investigated. These methods include quantum chemical descriptors, 

classical mechanistic models with an atomistic or coarse-grain 

representation, and phenomenological system-level models. Each of 

them is characterized by the structural resolution, range of 

simulation timescales, and physicochemical accuracy they provide, 

which dictate the suitability of the model. 

Considering the three criteria mentioned, for the study of GPCRs 

mechanistic models are typically the method of choice. These 

models are based on classical (i.e. Newtonian) mechanics, and thus 

the molecular system is treated as a set of classical particles. 

Interactions between these particles are derived from a set of 

empiric potential energy functions, known as force field, and 

quantum dynamical effects are not considered. Commonly, each 

system particle corresponds to a single atom (atomistic 

representations) or to a rigid set of atoms (coarse-grained 

representations) [9]. 

Atomistic representations capture the motion of molecular systems 

in full atomic detail, since each atom is represented as a point 

particle with its corresponding connectivity [10]. Consequently, this 

method leads to a better reproduction of the system’s dynamics than 

coarse-grained representations, albeit at a higher computational 

cost.  

Alternatively, coarse-grain representations consider a set of atoms 

as a single particle and each molecule as a set of particles, reducing 

the degrees of freedom of the system. This type of representation 

implies a substantial reduction of the computational requirements, 

and therefore can achieve longer simulation timescales. However, 

this is at the cost of a reduced spatial resolution [11]. 

In both mechanistic models, we can perform unbiased or biased 

simulations. Unbiased MD simulations sample the free energy 

landscape at equilibrium and explore the thermodynamically 

accessible energy landscape. This technique is limited by the 

inability to overcome high-energy barriers associated with large-

scale motions, such as the receptor activation process. When facing 

such problems, biased techniques can be used to more efficiently 
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overcome energetic barriers and access additional conformational 

states. This is achieved by including an external bias, such as a 

compensating force or potential. On the other hand, these external 

forces may drive the simulation along unrealistic deformations, 

producing structural artifacts [12]. 

In this chapter, we focus on atomistic unbiased simulations (see 

Figure 2), which provide detailed and reliable structural information 

but face a series of challenges, such as simulating long molecular 

events. With this premise, we discuss the challenges that MD-based 

studies of GPCRs still face and how MD can provide unique 

insights into GPCR research. Moreover, we review the advances of 

MD-based GPCR research since its origin and speculate about its 

future. 

 

Figure 2. Representation of an atomistic MD simulation including a GPCR 

(purple) bound to a ligand (orange), the phospholipid bilayer (gray), and 

intercellular and intracellular water (blue). 

2. MD Simulations for Studying the Conformational 

Plasticity of GPCRs 

Due to the inherent structural plasticity of GPCRs, these receptors 

can acquire an essentially infinite number of conformational states. 

In fact, several lines of evidence indicate that GPCRs do not present 

just one single active state and one single inactive state: they can 

assume multiple distinct states in each case [13–17]. MD 
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simulations can provide a useful insight on the transitions between 

conformational states, such as inactive, intermediate, and active 

states (see Section 3). However, at present, MD-based studies of 

transition processes are limited in several respects, such as the need 

for simulations to extend to the millisecond timescale and the 

difficulty inherent in sufficiently sampling structural fluctuations to 

properly characterize long molecular events [18]. These constraints 

pose an obstacle to structure-based drug design for GPCR targets, 

since understanding the role of intermediate states is crucial for the 

comprehension of the molecular mechanisms behind receptor 

activation and inactivation, together with its pharmacological 

action. Moreover, deciphering the mechanisms by which ligands 

can differentially induce or stabilize different receptor populations 

would lead us to the design of drugs that specifically target the 

conformational state responsible for a desired intracellular response. 

This would allow, for instance, the rational design of drugs with 

reduced side effects [3, 19]. 

2.1. Challenges in GPCR Simulations: The Sampling Problem and 

Simulation Timescales 

The dynamic behavior of a molecular system is intrinsically 

dictated by its free energy. Complex biomolecules such as GPCRs 

present a rugged energy landscape (see Figure 3), with many local 

minima frequently separated by high-energy barriers [20]. The 

conformational transition between different states requires crossing 

some of these high-energy barriers, which is a slow process [21]. 

Indeed, this shape of the free energy landscape makes it easy for 

systems to get trapped in one of the huge number of local 

minimum-energy states for a long time, which restrains the 

sampling process and, in turn, leads to a poor characterization of a 

protein’s dynamic behavior [22, 23]. Therefore, most unbiased 

simulations explore just a small region around the energy minimum 

closest to the initial conformation [24]. This inadequate sampling of 

the conformational landscape limits the ability to analyze and reveal 

functional properties of the systems being examined [25]. Due to 

the sampling problem, complex processes such as GPCR activation 

or inactivation are commonly beyond the capabilities of 

straightforward unbiased MD simulations [25]. 
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Furthermore, simulations are currently limited to lengths of a few 

microseconds on publicly available hardware, or a few milliseconds 

if specialized hardware [26] or distributed computing techniques 

[27] are used. These simulation times are short compared to many 

of the events of greatest interest in molecular physiology, which 

take place on longer timescales [8]. This is the case for large 

conformational rearrangements in GPCRs. For example, the 

conformational changes from the inactive to the active state of a 

GPCR occur at the millisecond to second timescale (see Figure 4) 

[28]. The time limitation in conventional MD simulation 

approaches also hampers the routine exploration of drug 

(un)binding, making in silico GPCR-related drug discovery a 

challenging task. Nevertheless, we experience an exciting era for 

GPCR research, as we expect to simulate sufficient time frames 

within the next five years (see Section 4). 

 

Figure 3. Simplified energy landscape of a GPCR in the absence of ligand 

(dashed line) and in the presence of an inverse agonist (red), a full agonist (blue), 

and a full agonist with a G protein (green). Source: Adapted with permission from 

Ref. [15]. 

 

Figure 4. Schema of the characteristic timescales for GPCR motions (time 

magnitudes in log scale) [2, 9, 28, 29]. 
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2.2. Making Sense Out of Simulation Data 

Once sufficient sampling time is obtained from unbiased all-atom 

MD models, one of the hardest problems is to extract information 

about the kinetics of relevant biological events (e.g. ligand binding) 

[27]. An interesting approach to overcome this problem is the 

application of dimensionality reduction methods. Essentially, these 

methods are mathematical tools that reduce the complexity of a 

system while minimizing the loss of information. This is possible 

due to the interdependence between different variables of the 

system, imposed by energetic constraints among atom positions 

[30]. Ultimately, dimensionality reduction helps visualize complex 

energy landscapes, improving the efficiency of simulation, analysis, 

and optimization. As a consequence, these methods are considered 

an important tool for the comprehensive analysis of MD data [31]. 

Among these techniques, the most popular are the ones that imply 

linear dimensionality reduction, especially principal component 

analysis (PCA) and time-dependent independent component 

analysis (tICA). For instance, PCA has been applied to study 

simulation data of the adenosine A2A receptor in both the presence 

and absence of an inverse agonist, providing information on the 

convergence and reproducibility of the results. The authors found 

that the addition of the inverse agonist greatly improves the stability 

of all receptor helices. Moreover, they concluded that PCA provides 

a more robust assessment of convergence and sampling than other 

commonly used criteria such as root-mean-square deviation 

(RMSD), especially in comparative studies [32].  

Unfortunately, the above mentioned methods (tICA and PCA) do 

not provide quantitative information about statistical significance or 

sampling quality [33]. Still, there exist other approaches that are 

capable of generating more robust analyses by first partitioning the 

conformational space into discrete conformational states and 

subsequently calculating the transition rates or probabilities 

between them, based on transitions observed in MD trajectories. 

The analysis of these transitions allows the reconstruction of the 

global behavior of the system [34, 35]. The resulting models are 

known as Markov state models (MSMs), where “Markovianity” 

means that the kinetics are modeled by a memoryless jump process 

between states [36]. Once the model is obtained, its reliability, 
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convergence, and sampling quality can be tested by several methods 

such as Chapman-Kolmogorov tests [37], among others [38–40].  

A disadvantage of applying classical MSMs is that the sampling of 

rare events can still be highly inefficient, which may result in 

improperly connected models and imprecise residence times. This 

can typically be solved by extending the simulation time, which is 

unpractical when computational resources are limited [27]. 

Furthermore, the sampling of the conformational space and the 

MSM can be improved by adaptive sampling, a type of biased 

sampling that identifies underexplored conformational states in MD 

data and generates new starting points to explore those states by 

resampling. Therefore, instead of requiring long simulations to 

model rare events, several shorter MD trajectories (∼10–100 ns) 

can be used. This facilitates the parallelization of the computational 

burden of the MD among many processors [41]. A successful 

application of MSM adaptive sampling has recently contributed to a 

better understanding of functional selectivity – the phenomena 

explaining receptor’s selectivity for certain signal transduction 

pathways in front of others due to the interaction with a biased 

ligand – in the μ-opioid receptor. The μ-opioid receptor was 

simulated in complex with either a balanced or a G protein-biased 

agonist, and MSM analysis allowed identifying a differential 

ligand-specific dynamic behavior of the receptor with kinetically 

distinct conformational states. Such information can drive the 

rational design of functionally selective ligands that stabilize the 

receptor in a specific state, which may eventually be developed into 

improved drugs [42]. 

3. Application of MD Simulations to GPCR Drug 

Design: Why Should We Use MD? 

MD simulations provide unique insights that can be critical for the 

understanding of GPCRs. Given the fact that GPCRs are crucial 

drug targets, the insights yielded by MD simulations are especially 

relevant for the discovery of new and safer drugs [1, 43]. In this 

respect, drug designers are interested in understanding phenomena 

such as drug binding pathways, drug-receptor interaction, receptor 

subtype selectivity, conformational changes related to receptor 

(in)activation, and the role of lipids in GPCR modulation. 
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The entrance of a drug into the receptor binding site is a multistep 

process, with diverse metastable and/or intermediate binding sites. 

The analysis of the crystal structures of GPCRs bound to a ligand 

grants information on the binding mode of the ligand, but not on the 

pathway that it follows from the extracellular phase into the binding 

pocket. MD simulations generate useful insights on such binding 

pathways, since they enable the study of the development of the 

molecular system over a given timescale and provide an estimation 

of the rate at which a ligand associates or dissociates to the receptor. 

Having knowledge on the ligand binding pathways allows the 

identification of energetic barriers encountered along those 

pathways. Energetic barriers can substantially affect the binding and 

unbinding rates of a ligand into a receptor. Therefore, such 

information constitutes a foundation for the rational optimization of 

drug binding and unbinding kinetics [44], which play a critical role 

in drug efficacy, selectivity, and safety [45–47]. Moreover, the 

identification of metastable binding sites may be useful for the 

development of dimeric or bivalent compounds that can bind to 

different metastable binding sites, which may result in an increased 

affinity [48]. Some examples of ligands for which the binding 

pathway was described thanks to MD are (S)-alprenolol binding to 

the β2-adrenergic receptor (β2AR), histamine to the histamine H4 

receptor (hH4R), and clozapine and haloperidol to the dopamine 

receptor D3 (D3R) [44, 49, 50]. Particularly relevant is the case of 

the β2AR, which was the first unbiased MD simulation study 

capturing the full process of ligands spontaneously binding to a 

GPCR, achieving the final poses of the ligands without 

incorporation of any prior knowledge of the binding site. Results 

revealed not only the predominant pathway into the binding site but 

also the two main energetic barriers that govern drug binding and 

unbinding kinetics [44]. 

Concerning drug-receptor interaction, MD studies of this process 

can provide valuable information that cannot be obtained through 

rigid docking methods. Such insights are particularly useful for the 

identification or design of new ligands for a given GPCR. This is 

possible because MD simulations take into account the flexibility of 

GPCR binding pockets, which differ from one conformational state 

of the receptor to another and even within a single global receptor 

conformational state [51]. Indeed, considering multiple possible 

receptor structures generally increases the diversity of ligands 
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identified. Furthermore, the goal of GPCR-related drug discovery is 

typically to find a ligand that not only binds to the target but also 

achieves a particular signaling profile. For example, the study of 

biased ligands, which selectively engage one signaling pathway 

downstream of the receptor over the others, is remarkably 

promising for drug design, since they can be used to inhibit the 

disease-associated pathways while stimulating non-pathological 

pathways up to their physiological levels, avoiding side effects [52]. 

The signaling outcome triggered by a GPCR depends on the 

conformational state of the receptor and thus of the binding pocket 

that is stabilized by the drug. In this respect, simulations can be 

used to compare drug-receptor interactions in different 

conformational states of the receptor or using different types of 

ligands (e.g. unbiased agonist, biased agonist, inverse agonist or 

antagonists) [2]. A successful story of identifying new ligands with 

an unprecedented level of bias was carried out for the serotonin 5-

hydroxytryptamine receptor 2A (5-HT2A). Martí-Solano et al. used 

extensive MD simulations to characterize the dynamics of ligand-

receptor interactions of known biased and balanced agonists with 

the purpose of becoming capable of discriminating the different 

types of receptor agonists. Thanks to this information, they 

discovered new biased ligands of outstanding efficacy by tuning the 

structure of the balanced natural ligand serotonin. These compounds 

represent valuable tools to promote the design of improved, safer 

antipsychotic drugs [53]. Another fruitful study concerning biased 

agonists is the recent development of an approach for designing β-

arrestin-biased ligands for the dopamine receptor D2 (D2R) based on 

structural and MD data. Particularly, specific conserved receptor-

ligand contacts responsible for biased signaling were identified and 

modified in order to develop new biased agonists for this GPCR 

[54]. 

Another important goal of drug discovery is the creation of drugs 

that specifically target one receptor subtype over another. Many 

GPCR subtypes exhibit a highly conserved orthosteric binding site, 

such that a single ligand can bind to several receptors 

simultaneously, contributing to off-target side effects [55]. An 

effective strategy to achieve better selectivity is the design of drugs 

that target allosteric pockets, which are less conserved among 

GPCRs [56]. Besides their specificity, allosteric modulators have 

the advantage of providing a strategy to fine-tune cellular responses 



 

47 

triggered by a ligand. Allosteric modulators can bind to a GPCR 

concomitantly to the orthosteric ligand, altering its binding affinity 

and/or cellular-signaling efficacy in a moderate manner avoiding 

severe effects on the cell [57–59]. For this reason, allostery has 

become an area of great interest for the discovery of new drugs with 

reduced side effects [59]. However, allosteric binding sites are not 

evident from crystal structures, which hamper the structure-based 

design of allosteric drugs. Moreover, the molecular mechanisms by 

which such modulators affect GPCR signaling may depend on 

dynamical properties that would not be evident from a single static 

structure. MD simulations can provide a means to detect hidden 

allosteric binding sites and determine the mechanistic basis of 

allosteric regulation [60]. One representative case of a GPCR family 

displaying dramatically low subtype selectivity concerning 

orthosteric ligands are the muscarinic acetylcholine receptors. This 

family comprises important drug targets for several central nervous 

system diseases [61]. MD-based approaches have been critical for 

the efficient identification of allosteric mechanisms in muscarinic 

receptors [58, 62], and such findings are usually paradigmatic for 

the entire GPCR superfamily [61]. For example, atomic-level MD 

simulations by Dror et al. provided a structural basis of allosteric 

ligand binding and elucidated mechanisms of cooperativity between 

the allosteric and the orthosteric ligand. These studies enabled the 

design of chemical modifications that substantially alter the final 

effect of allosteric modulators [62]. 

Besides GPCR subtypes, it can also be informative to study the 

differences between wild-type GPCRs and variants responsible for 

disease susceptibility or a distinct drug response. Such functional 

differences have been predicted to be caused by variations in ligand 

binding site accessibility and structure, which are determined by the 

dynamics of the receptor. Hence, MD simulations are a promising 

approach to elucidate the molecular mechanisms responsible for 

such interindividual differences. This remains an emerging field of 

study that could provide important clues on the functional single-

nucleotide polymorphisms (SNPs) identified in the recent large-

scale sequencing initiatives [12]. A well-defined case of SNP in 

GPCRs is the Arg16Gly variant of the β2AR, which has been linked 

to a differential response to albuterol, a β2AR agonist commonly 

used in the treatment of asthma. MD analysis of the conformational 

differences between the two variants revealed that divergences in 
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the position and dynamics of the N-terminal region, where the SNP 

is located, lead to long-range effects at the ligand binding site, 

reducing the accessibility of the ligand at one of the variants [63]. 

Another phenomenon of interest is GPCR (in)activation, which is 

still not completely understood. During the process of activation, 

GPCRs undergo global conformational changes visiting inactive, 

intermediate, and active states. Currently available GPCR crystal 

structures provide high-resolution insights into some of these 

conformational states [64, 65]. However, these structures represent 

snapshots of GPCRs in a given conformation, and they do not 

reveal the mechanism by which they transition between different 

states. A promising approach to tackle this issue is combining high-

resolution experimental data with MD simulation studies. MD 

simulations can provide detailed information on the transitions 

between conformational states, helping us explore the GPCR 

conformational landscape in the presence of different ligands. A 

notorious case of successful MD-based study of GPCR activation 

was performed by Dror et al. They proposed an activation 

mechanism for the β2AR based on atomic-level simulations in 

which an agonist-bound receptor transitioned spontaneously from 

the active to the inactive conformation. Interestingly, their 

simulations highlighted the existence of an intermediate state that 

was suggested to represent a receptor conformation to which G 

protein binds during activation [14]. Yuan et al. also used MD to 

monitor the activation process of the β2AR, along with the 

adenosine A2A receptor and rhodopsin. Their simulations allowed 

the characterization of the formation of an intrinsic water pathway, 

which, in the receptors’ resting state, is interrupted by a 

hydrophobic layer of amino acid residues. Upon agonist binding, 

this hydrophobic layer opens to allow the formation of a continuous 

intrinsic water channel [17]. Another highlight was achieved by 

Kohlhoff et al. when they captured the mechanism of β2AR 

(in)activation in a simulation of unprecedented total length thanks 

to Google’s Exacycle cloud computing platform. Such a study 

revealed multiple (in)activation pathways, and showed that agonists 

and inverse agonists act by modulating the receptor dynamics to 

prefer different pathways [66]. 

Finally, a lot of attention has recently been devoted to the role of the 

membrane environment or of specific membrane lipids in GPCR 
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functioning. Membrane phospholipids have been found to 

allosterically modulate the activity [67] and oligomerization [68] of 

GPCRs, while membrane cholesterol can regulate its stability, 

ligand-binding properties and function [69–71]. Still, the precise 

nature of cholesterol’s implication in GPCR modulation is a matter 

of debate [71]. Cholesterol modulation could be due to indirect 

effects (changes in membrane biophysical properties) [72, 73], 

direct cholesterol-GPCR interactions [74–77] or both. Moreover, 

some studies suggest a potential allosteric role of cholesterol [78], 

while others propose that cholesterol molecules can compete with 

orthosteric ligands by entering the receptor’s binding site [78–80]. 

Understanding the influence of cholesterol on GPCR function 

would allow us to explore potential therapeutic uses of membrane 

sterols or sterol-mimetic molecules in GPCR drug discovery. Still, 

molecular mechanisms behind cholesterol modulation are difficult 

to ascertain using experimental methods alone, and thus MD 

simulations are increasingly being applied. For example, Manna et 

al. used extensive MD simulations to provide detailed insights into 

how the β2AR is allosterically modulated by cholesterol. Their 

simulations showed a decrease in the receptor’s conformational 

flexibility due to cholesterol binding at specific high-affinity sites 

located near the transmembrane helices 5–7 [81]. On the other side, 

Guixà-González et al. recently showed that cholesterol can 

spontaneously enter the adenosine A2A receptor’s binding pocket 

from the membrane milieu, unveiling a new interaction mode 

between cholesterol and this receptor that could potentially apply to 

other GPCRs [79]. 

4. Evolution of MD Timescales 

It has been 40 years since the publication of the first MD simulation 

of a macromolecule of biological interest, which was instrumental 

in replacing the view of proteins as relatively rigid structures with 

the understanding that they are dynamic systems. That first 

simulation consisted of a 9.2-ps trajectory of a small protein, the 

bovine pancreatic trypsin inhibitor (BPTI, ∼500 atoms), in vacuum 

[82]. From that point forward, thanks to continuous advances in 

both methodology and computational resources, MD simulations 

have gradually extended to larger systems and longer timescales. 

Interestingly, the first published MD simulation of a GPCR was 
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reported in 1991, with a simulation time of 80 ps [83] (see Figure 

5). 

A noteworthy event that highly influenced the development of MD 

capacities was the release of the distributed volunteer computing 

project Folding@home in the year 2000. Thanks to its distributed 

computing environment, the release of Folding@home made it 

possible to break previous computational barriers for MD 

simulations, reaching timescales of orders of magnitude longer than 

what had previously been achieved [84, 85]. At its release, it was 

already able to simulate the folding process of the 23-residue 

protein BBA5, which has a duration of approximately 10 μs, by 

producing thousands of independent, short trajectories totaling an 

accumulated simulation time of hundreds of microseconds [86]. 

 

Figure 5. Evolution of the timescales accessible to atomistic MD simulations of 

GPCRs (in logarithmic scale). Based on the simulation time of relevant 

publications from the first MD simulation of a GPCR to the present, the 

accessible timescales have increased exponentially. An exponential function 

(solid line) was fit to the data points. 

The subsequent breakthrough in the MD field occurred at 2008, 

when the Anton supercomputer was created. What made Anton 

stand out from previous hardware was the fact that it is a 

specialized, massively parallel supercomputer particularly designed 

to perform MD simulations of molecular systems. This specificity 
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makes Anton highly efficient, being able to increase the speed of 

MD computations and to generate simulations with longer 

timescales. For example, large systems such as a GPCR embedded 

in a lipid bilayer (∼105 atoms) could be simulated for hundreds of 

microseconds [87, 88]. This is the case of the β2AR activation 

studies conducted by Dror et al., in which a total simulation time of 

more than 600 μs was reached thanks to Anton [14]. Moreover, 

Anton simulations of the muscarinic M2 and M3 receptors captured 

the binding of an important bronchodilator drug at an allosteric site, 

offering the first structural view of an orthosteric GPCR ligand 

binding to an allosteric site [89]. 

The enhancement in the performance of MD simulations has also 

been heavily influenced by algorithmic advances, including the 

fine-tuning of energy calculations, parallelization improvements 

and the use of graphical processing units (GPUs) [24]. Specifically, 

the development of algorithms exploiting GPUs has become a 

major breakthrough in simulation codes. During the late 2000s, 

such progresses in GPU exploitation allowed to use them as 

performance accelerators for a wide variety of scientific 

applications, including MD [90, 91]. For example, the use of GPUs 

has made the simulation of GPCRs in explicit lipid-water 

environments feasible within reasonable computational times [92]. 

In 2007, a volunteer-distributed computing project based on GPU 

resources named GPUGRID was launched, with the capability of 

simulating thousands of all-atom molecular trajectories at an 

average of 20 ns/day each (for systems of ∼30 000–80 000 atoms) 

[93]. In 2010, this approach was used to reveal for the first time the 

molecular details of sodium ion binding to its allosteric binding site 

for a class A GPCR, accumulating more than 6 μs of simulation 

time for a system of about 60 000 atoms [94]. 

Despite the advances in specialized hardware and software for MD, 

such as supercomputers and distributed computing platforms, most 

of these tools are not openly available to the whole scientific 

community and can only be accessed by a set of research groups, 

which hampers the advance of the study of long-timescale 

processes. In this respect, cloud computing is a valuable alternative 

that can bring long-timescale processes, in particular those 

associated with GPCRs, within reach of a broader community. 



52 

All in all, current simulation timescales reach microseconds 

(conventional hardware [27]) to milliseconds (specialized hardware 

[26] / distributed computing [96, 97]). Simulations of systems 

having ∼50 000–100 000 atoms are now routine, and simulations of 

approximately 500 000 atoms are common when appropriate 

computer facilities are available [24]. Considering the evolution of 

GPCR-related MD since the publication of the first MD simulation 

study, it is undeniable that there has been a dramatic increase in the 

timescales we are able to achieve. This tendency is highly 

influenced by the technological development, both in terms of 

computational cost reduction and methodological improvement. 

Certainly, the evolution of GPCR-related MD is a direct 

consequence of Moore’s law, which describes how the performance 

of integrated circuits has been increasing exponentially over the 

past half-century [98]. Based on this trend, we can extrapolate that 

the second timescale for GPCR simulations will be reached 

approximately in 2024 (see Figure 5). In fact, several independent 

authors have reached similar conclusions [92, 99]. 

5. Sharing MD Data via a Public Database 

In view of the growing relevance of MD simulations for the study 

of GPCRs (see Figures 1 and 5), it is increasingly necessary to find 

efficient systems for the storage, indexing, and dissemination of all 

the simulation data being generated. For this reason, initiatives 

involving the development of MD databases are gaining 

importance. Regarding GPCRs, the GPCRmd database [100] is 

being created with the purpose of fostering GPCR MD data from all 

over the world. Broadly speaking, GPCRmd offers storage of MD 

data, citable IDs for referencing such data in publications, basic 

analysis tools, and online visualization of the simulations. Being the 

first GPCR-specific MD database, GPCRmd sets standards in 

archiving simulation data of this protein family in a structured and 

searchable manner with the aim of facilitating data retrieval for 

other scientists. 

One important advantage of GPCRmd is that, by providing public 

access to the data on which scientific articles are based, it increases 

the transparency and credibility of MD studies. This allows other 

researchers to evaluate the quality of the obtained results and 
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enhances reproducibility, which is critical for the advancement of 

GPCR research. 

Finally, tools such as the GPCRmd database also contribute to the 

popularization of MD among the research community by offering 

freely available web resources, including user-friendly 

representation and analysis options as well as the display of results 

with easy-to-interpret and interactive graphs. These resources 

approach GPCR MD data to all researchers studying this protein 

family, including to those who are not familiarized with 

computational tools or complex MD analysis software, and 

contributes to the widespread adoption of MD. 

6. Conclusions and Perspectives 

MD simulations can provide a high-resolution view of the dynamics 

of biological systems relevant to human health. They can either 

capture atomic-level motions within conformational states or 

structural transitions between different conformational populations, 

bringing within reach information that is highly difficult to obtain 

by other methods [2]. For this reason, MD simulations are specially 

promising for the study of the functionality of complex signaling 

proteins such as GPCRs, which are drug targets of striking 

importance in the pharmaceutical industry [5]. 

However, there are still important drawbacks to the usability of MD 

simulations for the study of GPCR functionality. One main 

limitation to this technique is the generation of simulations long 

enough to allow an adequate sampling of biological events such as 

receptor activation upon agonist binding [12, 92].  

Fortunately, with ongoing advances in both MD hardware and 

software, GPCR-related MD simulations are being extended to 

larger systems and longer timescales. If this trend continues, we will 

soon reach simulation times of the order of a second (see Figure 5), 

bridging the gap between the timescales of biological processes 

observed in vivo and those accessible in silico. This increase of the 

simulation time will grant us the opportunity to extend the 

application of MD simulations to the study of processes that were 

previously difficult to analyze through this method, including global 
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conformational rearrangements, receptor dimerization, and coupling 

to intracellular signaling proteins [24]. 

Given the huge druggability of GPCRs, the predicted progress of 

MD simulations of this protein superfamily will have a great impact 

on drug discovery. Despite multiple studies underlining the 

importance of GPCR flexibility to molecular recognition and 

signaling, most drug discovery programs currently disregard MD 

analysis because of their computational expenses. With the 

forthcoming reduction of the computational costs associated to MD 

simulations, this technique is expected to be more commonly 

applied at the pharmaceutical industry and, eventually, to be 

commonly included in drug discovery pipelines [8, 9, 88]. 

Particularly, MD can be of great use through the hit discovery, hit-

to-lead and lead optimization processes by identifying possible 

ligands for a given GPCR and assessing the stability and dynamics 

of the binding poses, along with receptor-ligand binding affinities 

and even kinetics [101]. 
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3.2. How do molecular dynamics data 
complement static structural data of GPCRs 

Due to the dynamic nature of GPCRs, a static snapshot cannot fully 

explain the complexity of their signal transduction. In this review 

article, we inspect how MD simulations can incorporate the missing 

information on protein flexibility into experimentally solved 

structures. For that, we examine different molecular processes 

underlying GPCR physiology, including GPCR activation and 

signaling, orthosteric and allosteric ligand binding, the impact of 

water molecules and ions, and natural genetic variants, among 

others. For each of them, we explain how MD simulations have 

contributed to their understanding. We also discuss how MD can be 

applied to support different stages of drug discovery. To provide a 

more technical view of this technique, we describe the workflow of 

classical MD simulations, and how the resulting data can be 

analyzed. Finally, we include a detailed discussion of the challenges 

that still need to be overcome to reach the full potential MD 

simulations. 
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Abstract 

G protein-coupled receptors (GPCRs) are implicated in nearly every 

physiological process in the human body and therefore represent an 

important drug targeting class. Advances in X-ray crystallography 

and cryo-electron microscopy (cryo-EM) have provided multiple 

static structures of GPCRs in complex with various signaling 

partners. However, GPCR functionality is largely determined by 

their flexibility and ability to transition between distinct structural 

conformations. Due to this dynamic nature, a static snapshot does 

not fully explain the complexity of GPCR signal transduction. 

Molecular dynamics (MD) simulations offer the opportunity to 

simulate the structural motions of biological processes at atomic 

resolution. Thus, this technique can incorporate the missing 

information on protein flexibility into experimentally solved 

structures. Here, we review the contribution of MD simulations to 

complement static structural data and to improve our understanding 

of GPCR physiology and pharmacology, as well as the challenges 

that still need to be overcome to reach the full potential of this 

technique. 

Keywords: GPCRs; molecular dynamics; ligand binding; receptor 

(in)activation; receptor signaling; drug discovery 



64 

1. Introduction 

G protein-coupled receptors (GPCRs) are a large and versatile 

family of transmembrane proteins, encompassing over 800 

identified members. These proteins act as receptors for a wide 

variety of extracellular stimuli including light, changes of pressure, 

and chemical ligands, odorants, neurotransmitters, chemokines, and 

metabolites among others, transducing their information into 

intracellular signaling cascades. Due to their participation in a wide 

range of pathways and physiological processes, as well as their 

druggability, GPCRs have become a drug target of major 

importance in the pharmaceutical industry [1]. 

As a consequence of their relevance for drug discovery, deciphering 

the molecular basis of GPCR signaling has become a major research 

focus. The signaling outcome of GPCRs is determined by their 

three-dimensional conformation, which is variable and depends on 

multiple factors, such as the binding of orthosteric and allosteric 

ligands, the lipidic environment, and post-translational 

modifications. Understanding how all of these factors contribute to 

a specific structure, and in turn, a specific signaling response, would 

not only expand our knowledge of GPCR biology but also provide 

structural blueprints for the design of novel and better therapeutics. 

To address this ambitious goal, numerous endeavors have been 

undertaken to characterize the three-dimensional structure of 

GPCRs and its changes over time. 

Important advances in protein engineering, X-ray crystallography, 

and cryo-electron microscopy (cryo-EM) during the past decade 

have led to an exponential growth in the number of known GPCR 

structures. Since then, the number of available structures has 

continued increasing (Figure 1a). This large data set has been 

crucial for advancing our understanding of GPCR function. 

Moreover, it enabled the application of structure-based drug design 

approaches, which aid the discovery of novel drug candidates with 

improved pharmacological profiles [1,2,3]. 

Despite their enormous utility, high-resolution structures describe 

proteins mainly as rigid entities, whereas information about their 

intrinsic flexibility and conformational plasticity cannot be 
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appreciated. With the goal to incorporate atomic-level dynamic 

information to static systems, molecular dynamics (MD) 

simulations were introduced several decades ago. The first MD 

simulation of a biomolecule was 9.2 ps-long and consisted of the 

bovine pancreatic trypsin inhibitor (~500 atoms) in vacuum [6]. In 

the case of GPCRs, the first MD simulation was obtained in 1991, 

before the first GPCR crystal structure was resolved [7]. It 

corresponded to an 80 ps-long trajectory of a rat dopamine 

D2 receptor, modeled from its sequence with molecular mechanics. 

Ever since, MD simulations have greatly improved their 

performance, allowing the simulation of larger systems for longer 

timescales. A major determinant of these advances has been the 

development of algorithms optimized for graphical processor units 

(GPUs), a technology first designed to improve video game 

performance [8,9]. GPU exploitation was a major breakthrough for 

the field, enabling researchers to perform on commodity hardware 

calculations that were previously only possible with the use of 

supercomputing clusters. Along with these technological advances, 

the expansion of free and user-friendly software for the input 

preparation (e.g., CHARMM-GUI [10], HomolWat [11]) and 

analysis (e.g., MDAnalysis [12,13]) of MD simulations has greatly 

contributed to the broad application of this technique. 

 

Figure 1. (a) Number of G protein-coupled receptors (GPCRs) structures 

available in GPCRdb [4,5] over time. (b) Number of publications per year 

indexed at Thomson Reuters’ Web of Science that contain the topics “molecular 

dynamics” and (“GPCR” or “GPCRs”). The exponential growth of successful 

GPCR research based on molecular dynamics (MD) simulations is evidenced by 

the rapid upsurge in the number of publications per year related to this subject. 

Owing to the aforementioned technical developments, MD 

simulations currently provide a combination of temporal and 
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structural resolution greater than what is usually achievable by 

experimental methods [14]. As a result, MD simulations are widely 

used for the study of GPCRs, as reflected by the continuous 

increase in publications per year on this topic (Figure 1b). 

Moreover, most publications on crystallography now supplement 

their studies with MD to refine the obtained structure. Here, we 

review recent developments in the study of GPCR functionality 

using MD simulations to complement static structural data. We 

discuss the role of receptor dynamics in several functional 

processes, outline the applicability of MD simulations for drug 

discovery, and describe the basis of this technique. We also 

examine the main challenges that still need to be overcome to reach 

its full potential. Finally, we discuss the future of the field. 

2. Complementing Static Data 

Three-dimensional structures derived from experiments via X-ray 

crystallography or cryo-EM provide high-resolution information 

about specific conformational states of GPCRs. However, we need 

to be aware that these structures represent low energetic 

conformational states that are obtained under experimental 

conditions that often deviate from native-like conditions. In this 

scenario, MD simulations are a useful tool to drive these structures 

to conformational states that are linked to a more native-like 

environment. Moreover, MD simulations incorporate the missing 

information on structural motions, yielding insights that can be 

critical to the understanding of GPCR physiology and 

pharmacology [14]. In this respect, MD simulations have proven 

useful to complement static data and expand our knowledge of 

processes such as binding of small molecules or drugs to orthosteric 

or allosteric receptor sites. We can also determine how a 

biomolecular system will respond to perturbations such as 

mutations, post-translational modifications, and the composition of 

the cell membrane [15,16]. In addition, we can study the 

conformational rearrangements that occur during receptor 

(in)activation, determine metastable receptor states along the 

transition pathways or explore the interaction with intracellular 

coupling partners [17,18]. Even processes such as receptor 

dimerization/oligomerization, which has been implicated in fine-
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tuning GPCR signaling, can be investigated using different MD 

techniques [19]. 

2.1. Molecular Mechanism of Receptor Activation 

From a structural perspective, there are two mechanisms by which a 

molecule, so-called “agonist”, can mediate GPCR activation. On the 

one hand, an agonist can sample and stabilize a subset of receptor 

conformations known as “active states”, shifting the conformational 

equilibrium to an active receptor (conformational selection 

mechanism) [20]. On the other hand, the binding of the agonist can 

initiate small structural changes in the ligand binding site, which are 

propagated across the receptor through rearrangements of specific 

residues. These rearrangements lead to global structural changes 

towards conformational populations of active receptor states 

(induced fit mechanism) [21]. Most likely, both mechanisms 

contribute to a different extent to receptor activation depending on 

the ligand and receptor type [14,22]. Finally, receptors in an active 

state have a higher propensity to interact with intracellular partners. 

This leads to the initiation of signaling cascades which ultimately 

alter the metabolism of the cell [23]. 

Experimentally solved structures provide extensive information on 

the conformation of several active, inactive, and intermediate states 

[24,25]. Such structures have been an excellent starting point for 

numerous MD simulation-based studies that clarify the 

activation/inactivation mechanism. By this means, researchers have 

been able to probe the flexibility of GPCR-ligand complexes in the 

initial and final stages of activation and observe structural 

fundamentals on how ligands stabilize conformational states that are 

related to specific signaling outcomes [26,27]. Furthermore, 

extending such simulations it is possible to capture intermediate 

conformations that are adopted on the transition pathway. 

Beyond this, pioneering simulations on the active conformation of 

the β2-adrenergic receptor (β2AR) [28] revealed that the presence of 

an intracellular coupling partner is crucial to stabilize the receptor in 

an active state. Without it, the receptor can revert to a fully inactive 

state, despite the presence of an agonist. The study also highlighted 

multiple structural features related to activation, which are loosely 

coupled and do not necessarily occur sequentially. These results 
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were later supported by NMR data [29]. After these findings, a 

simulation of unprecedented total length, obtained thanks to 

Google’s Exacycle cloud computing platform, allowed the 

generation of a complete structural statistical model of GPCR 

activation [30]. One of the highlights of this study was that GPCRs 

can follow multiple pathways towards obtaining an active 

conformation. 

On a more detailed level, MD simulation also permits the study of 

more subtle structural rearrangements related to activation. A 

notable example includes a comprehensive study carried out by Li 

et al. [31]. By simulating complexes of the A2A receptor (A2AR) with 

multiple ligands, they were able to obtain a comprehensive view of 

the activation mechanism of this receptor. Importantly, they 

observed that the conserved residue W6.48 attained different 

conformational states in response to agonists. Moreover, by 

studying receptor-ligand contacts, they were able to identify groups 

of contacts that lead to a specific signaling response. These 

interactions promoted local structural changes that led to the 

increased mobility of the transmembrane helix (TM) 6. Importantly, 

these results were in line with crystallographic [24] and NMR data 

[32]. 

Furthermore, post-translational modifications have been described 

to be critical for the biological activity of GPCRs. In this respect, 

Oddi et al. report for instance that the biological activity in terms of 

the CB1 receptor is closely linked to palmitoylation of cysteine 415 

in helix 8 [33]. MD simulation revealed that this modification 

stabilizes helix 8 and promotes the binding of cholesterol molecules 

in the vicinity, which likely facilitates the interaction with lipid rafts 

and caveolin 1. This goes along with the experimental finding that 

the C415A mutation impairs the receptor’s ability to functionally 

interact with lipid rafts as well as eliminates agonist-dependent 

internalization of the CB1 receptor. In addition, the same group 

shows that palmitoylation of cysteine 415 fine-tunes CB1 receptor 

interaction with the Gαi2 protein, which further highlights the 

relevance of post-translational modifications for receptor 

functionality [34]. 

As integral membrane proteins, GPCRs communicate with the lipid 

environment, which contributes to the regulation of GPCR function 
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and dynamics. Membrane phospholipids have been found to 

allosterically modulate the activity [35,36,37,38] and 

oligomerization [19] of GPCRs, while membrane cholesterol can 

regulate its stability, ligand-binding properties and function 

[16,39,40,41]. Still, the precise nature of lipid implication in GPCR 

modulation is unclear. Such effects can either be attributed to 

changes in membrane biophysical properties (including thickness, 

curvature, and surface tension) [42,43], direct interactions 

[15,44,45,46], or both. In one of the first MD studies comparing the 

effects of different single species lipid bilayers on the dynamical 

behavior of a GPCR, Ng. et al. showed that the structural motions 

of the A2AR may depend on its phospholipid environment [47]. This 

could be explained by the physical adaptation of the A2AR to 

different membrane thicknesses or by molecular interactions of the 

lipid headgroups and the protein. Similarly, in a recent study 

Bruzzese et al. examined how much different membranes affect the 

activation process of the A2AR and the functional effect of their 

agonists [48]. Based on microsecond-long MD simulations, they 

revealed an effect of the phospholipid membrane in the intermediate 

or active receptor conformations observed, which can be attributed 

to phospholipid-mediated allosteric effects on the intracellular side 

of the receptor. In addition to identifying potential lipid interaction 

sites, MD simulations can provide estimates of the free energy of 

protein-lipid interactions, which permits to quantify their strength. 

To test the reliability of MD to study the energetics of protein−lipid 

interactions, Corey et al. compared different MD-based approaches 

in terms of ease of accuracy and computational cost [49]. They 

showed that such methods produce estimates of the strength and 

specificity of lipid-binding sites that are robust and reproducible. 

Finally, a relatively recent finding is that GPCRs can couple to 

diverse intracellular signaling partners, including different G 

proteins and β-arrestins. An interesting observation is that, in some 

cases, only a subset of pathways is engaged upon ligand binding, a 

phenomenon known as “signaling bias” [50,51]. The underlying 

molecular mechanism of signaling bias is still poorly understood 

and will be addressed in more detail in a later section (Section 

2.2.2). 
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2.2. Ligand Binding to GPCRs 

Typically, GPCRs are able to recognize and bind a variety of 

ligands that modulate the receptor functional outcome. Deciphering 

the complex process of receptor modulation, and how specific 

interactions in the ligand binding site are linked to the final 

functional outcome, has been a main goal of many scientific 

endeavors. Such information would help us better understand 

GPCR physiology and inform the design of molecules with a 

specific signaling profile [52]. A valuable resource of ligand 

binding dynamics is found in the recently established GPCRmd 

server [53], which provides intuitive visualization and analysis tools 

currently covering 70% of crystallized receptor subtypes (Figure 2). 

 

Figure 2. Schematic view of the ligand-protein interaction results that can be 

obtained with the GPCRmd server [53]. Specifically, the GPCRmd Workbench 

module of the server enables interactive visualization (GPCRmd Viewer) and 

analysis (GPCRmd Toolkit) for individual simulations, including ligand-protein 

interactions among others. Figure obtained from the GPCRmd server [53]. 

2.2.1. Classical Orthosteric Ligands 

The use of static structures to understand ligand binding can lead to 

incomplete information, especially in receptors with high flexibility. 

This was highlighted by Ferruz et al. in a study where they 

compared the binding poses of several dopamine D3 receptor 
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antagonists obtained with static docking and with MD simulations 

[54]. Using large-scale MD simulations and Markov state models 

(MSMs), they were able to overcome the limitations of docking in 

the determination of the ligand binding poses and revealed a cryptic 

binding pocket. Virtual screening protocols considering only static 

structures would miss compounds binding to this cryptic binding 

pocket. Thus, the characterization of the intrinsic flexibility of 

GPCRs is of great value for the identification or design of new 

ligands [55], as discussed also in Section 3. 

Similarly, MD studies provide valuable information on the strength 

of ligand-receptor interactions in terms of contact frequencies that 

cannot be obtained by methods that do not account for the 

flexibility of the binding site. This information facilitates the 

identification of the key interactions that a ligand establishes in the 

binding pocket and which likely drives the signaling outcome. For 

example, a combination of molecular modeling and simulation was 

used to describe the binding characteristics of the natural agonist 

and its derivatives in the oxoeicosanoid receptor 1, providing new 

insights into how this receptor is modulated [56]. Moreover, MD 

simulation provided information on ligand stability and key 

interactions that allowed identifying selectivity features of 5-

HT2B fluorescent ligands that retain the agonistic functional behavior 

of the model ligand [57]. 

The interaction between a ligand and a GPCR, however, is not only 

determined by the events that happen once in the binding site. The 

ligand needs to pass through a series of intermediate states between 

the solution phase and the fully bound pose, known as the ligand 

binding pathway. Describing this pathway can lead to the 

identification of energetic barriers that affect the binding and 

unbinding rates. Ultimately, such rates play a pivotal role in drug 

efficacy, selectivity, and safety [58,59,60]. The details of the 

binding pathways are difficult to probe by experimental techniques, 

but MD simulations generate useful insights on this process [61]. 

Some highlights in the MD-based characterization of binding 

pathways include (S)-alprenolol binding to the β2AR [62], histamine 

to the histamine H4 receptor [63], adenosine to the A2AR [64], and 

clozapine and haloperidol to the dopamine D2 and D3 receptors [65]. 

Importantly, the case of the β2AR was the first unbiased MD 

simulation study capturing the full process of ligands spontaneously 
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binding to a GPCR. Dror et al. were able to achieve final poses 

matching those determined crystallographically without the 

incorporation of any prior knowledge of the binding site. Results 

revealed not only the predominant pathway into the binding site, but 

also the two main energetic barriers that govern drug binding and 

unbinding kinetics. 

2.2.2. Biased Agonists 

Biased agonists are molecules of high interest, as they selectively 

target a specific signaling pathway in a cell while maintaining other 

signals in their physiological state. Biased signaling probes are 

valuable tools to interrogate the involvement of the pathway in 

physiological processes or in the development of disease symptoms. 

Furthermore, they are promising starting points for the development 

of safer drugs, as they potentially allow selective modulation of 

pathways associated with disease symptoms while not engaging 

counter-therapeutic pathways or those related to debilitating side-

effects. 

Several studies demonstrated the usefulness of MD simulations to 

uncover distinct molecular events that are linked to a biased 

response [66]. Thus, Martí-Solano et al. characterized the dynamic 

receptor interaction fingerprint of biased agonists with a specific 

signaling response [67]. Based on this information, this study 

succeeded in predicting additional ligands with a tailored signaling 

profile. Such a strategy has been also successfully applied to ligands 

targeting the dopamine D2 [68], M2 [69], and AT1 [70] receptors. 

Moreover, MD studies can also capture downstream events related 

to signaling bias. In this respect, novel mechanistic insights 

revealed the connection between ligand binding, conserved micro-

switches, and arrestin bias in serotonin receptors [71]. In particular, 

simulations showed that interactions of the ligand with the binding 

pocket determine the rotational freedom of TM6 which, in turn, 

impacts the conformation of the highly conserved P-I-F motif. 

Consequently, a hydrophobic connector region between the P-I-F 

motif and the ionic lock seems to contribute to the formation of a 

water channel that determines the degree of receptor opening 

(disrupted ionic lock). This conditions G protein coupling and, thus, 

whether signaling is biased towards arrestin or not. This work 
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highlights the capacity of MD to shed light on features that cannot 

be extracted from static structures. Another relevant example was 

an extensive study developed by Kapoor et al. aiming to explain the 

basis of functional selectivity in the µ-opioid receptor [72]. Among 

other findings, the study identified distinct conformational 

rearrangements in the receptor bound to a balanced or a G protein-

biased agonist. They also highlighted differences in the allosteric 

communication, with a more pronounced transfer of information 

triggered by the G protein-biased agonist. Finally, Nivedha et al. 

developed a computational method to predict ligand bias in GPCRs 

ahead of experiments [73]. For that, they used MD simulation to 

calculate the mechanism of allosteric communication from the 

extracellular region to the intracellular transducer coupling region. 

Additionally, they were able to identify functional hotspot residues 

that potentiate the ligand-mediated bias, which can greatly aid in the 

design of biased ligands for GPCRs. 

2.2.3. Allosteric Ligand Binding 

When studying ligand binding, traditional efforts have focused on 

targeting the orthosteric binding site of GPCRs. The orthosteric 

binding site of many GPCR subtypes is highly conserved. As a 

consequence, orthosteric ligands often target several receptors 

simultaneously, leading to off-target side effects. This leads to one 

important challenge of GPCR drug discovery, which is achieving 

selectivity, the ability of ligands to specifically target one receptor 

subtype over another. 

Contrarily to orthosteric ligands, allosteric ligands bind to sites 

topographically distinct from the orthosteric binding site. Such 

allosteric binding sites are much more variable in terms of the 

sequence, which gives allosteric ligands the potential to achieve 

greater selectivity at GPCR subtypes [23,74]. Allosteric ligands 

modulate the effect of the orthosteric ligand on the target, which 

provides a strategy to fine-tune cellular responses triggered by the 

orthosteric ligand. These characteristics of allosteric ligands have 

invited a growing interest in designing drugs that target allosteric 

pockets of GPCRs [75,76]. 

However, targeting allosteric sites comes with some challenges. 

Allosteric binding sites are not evident from crystal structures. 
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Moreover, the molecular mechanisms by which these modulators 

affect GPCR signaling depend on dynamical properties that are not 

evident from static structures. This makes computational methods 

such as MD simulations a valuable approach to detect hidden 

allosteric binding sites and determine the mechanistic basis of 

allosteric regulation [77]. MD-based studies have been especially 

helpful for the identification of allosteric mechanisms in muscarinic 

receptors, which are usually paradigmatic for all GPCRs [78,79,80]. 

One case is the work from Dror et al. in which they provided a 

structural basis of allosteric ligand binding and described 

mechanisms of cooperativity between the allosteric and the 

orthosteric ligand [80]. In another study, Chan et al. applied long-

timescale MD simulations to show that acetylcholine, the 

endogenous ligand, can go from the orthosteric binding site into a 

deeper allosteric binding site [81]. 

2.3. Revealing the Dynamic Behavior of Water Molecules and 

Ions 

Comparative analysis of available crystal structures pointed to the 

relevance of waters for receptor dynamics and function [82]. The 

unique ability of MD to monitor diffusion and binding events of all 

water molecules in a system enabled the further elaboration of this 

idea. Simulations of the opioid receptors revealed that GPCR 

activation correlates with the entrance of waters from the 

extracellular side [83,84]. In line with this finding, further studies 

demonstrated that activation of the A2AR is linked with the formation 

of continuous water channels [85,86]. Detailed investigation of the 

simulation frames revealed that the formation of this channel is 

mediated by rearrangements of conserved residues W6.48 and 

Y7.53, the latter of which forms the NPXXY motif. 

Importantly, water molecules also have a strong impact on ligand 

binding and unbinding events, which can be investigated in detail 

with MD simulations. It is well established that water has a role in 

ligand-receptor dissociation. For example, Schmidtke et al. showed 

that shielding ligand-receptor hydrogen bonds from water can 

contribute to long ligand residence time [87]. Interestingly, 

Magarkar et al. recently found, based on MD simulations, that 

shielding of water from intra-protein interactions, not directly 

involved in ligand−receptor interactions, is also a relevant factor in 
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ligand binding kinetics, as such interactions confer the rigidity of 

the binding site [88]. This opened new opportunities for the 

optimization of the residence time during drug development 

pipelines. 

Similarly, MD simulations helped to shed light on the role of ions 

for GPCR function. Sodium ions are known to be important 

allosteric modulators of GPCRs, but the mechanism of this 

modulation is still not well understood [89]. Using MD simulations, 

Selent et al. provided structural details on the binding of sodium 

ions in the D2 receptor and proposed the molecular mechanism of 

the allosteric sodium-induced modulation [90]. Several studies have 

been dedicated to revealing atomistic insights into allosteric sodium 

ion binding to other class A receptors [91,92]. For example, Selvam 

et al. elucidated the sodium binding mechanism of 18 GPCRs based 

on hundreds-of-microsecond long simulations [93]. Their analysis 

of the kinetics of sodium binding to the allosteric site revealed key 

residues that act as major barriers for sodium diffusion. Also, they 

reported that sodium ions can bind to GPCRs from the intracellular 

side when the allosteric site is inaccessible from the extracellular 

side. Furthermore, Vickery et al., based on MD simulations and free 

energy calculations, suggested that the opening of the conserved 

hydrated channel in the active M2 muscarinic receptor allows the 

exchange of a sodium ion from its extracellular binding pocket to 

the cytoplasm. This exchange of sodium could be a key step in class 

A GPCR activation [94]. Beyond allosteric ion effects, a recent 

study has also proposed that sodium ions can stabilize ligand 

binding in the orthosteric site and by this enhance receptor signaling 

in the D2 receptor [95]. 

2.4. Impact of Natural Genetic Variants 

Another factor that impacts GPCR functionality is genetic variants. 

A huge number of natural genetic variants are observed in GPCRs, 

as listed in dbSNP [96] and GPCRdb [4]. To name a few, missense 

variants in rhodopsin are responsible for retinitis pigmentosa due to 

an alteration in receptor folding and cellular trafficking [97], and 

missense variants in the C-C chemokine receptor 6 exhibit loss-of-

function effect by decreasing G-protein signaling [98]. 
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Understanding the impact of natural variants on GPCRs is critical, 

as variants can be responsible for disease susceptibility, as well as 

distinct responses to treatments [99]. Such functional differences 

can be caused by alterations in dynamic processes of ligand binding 

pathways, ligand binding interactions, constitutive receptor activity, 

or recognition of intracellular effector proteins (e.g., G protein 

binding). Hence, MD simulations are a promising approach to 

elucidate the molecular mechanisms that explain functional 

differences between wild type and variant GPCRs, providing 

genotypic-phenotypic correlations [100,101,102,103]. MD 

simulations were used, for example, to determine the molecular 

basis of the effect of a commonly found variant: the Arg16Gly 

variant of the β2AR. This variant has been linked to a differential 

response to albuterol, a β2AR agonist frequently used in the 

treatment of asthma. Results revealed that the Arg variant increased 

the dynamics of the N-terminal region, where this polymorphism is 

located. This change in dynamics leads to long-range effects at the 

ligand binding site, altering ligand binding-site accessibility, which 

is higher in the Gly variant [102]. Similar results were recently 

found for the Gln27Glu variant of the same receptor, which perturbs 

the network of electrostatic interactions that connects the N-

terminal region with the binding site, altering drug response [103]. 

2.5. Complementing Experimental Maps 

A critical step in X-ray crystallography or cryo-EM of GPCRs is 

fitting the receptor model to the experimental density map. After the 

fitting procedure, certain density areas often remain unmatched, a 

piece of information that can be extracted from the so-called 

difference maps (fo-fc). The discrepancy between model and 

experimental density map may arise from the existence of different 

rotameric states or the binding of water molecules and ions. Thanks 

to MD it is possible to complement static structures with this 

information by monitoring the dynamics of sidechain rotations and 

the diffusion/binding of solvent molecules that can justify 

unmatched density areas. Moreover, MD allows investigating 

highly flexible regions that explain low-resolution areas in density 

maps. 
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3. Application of MD in Drug Discovery 

The drug discovery process implies an immense cost, high risk, and 

a long time to move from the bench to the market [104]. Computer-

aided drug design has the potential to de-risk and accelerate this 

process [74], and thus it has become an attractive approach for drug 

discovery targeting GPCRs [105]. Static structures have proven 

highly effective at aiding drug design [106]. However, due to the 

high flexibility of GPCRs, especially in druggable regions such as 

allosteric sites, the full potential of structure-based drug design 

requires a deeper understanding of GPCR dynamics [80,107]. 

One of the most widely used structure-based drug design strategies 

is virtual screening, where libraries of small molecules are screened 

to identify those structures which most likely bind to the target. 

Virtual screening is traditionally based on docking the ligands to a 

static structure of the target protein. This approach has been very 

successful for the discovery of new ligands. Yet, docking does not 

consider the flexibility of the binding pocket, thus leading to the 

identification of only a subset of binders, namely those similar to 

the crystallized ligand [14]. Using MD to account for the dynamic 

behavior of the binding pocket generally increases the diversity of 

ligands identified [55,108]. Moreover, it allows exploring rare 

conformations that can help define drugs with higher specificity for 

the receptor [109]. Overall, MD-based methods are more resource-

consuming compared with traditional docking, but a higher 

accuracy can be reached. For example, an interesting approach to 

include dynamic information in virtual screening protocols is the 

characterization of the binding site using MD to construct 

ensembles with structural diversity, where the ligand candidates are 

docked [110,111,112]. 

MD can also provide valuable information to guide lead 

optimization, where the ligand is modified to improve properties, 

such as potency, selectivity, or pharmacokinetic parameters. 

Dynamic information can be used to identify the key interactions 

that the lead ligand establishes with the binding pocket, as well as 

rearrangements of the binding pocket induced by the ligand [113]. 

Simulations can further help test and refine potential ligand poses, 

or even reveal unknown binding sites [77,114]. They are also 
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valuable to improve selectivity, as they can be used to identify 

differences in the dynamics of binding pockets of closely related 

receptor subtypes [113]. 

Moreover, simulation-based methods were found to provide 

substantially more accurate estimates of ligand binding affinities 

(free energies) compared to other computational approaches [115]. 

For now, it is not possible to sample enough unbinding events to 

determine rates or affinities by unbiased MD. However, it is 

possible to combine MD with specialized free-energy techniques to 

enhance sampling for this purpose. This is the case of the free 

energy perturbation method, which can be used to evaluate and 

compare the relative affinity of several compounds, such as 

derivatives of a particular ligand, on a target receptor. This was 

shown to be particularly useful, for example, for fragment 

optimization [116]. Similarly, this technique can be used to 

characterize and compare the effect of single-point mutations of 

residues in the binding pocket on the binding affinity of a ligand, 

which helps to determine its binding mode [117]. Another extended 

approach is metadynamics simulations. Provasi et al. pioneered the 

use of metadynamics [13] to study ligand binding to GPCRs [118] 

and have successfully applied this enhanced MD algorithm to 

predict the binding pose of several orthosteric and allosteric ligands 

in opioid receptors [119,120]. Still, automatizing metadynamics 

protocols in drug discovery workflows is challenging, since they 

usually require specific testing and optimization, mainly to select 

adequate collective variables [121]. However, efforts are being 

made to generate accurate and inexpensive metadynamics protocols 

that can be applied to a broad range of different GPCRs and ligands. 

This is the case of Saleh et al., who proposed a generally applicable 

metadynamics protocol that uses a single, optimal CV to accurately 

and efficiently explore the entire ligand binding path and predict 

binding mechanisms and affinities [122]. 

Another important application of simulation techniques for lead 

optimization is the optimization of drug binding and unbinding 

kinetics, which plays a critical role in drug efficacy, selectivity, and 

safety [58,59,60,61,62,63,65,123]. In fact, the ligand unbinding 

kinetics (the inverse of its residence time on the protein) is 

sometimes better correlated with drug efficiency than binding 

affinities [124]. Successful examples like tiotropium demonstrate 
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the potential of kinetic optimization. Tiotropium is a well-known 

M3 muscarinic receptor antagonist used as treatment for chronic 

obstructive pulmonary disease. Its very slow dissociation rate from 

the M3 receptor is postulated to be the key to its superior 

pharmacological profile. Interestingly, while tiotropium has a 

similar affinity for the M2 and M3 receptors, it shows kinetic subtype 

selectivity towards the M3 [125]. Based on MD simulations, this 

selectivity was found to be caused by differences in the 

electrostatics and flexibility of the extracellular surface [126]. 

To further decipher the molecular basis of binding and unbinding 

kinetics, MD simulations can be used to obtain the whole binding 

pathway of the ligand, identify metastable binding sites and detect 

the energetic barriers that govern drug binding and unbinding 

kinetics [127]. Ligand dissociation time scales are often much 

longer than those accessible by unbiased MD, even when 

specialized hardware is used. Thus, enhanced sampling algorithms 

such as metadynamics are commonly employed. To increase the 

applicability of these techniques in drug discovery, several 

variations of conventional metadynamics protocols are created, for 

example by combining metadynamics with adiabatic-bias MD 

[128,129]. 

When designing a GPCR-targeted drug, one aims to achieve a 

particular signaling profile. In other words, the drug needs to be 

able to stabilize certain conformational states of the receptor. This is 

a complex process that requires an understanding of how subtle 

changes in the binding pocket lead to different conformations of the 

intracellular coupling interface and, in turn, different signaling 

profiles. Achieving the desired signaling profile is especially 

challenging in the case of biased ligands. The successful design of a 

biased ligand requires knowledge of the conformations associated 

with G protein signaling and arrestin signaling. As discussed in 

previous sections, MD simulations are able to provide detailed 

information on binding pocket dynamics and allow us to compare 

the receptor-ligand interactions that occur in different 

conformational states of the receptor and in complex with different 

types of ligands (e.g., unbiased agonist, biased agonist, inverse 

agonist, or antagonists) [14]. This opens the road for a more tailored 

and fine-tuned drug development. 
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4. Workflow for MD Simulation 

The procedure for conducting MD simulations can be divided into 

four stages (Figure 3a). In the first stage (stage 1), we create the 

initial coordinates for our simulation system (Figure 3b). This 

generally involves the curation of experimentally solved receptor 

structures (e.g., modeling of missing residues/loops, reverting 

thermo-stabilizing mutations to the wild-type, etc.) or the 

application of homology modeling. The obtained GPCR model is 

then embedded into a specific membrane, solvated, and ionized to a 

physiological concentration. In this initial stage, one should 

carefully consider factors such as atomic resolution (atomic scale 

versus coarse-grained), absence or presence of post-translational 

modifications (palmitoylation, phosphorylation, glycosylation), and 

the composition of the membrane environment. 

 

Figure 3. (a) Flowchart summarizing the stages of a MD simulation. (b) Example 

of a GPCR molecular system, including the β2 adrenergic receptor (β2AR, blue) 

with a full agonist in the binding site (orange) in a 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) membrane (tails in light brown, heads colored 

by heteroatom). The system is solvated with water (red) and ionized with sodium 

(green) and chloride (purple) ions. 

Once the starting structure is obtained, we proceed to simulate the 

atomic motions of the system. For that, the forces that act on each 

atom in the system are calculated (stage 2). This is possible thanks 
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to the so-called force fields, a set of empirical potential energy 

functions that include all parameters needed to solve both bonded 

and non-bonded atomic interactions [130,131]. Based on the 

obtained forces, the atomic positions at the following timestep are 

predicted by solving the classical (i.e., Newtonian) equations of 

motion (stage 3). Then, the positions of the atoms are updated 

accordingly (stage 4). From here, we start an iterative cycle by re-

calculating again the forces that act on each atom in the new 

conformation of the system (stage 2), solving Newton’s equations 

(stage 3), and updating the atomic positions (stage 4). The time 

length between these iterations, known as the simulation timestep, 

should be shorter than the fastest process in the system (typically 

the vibrations of bonds between heavy atoms, as we commonly 

constrain hydrogen atoms) and usually is around 2 fs. 

The timescale of the biological process we are interested in defines 

the number of iteration steps needed to complete the simulation, 

which can easily be higher than millions. Knowing when to stop a 

MD simulation is not trivial, but one has to ensure that the 

simulation has efficiently sampled the conformational space of the 

biological process studied. 

5. MD Analysis—Extracting Data from the Simulations 

5.1. Principles of MD Analysis 

Due to the extensive amount of information generated by MD 

simulations, specific computational tools have become mandatory 

for their proper analysis. Some of the most popular tools include 

python modules such as MDAnalysis [12,13] and MDtraj [132], 

which allow the automatization of analysis pipelines using scripts. 

The visualization and modeling software Virtual Molecular 

Dynamics (VMD) [133] also provides a range of analysis tools that 

can be expanded even further by using plugins. In addition, 

simulation software like GROMACS [134] and CHARMM [135] 

include their own build-in sets of analysis tools. Even more, there 

exist online repositories such as Plumed-nest [136], specifically 

developed to store scripts used for generating and analyzing MD 

simulations. Despite the diversity in available tools, certain 

parameters are frequently analyzed, as they provide relevant 

information about the simulation. 
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One of the most important parameters is the root mean square 

deviation (RMSD), which allows a quantitative evaluation of the 

structural changes that occur during a simulation. It is based on the 

distances between the atoms of the protein at a certain frame and the 

same atoms at a superimposed reference frame (Figure 4d). The 

RMSD is obtained with the following equation: 

 

where xi(tj) represents the coordinates of atom i at 

frame j, xi(t0) represents the position of the same atom i at the 

reference frame, and n the number of atoms in the system. 

RMSD profiles (i.e., RMSD over time) are routinely used to assess 

the stability of the simulated protein and detect transitions between 

different conformations (Figure 4a). It is also useful to compare the 

dynamic behavior of the receptor under different conditions, as 

done by Ozcan et al. to determine the effect of the intracellular loop 

3 in human β2AR [137]. 

Another widely used parameter is the root mean square fluctuation 

(RMSF), which describes the relative mobility of an atom or residue 

in the simulation. The RSMF is based on the mean square of the 

residue or atom position in each frame, which can be obtained using 

the following equation: 

 

where xi(tj) represents the coordinates of atom i at frame j, xi the 

average position of atom i in the simulation and T the total number 

of frames in the simulation.  

RMSF profiles (i.e., RMSF as a function of atoms/residues) are 

often employed to describe and compare the relative mobility of 
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specific regions of the receptor (Figure 4b). For example, Semack et 

al. were able to detect specific flexibility profiles for the β2AR and 

the vasopressin receptor 1A when bound to different sets of 

peptides derived from the C-terminus of the G alpha subunit [138].  

 

Figure 4. Example of different parameters analyzed in a 500 ns-long MD 

simulation of the A2A receptor (A2AR). (a) Root mean square deviation (RMSD) 

profile taking as reference the first frame of the simulation, which is 

superimposed to the rest of the frames. RMSD values (i.e., structural differences 

with respect to the reference frame) increase over the simulation time until the 

system reaches a stable conformation after 100 ns. (b) Root mean square 

fluctuation (RMSF) profile displaying the values of all the alpha carbons in the 

protein. Higher RMSF values correspond to flexible loops, while lower ones 

belong to transmembrane helices, where residues are stabilized by the secondary 

structure. (c) Radius of gyration (RG) profile where the RG fluctuates around the 

same value during the simulation, indicating that the system does not suffer any 

big change in compactness. (d) Superimposition of 25 representative frames of 

the simulated receptor. The relative mobility of loop regions contrasts with the 

rigidness of the transmembrane helices. 
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Furthermore, the radius of gyration (RG) is a valuable parameter to 

describe the overall compactness of the protein. Specifically, the 

RG is defined as the mean square of the distance between each 

protein atom and the center of mass of the protein: 

 

where ri rcm represents the distance between atom i and the center of 

mass of the molecule and n the total number of atoms in the system. 

RG profiles (i.e., RG over time) can be used to assess the evolution 

of the protein compactness during a simulation (Figure 4c), as done 

by Davoudmanesh and Mosaabadi to study the effects of 

homocysteinylation of the neuropeptide substance P on its binding 

with the NK1 receptor [139]. 

In order to obtain a detailed view of the molecular mechanisms that 

drive general receptor properties such as protein stability (RMSD), 

conformational flexibility (RMSF), and compactness (RG), one 

needs to analyze the intramolecular interactions. In this respect, 

non-covalent interactions between residues play an important role. 

Also, non-covalent interactions are critical for ligand recognition. In 

MD simulations, these interactions and their stability can be 

predicted based on atom distances and angles. Using this 

methodology, Dror et al. were able to discern the importance of an 

ionic lock interaction for the conformation change produced during 

the activation of β2ARs [140]. 

Most of the aforementioned MD analysis tools (e.g., MDAnalysis, 

GROMACS, VMD) focus on hydrogen bond interactions, as this is 

one of the most abundant and structurally important interaction 

types in proteins. However, there are many other interaction types 

that should not be neglected, including van der Waals, salt bridges, 

π-cation, and π-stacking interactions. To analyze them, more 

specialized tools have been developed, such as the python module 

GetContacts [141]. A good example of the capabilities of this 

module can be found in the Receptor Meta-analysis web tool 
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(https://submission.gpcrmd.org/contmaps/) included in the 

GPCRmd platform [53]. This tool analyzes and compares different 

types of non-covalent interactions obtained from a large GPCR 

simulation dataset using GetContacts scripts, and displays them into 

a series of interactive plots (Figure 5). This allows extracting 

conclusions about the interaction pattern of different GPCRs. 

 

Figure 5. Pattern of total interaction frequency of several MD simulations of 

GPCRs, extracted from the GPCRmd Receptor Meta-analysis tool 

(https://submission.gpcrmd.org/contmaps/) of the GPCRmd server [53]. Columns 

represent interacting residue pairs according to Ballesteros-Weinstein residue 

numbering [142], whereas rows represent different simulations. The color of each 

cell shows the frequency in which any type of non-covalent interaction occurs 

during the simulation. Results are clustered based on the interaction frequencies 

of the simulations. This clustering is able to separate simulations according to the 

receptor subtype, showing that different receptor subtypes present differentiated 

interaction patterns. 

5.2. Analysis of the Allosteric Communication 

Allostery is a property of a protein by which perturbations that take 

place in one part of its structure are transmitted to distant parts of it. 

GPCRs are an excellent example of allosteric proteins. As described 

in Section 2.1, the binding of a ligand in a GPCR causes local 

structural changes in the binding pocket, which are transmitted 

across the receptor leading to a global conformational change and, 

in turn, a specific signaling response. This is mediated by a complex 

allosteric network in which multiple nodes (i.e., residues) transmit a 

specific perturbation through the whole protein. Not only GPCRs 

https://submission.gpcrmd.org/contmaps/
https://submission.gpcrmd.org/contmaps/
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present this phenomenon. Multiple studies have explored allostery 

in many other proteins like thrombin and PDZ domains among 

others [143,144]. 

An accurate model to capture protein allostery is an important focus 

of current research efforts. For instance, knowing how a drug 

candidate affects allosteric communication would be of great help 

to fine-tune its potency and efficacy in drug development programs. 

Moreover, protein engineering could be considerably improved if 

we were able to access the repercussion of a mutation in the protein 

structure and, thus, its functional outcome. 

MD simulation has been used in many studies as a tool to analyze 

protein allostery. However, the way in which researchers look at 

this data is heterogeneous. Numerous studies rely on the 

comparison of the structural and dynamic behavior between two or 

more conditions. Others focus on analyzing the transition between 

two conformational states. In this case, the role of metadynamics is 

crucial, given that some of these transitions happen in time scales 

not accessible for classical (non-biased) simulations [145]. Another 

approach is to focus on changes in the conformational space, which 

is commonly studied using principal components analysis [146]. 

Others base their studies on the correlations in the movement of 

residues [147]. For this, the use of information theory-based 

methodologies is the most common approach to measure 

dependence between residues or groups of residues [148]. Finally, 

some researchers pay more attention to variables influenced by the 

chemical context of the residues, such as the contacts with other 

residues [149]. 

In many cases, some of these relationships are used to build 

networks. In these networks, residues are represented as nodes, 

while edges represent the level of coupling between the residues. 

Then, centrality and community analysis can be applied to the 

network to find the residues that contribute the most to 

communication inside the protein [147]. 

Some of the most influential works in the field combine several of 

the approaches mentioned. For example, Dror et al. studied the 

conformational correlation of β2AR subdomains in different 

activation states to propose an activation mechanism of this receptor 
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[28]. Also, Miao et al. analyzed metadynamics simulations of the 

M2 muscarinic receptor using a network representation of the 

residue cross-correlation [150]. This analysis allowed them to 

characterize some aspects of the receptor activation. Finally, 

Bhattacharya and Vaidehi investigated network representations of 

the inter-residue dihedral correlation of the β2AR [151]. The 

resulting model describing allosteric communication was able to 

identify allosteric pockets and identify residues that affected 

function upon mutation. 

Overall, this field has a great potential for understanding GPCR 

pharmacology but is still challenging and requires the development 

of more robust protocols. This robustness might be achieved by 

integrating the different methodologies that are being used into a 

more complete analysis. 

6. Current Challenges 

The capabilities of MD simulations have broadened substantially 

thanks to the technological advances of the last decades. However, 

there are still some relevant drawbacks that limit the usability of 

this technique and must be taken into account. 

As described in Section 4, the forces of a MD simulation are 

calculated based on a force field, which consists of a set of 

empirical potential energy functions. Force fields are based on 

quantum mechanical calculations and experimental measurements, 

and include some approximations. As such, force fields are 

imperfect. Studies comparing simulation results with experimental 

data indicate that force fields have improved significantly over the 

past decade [152], but more remains to be done to achieve increased 

accuracy. Another limitation of classical MD is that it is not 

possible to form or break covalent bonds during the simulation. As 

a consequence, protonation states of titratable amino acid residues 

are fixed, as well as disulfide bonds. Thus, they have to be set 

carefully at the beginning of the simulation [113]. 

An important challenge that needs to be taken into account is the 

simulation timescale. The simulation timestep, which is the time 

length between evaluations of the potential, needs to be small 
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enough to capture the fastest movements in the simulation system. 

This typically limits the timestep to around 2 fs. Many relevant 

molecular events, however, take part in the microsecond to 

millisecond scale, or even longer. This implies the calculation of a 

vast number of timesteps, each of which involves the calculation of 

millions of interatomic interactions. As a consequence, reaching 

long timescales can be challenging for classical MD. Furthermore, 

the issue with long-timescale events is that they imply the transition 

between free energy states that are separated by high-energy 

barriers. In this situation, classical MD simulations tend to get 

trapped in one of these local minimum-energy states for a long time, 

which restrains the sampling process. In turn, this leads to a poor 

characterization of the protein’s dynamic behavior [153]. A useful 

strategy to tackle the sampling problem is the application of 

enhanced sampling techniques. Enhanced sampling simulations, 

including replica-exchange MD, metadynamics, and simulated 

annealing, are able to efficiently overcome energetic barriers and 

access additional conformational states by including an external 

bias [22,154]. Simplified models like coarse-graining can also 

extend accessible timescales by orders of magnitude, as they are 

less expensive computationally [155]. Nevertheless, the problem of 

achieving relevant simulation timescales with classical, all-atom 

MD seems to be within reach of being solved [156]. In recent years, 

there has been a dramatic increase in achieved timescales. This 

tendency is expected to continue, thanks to the advances in 

algorithms [8,9,157,158], software [159,160,161,162], and 

hardware [163,164] that we are experiencing. In fact, it is expected 

that all-atom, classical MD simulations will be able to reach the 

second timescale within the next five years [165,166,167]. 

Parallel to the limitation of longer timescales accessible to 

simulations, there is a limitation in the size of the systems that can 

be studied. As the system size increases, so does the computational 

power needed to carry out the simulation. In general, the required 

computational power increases with the square of the number of 

atoms involved. Moreover, as molecular systems become bigger, 

the biologically relevant timescales tend to increase too [165]. 

Overall, this challenges the study of GPCRs in complex with G 

protein or arrestin. Enhanced sampling techniques are a promising 

approach for the study of such systems. However, selecting 

predefined collective variables for the simulation of protein-protein 
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interactions is a difficult task, as such processes often involve large-

scale translations and rotations of the binding partners, as well as 

complex conformational changes. Thus, methods that do not require 

predefined collective variables, such as Gaussian accelerated MD, 

are especially convenient. In fact, recently Miao et al. successfully 

applied Gaussian accelerated MD to simulate the intracellular 

association between the M2 receptor and a G-protein mimetic 

nanobody [168]. Their simulations revealed important insights into 

the binding mechanism, despite the fact that the calculated free 

energies were not converged. Future developments will be needed 

to achieve converged simulations of such complex systems. 

Given this fast evolution of the capabilities of MD simulation, this 

technique is gaining more and more relevance. In view of this, it is 

becoming increasingly necessary to define standards and best 

practices to ensure a reproducible research output [169]. Many 

challenges remain in order to effectively reach this goal. One issue 

is the creation of workflows for simulation production and analysis. 

The file formats and force fields supported by different programs 

are often incompatible. This limits the combination of software 

packages that can be used together in a workflow and restricts the 

choice of algorithms and force fields based on software 

compatibility rather than scientific-based reasons. Luckily, this can 

be solved with the development and usage of software that converts 

molecular information between the different file formats. Still, this 

does not solve the problem that different programs, or program 

versions, may implement force fields and features, such as 

thermostats and integrators, in different ways. Thus, the results of a 

workflow will be influenced by the combination of programs used 

[170]. Because of this, it is always important to disclose the version 

and name of all programs used. In fact, detailed documentation of 

the entire workflow should always be provided when publishing a 

simulation. The level of detail in documenting the workflows needs 

to be enough to ensure the reproducibility of the obtained results. 

Finally, another challenge that needs to be overcome to achieve 

reproducibility is data sharing. Data sharing is still not widely 

adopted in the field of MD simulation, partly because of the 

technical difficulties derived from the increasing size of the 

generated trajectories. More efforts should be done to define best 

practices and guidelines for simulation data sharing [171]. Luckily, 

many researchers work to promote it [172], and different initiatives 
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are addressing this issue. Several software packages 

[173,174,175,176] have been developed to share trajectories by 

providing online interactive visualization based on the advantages 

of the WebGL API. Moreover, several community-driven projects 

provide specialized platforms for deposition and analysis of MD 

simulations [53,136,177,178,179,180,181]. In the case of GPCRs, 

GPCRmd [53] is an online resource specialized in the deposition 

and analysis of GPCR MD simulations. 

7. Conclusions and Perspectives 

MD simulations are a potent computational technique capable of 

generating high-resolution simulations of the structural motions of a 

molecular system. They can either capture atomic-level motions 

within a specific conformational state or structural transitions 

between different conformational populations, bringing within 

reach information that is difficult, or even impossible, to obtain by 

other methods [14]. This makes MD simulation a promising 

technique for the study of GPCRs, whose functionality is highly 

determined by their ability to transition between conformations. In 

fact, MD simulations have proven their usefulness for the study of 

important biological processes in GPCRs such as ligand binding, 

allostery, activation, natural genetic variation, and addition of post-

translational modifications, among others. Since GPCRs are drug 

targets of striking importance in the pharmaceutical industry [182], 

all this information generated by MD simulations has the potential 

to accelerate the discovery of new and improved drugs targeting 

these proteins. 

In order for MD simulation to reach its full potential, some 

difficulties need to be overcome. Fortunately, we are in an era of 

rapid technological development, which creates great prospects for 

the advancement of this field in the following years. Computational 

power is expected to continue increasing following Moore’s law, 

which describes how the performance of integrated circuits has 

been increasing exponentially over the past half-century [183]. This 

would imply a reduction in computational costs. At the same time, 

we expect methodological advances in MD algorithms, including 

improvements in the fine-tuning of energy calculations, 

parallelization, GPU exploitation, and algorithmic methods to 
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increase the sampling of conformational space. Overall, this would 

cause an increase in the timescales available to simulations. Several 

authors propose that we may even reach the second timescale within 

the next five years [165,166,167], bridging the gap between the 

timescales of biological processes observed in vivo and those 

accessible in silico. Parallel to timescales would come a growth in 

the size of the systems that can be studied [165]. This, together with 

an ever-growing accuracy in the force fields, will grant us the 

opportunity to extend the application of MD simulations to the 

study of processes that were previously difficult to capture. This 

may open the door to significantly advance in the study of 

macromolecule-macromolecule interactions [184], including GPCR 

oligomerization, and coupling to intracellular signaling proteins. 

While coarse-grained MD has been typically used for this type of 

study [185,186], it is important to capture the effects of 

macromolecule-macromolecule interactions on the structural 

dynamics and cell signaling through more detailed MD simulations 

[107]. 

Finally, as simulations become faster, cheaper, and more widely 

accessible, new opportunities will arise for drug discovery. In the 

past, most drug discovery programs have disregarded MD analysis 

because of their computational expenses. With the forthcoming 

reduction of the computational costs associated with MD 

simulations, this technique is expected to be more commonly 

applied in the pharmaceutical industry and, eventually, to be 

commonly included in drug discovery pipelines [184,187,188]. 
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GPCR G protein-coupled receptor 

Cryo-EM Cryo-electron microscopy 

MD Molecular dynamics 

GPU Graphical processor unit 

β2AR β2-adrenergic receptor 

A2AR A2A receptor 

TM Transmembrane helix 

MSMs Markov state models 

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

VMD Virtual Molecular Dynamics 

RMSD Root mean square deviation 

RMSF Root mean square fluctuation 

RG Radius of gyration 
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3.3. Structural dynamics bridge the gap between 
the genetic and functional levels of GPCRs 

The specific functionality of different GPCR types or subtypes is 

determined by their genetic sequence. Even within a single GPCR, 

we can find variability in the genetic sequence due to natural 

genetic variation, which can result in specific disease phenotypes or 

altered drug responses. We can also find variability in the protein 

sequence due to isoforms. Deciphering the molecular link between 

sequence diversity and its functional consequences is challenging 

but critical for the full comprehension of the signaling properties of 

GPCRs. In this review, we explore how genetic or protein sequence 

translates into structure, how this impacts the structural motions of 

the protein, and, finally, how all these factors determine the receptor 

functionality. For that, we revise the available online resources and 

state-of-the-art computational approaches that help to address these 

questions by providing information on GPCRs at different 

biological levels. 
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Abstract 

G protein–coupled receptors (GPCRs) are implicated in nearly 

all physiological processes in the human body and represent an 

important drug targeting class. The genes encoding the different 

GPCR (sub)types determine their specific functionality, which can 

be altered by natural genetic variants and isoforms. Deciphering the 

molecular link between sequence diversity and its functional 

consequences is a current challenge and critical for the 

comprehension of the physiological response of GPCRs. It requires 

a global understanding of how protein sequence translates into 

protein structure, how this impacts the structural motions of the 

protein, and, finally, how all these factors determine the receptor 

functionality. Here, we discuss available resources and state-of-the-

art computational approaches to address this question. 

Keywords: Receptor signaling; GPCRs; structural dynamics; web 

resources; computational biology 

1. Introduction 

G protein–coupled receptors (GPCRs) form a large and versatile 

family of membrane proteins. Because of their versatility, GPCRs 
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are involved in nearly all physiological processes and have become 

a major target for the pharmaceutical industry [1]. GPCRs are 

complex biological microprocessors that have evolved to recognize 

specific types of exogenous and endogenous stimuli (light, pressure, 

odorants, neurotransmitters, hormones, etc.) with a ligand and 

signaling specificity that is genetically encoded. Based on this, the 

human GPCRs are commonly divided into families (or classes) 

[2,3]: rhodopsin (A), secretin (B1), glutamate (C), adhesion 

(B2), frizzled (F), and taste 2. Apart from recognizing different 

signaling stimuli, the genetic variability drives other global receptor 

properties such as receptor dynamics, which is tightly linked to 

established intramolecular networks of direct (covalent and 

noncovalent) and indirect (water-/ion-mediated) interactions. 

Protein dynamics is a key feature that enables a receptor to sample 

functionally relevant receptor states (e.g. inactive state, Gs coupling 

state, Gq coupling state, …). This typically occurs to some extent 

even in the absence of an extracellular stimulus, determining its 

constitutive (basal) activity. Genetic variability also modulates 

coupling specificity/promiscuity to intracellular 

signaling proteins—a phenomenon linked to functional selectivity 

or signaling bias [4]. Another important functional consequence is 

the impact on the allosteric modulation of GPCRs by the membrane 

environment such as membrane lipids [5, 6, 7] or other membrane 

proteins (GPCR dimerization/oligomerization) [5,8]. 

Receptor function can be affected by genetic 

polymorphisms resulting in specific disease phenotypes or altered 

drug response [9]. However, the link between the genetic 

and protein sequence level and receptor function is complex and 

often poorly understood. Tackling this challenge requires a global 

understanding of how protein sequence translates into structural 

dynamics and ultimately into a functional response (Figure 1). Here, 

we outline and discuss current resources and state-of-the-art 

computational approaches (Table 1) to address this question. 
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Figure 1. Different levels of GPCR biology. Bridging the gap between the 

genetic and protein sequence level and receptor function using structural 

dynamics. 

Table 1. Selection of platforms and tools for the study of GPCRs at different 

biological levels. 

Name Focus Main 

biological 

level 

GPCR 

specific 

Refs Links 

GnomAD Aggregation of 

exome and 

genome 

sequencing data 

Genetic 

sequence 

No [10] https://gnoma

d.broadinstitut

e.org/ 

1000 

Genomes 

Project 

Genetic 

variation from 

whole-genome 

sequencing 

Genetic 

sequence 

No [11] https://www.i

nternationalge

nome.org/ 

DisGeNET  Genes and 

variants 

associated with 

diseases 

Genetic 

sequence 

No [12] https://www.d

isgenet.org/ 

UniProt Protein 

sequences and 

annotations 

Protein 

sequence 

No [13] https://www.u

niprot.org/ 

PDB  Structural data 

of biological 

macromolecules 

Structure No [14] https://www.r

csb.org/ 

GPCRdb Reference data, 

interactive 

Protein Yes [15] https://gpcrdb.

https://www.zotero.org/google-docs/?mMyyfc
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.zotero.org/google-docs/?S43n9M
https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://www.zotero.org/google-docs/?TuSJIF
https://www.disgenet.org/
https://www.disgenet.org/
https://www.zotero.org/google-docs/?vwhczX
https://www.uniprot.org/
https://www.uniprot.org/
https://www.zotero.org/google-docs/?hq0mpB
https://www.rcsb.org/
https://www.rcsb.org/
https://www.zotero.org/google-docs/?gMFOb2
https://gpcrdb.org/


112 

visualization, 

and experiment 

design tools for 

GPCRs 

sequence 

Structure 

Function 

org/ 

GPCRmd MD simulations 

of GPCRs with 

interactive 

analysis and 

visualization 

Structural 

dynamics 

Yes [16] http://gpcrmd.

org/ 

MemProtMD  MD simulations 

of membrane-

embedded 

proteins 

Structural 

dynamics 

No [17] http://mempro

tmd.bioch.ox.

ac.uk/ 

CHARMM-

GUI  

Built of 

molecular 

systems and 

preparation of 

inputs for 

simulation 

Structural 

dynamics 

No [18] http://www.ch

armm-gui.org/ 

GPCR-

ModSim  

Structural 

modeling and 

MD simulation 

of GPCRs 

Structural 

dynamics 

Yes [19] http://gpcr-

modsim.org/ 

MERMAID Preparation and 

run of coarse-

grained MD 

simulations  

Structural 

dynamics 

No [20] https://molsim

.sci.univr.it/m

ermaid/main.p

hp 

PACKmol Built of initial 

configurations 

for MD 

simulations 

Structural 

dynamics 

No [21] http://m3g.iq

m.unicamp.br/

packmol/ 

Hybrid 

MM/CG 

Webserver 

Setup of 

molecular 

mechanics/coars

e-grained 

simulations for 

human 

GPCR/ligand 

complexes 

Structural 

dynamics 

Yes [22] https://mmcg.

grs.kfa-

juelich.de/ 

IUPHAR/BP

S Guide to 

Pharmacolog

y  

Ligand-activity-

target 

relationships 

Functional No [23] https://www.g

uidetopharma

cology.org/ 

PRECOG  Prediction of 

coupling 

probability of 

GPCRs to 

Functional Yes [24] http://precog.r

usselllab.org/ 

https://gpcrdb.org/
https://www.zotero.org/google-docs/?kRgkvd
http://gpcrmd.org/
http://gpcrmd.org/
https://www.zotero.org/google-docs/?4xpGRe
http://memprotmd.bioch.ox.ac.uk/
http://memprotmd.bioch.ox.ac.uk/
http://memprotmd.bioch.ox.ac.uk/
https://www.zotero.org/google-docs/?rZxLyf
http://www.charmm-gui.org/
http://www.charmm-gui.org/
https://www.zotero.org/google-docs/?FbPInL
http://gpcr-modsim.org/
http://gpcr-modsim.org/
https://www.zotero.org/google-docs/?8fWf0W
https://molsim.sci.univr.it/mermaid/main.php
https://molsim.sci.univr.it/mermaid/main.php
https://molsim.sci.univr.it/mermaid/main.php
https://molsim.sci.univr.it/mermaid/main.php
https://www.zotero.org/google-docs/?6aYkW5
http://m3g.iqm.unicamp.br/packmol/
http://m3g.iqm.unicamp.br/packmol/
http://m3g.iqm.unicamp.br/packmol/
https://www.zotero.org/google-docs/?GVjow8
https://mmcg.grs.kfa-juelich.de/
https://mmcg.grs.kfa-juelich.de/
https://mmcg.grs.kfa-juelich.de/
https://www.zotero.org/google-docs/?FmmaQ8
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
https://www.zotero.org/google-docs/?faPHJT
http://precog.russelllab.org/
http://precog.russelllab.org/
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individual G 

proteins 

BiasDB Biased GPCR 

ligands 

Functional Yes [25] https://biasdb.

drug-

design.de/ 

FigShare  Scientific 

general-purpose 

data repository 

General No - https://figshar

e.com/  

Zenodo  Scientific 

general-purpose 

data repository 

General No - https://zenodo

.org/ 

 

2. Genetic and protein sequence variability of GPCRs 
2.1. General considerations 

GPCRs constitute the largest family of human cell surface 

receptors, with more than 800 known members [26]. Despite the 

fact that GPCRs share a common architecture, consisting of seven 

transmembrane (TM) helices bridged by three loops at each side of 

the membrane [27], they are characterized by a relatively low 

overall sequence identity across classes. A small fraction of highly 

conserved regions is primarily related to structural motifs that are 

relevant for the overall receptor function. In contrast, the sequence 

differences between GPCR (sub)types account for differences in 

receptor structure, dynamics, and functionality. The primary 

resource for sequence information is UniProt, which provides free 

access to protein sequences and functional information [13]. 

Specifically for GPCRs, structure-based alignments are a common 

approach to determine sequence variability between receptor 

(sub)types. Curated alignments are available in GPCRdb [15], 

which includes additional tools for performing similarity searches 

and creating similarity matrices and phylogenetic trees (Figure 2a 

and b). 

https://www.zotero.org/google-docs/?7drYG7
https://biasdb.drug-design.de/
https://biasdb.drug-design.de/
https://biasdb.drug-design.de/
https://figshare.com/
https://figshare.com/
https://zenodo.org/
https://zenodo.org/
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Figure 2. Sequence and structural information for GPCRs as implemented in 

GPCRdb. (a) Structure-based alignment, (b) phylogenetic trees, (c) structural 

models for different receptor states, and (d) ligand–receptor interactions 

implemented in GPCRdb. 

2.2. Sources for sequence variations 

Even within a single GPCR, we can find variability in the protein 

sequence because of isoforms. Protein isoforms are originated from 

the same gene but have distinct amino acid sequences. They are 

generated by tissue-specific alternative splicing and via alternative 

transcription start and termination sites. Thus, a GPCR gene can 

diversify into several isoforms with different patterns of expression 

across different tissues. Isoforms may have distinct structures and 

signaling properties, influencing tissue-specific physiology and 

drug response. In fact, a recent study shows how GPCRs diversify 
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in key structural segments that determine receptor function [28]. It 

also describes how different combinations of isoform expressions 

can contribute to system-specific signaling, highlighting the need to 

consider isoform composition to successfully understand 

physiological responses. 

Another source of differences in GPCR functionality is genetic 

variants. Natural human genetic variants may cause the GPCRs of 

different individuals to respond differently to the same stimuli (e.g. 

natural ligands and drugs). Large-scale reference data sets of human 

genetic variation are critical for the functional interpretation of such 

genetic variations. One of the most widely known databases of 

human genetic variation is The Genome Aggregation Database 

(gnomAD) [10], which includes exome and genome sequencing 

data from a variety of large-scale sequencing projects. Another 

important resource is the 1000 Genomes Project, which provides the 

largest public catalog of genotype data [11]. 

2.3. Altered drug response and disease association 

Based on data from resources such as gnomAD and the 1000 

Genomes Project, a recent study structurally mapped variant 

information for GPCRs that are targeted by Food and Drug 

Administration–approved drugs and discussed its implication for 

drug response [9]. They reported that individual differences in 

responses to medications are an underappreciated burden on public 

health. In addition to altered drug response, variants can be also 

associated with disease phenotypes (Table 2). An excellent resource 

for tracking disease-associated variants is DisGeNET [12]. It 

represents one of the largest publicly available collections of genes 

and variants associated with human diseases, as it integrates data 

from the most popular repositories in the field, as well as 

information extracted from the scientific literature by text mining. 

Table 2. Translation of sequence variability into an 

altered GPCR functionality. 

Receptor  Variant Locati

on 

Impact Clinical 

relevance 

Refer

ence 

D2 receptor Ser311Cys IL Decreased agonist 

binding affinity 

Schizophrenia and 

other mental 

disorders 

[29] 
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V2 receptor Arg113Trp  TM Increases Kd for 

the agonist Arg-

vasopressin 

Nephrogenic 

Diabetes 

Insipidus, Type I 

[30] 

 Tyr128Ser TM Abolished agonist 

binding 

  

ETB 

receptor 

Trp276Cys TM Altered receptor 

coupling to Gq 

Hirschsprung 

disease 

[31] 

Rhodopsin Arg135Gly  TM Defect to mediate 

G protein release 

Retinitis 

pigmentosa 

[32]  

IL, intracellular loop; TM, transmembrane domain. 

3. Translation of sequence variability into three-

dimensional structures 
3.1. High-resolution structural data for GPCRs 

Thanks to recent advances in protein engineering, X-ray 

crystallography, and cryo-electron microscopy (cryo-EM), we have 

experienced an exponential increase in the number of available 

GPCR structures (3D-GPCRome). The obtained structures have 

provided opportunities to understand how sequence translates into a 

specific structural architecture of inactive but also active receptor 

states. To date, high-resolution structures of about 90 

unique GPCRs are available in at least one functional state 

(see http://gpcrdb.org). 

The inactive state is typically the resting/default and most stable 

conformation of GPCRs. It was first structurally characterized 

for rhodopsin [33] and β2-adrenoceptor [34], which revealed the 

basic 7TM architecture of GPCRs. The active receptor state 

represents a high energetic state and is only accessible in a G 

protein–bound state by current experimental approaches. A first 

breakthrough has been the crystal structure of the active β2-

adrenoceptor in complex with the heterotrimeric G protein, Gs [35]. 

The largest difference to the inactive state is a receptor opening near 

the cytoplasmic side that accommodates the C-terminal helix of the 

G protein α subunit. Since then, numerous active structures coupled 

to Gs, Gi, and Go have been obtained, thanks to major advances in 

cryo-EM [36]. In addition to G proteins, GPCRs also bind arrestins, 

firstly observed for rhodopsin [37]. This event primarily 

desensitizes the receptor but can also modulate 

downstream signaling pathways [38]. 

http://gpcrdb.org/
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3.2. Web resources for GPCR structures 

The general source for structural data of proteins is the widely 

known Protein Data Bank (PDB) [14]. The PDB provides three-

dimensional data of large molecules typically obtained by X-ray 

crystallography, nuclear magnetic resonance spectroscopy, or, 

increasingly, cryo-EM. A reference database for GPCR structure 

and coupling partners is GPCRdb [15], which not only collects but 

also curates experimental structures by remodeling 

missing/distorted regions and reverting mutations. A special 

highlight of GPCRdb is structure models of inactive, intermediate, 

and active states for all human nonolfactory receptors (Figure 2c). 

In addition, GPCRdb exposes a wide range of tools for structural 

analysis including ligand–receptor contacts (Figure 2d). An 

important asset is the integration and cross-reference of functional 

data (e.g. G protein coupling, mutagenesis data, variant information, 

etc.), which has converted GPCRdb into a highly used and cited 

platform over the last decade. 

3.3. Sequence–structure relationships 

An intriguing discovery is related to the recent observation that 

sequence variability can induce different architectures of GPCR–G 

protein/arrestin complexes with functional consequences. For 

instance, the solved GPR97–Go complex presents a so far unknown 

GPCR–G protein architecture which is not observed in other solved 

GPCR complex structures [39]. This architecture is the result of a 

post-translational modification of the Go protein and seems to be 

linked to Go protein specificity. In addition, substantial differences 

in arrestin binding have been observed when comparing rhodopsin 

[37,40] and the NTS1 receptor [41]. Combined computational and 

biochemical studies suggest that the structural determinants of 

arrestin binding are driven by the phosphorylation pattern at the 

receptor C-tail and have important implications for the functional 

response [38]. Obviously, the C-tail phosphorylation pattern 

depends on the protein sequence and the presence of residues (e.g. 

Ser, Tyr) that can be phosphorylated by G protein-coupled receptor 

kinases (GRKs) [40]. This is a structural property of each receptor 

type that translates into distinct receptor responses. 

https://www-sciencedirect-com.sare.upf.edu/science/article/pii/S0959440X21000592?via%3Dihub#bib39
https://www-sciencedirect-com.sare.upf.edu/science/article/pii/S0959440X21000592?via%3Dihub#bib37
https://www-sciencedirect-com.sare.upf.edu/science/article/pii/S0959440X21000592?via%3Dihub#bib40
https://www-sciencedirect-com.sare.upf.edu/science/article/pii/S0959440X21000592?via%3Dihub#bib41
https://www-sciencedirect-com.sare.upf.edu/science/article/pii/S0959440X21000592?via%3Dihub#bib38
https://www-sciencedirect-com.sare.upf.edu/topics/biochemistry-genetics-and-molecular-biology/peptide-sequence
https://www-sciencedirect-com.sare.upf.edu/science/article/pii/S0959440X21000592?via%3Dihub#bib40
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At times, the impact of sequence variability on the structure is very 

subtle, as seen for the serotonin subtype receptors 5-HT1B and 5-

HT2B (5-HT1BR and 5-HT2BR) (Figure 3a, RMSDbackbone 1.7 Å). 

This is surprising considering their differences in G protein 

selectivity (Gi versus Gq) and their functional selectivity 

on ergotamine binding (balanced versus β-arrestin bias) [42]. 

Mechanistically, small variability in the protein sequence is 

amplified at the level of receptor dynamics which translates into the 

favorable sampling of conformational receptor states that are linked 

to a specific receptor response. 

4. Receptor dynamics governs GPCR function 
4.1. The conformational landscape 

GPCR function is largely determined by the flexibility and ability to 

sample a wide range of structural conformations. Within their 

conformational landscape, distinct populations are linked to a 

specific physiological response (e.g. inactive state, Gs coupling 

state, Gq coupling state, etc.). Because of this dynamic nature, a 

complete understanding of the structural background of GPCR 

signaling and pharmacology requires an in-depth knowledge of 

receptor dynamics [43]. Molecular dynamics (MD) simulations are 

a well-established technique to investigate time-resolved motions of 

biological macromolecules at atomic resolution, thus incorporating 

information on protein flexibility into experimentally solved 

structures [44,45]. 

4.2. Time-resolved fluctuations of specific receptor states 

Applied to GPCRs, MD allows us to sample in detail the dynamic 

fluctuations of specific functional states [45]. This provides 

information on the stabilized intramolecular network that drives the 

functional response. Such intramolecular networks consist of direct 

(covalent and noncovalent) and indirect (water-/ion-mediated) 

interactions. In particular, water-mediated interactions are often 

poorly resolved in available high-resolution structures but 

accessible in time-resolved simulations [16,46]. In addition, the 

relevance of ion binding in the inactive receptor states has been 

extensively investigated in several studies using MD 

[16,47, 48, 49]. 

https://www-sciencedirect-com.sare.upf.edu/topics/biochemistry-genetics-and-molecular-biology/ergotamine
https://www-sciencedirect-com.sare.upf.edu/science/article/pii/S0959440X21000592?via%3Dihub#bib42
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Figure 3. Receptor dynamics drive the functional outcome. 5-HT1BR and 5-

HT2BR differ in their functional response on ergotamine binding. A structural 

alignment of the static structures shows minimal differences in the overall 7TM 

architecture (RMSD: 1.7 Å). Time-resolved simulations are able to capture 

differences in the stability of specific ergotamine–receptor interactions which 

translate into a similar G protein and β-arrestin coupling response (5-HT1BR) or 

β-arrestin bias (5-HT2BR). 

4.3. Transitions between different receptor states 

Beyond the study of individual states, MD allows approximations of 

the transition pathways between different states and the detection of 
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metastable states along the pathway. Recent highlights are insights 

into the activation pathway of the μ receptor (data link 1) as well as 

dynamic and kinetic elements underlying functional selectivity [50]. 

Authors applied an adaptive sampling regime and Markov state 

models combined with the information theory to build the transition 

pathways. Still, such an approach requires a total simulation time of 

∼240 μs to achieve convergence of the free-energy landscape, 

which is not achievable in routine simulation work. Enhanced 

sampling approaches such as metadynamics combined with the 

principle of maximum caliber proved to be a more efficient strategy 

for estimating the thermodynamic and kinetic properties of GPCR 

activation at an affordable computational cost [51]. Another recent 

work used MD simulations in an optimized string-of-swarms 

framework to calculate free-energy landscapes of β2-adrenoceptor 

activation [52]. This work revealed new insights into how molecular 

microswitches govern the equilibrium between conformational 

states. 

4.4. Web resources for time-resolved simulation data 

The generation, analysis, and visualization of MD simulations 

require specialized software and efficient storage resources, which 

traditionally limited the audience to which this technology is 

available. Fortunately, several initiatives are currently working to 

provide online resources for MD data sharing, approaching the 

valuable information of simulations to both computational and 

nonexpert scientists [53]. A very recent development is GPCRmd—

the first platform that features interactive visualization of time-

resolved data [16]. GPCRmd is a community-driven database and 

web platform that provides free access to a vast number of GPCR 

MD simulations. It also includes a comprehensive set of tools to 

easily analyze the protein motions and interactions formed during 

the simulation. Moreover, it provides the possibility to map 

experimental data on the structure, such as genetic variants, 

mutations, and X-ray crystallography density maps. 

The strength of GPCRmd is that it allows monitoring how subtle 

differences in protein sequence translate into dynamics of ligand–

receptor interaction, receptor flexibility, and function. For instance, 

the serotonin receptors 5-HT1B (data link 2) and 5-HT2B (data link 

3) expose differences in functional selectivity 

https://submission.gpcrmd.org/view/199/
https://submission.gpcrmd.org/view/90/
https://submission.gpcrmd.org/view/94/
https://submission.gpcrmd.org/view/94/
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on ergotamine binding. By comparing the time-resolved ligand 

interaction pattern of the two receptors, we can pick up important 

differences that are not evident from the static structure (Figure 3b). 

In particular, highly frequent ergotamine interactions with TM5 are 

found in the 5-HT2BR but lack in the 5-HT1BR. As previously 

described by Martí-Solano et al. [54], this may cause a difference in 

TM5 and TM6 stabilization and the conformational sampling of 

diverse functional receptor states. In fact, this is evident when 

monitoring the most frequent contacts in the entire intramolecular 

networks of sampled receptor conformations (Figure 3c). A 

functionally relevant contact between residues 3 × 50 and 6 × 30 

(ionic lock) is frequently formed in 5-HT2BR, thus reducing the 

opening of the G protein binding site. This goes along with the 

experimental observation that the 5-HT2BR shows decreased ability 

to engage the G protein [42]. 

Apart from GPCRmd, another useful database for the study of 

GPCR dynamics is MemProtMD [17]. It incorporates coarse-

grained simulations of membrane-embedded protein structures, 

describing protein–lipid interactions. The simulation setup is 

performed using their automated pipeline, which allows the lipid 

bilayer assembly around membrane protein structures released from 

the PDB [55]. The obtained simulations and the results of 

subsequent analysis are freely accessible online, including 

interactive 3D visualizations of the assembled bilayer and 2D 

visualizations of lipid contact data and membrane protein topology. 

In addition, they provide ensemble analyses to describe conserved 

lipid interaction information across proteins, families, and for the 

entire database of PDB entries. It is also worth mentioning the 

general-purpose data repositories such as FigShare 

(https://figshare.com/) or Zenodo (http://zenodo.org/), which 

contain large collections of heterogeneous MD data. However, in 

general, such resources do not aim to integrate, harmonize, validate, 

or standardize the deposited data, which makes it complicated to 

filter suitable data from the huge variety of deposited files. 

Finally, there exist several web tools to guide and facilitate the 

setup of realistic GPCR/membrane simulations (CHARMM-GUI 

[18], GPCR-ModSim [19], MERMAID [20], PACKmol [21], etc.). 

A very recent development is the hybrid molecular 

mechanics/coarse-grained (MM/CG) Webserver, which automates 

https://figshare.com/
http://zenodo.org/
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the setup of MM/CG simulations for human GPCR/ligand 

complexes [22]. Such hybrid MM/CG setup allows for an 

improvement of simulation speed. 

4.5. Resources for the GPCR functional outcome 

As highlighted throughout this article, genetic and protein sequence 

variability combined with induced structural dynamics determines 

the final functional outcome. A long-standing, open-access, and 

expert-curated database for GPCR functionality is the 

IUPHAR/BPS Guide to Pharmacology [23]. Presently, it contains 

functional data for about 400 GPCRs compiled from a multitude of 

research studies including information about ligands, canonical G 

protein coupling properties, and downstream signaling. The value of 

this database arises from their approach to document selection, data 

curation, and annotation. Interestingly, information from the 

IUPHAR/BPS Guide to Pharmacology, among other sources, has 

recently been incorporated in GPCRdb to provide a browser of G 

protein coupling (https://gpcrdb.org/signprot/couplings). However, 

interpretation of data across different studies is often complicated 

because of large variability in experimental setups. Thanks to 

advances in high-throughput screening, functional data are rapidly 

increasing and available for large data sets (e.g. > 100 receptors) 

using consistent experimental protocols [56,57]. Systematic data 

sets have been exploited for creating the PRECOG web server, 

which allows predicting GPCR coupling probability of specific G 

proteins [24]. Another strong research focus is to systemize and 

harmonize information for so-called biased (ant)agonists (BiasDB 

[25] and GPCRdb). Although there is an imprinted signaling profile 

for each receptor, biased ligands are able to shift the signaling 

profile to specific pathway(s)—information of high value for drug 

development programs toward more efficient and safer drugs. 

5. Outlook 

Recent innovations in sequencing techniques, protein structure 

determination, and high-throughput signaling profiling have 

substantially improved our understanding of the complex signaling 

properties for GPCRs. Combined with computer simulation of time-

resolved receptor motion, we have obtained a first glimpse into the 

https://gpcrdb.org/signprot/couplings
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underlying molecular mechanisms that drive receptor functionality. 

Yet, a complete comprehension of the molecular GPCR machinery 

will require far more investigation. Structurally, we are just 

beginning to understand the mechanistic basis of the dynamics of 

engaged intramolecular networks that are linked to signaling bias or 

allosteric modulation. Many other questions remain completely 

unsolved and require the integration of information across multiple 

spatial and temporal scales. Tackling this challenge will bring us 

closer to link GPCR sequence, structure, and dynamics to cellular 

physiology, which is a critical milestone for the rational design of 

improved drugs. 
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3.4. GPCRmd uncovers the dynamics of the 3D-
GPCRome 

MD simulation is a well-established method for the characterization 

of the structural motions of GPCRs, which highly determine their 

functionality. However, the study of MD simulations typically 

requires efficient storage resources and specialized software, 

limiting the dissemination of this data to specialists in the field. To 

bridge this gap, we have created GPCRmd (www.gpcrmd.org), a 

community-driven online resource that aims to approach the 

information of MD simulations to all researchers interested in 

GPCRs. As such, GPCRmd provides access to simulations of most 

GPCR structures solved to date, together with the necessary 

metadata to ensure transparency and reproducibility. Moreover, it 

facilitates the analysis of this data, as it is equipped with a 

comprehensive set of web-based tools for the interactive 

visualization and analysis of the MD simulations. This includes 

multiple selection options to create representations of the simulated 

systems, as well as tools to study the interaction networks, root-

mean-square deviation (RMSD), formation of tunnels and channels, 

and mapping of GPCR variants on the protein structure, among 

many others. We also implemented a meta-analysis of GPCR 

simulations to compare and cluster the available simulations, or a 

subset of interest, based on their interaction patterns. We 

demonstrate the use of GPCRmd and its data by performing 

comparative analyses across multiple receptors to shed light on two 

important aspects of GPCR biology, namely the dynamics of water 

networks and the binding of allosteric sodium. Overall, being an 

open, intuitive, and standardized resource, GPCRmd has the 

potential to foster interdisciplinary research, data reproducibility, 

and transparent dissemination of GPCR MD simulations. 

The PhD candidate was responsible for the design and development 

of multiple sections of the GPCRmd platform, with special focus on 

the visualization and analysis tools. She was also in charge of the 

maintenance of the server and was involved in writing the 

manuscript. 

http://www.gpcrmd.org/
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Abstract 

G-protein-coupled receptors (GPCRs) are involved in numerous 

physiological processes and are the most frequent targets of 

approved drugs. The explosion in the number of new three-

dimensional (3D) molecular structures of GPCRs (3D-GPCRome) 

over the last decade has greatly advanced the mechanistic 

understanding and drug design opportunities for this protein family. 

Molecular dynamics (MD) simulations have become a widely 

established technique for exploring the conformational landscape of 

proteins at an atomic level. However, the analysis and visualization 

of MD simulations require efficient storage resources and 

specialized software. Here we present GPCRmd 

(http://gpcrmd.org/), an online platform that incorporates web-based 

visualization capabilities as well as a comprehensive and user-

friendly analysis toolbox that allows scientists from different 

disciplines to visualize, analyze and share GPCR MD data. 

GPCRmd originates from a community-driven effort to create an 

open, interactive and standardized database of GPCR MD 

simulations. 

http://gpcrmd.org/
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1. Introduction 

GPCRs are abundant cell surface receptors accounting for ~4% 

(800) of all human genes. They play a vital role in signal 

transduction by regulating numerous aspects of human physiology 

and are the targets of 34% of the drugs approved by the US Food 

and Drug Administration1. Important advances in protein 

engineering, X-ray crystallography and cryo-electron microscopy 

(cryo-EM) over the past decade have led to an exponential increase 

in the number of available GPCR structures (3D-GPCRome) 

deposited in the Protein Data Bank (PDB) 

(GPCRdb http://gpcrdb.org/structure/statistics, 2019). This rapid 

growth has fueled the development of the GPCRdb2, an online 

resource for GPCR reference data, analysis, visualization and data-

driven experiment design. This resource provides a wide range of 

tools including a knowledge-based resource for GPCR crystal and 

cryo-EM structure determination3. 

However, static high-resolution structures provide little information 

on the intrinsic flexibility of GPCRs, a key aspect to fully 

understand their function. Important advances in the computer 

science field have transformed computer simulations into a very 

powerful technique to explore protein conformational landscapes. In 

particular, all-atom molecular dynamics (MD) simulations have 

proved useful to complement experiments and characterize GPCR 

fluctuations at the atomic level4. Likely due to technical and 

sustainability limitations, only a modest number of online resources 

cover MD simulations (reviewed in ref. 5). Recent large 

improvements of internet bandwidth, compression of simulation 

data and storage capacities now enable faster and larger online 

repositories that host atom trajectories from MD simulations. 

Moreover, new visualization6 and online file-sharing7,8 tools have 

opened the door to streaming and remotely inspecting MD 

trajectories online, thereby removing the need for specialized MD 

software5. 

Here we present the GPCRmd platform (Fig. 1), an open access and 

community-driven research resource for sharing GPCR MD 

simulations with the aim of mapping the entire 3D-GPCRome. This 

new resource paves the way for GPCR scientists from very different 

https://www-nature-com.sare.upf.edu/articles/s41592-020-0884-y#ref-CR1
http://gpcrdb.org/structure/statistics
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disciplines to perform comparative studies on universal aspects of 

GPCR dynamics. We showcase the potential of GPCRmd for 

exploring key aspects of GPCR dynamics by performing 

comparative analyses of internal water molecules and sodium ion 

binding in multiple GPCR MD simulations. The open and intuitive 

design of the GPCRmd platform will not only foster 

interdisciplinary research and data reproducibility, but also 

transparent and easy dissemination of GPCR MD simulations. 

2. Results 

2.1. MD simulations from all GPCR classes structurally solved to 

date 

GPCRmd is a community-driven resource that provides direct and 

interactive visualization of MD trajectories, and that is only 

contingent on a web browser. As a result, the GPCRmd platform 

grants easy access for both computational and nonexpert scientists. 

Moreover, we equipped it with a comprehensive set of tools to 

easily analyze molecular interactions and protein motions involving 

conserved, pharmacologically relevant or disease-related residues 

and structural motifs potentially involved in GPCR function 

(Fig. 1b,c). In adherence to the findable, accessible, interoperable 

and reusable principles for scientific data management9, GPCRmd 

provides open access to all of its data and simulations protocols 

(Fig. 1a). Corresponding data are deposited either by individual 

contributions or biannual updates from the GPCRmd community. 

We initiated the GPCRmd database by creating a comprehensive 

MD dataset including at least one representative structure from each 

of the four structurally characterized GPCR classes. To allow for 

comparison of ligand-induced effects across receptors, this first set 

comprises 98 PDB identifiers from 38 different receptor subtypes 

(Fig. 2) in their apo form or bound to a natural ligand, surrogate 

agonist or antagonist (see Methods). To generate reproducible data, 

we carefully designed a common protocol for the collective set-up 

and simulation of all structures listed in Fig. 2 (see Methods) and 

made it publicly available at https://github.com/GPCRmd/MD-

protocol. Each system was simulated for 500 ns in three replicates 

(total time 1.5 µs) allowing for structure relaxation as well as 

sampling of receptor flexibility. At the time of writing, the 

https://github.com/GPCRmd/MD-protocol
https://github.com/GPCRmd/MD-protocol
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GPCRmd platform holds 588 GPCR MD simulations from the 

GPCRmd community plus 28 simulations from individual 

contributions totaling to an aggregated simulation time of ~400 µs. 

 

Fig. 1. GPCRmd framework. GPCRmd is an online resource for storage, 

streaming and analysis of GPCR MD simulation data from individual 

contributions and biannual collective updates. An intuitive search algorithm 

allows for comprehensive screening of the database. a, The user obtains detailed 

information about the simulation data via the simulation report. b, A GPCR-

specific workbench enables interactive visualization (GPCRmd viewer) and 

analysis (GPCRmd toolkit) for individual simulations. c, Finally, the comparative 

analysis and clustering of multiple MD simulations helps finding relationships 

between receptors based on nine different molecular interaction types. 
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Fig. 2. The 3D-GPCRome. Mapping the GPCR structures contained in the first 

GPCRmd release onto the 3D-GPCRome tree. The first GPCRmd dataset of 

simulated structures (191 systems at the time of manuscript preparation) covers 

100% of GPCR classes, 71% of receptors subtypes and 80% of GPCR families 

with solved structure at the time of writing, and accounts for approximately 35% 

of all GPCR structures deposited in the PDB (black PDB identifiers). Colored 

circles differentiate between active (green), intermediate (yellow) or inactive 

(red) receptor states. 

2.2. GPCRmd viewer: sharing and interactive visualization of 

GPCRs in motion 

To provide easy sharing and interactive visualization of GPCR MD 

simulations within the 3D-GPCRome, we created the GPCRmd 

viewer (Fig. 3). This viewer builds on MDsrv6, a recently published 

tool that allows easy trajectory sharing and makes use of the 
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interactive capabilities of the popular web-based structure viewer 

NGL5. 

 

Fig. 3. The GPCRmd viewer. a–f, Interactive visualization of GPCR MD 

simulations allows for streaming simulations (a), structural mapping of mutation 

data and clinical variants (b), predefined selections of simulation components and 

ligand binding sites (c), customized selections that enable tailored visualization of 

trajectories (d), knowledge-based selections for visualization of GPCR conserved 

regions (e) and density maps allows for comparison between experiments and 

MD simulations (f). A set of predefined, custom and knowledge-based selections 

enables quick exploration of particular regions of the map such as the ligand 

binding pocket. Flexible options allow users to change the color of the classical 

difference (Fo – Fc) and composite (2Fo – Fc) map, style (for example, 

wireframe or contour) or the surface and zoom levels. 

The GPCRmd viewer provides interactive structural analysis of the 

simulations through on-click actions (Fig. 3b). To account for the 

fact that almost 25% of the GPCR functional sites show an average 

of at least one polymorphism, we mapped all GPCR variants10 and 

site-directed mutations11 from the GPCRdb2 to each GPCR 

structure. Activation of the modes ‘Show variants’ or ‘Show 

mutations’ displays, respectively, each variant or mutation as small 
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beads (Fig. 3b). A click on a bead reveals further information on the 

variant/mutation, including a link to experimental data and the 

original publication. A separate on-click mode, ‘Show distances’, 

exploits NGL5 to measure atom pair distances. 

The powerful selection capabilities of the viewer (Fig. 3c–e) enable 

fast inspection of trajectories. Standard selections quickly visualize 

any molecule type in the simulation, neighboring molecules at a 

custom distance of each other or specific positions along the protein 

sequence. It is worth noting that the GPCRmd viewer makes use of 

GPCRdb generic residue numbering12 by automatically linking each 

residue to its respective index position. Predefined knowledge-

based selections enable more specific displays such as residues 

within 2.5 Å of the ligand (Fig. 3c), individual GPCR helices or 

highly conserved positions and functional motifs (Fig. 3e). In 

addition, the NGL selection language (see Documentation) enables 

the use of custom selection keywords to create tailored 

representations of any atom or part of the trajectory loaded in the 

GPCRmd viewer (Fig. 3d). Since several of these keywords stand 

for the chemical nature or secondary structure of proteins, they are 

particularly helpful for visual analysis of GPCR dynamics. 

Furthermore, the GPCRmd viewer provides visualization of X-ray 

and electron microscopy density maps from the PDB. This allows 

for atomic-level comparison of the GPCR conformational landscape 

inferred from experimentally determined structures and observed in 

MD simulations (Fig. 3f). 

2.3. GPCRmd toolkit: investigation of GPCR dynamics through 

interactive analysis 

The GPCRmd toolkit provides intuitive analysis of the MD 

simulations by complementing and directly interacting with the 

GPCRmd viewer (Fig. 1b, left). The toolkit allows to compute 

custom distances, root mean square deviation (r.m.s.d.), and 

averaged water density maps for individual simulations (Fig. 1b, 

right). In addition, it provides interactive tools to qualitatively and 

quantitatively compare the noncovalent landscape of contacts for 

the entire GPCRmd dataset (Fig. 1b, right). 

 



 

139 

2.3.1. Interaction network tool 

To easily identify relevant noncovalent contacts in GPCRmd 

simulations, the GPCRmd toolkit uses Flareplots13, an interactive 

circular representation of contact networks that can be displayed per 

frame or summarized for the complete trajectory (Fig. 4, right). The 

interaction network tool automatically integrates the GPCRmd 

viewer with the GPCRmd toolkit, making it straightforward to 

detect, for instance, differences in the hydrogen bonding network 

dynamics between active and inactive receptor simulations. The 

current version of the interaction network tool focuses on intra- and 

inter-helical interactions including nine different types of 

noncovalent interaction (see Methods). 

2.3.2. Interaction frequency tools 

The GPCRmd toolkit provides two dedicated tools to study key 

electrostatic interactions, namely hydrogen bonds and salt bridges. 

The hydrogen bonds tool identifies GPCR intra- and intermolecular 

hydrogen bonds formed during the simulation, whereas the salt 

bridges tool identifies GPCR intramolecular salt bridges. Moreover, 

these tools allow studying the interplay between the receptor and 

the membrane by computing protein–lipid interactions. 

Furthermore, it can identify protein residues involved in ligand 

binding through the ligand–receptor contacts tool. The tool outputs 

the interaction strength at each residue by computing its contact 

frequency (Fig. 1b, right). All three contact tools provide interactive 

visualization of the results in the GPCRmd viewer. 

2.3.3. The r.m.s.d. and distance tools 

The GPCRmd toolkit can monitor a change in distance between any 

pair of atoms during the simulation. Alternatively, per-frame atom 

distances can be measured and displayed in the viewer via on-click 

actions. While distance measurements can provide relevant 

information on protein structure (for example, functionally relevant 

protein motions, bond formation/breaking and so on), r.m.s.d. 

calculations are more suited to quantify structural stability and 

conformational changes. The r.m.s.d. tool measures the structural 

difference of protein and ligand atoms at any point in the simulation 

with respect to the initial frame. Therefore, it can be used to monitor 
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simulation integrity or structural deviations throughout the 

simulation. Both tools generate time course plots (Fig. 1b, right) 

that can interactively link each data point to its respective frame in 

the viewer. 

 

Fig. 4. Interaction network tool. Interactive visualization and analysis of 

intramolecular contacts. Summary plot for the hydrogen bonding network (that is, 

average over the entire trajectory) obtained by selecting hydrogen bonds as 

interaction type. Circular plots (right) for the inactive β2AR in complex with 

timolol (PDB ID 3D4S, upper panel) and the active β2AR in complex with 

adrenaline (PDB 4LDO, lower panel), where line thickness represents contact 

frequency. For clarity, only contact frequencies over 10% are shown. Comparison 

of these plots reveals important differences specifically at the intracellular 

coupling site. The inactive receptor displays contacts that help maintain the 

receptor in a closed state, such as the characteristic ionic lock between R3x50 and 

E6x30 (ref. 30), a TM5–TM6 linkage established by Y5x58 to the backbone of 

L6x34, and a TM6-Helix8 connection between K6x29 and D8x49. Such contacts 

are missing in the active β2AR conformation. The user can interactively explore 

the dynamics of the plotted contacts in the circular plot (right panel) in a 

structural context (left panel). Residues are numbered according to their GPCRdb 

generic numbering scheme12. 
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2.3.4. Water volume distribution tool 

Due to the vital role of internal water molecules in GPCRs14, we 

equipped the GPCRmd toolkit with a water density map tool. This 

tool can quickly display an averaged water density map of the MD 

trajectory under study in the GPCRmd viewer (Fig. 1b, right), thus 

allowing to monitor, for example, the formation of the continuous 

internal water channel known to be essential for GPCR activation15. 

2.3.5. Tunnels and channels tool 

Just like all proteins, GPCRs hold an intricate system of tunnels and 

channels that can facilitate the access of water, ions, lipids and 

ligands by connecting the outside environment to the receptor 

core16,17. Since these pathways may change substantially over time, 

we provided the GPCRmd toolkit with a tool to analyze and display 

tunnels and channels. The new widget allows users to select among 

the list of computed tunnels and channels to immediately display 

them in the GPCRmd viewer using different visualization schemes. 

2.4. Functional hotspots discovered through meta-analysis of 

GPCR simulations 

The GPCRmd platform can uniquely compare GPCR simulations 

within the 3D-GPCRome (Figs. 1c and 2). We developed a module 

specifically comparing multifold GPCR simulations to uncover 

universal or distinct mechanisms governing the structural dynamics 

of these receptors. This module computes the contact frequency of 

each residue pair for multiple simulations and displays a global 

comparative analysis via an interactive heatmap plot (Fig. 5a, left). 

The tool also performs clustering analysis of the contact frequency 

data to hierarchically classify each receptor and display the 

resulting tree alongside the heatmap plot (Fig. 5a, left). To further 

facilitate the interpretation of large heatmaps, we added interactive 

analysis and visualization capabilities of selected clusters using 

Flareplots13 and NGL5. 
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Fig. 5. A water bridge signature revealed by comparative analysis using the 

GPCRmd. a, Heatmap of water-mediated interactions of clusters belonging to 

the β2AR and OX2R. The plot displays each residue pair (columns) for each 

GPCR (rows). Yellow to red color scale stands for low to high contact frequency. 

Users can select up to nine different noncovalent interaction types to perform the 

analysis across the complete GPCRmd database or just using a custom subset of 

simulations. On-click actions provide detailed information on the specific 

interaction and system involved for each cell of the heatmap. b, Representative 

water-mediated interactions for the investigated clusters are shown in circular 

plots. Corresponding structural depictions of interactions are found below the 

circular plots. Residues are numbered according to their GPCRdb generic 

numbering scheme12. 
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To demonstrate the use of the meta-analysis tool, and due to their 

critical role in receptor function14,15, we investigated the interaction 

fingerprint of water molecules in GPCRs. Along with previously 

described18 conserved water networks, this analysis revealed other 

water-mediated interactions that are conserved among different 

receptor subtypes and reported here. For example, in line with 

Venkatakrishnan et al.18, the β2-adrenoceptor (β2AR) and OX2-

receptor (OX2R) display a common water network that links TM1 

(N1x50) and TM2 (D2x50) (Fig. 5b, highlighted in purple). This 

water network is extended from TM2 (2x50) to TM7 (7x49) in the 

OX2R cluster. Such a water network extension is not observed in 

the β2AR cluster due to closer proximity of residues 2x50 and 7x49, 

which enables direct, unmediated, contacts. Another conserved 

water-mediated feature is a bifurcated polar network linking TM6 

(6x47, 6x51) and TM7 (7x37) via helix backbones in the β2AR and 

the OX2R clusters (Fig. 5b, highlighted in green). Our study shows 

that this bifurcated network is less prominent in active structures 

(Supplementary Fig. 1). Taking into account that TM6 undergoes 

large conformational changes on receptor activation, it is tempting 

to speculate that uncoupling the interactions between individual 

water molecules in this bifurcated network represents a step during 

receptor activation. 

Likewise, our analysis reveals important differences between both 

clusters. A water bridge between intracellular loop 1 (ICL1, 12x49) 

and helix 8 (H8, 8x49) is found to be only present in the β2AR 

(Fig. 5b, highlighted in orange). Further studies (for example, site-

directed mutagenesis) could be used in the future to investigate 

whether this water bridge contributes to the distinct coupling 

efficacy and/or specificity shown by the β2AR (principal signaling 

pathway, Gs family19) and OX2R (principal signaling pathways; Gs 

family, Gi/Go family and Gq/G11 family19). Finally, our collective 

analysis reveals a water bridge between TM3 (3x41) and TM4 

(4x56) only observed in the β2AR (Fig. 5b, highlighted in gray) and 

likely related to the striking change in receptor stability observed on 

mutation of residue E3x41 in experiments20. 
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2.5. Exploiting the entire GPCRmd dataset: custom analysis of 

sodium ion interactions across class A GPCRs 

We made the entire GPCRmd dataset available for download 

(see Methods), thus opening the door for the scientific community 

to perform comparative analyses of multiple simulations across 

several receptor structures, families, subtypes and classes. To 

demonstrate the value of such a comprehensive dataset, we studied 

sodium ion (Na+) interaction in GPCRs21, an almost universal, albeit 

poorly understood, mechanism of allosteric modulation of these 

receptors22. We analyzed Na+ interaction to conserved orthosteric 

(3x32) and allosteric (2x50) residues in 183 simulations (61 

different apo structures × three replicas) covering 26 different class 

A receptor subtypes. The markedly different frequencies of 

Na+ interaction with these two residues enable receptors to be 

clustered in three groups (I, II and III, Fig. 6a,c). Note that our 

dataset (3 × 0.5 μs) provides valuable insights into sodium 

interaction sites but it is not sufficient to conclude about binding 

kinetics. 

In line with previous studies using multiple simulations23, our 

analysis shows that Na+ binds to D2x50 and/or position 3x32 in 

most of the receptor subtypes (Fig. 6a). Group I (serotonin, 

dopamine and nociception receptors) shows high sodium interaction 

frequencies to positions 3x32 and 2x50, the latter being stabilized 

by a hydrogen bonding network often composed of D2x50, S3x39, 

N7x45 and S7x46 (so-called DSNS motif) (Fig. 6b). The high 

interaction frequency to both positions implicates that at times 

Na+ ions bind simultaneously to position 3x32 and the allosteric site 

at D2x50. This seems to be a consequence of a higher negative net 

charge at the extracellular side (Fig. 6c,d), which increases the local 

concentration of positively charged Na+ around the receptor 

entrance, and likely facilitates the simultaneous entrance of a 

second ion. Notably, despite a completely conserved DSNS motif, 

group II (β-adrenergic and muscarinic receptors) shows marginal 

interaction frequency at D2x50, while still exhibiting a high 

interaction frequency at 3x32. Visual inspection of the simulation 

reveals hydrophobic barriers that hamper Na+ passage from 3x32 to 

2x50 (Fig. 6c), in line with previous MD simulation studies23,24. In 

contrast to group II, we find high interaction frequencies at position 

2x50 for group III and none or only marginal contacts with 3x32. 
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Most receptors of this group (for example, adenosine A1A and A2A, 

or the chemokine receptor CXCR4) lack an aspartate in position 

3x32 allowing for direct diffusion to position 2x50 (Fig. 6c). 

Despite having a D3x32 (Fig. 6b), only low binding is observed 

during the simulated time frame at this position for a small 

subgroup of receptors including histamine H1 and opioid μ and δ 

receptors. More simulation time would be required to improve the 

sampling of ion binding to D3x32. Finally, in a particular subset of 

receptors, Na+ binds neither to D2x50 nor to position 3x32 within 

the studied time frame (group IV, Fig. 6a). In fact, slower 

Na+ binding kinetics has previously been reported23 and could be 

the consequence of blocked access to the binding site from the 

extracellular side (for example, receptors taking up ligands from the 

lipid bilayer). 

While our results confirm the essential role of D2x50 for allosteric 

sodium binding14,25 in class A GPCRs, they also reveal that the 

presence or absence of D3x32 in the orthosteric binding site 

determine distinct Na+ binding profiles. This analysis exemplifies 

the potential of the comprehensive GPCRmd dataset to investigate 

how GPCR sequence, structure and dynamics can jointly contribute 

to receptor allosteric modulation. 

3. Discussion 

In the last decade, static structures in the 3D-GPCRome have 

predominantly been described as active, intermediate or inactive 

states. However, a growing body of research suggests that GPCRs 

are not two- or three-state systems but exhibit a wide range of 

conformational states with sometimes subtle yet important 

differences. While several experimental techniques such as nuclear 

magnetic resonance (NMR)26, double electron-electron resonance 

(DEER)27 or single-molecule fluorescence energy transfer 

(smFRET)28 have provided relevant insights into the dynamics and 

flexibility of GPCRs, MD simulations have emerged as the most 

promising opportunity to study the complexity of GPCR 

conformational dynamics in atomistic detail4. Moreover, MD 

simulations can resolve mechanistic elements at time scales and 

conditions that are not always accessible with experimental 

techniques. 
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We have demonstrated the use of the GPCRmd platform by 

performing comparative analyses across multiple receptors of two 

important aspects of GPCR biology, namely water network and 

allosteric Na+ interaction analysis. We were able to pinpoint 

relevant structural features that help improve our current 

understanding of the diversity of GPCR function. 

 

Fig. 6. Allosteric Na+ ion interaction in class A GPCRs. a, Na+ interaction 

frequency at D3x32 (green) and D2x50 (orange) in class A GPCRs across 61 

structures including 26 different receptor subtypes. Receptor subtypes and 3D 

structures are identified by UniprotKB and PDB identifiers, respectively. The 

radar plot shows the prevalence of sodium interactions (0–100%) over the total 

accumulated simulation time of 1.5 µs (3 × 0.5 µs). b, Sequence alignment of 

sodium binding sites for the GPCR subtypes included in the simulated dataset. 

Allosteric binding consists of a multi-step binding process typically initiated with 

accumulation at the extracellular receptor side followed by receptor penetration 

through the orthosteric binding site (visiting D3x32, if present) before 

progressing to the allosteric site D2x50. c, GPCRs can be classified into three 

groups based on the sodium interaction profile. The interaction profile is driven 

by the structural features of the sodium entrance channel. d, Extracellular net 

charge and receptor entrance of a second ion. 
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3.1. A platform for interdisciplinary investigation of the 3D-

GPCRome 

The GPCRmd is designed to facilitate interactions and data 

exchange between GPCR scientists of different disciplines 

including structural and evolutionary biologists, computational and 

medicinal chemists and protein engineers (Table 1). Our tool will 

become a useful asset for experimental laboratories by providing 

open access to the dynamic context of specific GPCRs, hence 

directing or assisting functionally relevant experiments such as 

cross-linking or mutagenesis studies. Similarly, protein engineers 

and structural biologists will now be able to employ the GPCRmd 

workbench to quickly identify specific flexible regions that 

potentially require protein stabilization. 

Table 1. Examples of how researchers from different scientific disciplines 

can make use of the GPCRmd database 

User Usage GPCRmd features Added value 

Protein engineers Stabilizing proteins 

for crystallization. 

Detection of flexible 

receptor regions that 

require stabilization 

to improve 

crystallization 

success. 

GPCRmd 

workbench 

including the 

GPCRmd viewer 

and toolkit 

Flexible receptor 

regions are poorly 

captured in 

experimental density 

maps 

Crystallographers Retrospective 

refinement of 

experimental density 

maps 

    

Crystallographers 

Biophysicists 

(1) Detection of 

highly flexible 

regions that explain 

low-resolution 

regions in 

experimental density 

maps. 

GPCRmd viewer. 

MD streaming with 

overlaid 

experimental 

density maps 

Flexible receptor 

regions are poorly 

captured in 

experimental density 

maps 

(2) Detection of 

stable water or ion 

binding sites that 

can explain 

unmatched electron 

GPCRmd 

workbench 

including the 

GPCRmd viewer 

for simulation 

Water and ion binding 

are poorly captured in 

experimental density 

maps 



148 

density areas. streaming and the 

water map tool in 

the GPCRmd 

toolkit 

(3) Rotamers and 

protonation states. 

GPCRmd viewer 

for simulation 

streaming 

Rotation states and 

corresponding 

protonation states are 

difficult to obtain from 

experimental density 

maps 

Study of interaction 

networks critical for 

receptor 

functionality. Search 

for receptor regions 

to implement linkers 

or signaling probes 

(FRET, NMR and so 

on) to study receptor 

functionality. 

GPCRmd 

workbench 

including the 

GPCRmd viewer 

and toolkit 

Receptor dynamics are 

not available in 

experimental density 

maps 

Evolutionary 

biologists 

Structural 

relationships and 

diversity across 

different GPCRs. 

How does evolution 

(that is, small 

sequence 

differences) affect 

receptor dynamics? 

Receptor meta-

analysis and 

clustering tool 

Receptor dynamics are 

not available in 

experimental density 

maps 

Medicinal 

chemists and drug 

designers 

Improvement of 

drug–receptor 

interactions and 

design of new drugs. 

    

Medicinal 

chemists and drug 

designers 

Biomedical 

researcher and 

clinicians for 

personalized 

medicine 

(1) Exploration of 

ligand–receptor 

contacts. 

Ligand–receptor 

contacts tool 

Stability of ligand–

receptor interactions 

cannot be deduced 

from experimental 

density maps 

(2) Detection of 

indirect interactions 

(that is water or ion-

mediated) that are 

crucial for ligand 

binding. 

Ligand-receptor 

contacts and water 

volume distribution 

tools 

Stability of ligand–

receptor interactions 

cannot be deduced 

from experimental 

density maps 
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(3) Flexible and 

transient switches. 

Interaction network 

and interaction 

frequency tools 

Receptor dynamics are 

not available in 

experimental density 

maps 

Design of treatment 

strategies for 

personalized 

medicine. 

Estimation of the 

impact of 

polymorphisms/vari

ants on drug 

response through 

their ability to alter 

drug–receptor 

interactions or 

receptor dynamics in 

regions relevant for 

receptor 

functionality (for 

example, PIF motif, 

G-protein coupling 

site). 

Cross-linked 

mutation and 

variant information 

The impact of 

polymorphism/variants 

on the strength of 

ligand–receptor 

contacts or receptor 

dynamics cannot be 

deduced from static 

structures 

Computational 

biologists (MD 

novices and 

experts, 

bioinformaticians) 

Aid in experimental 

design and 

comparison of set-

up and results in 

terms of force field 

performance, impact 

of ligands or 

mutations. Support 

for modeling 

dynamic regions 

able to adopt distinct 

conformations. 

Guide docking 

experiments on the 

basis of the sampled 

conformational 

space. 

Simulation protocol 

and input 

structures, 

GPCRmd viewer 

for simulation 

streaming, 

GPCRmd 

workbench 

including the 

GPCRmd viewer 

and toolkit 

Receptor dynamics are 

not available in 

experimental density 

maps 

Students and 

teachers 

Visually learning 

about protein 

dynamics: for 

example, receptor 

inactivation, water 

channel formation in 

active receptor 

structures, allosteric 

binding of sodium 

GPCRmd 

workbench 

including the 

GPCRmd viewer 

and toolkit 

Dynamics cannot be 

visualized in printed 

form and trajectories 

are not part of 

additional teaching 

materials 
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ions. 

Reviewers and 

publishers 

Data made available 

for scrutiny of MD 

articles. 

GPCRmd platform Transparency and 

reproducibility 

Moreover, the GPCRmd will be of great benefit to medicinal 

chemists and drug designers. They will be able to quickly use 

atomic-level information on the stability/strength of specific ligand–

receptor interactions, and the binding of water molecules or ions 

using the ligand–receptor contacts or water volume distribution 

tools (see Fig. 1 and Table 1). In addition, drug design scientists can 

use GPCRmd to investigate potential ligand binding and unbinding 

pathways based on the dynamics of specific structural elements 

such as loops, hence aiding the design of new or improved 

compounds. Furthermore, the GPCRmd can provide valuable 

structural insights into the location of natural variants and its 

potential impact on drug binding or receptor functionality. Our 

cross-referenced data allows easy mapping of variants and site-

directed mutations onto the receptor structure and investigation of 

their dynamics during the simulations (Fig. 1b, right, and Fig. 3b). 

This could guide further investigations to predict drug efficacy or 

adverse reactions in individuals with a specific variant and in turn 

support the selection of more efficacious and safer drug treatments. 

Beyond wet-laboratory applications, GPCRmd is an important 

dissemination resource for computational biologists, ranging from 

students and MD novices to MD experts and bioinformaticians from 

related fields. Our platform offers a harmonized database to perform 

future comparative studies across different MD setups, force fields, 

ligands, lipid compositions or GPCR variants, which offers a 

substantial advantage over currently available archives or data 

repositories such as FigShare (https://figshare.com/) or Zenodo 

(http://zenodo.org/). 

3.2. The GPCRmd consortium: reproducible and sustainable 

research in GPCR MD simulations 

This community-driven effort has laid the foundation of the 

GPCRmd consortium, an open community of GPCR computational 

https://figshare.com/
http://zenodo.org/
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researchers driving the centralization, dissemination, and 

development of open source and reproducible analysis of massive 

amounts of GPCR MD data. We believe that GPCRmd will enhance 

the dissemination of scientific results by offering a platform to 

make published protocols and simulation data publicly available. 

This will promote transparency, consistency and reproducibility in 

the field of GPCR dynamics. On the other hand, community 

engagement will overcome one of the most important challenges 

faced by this kind of resource, namely sustainability 

(Supplementary Note 1). The implementation of the GPCRmd 

consortium under the umbrella of the active European Research 

Network on Signal Transduction (ERNEST, https://ernest-

gpcr.eu)29 will provide support to (1) foster the development of new 

analysis tools (for example, conformational analyses and dynamic 

pharmacophore models), and (2) increase the coverage of the 3D-

GPCRome with future releases of the GPCRmd platform. While the 

first GPCRmd dataset from the consortium already maps more than 

70% of GPCR subtypes within the 3D-GPCRome, future biannual 

releases as well as individual contributions from the scientific 

community will further increase this coverage bridging the gap 

between solved and simulated structures. 

4. Methods 

4.1. MD simulations 

The first GPCRmd includes 98 different GPCR structures bound to 

their natural ligand (for example, sphingosine-bound S1P1R), an 

agonist (for example, ergotamine-bound 5HT2BR) or an antagonist 

(for example, alprenolol-bound β2AR). In addition to ligand–bound 

structures, we included an apo form of each receptor by removing 

the ligand from its binding pocket. We carefully designed a 

common protocol for the collective set-up and simulation 

(Supplementary Note 2) phases of all structures. During the set-up 

phase, different expert members of the GPCR MD community 

individually prepared each family of GPCR structures by 

refining/remodeling PDB structures (for example, missing residues, 

disulfide bridges, cocrystallization molecules, loop remodeling and 

so on), placing missing water molecules31 and sodium ions or 

assigning relevant protonation states (Supplementary Note 2). Next, 

each protein was prepared for simulation by embedding it in a lipid 

https://ernest-gpcr.eu/
https://ernest-gpcr.eu/
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bilayer and adding water and ions to the system. Each system was 

equilibrated following a standard procedure previously outlined and 

discussed within the GPCR MD community (Supplementary 

Note 2). Finally, the distributed computing platform 

GPUGRID32 was used to simulate three replicas of each system for 

500 ns (that is, accumulated 1.5 μs). We made all set-up and 

simulation protocols openly available 

at https://github.com/GPCRmd/MD-protocol. 

4.2. Database structure 

The GPCRmd database and web interface were developed using 

Django Web Framework (v.1.9), Python (v.3.4), JavaScript 

libraries, jQuery 1.9, jQuery UI 1.11.2 and PostgreSQL 9. The 

structure of the database (Supplementary Figs. 2–8) is based on five 

main objects: protein objects identified by their sequence and their 

relationship with UniprotKB entries (Supplementary Fig. 2), 

molecular entities (molecule object) identified by an 

InChI33 generated with forced hydrogen connectivity 

(Supplementary Fig. 3), crystalized assembly (model) 

(Supplementary Fig. 4), MD simulations (dynamics) objects 

(Supplementary Fig. 5) and chemical species (compound) identified 

by standard InChI (Supplementary Fig. 3). Furthermore, we 

incorporated experimental data from IUPHAR34 and 

BindingDB35 (Supplementary Fig. 6) and linked each main object to 

bibliographic references. GPCRdb2 tables were used to add standard 

nomenclatures to GPCR sequence residue numbers. 

4.3. Custom analysis 

The whole GPCRmd repository is released as open source under 

the Creative Commons Attribution 4.0 International License hence 

enabling downloading and custom analysis of the comprehensive 

dataset. Each trajectory can be downloaded from its respective link 

at the simulation report page (see Documentation). We exemplified 

this usage by studying sodium ion binding across a selection of 

class A GPCRs within the GPCRmd dataset. The frequency of 

sodium ion binding to the closest oxygen atom of the carboxylic 

group (2 × Oϵ) of residues 3x32 and 2x50 were computed using a 

cutoff distance of 5 Å. Both highly conserved positions are 

normally aspartate residues. For nonconserved residues we used the 

https://github.com/GPCRmd/MD-protocol
https://creativecommons.org/licenses/by/4.0/
https://gpcrmd-docs.readthedocs.io/en/latest/
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following atoms: Gln (Nϵ, Oϵ), His (Nδ), Arg (Nϵ), Ala (Cγ), Val 

(2 × Cγ Hydrogen), Ile (2 × Cγ Hydrogen), Met (Sδ), Phe (2 × Cδ) 

and Tyr (2 × Cδ). 

4.4. GPCRmd viewer 

The GPCRmd viewer uses builds on NGL 2.00 (ref. 5) and MDsrv 

0.3.5 (ref. 6) and uses data from the PDB (rcsb.org36), the 

GPCRdb2 and the Genome Aggregation Database (gnomAD)37. The 

data for on-click modes, variants and site-directed mutagenesis 

annotations are taken from the GPCRdb2,10,11 and include generic 

GPCR numbers12, original and mutated residues, effect of the 

mutation in ligand binding (fold change), experiment type, ligand 

used for the experiment and bibliographic reference. Variant data is 

obtained from the gnomAD37, and includes amino acid substitutions 

(canonical and variant), allele frequencies and link to the gnomAD 

entry describing the variant. On-click selection capabilities build on 

NGL 2.0.0 (ref. 5) web viewer, which allow the creation of different 

representation objects using the NGL selection language. GPCRmd 

selection capabilities also feature the GPCR generic numbering 

scheme12. In this case, GPCRdb numbers are adapted to the NGL 

selection language through regular expressions. Experimental 

density maps are loaded from PDB and aligned to the first frame of 

the simulation displayed using NGL 2.0.0 (ref. 5). The 

transformation matrix applied to the density map to perform the 

alignment is precomputed using the Python library MDAnalysis 

v.0.20.1 (ref. 38). 

4.5. GPCRmd toolkit 

4.5.1. Interaction networks 

Noncovalent residue–residue interactions formed in the simulation 

are displayed using Flareplots13. To precompute interactions during 

the simulation, we used GetContacts13 in all interaction types except 

for hydrogen bonds, where we used the definition of Wernet and 

Nilsson. We manually integrated Flareplots and NGL to allow for 

interactivity between the GPCRmd toolkit and the GPCRmd 

viewer. 

 

http://nglviewer.org/ngl/api/manual/selection-language.html
https://www-nature-com.sare.upf.edu/articles/s41592-020-0884-y#ref-CR12
http://nglviewer.org/ngl/api/manual/selection-language.html
http://nglviewer.org/ngl/api/manual/selection-language.html
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4.5.2. Interaction frequencies 

Hydrogen bonds are calculated using the ‘wernet_nilsson’ module 

of MDtraj39. A hydrogen bond is defined using distance and angle 

cut offs between hydrogen donor (NH or OH) and acceptor (N or O) 

atoms as follows: 

 

where rDA is the distance (Å) between donor and acceptor heavy 

atoms and δHDA is the angle (degrees) formed between the hydrogen 

atoms of donor and acceptor atoms. By default, the analysis does 

not consider hydrogen bonds between neighboring residues and 

includes side chains as well as backbone atoms. Ligand–receptor 

contacts are computed using the compute_contacts module of 

MDtraj39. Salt bridge frequency is computed using the 

‘compute_distances’ module of MDtraj39. Salt bridges are defined 

as any combination between the sets {Arg-NH1, Arg-NH2, Lys-NZ, 

His-NE2, His-ND1} and {Glu-OE1, Glu-OE2, Asp-OD1, Asp-

OD2} with atoms closer than 4 Å. Histidine atoms are only 

considered if the residue is protonated. The distance between atom 

pairs through the entire or strided trajectories is computed using the 

‘compute_distances’ module of MDtraj39. Atom pairs can be 

defined either using the ‘Show distances’ on-click mode and 

imported to the tool, or NGL selection language instances. 

4.5.3. The r.m.s.d. 

The r.m.s.d. is computed using the rmsd module of MDtraj39. The 

first frame of the trajectory is used as a reference structure by 

default. The atoms used for r.m.s.d. computation can be defined 

using the provided preselection in the GPCRmd toolkit (for 

example, protein alpha carbons, nonhydrogen protein atoms, ligand 

and so on). The r.m.s.d. is computed after optimal alignment 

according to the following equation: 

 

http://nglviewer.org/ngl/api/manual/selection-language.html
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where Natoms is the number of atoms for structure comparison, ri(1) 

is the position of atom i in the reference frame (that is, trajectory 

frame 1) and ri(t) is the position of atom i at time t of the trajectory. 

4.5.4. Water volume distribution 

Water occupancy maps are precomputed and stored on the server 

side using the VolMap tool of VMD40. Maps are generated only for 

oxygen atoms of a water molecule using a cutoff distance of 10 Å to 

the protein and a resolution of 1 Å. Atoms are treated as spheres 

using their atomic radii. The resulting isosurface is displayed in the 

GPCRmd viewer. 

4.5.5. Tunnels and channels 

Tunnels and channels are precomputed using the CAVER 3.0 

software41 and stored on the server side. We used as starting point 

coordinates for apo forms and receptor-ligand structures the center 

of mass of ligand–interacting residues in the respective PDB 

structure. Computations were carried out using a shell radius 3 Å, 

shell depth 4 Å and a probe radius of 1.4 Å. Selected results are 

displayed in the GPCRmd viewer. 

4.6. Meta-analysis tool 

Contacts are computed using GetContacts13 and results plotted as 

interactive heatmaps using the Bokeh visualization library 

(https://docs.bokeh.org/en/latest/). Contact frequencies per system 

are averaged over simulation replicas. For accurate comparison, 

residue contact pairs are aligned using the GPCRdb generic 

numbering scheme12. Hierarchical clustering uses the ‘linkage’ 

function of the SciPy v.0.18.1 (ref. 42) library with default 

parameters. Dendrogram plots use the Plotly library 

(https://plot.ly/python/). 

4.7. Reporting Summary 

Further information on research design is available in the Nature 

Research Reporting Summary linked to this article. 

https://docs.bokeh.org/en/latest/
https://plot.ly/python/
https://www-nature-com.sare.upf.edu/articles/s41592-020-0884-y#MOESM2
https://www-nature-com.sare.upf.edu/articles/s41592-020-0884-y#MOESM2
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Data availability 
The MD data have been deposited in the GPCRmd database 

(http://gpcrmd.org/). 

Code availability 

Set-up, simulation and analysis protocols are openly available 

at https://github.com/GPCRmd. 
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Supplementary information 

Supplementary Note 1. Sustainability  

Projects such as the GPCRmd face huge challenges to overcome in 

order to be accepted, used and sustained in the future. As previously 

shown, structural biology or (proteo-)genomics projects like the 

PDB (rcsb.org1) or the Galaxy project2, respectively, have 

demonstrated the need for strong community support rather than 

individual laboratories to preserve adequate sustainability. 

Therefore, we created the GPCRmd consortium under the umbrella 

of the newly granted ERNEST network (GLISTEN COST action, 

https://ernest-gpcr.eu), with the support of the GPCR community. 

Additionally, the focus on a specific research area such as GPCRs 

rather than a general database for all MD simulations reduces 

hurdles like deposition space problems, too general and likely 

unused analysis tools and problems in the findability due to too 

broad keywords/labels. An important asset promoting sustainability 

is the automated update of GPCRmd with new MD simulations for 

newly published GPCR structures. These updates will follow a 

standardized protocol developed by the GPCRmd community. On 

the other hand, GPCRmd is designed to serve as a revision platform 

in the near future allowing the editor and reviewers to evaluate 

dynamics data on the fly, making them more transparent and 

trustful and allowing upon acceptance for an easy deposition into 

the database.   

Supplementary Note 2. System set-up and  simulation protocol 

Protein structure preparation. The structures of simulated GPCRs 

were obtained from the Protein Data Bank (PDB) (rcsb.org1).  

Auxiliary proteins and long unresolved or truncated N- and C-

terminal regions were removed and stabilizing mutations were 

reverted back to the native sequence. In receptors where ICL3 was 

longer than 10 residues, a chain break was introduced in the middle 

and five residues at each end were modeled using MODELLER3. 

Modelling and refinement of the structures was performed using the 

methodology described by Pándy-Szekeres et al4. Steric clashes 

were energy minimized using the MOE software5. Crystallographic 

waters and lipid modifications present in the X-ray structure were 

https://ernest-gpcr.eu/
https://www.zotero.org/google-docs/?CaNBZM
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preserved. The rest of the co-crystallized molecules were discarded. 

Receptor residue protonation and tautomeric states were assigned 

using PROPKA6,7 as implemented in PDB2PQR8 at pH 7 and 

subsequently curated by members of the GPCRmd consortium. 

Residue D2x50 was either kept deprotonated or protonated for 

antagonist- or agonist-bound receptor complexes, respectively. 

Ligand parameterization. Tripos Mol2 File Format files were taken 

from the PDB using the MOE software5. Protonation and tautomeric 

states at pH 7 were predicted and assigned using the Marvin 

Calculator Plugin9. The obtained Mol2 files were used to generate 

parameters by analogy using the ParamChem server 1.0.0 

(https://cgenff.umaryland.edu) and CGenFF 3.0.110–13. Parameters 

for inorganic phosphate (PO4
2-) were obtained from CGenFF and 

SwissParam14 web server. Finally, adenosine parameters where 

taken from the RNA CHARMM 36 force-field15  

Placement of additional internal waters: For each structure we used 

HomolWat16 (http://lmc.uab.cat/homolwat/) to incorporate internal 

water molecules not determined in other structures of the same or 

parent receptors. To this end, we used water molecules with a 

circular variance19 > 0.6 measured using vectors from the oxygen 

atom of a water molecule to the surrounding atoms up to 10 Å. The 

algorithm uses blastp (ncbi-blast v2.6.0+)18 to generate an ordered 

list of receptors with determined structures that contain resolved 

water molecules and subsequently tries to incorporate into the 

model all water molecules that do not clash (> 2.4 Å) with receptor 

atoms or previously introduced water molecules, starting with 1) 

receptors with the largest sequence identity, 2) structures with the 

best resolution and 3) water molecules with the smallest B-factors. 

Water hydrogens are added using the PDB2PQR software8. Non-

coincident water molecules (distance > 2 Å) predicted by Dowser+ 

software20 were also incorporated into the structure.   

System set-up. Structures generated by the GPCRmd consortium 

were checked for protonation consistency. Acetylated and charged 

N terminus were used for incomplete and complete N terminus 

capping, respectively. Amidated and charged C terminus were used 

for incomplete and complete C terminus capping, respectively. Each 

GPCR model was aligned to its respective orientation taken from 

the Orientations of Proteins in Membranes database21 using STAMP 

https://cgenff.umaryland.edu/
http://lmc.uab.cat/homolwat/
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4.422,23 . Receptors were then embedded into a POPC bilayer and 

solvated ensuring a 20 Å distance between protein periodic 

distances, considering also receptor diffusional rotation. 

Furthermore, the system was checked for lipids inserted into 

aromatic rings. Finally, systems were solvated with TIP3 water 

molecules and the ionic strength of the solution was adjusted to 0.15 

M using NaCl ions. Parameters for the simulation were obtained 

from the CHARMM36m force field24,25. 

Molecular dynamics (MD) simulations. Systems were first energy 

minimized during 5000 step and then equilibrated at constant 

pressure (NPT, 1.01325 bar) using the Berendsen barostat26 with a 

pressure relaxation time of 800 fs and a compressibility factor of 

4.57x10-5 bar-1 during 30 ns. In a first step, harmonic restraints of 

1.0 kcal/(mol·Å2) were set on protein backbone and water oxygen 

atoms during 10 ns. Then, restrains were progressively released in a 

ramp of -0.095 kcal/(mol·Å2·ns) during 10 ns followed by a 

restraints-free equilibration step of 10 ns. Production simulations 

were performed at constant volume (NVT) in 3 replicates of 500 ns 

per system using ACEMD27 and GPUGRID28. Time-step of 2 and 4 

fs were used during the equilibration and production runs, 

respectively. Non-bonded interactions were cut-off at 9 Å. A 

smooth switching function for the cut-off was applied, starting at 

7.5 Å. Long-distance electrostatic forces were calculated using the 

Particle Mesh Ewald algorithm29 with a grid spacing of 1 Å. Bond 

lengths of hydrogen atoms were kept constrained using the 

RATTLE algorithm30.  All simulations were carried out at a 

temperature of 310K using the Langevin thermostat31 with damping 

constants γ of 1 ps-1 and 0.1 ps-1 for NPT and NVT simulations, 

respectively.  
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Supplementary Figure 1. Water-mediated contact map of the β2AR highlights 

the bifurcated network between TM6 and TM7. Systems marked with an asterisk 

indicate apo-form simulations which are nicely separated from the ligand-

receptor complex simulations by the clustering analysis. Within the clustered 

groups for apo- and complex forms, we see also a separation of active and 

inactive structures. The bifurcated network which links TM6 to TM7 can be seen 

in inactive as well as active structures. Interestingly, contact frequencies are 

reduced in active structures indicating a network loosening. The water-mediated 

contact map is computed over the accumulated simulation time of 1.5 µs (3 x 0.5 

µs) per system. 
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Supplementary Figure 2. GPCRmd entity-relationship (ER) diagram of entities 

related to protein objects. Tables in blue only display fields taking part in the 

relationships. 

 

Supplementary Figure 3.  GPCRmd ER diagram of entities related to molecule 

objects. Tables in blue only display fields taking part in the relationships. 
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Supplementary Figure 4. GPCRmd ER diagram of entities related to model 

objects. Tables in blue only display fields taking part in the relationships. 

 

Supplementary Figure 5.  GPCRmd ER diagram of entities related to dynamics 

objects. Tables in blue only display fields taking part in the relationships. 
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Supplementary Figure 6. GPCRmd ER diagram of entities related to 

experimental data. Tables in blue only display fields taking part in the 

relationships. 

 

Supplementary Figure 7. GPCRmd ER diagram of entities related to reference 

objects. Tables in blue only display fields taking part in the relationships. 
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Supplementary Figure 8.  GPCRmd ER diagram of user and Django tables.  
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3.5. SCoV2-MD: a database for the dynamics of 
the SARS-CoV-2 proteome and variant 
impact predictions 

Since the emergence of the COVID-19 disease, unveiling the 

structural basis of SARS-CoV-2 infection has been a key priority. 

Thus, numerous groups have generated MD simulations to study the 

structural dynamics of the viral proteins. However, these data are 

usually hosted at disparate sites, hardly discoverable, and not 

amenable to systematic analyses. Here, we present SCoV2-MD 

(www.scov2-md.org), an online resource with the objective to 

organize, cross-reference, and share MD dynamics data and 

metadata of the SARS-CoV-2 proteome. It includes interactive 

visualization and analysis tools that provide a rapid and intuitive 

way to explore the simulation data. An important asset of SCoV2-

MD is that it also provides tools to interrogate the functional impact 

of variant-associated mutations. For that, it integrates the MD data 

with available information on SARS-CoV-2 variants sequenced 

during the pandemic. The impact of each mutation can then be 

analyzed interactively by combining static (e.g. a variety of amino 

acid substitution penalties) and dynamic (time-dependent data 

derived from the MD simulations) descriptors. All in all, SCoV2-

MD is a cross-disciplinary database that not only promotes the 

reproducibility and transparent dissemination of SARS-CoV-2-

related simulations, but also allows the investigation of questions on 

the interplay between the structural dynamics of the viral proteome 

and viral variants’ phenotypes. 

http://www.scov2-md.org/
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Abstract  

SCoV2-MD (www.scov2-md.org) is a new online resource that 

systematically organizes atomistic simulations of the SARS-CoV-2 

proteome. The database includes simulations produced by leading 

groups using molecular dynamics (MD) methods to investigate the 

structure-dynamics-function relationships of viral proteins. SCoV2-

MD cross-references the molecular data with the pandemic 

evolution by tracking all available variants sequenced during the 

pandemic and deposited in the GISAID resource. SCoV2-MD 

enables the interactive analysis of the deposited trajectories through 

a web interface, which enables users to search by viral protein, 

isolate, phylogenetic attributes, or specific point mutation. Each 

mutation can then be analyzed interactively combining static (e.g. a 

variety of amino acid substitution penalties) and dynamic (time-

dependent data derived from the dynamics of the local geometry) 

scores. Dynamic scores can be computed on the basis of nine non-

covalent interaction types, including steric properties, solvent 

accessibility, hydrogen bonding, and other types of chemical 

interactions. Where available, experimental data such as antibody 

http://www.scov2-md.org/
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escape and change in binding affinities from deep mutational 

scanning experiments are also made available. All metrics can be 

combined to build predefined or custom scores to interrogate the 

impact of evolving variants on protein structure and function.  

 

1. Introduction 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is the causative agent of the Coronavirus disease 2019 

(COVID-19), which already accounts for more than 4.2 million 

deaths globally, as of 10th August 2021 (WHO, Coronavirus 

(COVID-19) Dashboard, covid19.who.int). The diffusion of the 

COVID-19 pandemic has produced emerging variants (1), which 

have been tracked through massive sequencing efforts at an 

unprecedented rate soon surpassing that of any other pathogen and 

phylogenetic analysis (2–4). Thus, as of July 2021, almost 2 million 

full genomes are available via the Global Initiative on Sharing All 

Influenza Data (GISAID), one of the main pandemic genome 

databases (3, 5). 
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SARS-CoV-2 is a single-stranded RNA beta-coronavirus enveloped 

by an outer membrane and expressing 16 non-structural, 9 

accessory, and 4 structural proteins (Figure 1). While the spike, 

membrane, and envelope structural proteins are embedded in the 

membrane and involved in cell recognition and entry, one structural 

protein, the nucleocapsid, interacts inside the membrane with viral 

RNA to form a ribonucleoprotein complex that works as a scaffold 

for genome replication and virion assembly. The four structural 

proteins make up approximately one third of the viral genome (6). 

The remaining two-thirds of the viral genome encodes for the non-

structural proteins (nsp) 1 to 16 (Figure 1). Some nsps are critical 

enzymes for virus replication such as proteases (nsp3, nsp5), RNA-

dependent RNA polymerases (consisting of nsp7, two copies of 

nsp8, and nsp12), the RNA helicase (nsp13), and the proofreading 

exonuclease (nsp14) (7).  

Unveiling the structural basis of SARS-CoV-2 infection has been a 

key priority since the emergence of the COVID-19 disease. In the 

wake of the increased availability of structural information of 

SARS-CoV-2 proteins, numerous groups have tackled the study of 

SARS-CoV-2 proteins using molecular dynamics (MD) 

simulations, often after Herculean modeling and computational 

efforts, with the goal of supporting pandemic response efforts (8–

10). Obtained MD data are highly relevant to understand the 

functional dynamics of the viral proteome which cannot often be 

deduced from the static structure that has been experimentally 

solved. In addition, it can help rationalize the structural/functional 

impact of sequence variability in the viral proteome. This is 

particularly useful when the relationship between mutation location 

and activity is not obvious (e.g. the mutation is distant from the 

protein’s active center).  

However, while computational scientists are urgently aware of the 

need to share the resulting data (11), these are usually hosted at 

disparate sites, hardly discoverable, and not amenable to systematic 

analysis. In practice, this limits the ability of computational 

structural biologists to reuse these trajectories in large-scale efforts, 

e.g. for dynamic docking (12, 13), discovering transient pockets 

(14), or associating them with phenotypes (15).  
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Here, we present SCoV2-MD (www.scov2-md.org), a cross-

disciplinary database developed to investigate diverse questions on 

the interplay between the structural biology of the viral 3D 

proteome, its dynamics, and viral variants’ phenotypes. The 

platform focuses on the dynamics of protein non-covalent contacts, 

supporting the interpretation of allostery, the exploration of 

individual subunits, interfaces, and protein-ligand contacts, and the 

mapping of external information. An important asset of SCoV2-MD 

is that it provides tools to interrogate the impact of variant 

substitutions using a combination of static and time-resolved 

structural descriptors.  

 

Figure 1. Structure-based overview of the SARS-CoV-2 proteome and 

protein-based entry point to the database. (a) Three-dimensional model of the 

virion, displaying the structural proteins’ assembly; (b) Three-dimensional 

models of the available nsp proteins. The diagrams provide a unified overview of 

the available viral structures and provide one of the entry points for browsing the 

proteome. Selecting the proteins leads to a list of the related simulation data. (c) 

Coverage of SARS-CoV-2 proteome plotting experimentally available structures 

(pink) and simulated proteins in SCoV2-MD (green). Nsp14 (grey) was simulated 

based on a theoretical model using a structure of SARS-CoV-1 nsp14 (PDB ID 

5C8S) as template. 

http://www.scov2-md.org/
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So far, numerous resources have been dedicated to track, monitor, 

and classify the phylogenetic diversity of SARS-CoV-2, such as 

GISAID (16), ViruSurf (17), or PANGO lineage (18). Other efforts 

aimed at predicting potential functional effects of SARS-CoV-2 

variants based on evolutionary considerations (19), static structures 

of proteins and complexes, or experimental data (e.g. MutFunc (20), 

COV3D (21), and COVID-3D (22)). Our database builds upon 

previous approaches, extending them through the integration of 

time-resolved MD data with available information on variants to 

improve the prediction of their potential functional impact. 

2. Materials and methods 

2.1. Data source overview 

The SCoV2-MD platform includes, at the time of manuscript 

preparation, simulations of more than 250 different systems, 

covering all SARS-CoV-2 proteins with known structure. A large 

part of the simulations is collated from public databases, mainly 

BioExcel-CV19 (https://bioexcel-cv19.bsc.es/), COVID-19 

Molecular Structure and Therapeutics Hub 

(https://covid.molssi.org/), the CHARMM-GUI simulation archive 

(23), and the Exscalate4Cov project 

(https://www.exscalate4cov.eu/). Additionally, we generated in-

house simulations to achieve complete coverage of all SARS-CoV-

2 proteins with known structures (Supplementary Note S1 and 

Supplementary Table S1). Individual researchers can contribute 

their simulation data upon request. The whole dataset is accessible 

for free and without registration at www.scov2-md.org. 

2.2. Database schema and infrastructure 

The data model of the database (Supplementary Figure S1) is based 

on five main entities, namely: protein objects, identified by their 

sequence and their relationship with UniprotKB entries; final 

protein objects, representing the viral proteins after the transcribed 

poly-proteins are cleaved by its proteinases; model objects, 

describing the three-dimensional structures identified by the Protein 

Data Bank (PDB, rcsb.org) (24) identifier; dynamics objects 

representing the MD simulations; and dynamics components with 

details of the molecules in the simulated systems. The database 

https://bioexcel-cv19.bsc.es/
https://covid.molssi.org/
https://www.exscalate4cov.eu/
http://www.scov2-md.org/
https://www.rcsb.org/
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integrates experimental data from GISAID (16) and Mutfunc: 

SARS-CoV-2 (20).  

Similar to the GPCRmd platform (25), the Workbench page of 

SCoV2-MD builds on a WebGL-based structure viewer, NGL 

version 2.0.0, (26, 27) with the MDsrv 0.3.5 (28) backend, which 

allows efficient streaming and sharing of trajectories online. 

Intuitive selection capabilities enable the creation of various 3D 

representations using the NGL selection language (27). The 

Workbench integrates annotation data from UniprotKB (29) and 

variant data from GISAID (16). UniprotKB data is used to extract 

domains and annotations of the protein represented and map them to 

the structure, while GISAID (16) data is referenced to display and 

cross-reference known protein variants on the structure. The 

SCoV2-MD database and web interface are based upon the Django 

Web Framework (v.1.9), PostgreSQL (v.9), Python (v.3.4), and 

JavaScript libraries jQuery 1.9, jQuery UI 1.11.2.  

2.3. Variant impact scoring 

The database’s web portal provides the Variant Impact toolkit for 

interactively referencing the MD simulations with SARS-CoV-2 

sequences obtained from GISAID (16), which can be found in the 

Workbench page. Each of the variants is annotated with the 

corresponding static (mutation-dependent) and time-dependent 

(computed on the basis of the simulation dynamics) descriptors of 

their impact on multiple aspects of the protein’s structure and 

dynamics and the viral function (Figure 4 and Supplementary Note 

S2). The descriptors are further combined in an impact score, 

defined as a weighted sum of descriptors: 

 

where Ndesc is the number of descriptors, vi the value of descriptor i, 

and wi the corresponding weight. Users may assign either 

predefined (see next section) or custom weight combinations to the 

descriptors to reflect various aspects of the structural impact of the 

variant. The obtained score is presented together with a q value, 

showing its normalized rank in the distribution of impact scores of 



 

181 

all the variant-associated substitutions occurring in residues 

modeled in the simulation considered (e.g. in a simulation of the 

receptor-binding domain (RBD) of the spike protein, an histogram 

of impact scores is built on the basis of the amino-acid substitutions 

associated to known variants located in the RBD). In other words, 

q=0, 0.5, and 1 respectively mean that the selected amino acid 

variant achieves the minimum, median and maximum effect score 

with respect to the other variants observed in the sequence of the 

simulated protein. 

2.4. Model-based predictions of variant impact for the spike 

protein’s receptor-binding domain (RBD) 

We developed simple predictive models able to qualitatively 

estimate the impact of each variant, in terms of (a) the change in 

binding affinity between SARS-CoV-2’s spike RBD and the 

angiotensin-converting enzyme 2 (ACE2) receptor (30); (b) the 

change in expression of the RBD on yeast cells (30) and (c) the 

potential for antibody evasion (31). The three models are based on 

regularized regression models (LASSO) (Supplementary Note S3, 

Supplementary Table S2) trained on 23 per-variant covariates, used 

as predictors, computed based on the 12 MD trajectories containing 

the RBD available at the time of writing. Each of the models was 

trained to fit the corresponding quantity, measured experimentally 

per-variant in deep scanning mutagenesis experiments. The three 

pre-computed models can be enabled via the web interface, in the 

Variant Impact section of the Workbench page, with buttons that 

load the corresponding sets of coefficients in the “weight” sliders. 

3. Results & discussion  

3.1. Tracking of structural virus evolution 

A key aspect in understanding the diversity and impact of SARS-

CoV-2 is monitoring the emergence of variants. Since the outbreak 

in 2019, many viral mutations have occurred. Some of them reach 

high regional frequencies with the ability to rapidly spread 

worldwide and potentially evade immunization and antibody 

treatment (e.g. B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), 

and P.1 (Gamma) variants). Our database provides a visualization 

tool for viral phylogenetic data from the worldwide collaborative 
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effort hosted at GISAID (16). This tool allows viral infections to be 

tracked by region, gender, age, etc. as well as following the 

emergence of mutations as a function of time (Figure 2). Each small 

circle is interactive and represents one sequenced viral genome. 

When clicking on a viral genome that includes novel 

variants/mutations, the user can directly investigate the variant 

location on the 3D structure of implicated viral proteins as well as 

stream time-resolved dynamics on the fly (see next section).  

 

Figure 2. Phylogenetic tree of SARS-CoV-2 viral evolution. Sequenced 

samples (isolates) are mapped onto the tree. Each interactive circle represents one 

sequenced viral genome and is linked to the simulations of the proteins mutated 

with respect to the reference sequence. The rectangular inset (left) tags a subset of 

isolates with some of the available descriptors (regions, sex, age and mutations). 

3.2. Structural dynamics of the viral 3D proteome 

3.2.1. Visualize and stream viral proteins’ dynamics  

The database of time-resolved dynamics of SARS-CoV-2 currently 

consists of over 250 simulations covering the entire viral 3D 

proteome (i.e. experimentally solved 3D structures) with at least 

one simulation entry for each protein (Figure 3A). Data entries have 

been either simulated by us or collected from public resources. The 

user can intuitively select a simulation of interest from an 

interactive graphical representation of the SARS-CoV-2 virus 

(Figure 3B) or from a dedicated search tool (Figure 3C). Once a 

simulation has been selected, one can easily view (Figure 3D) and 

modify its graphical representation using either the quick or 

customized selection (Figure 3E). In addition, we implemented the 

option to highlight domains relevant for protein function (e.g. 
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binding motif of the spike protein to the human ACE2 host cell 

receptor) which have been retrieved from the Uniprot database 

(Figure 3E). The most important merit of the SCoV2-MD resource 

is that viral proteins are not static, instead one can stream the time-

resolved dynamics at atomistic resolution on-the-fly using the 

simulation viewer (Figure 3D). 

 

Figure 3. Structural dynamics of the SARS-CoV-2 proteome. (a) SCoV2-MD 

is a database of time-resolved dynamics for SARS-CoV-2 proteins. (b) The user 

can intuitively select a simulation of interest from an interactive graphical 

representation of the SARS-CoV-2 virus, or (c) use our dedicated search tool. (d) 

The viewer module enables interactive visualization and streaming of the MD 

simulations. (e) For that, we provide a selection panel including quick and custom 

selection. (f) Our platform includes interactive analysis tools such as an 

interaction network displaying intermolecular and intramolecular contacts. (g) 

The user can also check common structural stability metrics such as RMSD and 

RMSF. 
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3.2.2. General analysis of the wild-type (WT) simulation  

SCoV2-MD provides analysis tools that allow for an overall 

understanding of the structural dynamics for a specific protein 

(Supplementary Note S4). This includes intramolecular interaction 

networks including hydrogen bonds, π-stacking, and T-stacking, 

among others, which can be shown for the current frame or as an 

average over the entire trajectory. In the average mode, line 

thickness indicates the contact strength, which enables quick 

identification of relevant contacts. For instance, one can easily 

identify the non-covalent contacts (electrostatics, dispersion effects, 

etc.) corresponding to π-cation interactions in the binding interface 

between the RBD from the spike protein and the ACE2 host cell 

receptor (Figure 3F). Moreover, a RMSD (root mean squared 

deviation) plot shows the evolution of the viral protein along the 

trajectory with respect to the initial structure (Figure 3G). 

Furthermore, a RMSF (root mean square fluctuation) plot provides 

a quick overview of stable and highly flexible regions in the protein 

(Figure 3G).  

3.3. Variant descriptors and phenotype analysis tool  

An important goal of SCoV2-MD is the ability to predict the impact 

of variant substitution on the viral proteome based on static and 

time-resolved descriptors via an “impact score” (Figure 4). The 

database integrates over 30 static and time-dependent descriptors 

(Supplementary Note S2). Static descriptors reflect substitution (e.g. 

BLOSUM, charge differences, and so on), conservation (frequency, 

SIFT score (32), etc.), structural impacts (post-translational 

modification, surface accessibility, etc.) and, if available, 

experimental observations (e.g. antibody escape, binding affinity, 

expression changes). Conservation, structural and experimental 

descriptors are collected from the Mutfunc database (20). Time-

dependent descriptors are extracted from atomistic simulations and 

include RMSF and a large variety of non-covalent contact types 

(such as Van der Waals, hydrogen bonding, etc.) among others. 

They are computed on the basis of the MDtraj (33) and GetContacts 

libraries (34). The list of descriptors provides the user with a rich 

repertoire to score and interrogate variant substitutions on-the-fly.  
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Figure 4. Prediction of variant impact. (a) Sequence viewer with color-coded 

impact score across the protein sequence and information on reported variants. 

The sequence viewer is interactive in two ways: (i) the color-coded scale updates 

on the fly with the defined impact score, and (ii) selected residues are 

automatically shown in (b) the 3D viewer of the structural dynamics. (c) Variant 

impact score. The user can combine over 30 different descriptors into a user-

defined score. We also provide default scores, such as RMSD, contacts, or scores 

fitted to experimental data. (d) The impact score for a specific variant is 

highlighted within the score distribution for the entire protein. A significant shift 

of the variant score to the right or left from the distribution peak reflects a variant 

with a high propensity to disturb protein function based on the selected descriptor 

combination.  

3.4. Search for variant substitutions with impact on protein 

function  

A basic search for critical regions impacted by variant substitutions 

can be as follows. Regions of high structural stability are expected 

to be crucial for the overall function of the viral protein. 

Unfavorable variant substitutions (e.g. Cys to Arg) in these regions 

can significantly disturb protein stability. To detect a combination 

of such events in the protein, the user needs to ‘turn on’ RMSF in 

addition to any of the provided substitution scores (e.g. BLOSUM) 

in the impact score panel (Figure 4C). The user-defined impact 

score is plotted across the entire protein in the sequence 

highlighting regions that are predicted to be affected by reported 

variant substitutions (orange to red, Figure 4A). In our example 

(https://submission.gpcrmd.org/covid19/29/), we observe hotspots 

https://submission.gpcrmd.org/covid19/29/
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of high stability with unfavorable substitutions in C488 in the RBD 

of the spike protein. Interestingly, structural visualization in the MD 

viewer reveals that C488 forms a disulfide bridge with C480. 

Without a doubt, unfavorable variant substitutions such as C488R 

will disrupt the disulfide bridge introducing flexibility into this 

region. This in turn can alter the propensity of the SARS-CoV-2 

virus to attach to the ACE2 host cell receptor.  

Finally, the user can validate the customized impact score for a 

C488R substitution in the context of all reported substitutions in the 

viral protein of interest (the score distribution across the entire 

protein is shown on Figure 4D). Overall, high or low impact scores 

that are significantly shifted from the distribution peak can be 

expected to significantly alter protein function. Once such variants 

have been detected, experimental validation is required to determine 

if the function of the viral protein is enhanced or diminished by the 

structural alterations.  

3.5. Case study: assessing the impact of SARS-CoV-2 variability 

on drug binding  

An important viral threat is that newly emerging variants can 

develop resistance against antiviral agents or antibodies. Sites of 

high mutational frequency ‘in’ or ‘adjacent to’ the binding sites of 

antibodies/antiviral agents in the viral proteome can impact the 

therapeutic efficacy. In a case study, we interrogated one of these 

highly variable positions (T24) located in the SARS-CoV-2 main 

protease, Mpro (3CLpro), with around 1000 detected cases to date 

(35). Position 24 is adjacent to the binding site of the protease 

inhibitor ML188 (Figure 5) with an antiviral SARS-CoV-2 

inhibition activity at micromolar range (2.5 µM) (36, 37). T24A (

T3287A in orf1a) is also a characteristic mutation of lineage 

B.1.524 (Malaysian strain, variant of concern, which peaked around 

November 2020) (B.1.524 Lineage Report, outbreak.info). We have 

simulated the WT (https://submission.gpcrmd.org/covid19/255/) 

and the T24A mutant (https://submission.gpcrmd.org/covid19/257/) 

in complex with the protease inhibitor ML188 for 1 µs in three 

replicates (Supplementary Note S1 and Supplementary Table S1). 

Interestingly, we observe that the ML188 inhibitor unbinds in both 

the WT as well as the T24A mutant (Supplementary Note S5, 

Supplementary Table S3). One important finding is that the ML188 

https://submission.gpcrmd.org/covid19/255/
https://submission.gpcrmd.org/covid19/257/
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inhibitor visits along its unbinding pathway an intermediate state 

that is in contact with position 24 (Figure 5). Therefore, we can 

expect that structural alteration of position 24 from a threonine to an 

alanine will alter (un)binding kinetics. In fact, we observe that 

T24A tends to unbind at shorter time scales compared to the WT 

(Supplementary Table S3). Of note, another polar-to-hydrophobic 

mutation at the same site, T24I, is present in ~43% of samples in the 

C.1.2 strain, which peaked around July 2021, hinting at a selective 

advantage (C.1.2 Lineage Report, outbreak.info). This example 

highlights the relevance of variability within the viral proteome for 

drug action but can also serve as a guide for the rational design of 

antiviral drugs/antibodies that are more resistant to virus evolution 

by avoiding these regions.  

 

Figure 5. Unbinding pathway of the ML188 inhibitor from the SARS-CoV-2 

main protease, Mpro (3CLpro). The inhibitor is in its crystallized binding pose 

at time T=0 ns (yellow). The inhibitor leaves its original binding pose towards an 

intermediate state which is in contact with the mutated position T24A at T=200 

ns (red). From here, it moves to a second intermediate state with contacts to E47 

at T=201 ns (green) before it completely unbinds.  

4. Conclusion 

Enormous research efforts have resulted in high-resolution 

structural information on most of the SARS-CoV-2 3D-proteome, 
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widely accessible via the PDB (rcsb.org) (24). The experimental 

techniques employed, namely X-ray crystallography and cryogenic 

electron microscopy, provide structural data which has been an 

excellent starting point for further efforts launched using MD 

simulations to gather time-resolved information about the functional 

dynamics of viral proteins. The SCoV2-MD database has the 

objective to organize, cross-reference, and share MD dynamics data 

for the entire viral proteome. In particular, interactive streaming and 

analysis tools provide a rapid and intuitive way to explore viral 

protein flexibility, and enable checking of hypotheses on the fly 

(19). Importantly, such dynamics data is not only of high value for 

understanding protein function but also allows for an improved 

insight on the structural determinants of variant impact as 

demonstrated in this work. We expect to periodically update the 

SCoV2-MD with new simulation data for multimeric complexes 

and missing regions in the viral proteome when they are 

experimentally solved and released.  

Data availability 

SCoV2-MD is an open-source collaborative initiative. The database 

is freely accessible without registration at www.scov2-md.org. Its 

source code is available in the GitHub repository 

https://github.com/GPCRmd/SCoV2-md. 
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Supplementary data 

Supplementary Note S1. System set-up and simulation protocol 

To generate the starting systems, the structures were obtained either 

from the Protein Data Bank (PDB, rcsb.org) (1), or from the curated 

versions provided by the Coronavirus Structural Task Force 

(www.insidecorona.net). All proteins were left in their dominant 

protonation state at pH 7.4 using the MOE software 

(https://www.chemcomp.com). The CHARMM-GUI Solution 

Builder (2) was used to solvate each protein in a water box, where 

the distance between protein atoms and box edges was kept at 10 Å, 

and to adjust the ionic strength using 0.15 M NaCl. Protein N- and 

C-terminal ends were capped using ACE and CT3 patches, 

respectively. Protein and ligand parameters were obtained from the 

CHARMM36m (3, 4) and CGenFF (5, 6) forcefields, respectively. 

Systems were first energy minimized for 20 ps using the NAMD 

simulation engine (7). Then, a first equilibration step was run at 

constant volume and temperature (NVT, 303.15 K) for 250 ps using 

a timestep of 2 fs. Long-distance electrostatic forces were calculated 

using the Particle Mesh Ewald (PME) algorithm with a switch 

distance of 10 Å and a cutoff of 12 Å. Restraints were applied to 

every atom in the system. A second equilibration step was run at 

constant pressure and temperature (NPT, 1.01325 bar, 310 K) for 20 

ns with a timestep of 2 fs. During the equilibration phase, PME was 

used with a switch distance of 7.5 Å and a cutoff distance of 9.5 Å, 

and restraints were applied to the backbone of the protein. Finally, 

in the production phase, 3 replicas of each system were run (with 

different random seeds to assign Maxwell-distributed initial 

velocities) at 310 K for 1 µs each using a timestep of 4 fs, the PME 

algorithm with a switch distance of 7.5 Å and a cutoff distance of 9 

Å. During the second equilibration step, the pressure was kept 

constant using the Berendsen barostat (8). In both the equilibration 

and the production phase, the temperature was kept constant using 

the Langevin thermostat (9). Both equilibration and production 

steps were run using ACEMD3 (10). Coordinates were wrapped to 

the closest periodic image using HTMD (11) and analyzed with 
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VMD (12). Supplementary Table S1 below provides a list of the 

simulations performed in this work.   

Supplementary Table S1. List of simulations performed in this work to achieve 

complete coverage of the SARS-CoV-2 proteome with known structures. 

ID Model 

name 

Included 

proteins 

Uniprot 

ID 

PDB 

ID 

Replic

ates 

Software Force field Simulatio

n time 

243 NS8 in 

aqueous 

solution 

ORF8 P0DTC8 7JTL 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

244 Envelope 

small 

membrane 

protein in 

aqueous 

solution 

E P0DTC4 7K3G 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

245 NSP1 in 

aqueous 

solution 

NSP1 P0DTD1 7k3n 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

246 NSP10 in 

aqueous 

solution 

NSP10 P0DTD1 6ZCT 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

247 Nucleocap

sid 

dimerizatio

n domain 

P21 form 

in aqueous 

solution 

N P0DTC9 6WZQ 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

248 ORF7a in 

aqueous 

solution 

ORF7a P0DTC7 6W37 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

249 Helicase 

NSP13 in 

aqueous 

solution 

NSP13 P0DTD1 6ZSL 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

250 NendoU 

NSP15 in 

aqueous 

solution 

NSP15 P0DTD1 6VW

W 

1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

251 NSP16 in 

aqueous 

solution 

NSP16 P0DTD1 6W4H 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

https://submission.gpcrmd.org/covid19/243
https://www.uniprot.org/uniprot/P0DTC8
https://www.rcsb.org/structure/7JTL
https://submission.gpcrmd.org/covid19/244
https://www.uniprot.org/uniprot/P0DTC4
https://www.rcsb.org/structure/7K3G
https://submission.gpcrmd.org/covid19/245
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/7k3n
https://submission.gpcrmd.org/covid19/246
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/6ZCT
https://submission.gpcrmd.org/covid19/247
https://www.uniprot.org/uniprot/P0DTC9
https://www.rcsb.org/structure/6WZQ
https://submission.gpcrmd.org/covid19/248
https://www.uniprot.org/uniprot/P0DTC7
https://www.rcsb.org/structure/6W37
https://submission.gpcrmd.org/covid19/249
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/6ZSL
https://submission.gpcrmd.org/covid19/250
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/6VWW
https://www.rcsb.org/structure/6VWW
https://submission.gpcrmd.org/covid19/251
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/6W4H
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252 ORF3A in 

aqueous 

solution 

ORF3a P0DTC3 6XDC 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

253 ORF9B in 

aqueous 

solution 

(missing 

loops 

modelled) 

ORF9b P0DTD2 6Z4U 1 AceMD 

3.2.3 

CHARMM3

6 2019 

1 x 1 µs 

255 Main 

Protease 

(Mpro) in 

Complex 

with 

ML188 (no 

mutation) 

NSP5 P0DTD1 7L0D 2 AceMD 

3.2.3 

CHARMM3

6 2019 

3 x 1 µs 

256 Main 

Protease 

(Mpro) in 

Complex 

with 

ML188 

(A191V 

mutation) 

NSP5 P0DTD1 7L0D 3 AceMD 

3.2.3 

CHARMM3

6 2019 

3 x 1 µs 

257 Main 

Protease 

(Mpro) in 

Complex 

with 

ML188 

(T24A 

mutation) 

NSP5 P0DTD1 7L0D 3 AceMD 

3.2.3 

CHARMM3

6 2019 

3 x 1 µs 

258 Macrodom

ain (NSP3) 

in complex 

with ADP-

ribose 

NSP3 P0DTD1 6WOJ 3 AceMD 

3.2.3 

CHARMM3

6 2019 

3 x 1 µs 

259 Macrodom

ain (NSP3) 

in complex 

with ADP-

ribose 

(S167L 

mutation) 

NSP3 P0DTD1 6WOJ 3 AceMD 

3.2.3 

CHARMM3

6 2019 

3 x 1 µs 

 

 

https://submission.gpcrmd.org/covid19/252
https://www.uniprot.org/uniprot/P0DTC3
https://www.rcsb.org/structure/6XDC
https://submission.gpcrmd.org/covid19/253
https://www.uniprot.org/uniprot/P0DTD2
https://www.rcsb.org/structure/6Z4U
https://submission.gpcrmd.org/covid19/255
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/7L0D
https://submission.gpcrmd.org/covid19/256
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/7L0D
https://submission.gpcrmd.org/covid19/257
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/7L0D
https://submission.gpcrmd.org/covid19/258
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/6WOJ
https://submission.gpcrmd.org/covid19/259
https://www.uniprot.org/uniprot/P0DTD1
https://www.rcsb.org/structure/6WOJ
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Supplementary Note S2. Descriptors of variant impact 

Our descriptors include: 

• Mutation effect descriptors, representing the impact of the 

amino acid change. Unless indicated otherwise, they were 

obtained with Biopython (13) version 1.76 

o BLOSUM90 score 

o Charge difference, based on the charge of the wild type 

(WT) and mutated amino acid 

o Epstein's coefficient of difference (14) 

o Experimental exchangeability (15) 

o Grantham's distance (16) 

o Miyata's distance (17) 

o Sneath's index (18) 

o Several scales of change in hydrophobicity: Kyte-

Doolittle (19), Eisenberg-Weiss (20), Engelman (21), 

Hessa (22, 23), Hopp-Woods (24), Janin (25), Moon-

Fleming (26), Wimley-White (27, 28), Zhao-London 

(29)  

o Variant effect predictions extracted from the database 

Mutfunc: SARS-CoV-2 (30), including conservation, 

structural consequences, and experimental antibody 

escape data (31). 

• Time-dependent predictors, consisting of parameters 

extracted from the WT simulation for the residue affected by 

the variant. They allow us to evaluate the structural impact of 

each variant. These predictors were obtained from the trajectory 

strided so that the delta is 0.1 ns or, in longer simulations, 1 ns. 

o RMSD of the residue with relation to the first trajectory 

frame, obtained using the rmsd module of MDtraj (32). 

o RMSF of the residue atoms, obtained with the rmsf 

module of MDtraj (32).  
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o Solvent-accessible surface (SASA) of the residue, based 

on the Shrake and Rupley algorithm (33), calculated with 

the shrake_rupley algorithm of MDtraj (32).  

o Chi1 angle of the residue, which corresponds to the first 

side chain torsion angle formed between the 4 atoms over 

the CA-CB axis, if available. The Chi1 angle is calculated 

using the compute_chi1 module of MDtraj (32). 

o Number of contacts that the residue makes with other 

protein residues, obtained with GetContacts (34). This 

includes hydrogen bonds, salt bridges, hydrophobic 

contacts, π-cation contacts, π-stacking contacts, T-

stacking contacts, Van der Waals, water bridges, 

extended water bridges, and total contacts. 

• User-provided descriptors, which can be provided by the user 

as a CSV-formatted file and uploaded in the “User-provided” 

section of the Workbench. Custom descriptors enable the 

inclusion of arbitrary external data, as well as non-linearities 

and interactions, in the prediction model.  

Supplementary Note S3. Regularized regression models of 

variant impact 

Three linear regression models used least absolute shrinkage and 

selection operator (LASSO) regularization, a method to minimize 

the number of predictors for the sake of interpretability and avoid 

overfitting. In short, LASSO finds the optimal set of coefficients βᵢ 

∈ ℝᵖ to predict a response variable y on the basis of a training set 

(xi, yi) of N examples, namely: 

 

where λ is a regularization parameter that is usually chosen by 

cross-validation and ||…||q is the q-norm of a vector.  

Here, for the sake of clarity, we modeled the effects of predictors as 

linear and additive (hence, no interaction terms or non-linearities). 

We chose the value of λ which provided a cross-validated mean-

squared prediction error within one standard error of the minimum 
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(obtained for λ=0, i.e. including all of the coefficients). The 

N=3,684 examples used are the RBD variants reported in GISAID 

(35) for which experimental data from deep mutational scanning 

experiments, i.e. differences in binding (36), expression (36), and 

escape (31) with respect to the WT (y), and static and time-

dependent covariates computed from MD (x) were available. The 

calculations were performed with the glmnet package (37) version 

4.1. Supplementary Table S2 reports the predictors selected after 

the LASSO procedure and the corresponding coefficients of each 

model, as well as the reference from which the experimental data 

were retrieved.  

Supplementary Table S2. Descriptors selected as predictors based on the 

regression models (LASSO) and corresponding coefficients of each model: 

differences in binding (36), expression (36), and escape (33) with respect to the 

WT. “--” means that the corresponding covariate was discarded by the LASSO 

procedure at the chosen value of λ. 
 

Binding 

(36)  

Expression 

(36) 

Escape 

(31) 

(Intercept) -0.573 -0.673 0.009 

BLOSUM90 0.110 0.162 -0.001 

Δ Hydrophobicity (Kyte Doolittle) 0.012 -- -- 

Δ Charge -- 0.007 0.004 

At RBD-ACE2 interface? -- 0.360 0.014 

In receptor binding motif? -0.062 0.090 0.005 

RMSD average (time-dependent) -- -1.729 -- 

RMSD SD (time-dependent) -- -6.196 -- 

RMSF average (time-dependent) 0.791 4.367 -0.027 

RMSF SD (time-dependent) 0.113 4.157 -- 

SASA average (time-dependent) 0.243 0.168 -0.002 

SASA SD (time-dependent) 0.854 1.787 -- 

Contacts H bond average (time-dependent) -- -0.103 -- 
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Contacts H bond SD (time-dependent) 0.246 0.272 -- 

Contacts salt bridge average (time-

dependent) 

-- -0.159 0.005 

Contacts salt bridge SD (time-dependent) -- 0.125 -0.007 

Contacts π-cation average (time-dependent) -- -- -0.010 

Contacts π-cation SD (time-dependent) -- -0.342 -- 

Contacts π-stacking average (time-

dependent) 

-- -0.494 -- 

Contacts π-stacking SD (time-dependent) -- 0.953 -- 

Contacts T-stacking average (time-

dependent) 

-- -0.996 -0.015 

Contacts T-stacking SD (time-dependent) -- -- -- 

Contacts Van der Waals average (time-

dependent) 

-0.063 -- -- 

Contacts van der waals SD (time-dependent) -- -0.321 0.007 

Supplementary Note S4. Analyses of the molecular dynamics 

(MD) simulations presented in the General section of the 

Toolkit, in the Workbench page 

Interaction networks 

Noncovalent residue-residue interactions formed in the simulation 

are displayed using Flareplots (34). To precompute interactions 

during the simulation, we used GetContacts (34) for all interaction 

types. We manually integrated Flareplots and NGL to allow for 

interactivity between the Toolkit and the Viewer sections of the 

Workbench page. 

Root mean square deviation (RMSD) 

The RMSD is computed using the rmsd module of MDtraj (32). The 

first frame of the trajectory is used as a reference structure by 

default. The atoms used for RMSD computation can be defined 

using the provided preselection options (for example, protein alpha 
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carbons, non-hydrogen protein atoms, ligand, etc.). The RMSD is 

computed after optimal alignment according to the following 

equation: 

 

where Natoms is the number of atoms for structure comparison, ri(1) 

is the position of atom i in the reference frame (that is, trajectory 

frame 1) and ri(t) is the position of atom i at time t of the trajectory. 

Root mean square fluctuation (RMSF). 

The RMSF is computed for all the alpha carbons of the protein 

using the rmsf module of MDtraj (32). It is calculated based on the 

average structure of the simulation, obtained by averaging the 

coordinates of each atom during the trajectory. The trajectory is 

aligned to the obtained average structure, and then the RMSF is 

obtained according to the following equation: 

 

where ri(tj) represents the coordinates of atom i at frame j,  the 

average position of atom i, and T the total number of frames in the 

trajectory.  

Supplementary Note S5. Custom analysis: 3CLpro case study 

The target structure of the SARS-CoV-2 main protease, Mpro 

(3CLpro) (PDB ID 7L0D) was obtained from the PDB database (1). 

The corresponding mutation for the T24A variant was introduced 

using the HTMD software (11). The WT and the T24A variant 

system were further prepared and simulated as described above 

(Supplementary Note S1). ML188 inhibitor unbinding was typically 

observed for the WT as well as the T24A mutant within 1 µs as 

reported in Supplementary Table S3.  
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Supplementary Table S3. ML188 inhibitor unbinding from the SARS-CoV-2 

main protease WT and T24A mutant. Ligand unbinding from its original pocket 

was monitored as follows. We first tracked the “native contact set” of residues 

which were within 3 Å from the equilibrated crystallographic ligand binding pose 

(a total of 20 residues). We defined a state as unbound if the ligand was at more 

than 3 Å of distance from all of the residues in the “native contact” set. Times to 

first unbinding were rounded to 10 ns. Simulation in which the ligand did not 

escape from the binding pocket but shows a substantial destabilization are 

highlighted with an asterisk (*). 

Simulation Replicate ML188 unbinding time (ns) 

WT 1 >1000* 

WT 2 >1000* 

WT 3 780 

T24A 1 70 

T24A 2 930 

T24A 3 710 
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Supplementary Figure S1. Entity-relationship (ER) diagram of the SCoV2-MD 

database.The primary keys in the entities are bolded, and the foreign keys in the 

entities are highlighted. Each of the entities correspond to a table in the database. 

For instance, we have a table with information on the different molecular 

dynamics (MD) simulations (CovidDynamics), where each row is a different 

simulation entry with an unique identifier (ID) known as primary key, and 

columns hold attributes of the simulation (delta, force field, software, etc.). The 

tables can be related in different ways so that it is possible to connect the data 

held in them. In some cases, each record of a table can be related to one or more 

records of a second table. For instance, each simulation entry can be related to 

one or more simulation files. This is known as a one-to-many relationship. It can 

also be the case that each record of a table can relate to more than one record of a 

second table while, at the same time, each record of the second table can also 

relate to more than one record of the first . For example, we can have cases of 
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multiple PDB structures (different records in the CovidModel table) for each 

protein record (CovidProtein) and, at the same time, a PDB structure can include 

more than one protein, so we can also have multiple protein records for each 

model record. In these cases, we establish a many-to-many relationship between 

the tables. For that, we create a junction table between them (e.g. 

CovidModelProtein table) to save each occurrence of the relationship. For 

example, if we add to the database a protein with ID p1 (e.g. spike protein) that 

corresponds to models with ID m1 and m2 (e.g. 6VXX and 6M0J), but model m2 

(6M0J) corresponds to both protein p1 and p2 (spike and ACE2), we create three 

entries in the CovidModelProtein table: one relating p1 to m1, another relating p1 

to m2, and a third relating p2 to m2. All table records can then be mapped into 

Python objects via the Python-based web framework Django. 
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4. DISCUSSION  

4.1. The capabilities of MD simulations 

Traditionally, proteins have been perceived as rigid entities, mainly 

because experimental structures revealed static snapshots of protein 

conformations. However, when taken together, these static 

structures show that proteins exist in multiple conformational states, 

and therefore that there are dynamic fluctuations between them. A 

clear example is GPCRs, which exhibit a wide range of 

conformational states with different signaling properties270. Thus, a 

complete understanding of the structural mechanisms underlying 

protein functionality requires the exploration of conformational 

dynamics. MD simulations have emerged as one of the most 

promising approaches to study the complexity of such 

dynamics20,271, being able to capture molecular events at a spatio-

temporal resolution and conditions that are not always accessible 

with experimental techniques20,152. 

In this thesis, we first built a solid knowledge base of the 

capabilities of MD simulations and how this technique can be 

applied to advance our understanding of pharmacologically relevant 

proteins, focusing on GPCRs (publications 3.1, 3.2, and 3.3). As 

reviewed in these publications, MD simulations have proven their 

usefulness for the study of important biological processes in GPCRs 

such as ligand binding, allostery, activation/inactivation, post-

translational modifications, and sequence variability, among others. 

Given the importance of GPCRs as pharmacological targets, this 

has contributed to accelerating the discovery of new and safer 

therapeutic strategies. Yet, GPCRs are complex signaling machines, 

and a complete understanding of the dynamic molecular processes 

that guide their functionality will require far more investigation. 

Moreover, MD simulations have technical limitations, which 

restrict the processes that can be examined with them. Fortunately, 

considering the fast and continuous technological developments that 

we are experiencing, the capabilities of MD simulations are 

expected to expand with time as well166,167. As accessible 

computational power increases and MD algorithms are improved, 

the costs of simulating are reduced, allowing to carry out 

simulations for longer lengths of time, and of systems of increasing 
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size. Coupled with an ever-growing accuracy in the force fields, this 

should progressively push the limitations of MD simulations and 

extend their application to the study of molecular mechanisms that 

were previously difficult to capture. This could include, for 

instance, global conformational rearrangements, receptor 

dimerization, and coupling to intracellular signaling proteins. In the 

end, this will enable us to address biological questions that are 

currently unsolved. 

4.2. GPCRmd and SCoV2-MD: collection, 
dissemination, and analysis of MD 
simulations 

Considering the expanding popularity and capabilities of MD 

simulations, researchers are becoming aware of the importance of 

sharing this data, as previously discussed (1.3. Sharing MD 

simulations). To maximize the potential of MD research, the data 

generated should follow the FAIR principles, being ‘findable’ by 

anyone in a searchable resource; ‘accessible’ using an open, free, 

and universally implementable protocol; ‘interoperable’ so that 

comparable data from non-cooperating resources can be easily 

integrated; and ‘reusable’ thanks to robust metadata, provenance 

information, and clear usage licenses249,272. A very important step to 

align with these principles is the development of online platforms 

that facilitate data sharing. Thus, this thesis was devoted to the 

design and development of open-access repositories for the 

dissemination of MD simulations, including online tools to easily 

analyze and visually inspect the trajectories. Particularly, we 

focused on resources dedicated to two groups of proteins with 

pharmacological relevance: GPCRs and the SARS-CoV-2 

proteome. These repositories are GPCRmd (publication 3.4) and 

SCoV2-MD (publication 3.5). 

GPCRmd (www.gpcrmd.org, publication 3.4) is a community-

driven online resource that provides access to MD simulations of 

most GPCR structures solved to date, together with the necessary 

metadata (e.g. force field, simulation software, integration time-

step) to ensure transparency and reproducibility. Its final aim is to 

map the entire set of solved GPCR structures. For that, data are 

deposited either by individual contributions or by periodic updates 

http://www.gpcrmd.org/
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from the GPCRmd community. GPCRmd also provides a 

comprehensive set of interactive tools specifically designed for the 

visualization and analysis of GPCR simulations. Moreover, it 

includes a meta-analysis tool to compare and cluster the available 

simulations. 

In response to the COVID-19 pandemic, we also created SCoV2-

MD (www.scov2-md.org, publication 3.5) with the goal to 

integrate, cross-reference, and share MD dynamics data and 

metadata of the SARS-CoV-2 proteome. We collated and organized 

simulation data from several public databases, which was 

complemented with in-house simulations to complete the coverage 

of SARS-CoV-2 proteins with known structures. As GPCRmd, this 

resource includes visualization and analysis tools that provide a 

rapid and intuitive way to explore the simulation data. However, in 

this case, we focused on the analysis of known variant substitutions, 

incorporating tools to predict their functional impact based on a 

combination of descriptors. 

4.3. GPCRmd and SCoV2-MD in the context of 
currently available MD repositories 

As mentioned previously (1.3. Sharing MD simulations), due to the 

technical challenges of sharing MD data (i.e. the large file sizes), 

the number of online resources specialized in this type of data is not 

high (Table 1). Even fewer resources include options for the 

interactive analyses and visualization of the trajectories, which has 

only recently become feasible thanks to advances in browser 

technology. Such platforms are typically benefitted from focusing 

on one specific group of proteins. This reduces the required storage 

space, but also enables the implementation of analysis, 

visualization, or search options that are specific for the selected 

proteins. To our knowledge, GPCRmd is the first GPCR-specific 

MD platform. Another platform that includes MD simulations of 

GPCRs together with a comprehensive set of interactive 

visualization and analysis tools is MoDEL-CNS265. However, this 

platform focuses on all proteins involved in processes of the central 

nervous systems. Thus, unlike GPCRmd, it does not include GPCR-

specific tools that take into account the generic GPCR residue 

numbering schemes, such as user-defined selections based on these 

http://scov2-md.org/
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schemes, interaction networks between the different TMs, or our 

meta-analysis tool for the comparison of the interaction pattern of 

different receptors based on GPCR sequence alignments. In the case 

of SARS-CoV-2-related proteins, the platform BioExcel-CV19260 

includes simulations of the viral proteome together with multiple 

tools to display and analyze the trajectories online. However, it does 

not share with SCoV2-MD the focus on the study of the functional 

impact of variants sequenced during the pandemic. As mentioned, 

SCoV2-MD links the structural dynamics of the viral proteome with 

information on detected SARS-CoV-2 variants. For that, we 

integrated to the platform experimental data from the GISAID273 

resource, one of the main pandemic genome databases. This allows 

to extensively evaluate the structural and functional impact of 

variant-associated mutations taking into account protein dynamics. 

Our platform also includes variant effect predictors from the 

Mutfunc274 resource, among other impact descriptors. Moreover, 

since SCoV2-MD collates and organizes simulation data from 

available open repositories, BioExcel-CV19 simulations were 

included in the dataset. 

4.4. The potential impact of MD resources on 
future research 

4.4.1. Democratization of the access to MD data, a key 

step for multidisciplinarity 

One of the main benefits of online platforms such as GPCRmd and 

SCoV2-MD is their capacity to democratize access to scientific data 

– in this case, MD data – to both experts and non-experts254. They 

only require a web browser to access the data, without the need of 

installing external software or plugins. Thus, there is no technical 

barrier to using them, and they are compatible with any device with 

a web browser. Moreover, the tools for the visualization and 

analysis of MD simulations in GPCRmd and SCoV2-MD are 

designed to be interactive and easy to use, which allows an instant 

and intuitive understanding of the dynamic processes captured in 

the simulations. This can be especially useful, for instance, to 

inspect the simulation data generated in a publication to observe the 

phenomena described by the authors. This not only strengthens the 

understanding of the findings described in the publication, but also 
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generates transparency, trust, and reliability253. Consequently, this 

triggers discussion, knowledge exchange, and even the discovery of 

additional findings. All these factors are key to supporting 

multidisciplinarity, which ultimately provides new perspectives and 

opens new avenues for research. For instance, in publication 3.4 

we discuss how the open access to the structural dynamics of 

proteins, in this case, GPCRs, can support the research of scientists 

of different disciplines, including structural and evolutionary 

biologists, computational and medicinal chemists, and protein 

engineers, among others.   

4.4.2. The re-utilization of previously published datasets 

enable new discoveries 

By making large and difficult-to-collect datasets available, data 

sharing can enable scientific progress that is far beyond the 

resources of a single research group251. This is the case of large-

scale studies across different MD setups, force fields, ligands, lipid 

compositions, GPCR subtypes, or variants. For instance, Anila et al 

were able to perform a benchmarking of available force fields 

completely based on open-access MD trajectories275. In publication 

3.4 we demonstrate the potential of performing comparative studies 

based on the GPCRmd dataset using tools implemented in the 

platform (4.4.3.1. Functional hotspots revealed by comparative 

analysis implemented in GPCRmd) or custom analyses (4.4.3.2. 

Exploiting the GPCRmd dataset to examine sodium ion interactions 

across class A GPCRs). 

Importantly, in comparative studies such as those exposed here, one 

needs to be aware of the subtle differences in the simulation 

parameters, software, and force field used, as they could have an 

impact on the results. Thus, it is important that all the simulation 

data and metadata in the repository are harmonized and 

standardized so that they can be found easily, and simulations can 

be filtered accordingly. What is more, structured and well-defined 

metadata is essential to ensure the reproducibility of the MD 

simulations. For these reasons, the online platforms developed in 

this thesis include simulation report sections, where all the available 

metadata and simulation files are organized. Moreover, both 

platforms include search pages that allow to easily filter the 
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available data. In the case of GPCRmd, reproducibility and 

comparative studies are also simplified by the fact that a large part 

of the dataset is generated by the GPCRmd community with a 

specific and consistent protocol, carefully designed by the 

community members. Thus, it is easy to perform comparative 

analyses using this data. 

Apart from large-scale initiatives, smaller studies based on public 

datasets can also provide important contributions to research. 

Thanks to open repositories, MD data can be reused for analyses 

that go beyond the original purpose of the studies that generated 

them, avoiding the need to repeat the simulation effort. Despite 

GPCRmd being a fairly new resource, there are already several 

published studies that use some of the simulations deposited in it. 

For instance, some authors used GPCRmd simulations to 

demonstrate the use of new computational approaches for the large-

scale detection of protein binding sites276, the generation of 

interaction fingerprints in molecular complexes277, and the 

prediction of ligand poses in human GPCRs based on a hybrid 

molecular mechanics/coarse-grained approach278. Moreover, 

Denzinger et al. studied the conformational impact of biased ligands 

on 5-HT2B receptors and compared the structural movements 

captured in their results with those observed in a GPCRmd 

simulation279. In the case of SCoV2-MD, it has just been accepted 

for publication at the time of writing, so this resource has not yet 

been disseminated for its use in further studies. However, we 

present an example of a possible analysis that can be achieved with 

this platform (4.4.3.3. Using SCoV2-MD to pinpoint variant 

substitutions with impact on protein function). 

4.4.3. Case studies: showcasing the potential of the 

obtained resources 

To demonstrate the capabilities of the platforms developed in this 

thesis, we provided several case studies, exposed in publications 

3.4 and 3.5. These case studies highlight the possible applications of 

some of the implemented online tools, as well as the potential of 

exploiting the accumulated dataset to shed light on important 

aspects of GPCR and SARS-CoV-2 biology. 
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4.4.3.1. Functional hotspots revealed by comparative analysis 

implemented in GPCRmd 

Among the tools implemented in GPCRmd, we included the 

receptor meta-analysis to perform comparative studies within the 

dataset. This module provides the possibility to compare and cluster 

the available simulations, or a subset of interest, based on their 

interaction patterns. To exemplify the applicability of this tool, in 

publication 3.4 we used it to investigate water networks, which 

have been proposed to play an important role for GPCR 

function209,280. For that, we clustered simulations based on water-

mediated intra-receptor interactions, which revealed interesting 

similarities and differences between β2AR and OX2-receptor. 

Along with previously described conserved water networks206, our 

analysis captured other water networks conserved among these 

subtypes. For instance, we detected a conserved network linking 

TM6 (6x47, 6x51) and TM7 (7x37), which is less prominent in 

active structures. Considering the link between TM6 conformational 

changes and receptor activation, we could speculate that uncoupling 

the interactions in this network represents a step during receptor 

activation. Contrarily, some relevant differences were found 

between the two receptor subtypes, such as a water bridge between 

intracellular loop 1 (ICL1, 12x49) and helix 8 (H8, 8x49) only 

found in the β2AR. These differences could potentially be related to 

the distinct coupling profile to intracellular partners shown by these 

receptors.  

All in all, this case study shows how comparative analyses 

performed with the meta-analysis tool could hint at both universal 

and distinct mechanisms governing the structural dynamics of 

GPCRs. 

4.4.3.2. Exploiting the GPCRmd dataset to examine sodium ion 

interactions across class A GPCRs 

In order to open the door to the scientific community to exploit the 

data accumulated in our platforms, the entire dataset of GPCRmd 

and SCoV2-MD is available for download. As exposed in 

publication 3.4, to demonstrate the value of such a comprehensive 

dataset, we used the simulation data included in GPCRmd to 
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perform a comparative analysis of sodium ion binding in class A 

GPCRs.  

Sodium interaction is an almost universal mechanism of allosteric 

modulation for GPCRs, but the details of this mechanism are still 

poorly understood34. To shed light on this process, we analyzed 

sodium interaction to conserved orthosteric (3x32) and allosteric 

(2x50) residues in 183 simulations (61 different apo structures, with 

three replicas each) covering 26 different class A receptor subtypes. 

The obtained interaction frequencies allowed us to classify 

receptors in four groups with notably different patterns: group I 

(high interaction frequency to both positions), group II (interaction 

frequency marginal at D2x50 but high at 3x32), group III 

(interaction frequency high at D2x50 but marginal at 3x32), and 

group IV (no binding at neither position). Further inspection of the 

simulation data revealed how differences in sequence, structure and 

dynamics between the groups could explain such distinct sodium 

binding profiles. Interestingly, the differences observed between the 

obtained groups may serve as an evolutionary mechanism to 

differentially modulate allosteric sodium ion binding in different 

receptors. 

Overall, while our results confirm the essential role of D2x50 for 

allosteric sodium binding in class A GPCRs36,280, they also show 

that the presence or absence of D3x32 in the orthosteric binding site 

determine the sodium interaction profile. This analysis exemplifies 

the potential of the comprehensive GPCRmd dataset to elucidate the 

molecular mechanisms underlying GPCR physiology. 

4.4.3.3. Using SCoV2-MD to pinpoint variant substitutions with 

impact on protein function 

As described in publication 3.5, the simulations of viral proteins 

collected in SCoV2-MD are annotated with known variant-

associated mutations. For each mutation, we provide a wide set of 

descriptors including static and MD-derived parameters. These 

descriptors can be combined in an impact score to interrogate the 

impact of each mutation.  

To illustrate the application of the variant impact prediction tool, in 

our publication we analyze the amino acid substitutions that have 
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been detected so far in the spike RBD. Understanding the impact of 

RBD mutations is particularly relevant, as they could have an effect 

on immune recognition or on the binding to the host cell. For our 

impact score, we took into account the RMSD of the simulation in 

order to detect regions of high structural stability, which tend to be 

important for the overall function of the viral protein. We combined 

the RMSD with a substitution score such as BLOSUM to capture 

unfavorable substitutions as well. The obtained score highlighted 

position C488 as high-impact. Interestingly, visualization of the 

protein structure revealed that C488 forms a disulfide bridge with 

C480. Unfavorable substitutions such as C488R disrupt the 

disulfide bridge, introducing flexibility into this region. This in turn 

can alter the propensity of the virus to attach to the host cell 

receptor, causing an impact on viral infectivity. 

This analysis exemplifies the capability of this tool to evaluate the 

structural and functional impact of variant-associated mutations 

taking into account protein dynamics. This could be a first step to 

stimulate the early detection of emerging variants of concern, 

guiding further experimental characterization. 

4.5. Limitations, challenges, and future 
improvements 

4.5.1. Sustainability, a main challenge for research 

resources  

Regardless of the capabilities of MD platforms, some challenges 

need to be overcome before they reach their full potential. One of 

the most important challenges is maintenance. First, we need to 

ensure the continuous update of the MD data and related 

information included in the repositories. GPCRmd aims to map the 

entire 3D GPCRome (i.e. the available GPCR structures), and thus, 

as new structures are published, these will need to be simulated 

according to our standardized protocol and uploaded. As mentioned, 

this will be tackled in periodic updates with the help of the 

community supporting GPCRmd. Similarly, SCoV2-MD needs to 

continuously incorporate MD simulations newly published in open-

access repositories or generate in-house simulations of new 

structures. Also, it is important to update the information of 
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detected amino acid substitution in the viral genome, obtained from 

GISAID273, as well as experimental impact predictions, obtained 

from Mutfunc274. The extraction of data from external resources, 

including other MD repositories, GISAID, and Mutfunc is 

automatized whenever possible. However, automatized protocols 

need to be maintained as well, as these external resources may 

incorporate changes in the future. Moreover, as simulation time 

scales increase and systems become bigger, an increase in the 

deposited data is expected for both platforms. This will require an 

increase in data storage space, internet bandwidth, and 

computational power. Finally, another important point for the 

maintenance of the online platforms is the file formats of MD data. 

The MD simulations field has a tendency to produce a multitude of 

formats depending on the MD software used. As the field evolves, 

and new software and force fields are developed, new formats may 

appear247. Thus, it is essential that the supported formats in our 

platforms are updated accordingly. In practice, the supported 

formats are defined by the software used to display, interact and 

analyze the simulations, such as MDsrv255, MDTraj151, and 

MDAnalysis149,150.  

As previously mentioned, the best strategy to face challenges such 

as those exposed here and preserve adequate platform sustainability 

is counting on a strong community support247. Community 

engagement ensures the continuous maintenance and update of the 

resource, avoiding issues that individual laboratories may face, such 

as the termination of a grant or the graduation of students. This has 

been shown, for instance, by structural biology and 

(proteo)genomics projects like the PDB (rcsb.org)116 or the Galaxy 

project281, respectively. For this reason, GPCRmd has been created 

under the umbrella of a strong research community, as explained in 

publication 3.4. Since SCoV2-MD was created as a spin-off of 

GPCRmd, and thus shares many resources with it, it can also 

benefit from this community support. 

4.5.2. Ensuring the quality of the submitted trajectories 

Another important issue of online repositories is controlling the 

quality of the submitted data. Convincing users of the validity of the 

data generated by other users can be challenging, so in order to gain 

the trust of the community, it is critical to provide some guarantees. 
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At the moment, the strategy followed in GPCRmd and SCoV2-MD 

is to only accept submissions of published data. We also accept 

submissions of data that is under the peer review process, with 

restricted access only for the authors and reviewers. In SCoV2-MD, 

as indicated before, apart from individual submissions we include 

simulations produced by leading groups in the field extracted from 

well-known resources, mainly BioExcel-CV19260, COVID-19 

Molecular Structure and Therapeutics, the CHARMM-GUI 

simulation archive282, and the Exscalate4Cov project283.  

Quality control could be improved by implementing an automatized 

quality analysis pipeline to test for potential problems in the 

deposited simulations. However, due to the extensive diversity of 

MD simulations, the implementation of automatized pipelines able 

to accurately detect artifacts is not an easy task. Often, these are 

limited to tagging the simulations as suspicious, leaving the 

responsibility to decide whether the simulation data should be 

trusted or not to the user. In this sense, a common effort is still 

needed from the MD community to define rules on the validation of 

trajectories284. 

4.5.3. Integrating open data practices in the workflow of 

MD 

It is also worth mentioning that a relevant challenge of data sharing 

platforms is overcoming resistance and reluctance in publishing 

data sets. Unlike disciplines such as protein crystallography or 

genomics, which have open data practices well integrated into their 

workflow, data sharing in the MD community still has not become 

widely adopted. To establish an efficient sharing culture, a 

community effort is needed to continue developing and improving 

tools and repositories that support the FAIR principles, as well as 

defining best practice guidelines on how MD simulations should be 

shared in order to fully comply with these principles247,253,284,285. In 

the long run, the MD field may reach the situation in which, prior to 

publication, authors deposit the MD data to a global repository 

equivalent to the PDB for experimental structures. Special-purpose 

MD platforms such as those described in this thesis may 

accordingly be considered a first step on the way towards this goal. 
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4.6. Final remarks 

To conclude, repositories such as GPCRmd and SCoV2-MD have 

the potential to promote transparency and reproducibility in the 

field of MD simulations. They provide dissemination of MD 

simulation data, broadening the outreach of protein dynamics to 

researchers of different fields, and thus enhancing collaboration and 

multidisciplinarity. By facilitating the inspection of MD 

simulations, it is possible to increase the understanding of the 

studied mechanisms, detect or explain unresolved issues, and 

complement previous findings. Consequently, novel ideas can be 

generated, and new lines of analysis may be triggered, contributing 

to the acceleration of research.  However, the development of MD 

repositories is bound to several challenges, such as ensuring its 

sustainability, controlling the quality of the deposited data, and 

motivating researchers to upload their simulations. With the effort 

of the MD community, we will continue improving our strategies to 

effectively share simulation data, with the final goal of making MD 

data FAIR. 
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5. CONCLUSIONS 

The main conclusions arising from the work presented in this thesis 

are the following: 

• An extensive review of the literature shows that MD 

simulations can provide unique insights into the structural 

dynamics of proteins, and in particular GPCRs. As such, this 

technique has been key to advancing our understanding of 

important phenomena in GPCR physiology such as ligand 

binding, allostery, activation/inactivation, post-translational 

modifications, and sequence variability, among others. This 

has contributed to accelerating the discovery of new and 

safer drugs targeting GPCRs. 

• We present GPCRmd, a community-driven online resource 

that makes MD simulations of GPCRs available to the 

whole community of researchers interested in this protein 

family. It includes simulations of most GPCR structures 

solved to date, as well as the corresponding metadata. It also 

provides access to a comprehensive set of tools to simplify 

the visualization and analysis of the simulations.  

• In response to the COVID-19 pandemic, we developed 

SCoV2-MD, an online resource with the objective to 

organize, cross-reference, and disseminate MD simulations 

of the SARS-CoV-2 proteome, together with the 

corresponding metadata. This resource also includes 

visualization and analysis tools, with special emphasis on 

the prediction of the impact of known viral mutations on 

protein functionality. 

• The simulation data accumulated in GPCRmd and SCoV2-

MD, together with the implemented online tools, simplify 

the exploration of protein dynamics and can help to shed 

light on the molecular mechanisms underlying GPCR and 

SARS-CoV-2 biology. 

• Repositories such as GPCRmd and SCoV2-MD have the 

potential to promote reproducibility and transparent 

dissemination in the field of MD simulations. These are key 

ingredients to enhance collaborative and multidisciplinary 
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research. A community effort is still needed to completely 

align MD data to the FAIR principles, but open-access 

repositories such as those presented in this thesis may be an 

important step towards this goal. 
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