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Exploiting Local Optimality and Strong Inequalities for Solving Bilevel

Combinatorial and Submodular Optimization Problems

Xueyu Shi, PhD

University of Pittsburgh, 2021

Bilevel combinatorial and submodular optimization problems arise in a broad range of

real-life applications including price setting, network design, information gathering, viral

marketing, and so on. However, the current state-of-the-art solution approaches still have dif-

ficulties to solve them exactly for many broad classes of practically relevant problems. In this

dissertation, using the concepts of local optimality and strong valid inequalities, we explore

the fundamental mathematical structure of these problems and boost the computational per-

formance of exact solution methods for these two important classes of optimization problems.

In our initial study, we focus on a class of bilevel spanning tree (BST) problems, motivated

by a hierarchical (namely, bilevel) generalization of the classical minimum spanning tree

problem. We show that depending on the type of the objective function involved at each

level, BST can be solved to optimality either in polynomial time by a specialized algorithm

or via a mixed-integer linear programming (MILP) model solvable by an off-the-shelf solver.

The latter case corresponds to an NP-hard class of the problem.

Our second study proposes a hierarchy of upper and lower bounds for the bilevel prob-

lems, where the follower’s variables are all binary. In particular, we develop a generalized

bilevel framework that explores the local optimality conditions at the lower level. Submodu-

larity and disjunctive-based approach are then exploited to derive strong MILP formulations

for the resulting framework. Computational experiments indicate that the quality of our

newly proposed bounds is superior to the current standard approach. Furthermore, we gen-

eralize our aforementioned results for BST and show that the proposed bounds are sharp for

bilevel matroid problems.

Finally, to address the computational challenges in the submodular maximization prob-

lem, we present the polyhedral study of its mixed 0–1 set. Specifically, we strengthen some

existing results in the literature by finding two families of facet-defining inequalities through
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the lens of sequence independent lifting. We further extend the scope of this work and

describe the multi-dimensional sequence independent lifting for a more complex set. The de-

veloped polyhedral results complement the classical results from the literature for the mixed

0–1 knapsack and single-node flow sets.
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1.0 Introduction

Over the last fifty years, numerous research efforts by the optimization community have

been focused on the theoretical analysis and the development of computational methods for

mixed-integer linear programming problems (MILPs). With the development of this impor-

tant discipline, the current state-of-the-art solvers (e.g., CPLEX [51], Gurobi [47]) can tackle

broad classes of MILPs with millions of decision variables and constraints. However, there

exist many practically important real-life systems that require optimization models with

integer decision variables that are not necessarily MILPs. In this dissertation we consider

two classes of such optimization problems, namely, bilevel optimization and submodular

maximization problems.

1.1 Bilevel Optimization

In bilevel optimization problems [27, 30], two independent decision-makers (referred to

as the leader and the follower) with their own distinct objective functions are involved in a

hierarchical decision-making process. The leader (the upper-level decision-maker) acts first,

and then the follower (the lower-level decision-maker) determines the response in terms of

their own optimization model, whose feasible region and objective function are parameter-

ized on the leader’s decision. Importantly, the follower’s response also affects the leader’s

objective function. This is the reason the leader must take the follower’s possible reactions

into account when maximizing/minimizing their own benefits/costs.

Meanwhile, in the lower-level optimization problem, there may exist multiple optimal

solutions, which result in different objective function values for the leader. If the follower

selects the solution from the lower-level optimal solution set that is most favorable for the

leader, then we often refer to this strategy as the optimistic formulation of the problem. The

alternative strategy typically considered in the literature is the pessimistic formulation of
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the problem, where the follower chooses the least favorable solution for the leader from the

lower-level optimal solution set.

Due to a broad range of important applications including interdiction [16, 32, 52], price

setting [18, 68], and network design [13, 40, 119], among others, bilevel optimization prob-

lems have been extensively studied in the past two decades. Most of the research efforts

have been focused on bilevel problems, where the lower-level problem is a linear optimiza-

tion problem. The latter assumption allows for application of the necessary and sufficient

optimality conditions (strong duality and complementary slackness) which, in turn, can be

used to reduce the original bilevel problem into a single-level mixed integer optimization

problem [10, 126]. In recent years there has been increased interest in the exact solution

methods for generic bilevel problems, where the lower-level problem involves integer decision

variables; see, e.g., [36, 77, 109, 128]. Integer decisions at the lower level require applica-

tion of somewhat more sophisticated methods. In particular, one of the primary examples

is MibS [32, 104], an open-source solver, that exploits advanced cutting plane based ap-

proaches [35, 36, 103] within a branch-and-bound framework.

Solving mixed-integer bilevel linear optimization problems (MIBLP) to optimality is

quite challenging. The general MIBLP problem is shown to be hard in the complexity class

of Σp
2 [22, 75]. It implies that the problem cannot be reducible to a mixed-integer linear

problem in polynomial time unless the hierarchy collapse to class NP; i.e., Σp
2 = NP. In

terms of the computational practice, MibS [32, 104], an open source solver for the generic

MIBLP problems, can solve medium-sized problems with up to several hundred integer

decision variables at the lower level. We note that the initial upper and lower bounds

within branch-and-bound and branch-and-cut frameworks are of critical importance for their

overall performance. However, the traditional bounding approach based on the single-level

relaxation for the generic bilevel problem typically yields relatively poor bounds.
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1.2 Submodular Function Maximization

Submodularity is a property of set functions, i.e., f : 2N → R, where N is the ground set.

We say f is a submodular function if f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for any S, T ⊆ N .

Optimization with submodular functions appears in several real-world applications, e.g.,

viral marketing [57, 93], risk-averse [62, 118], data summarization [74, 106], information

gathering [66, 67], etc. In particular, many discrete optimization problems arising in the

machine learning and artificial intelligence areas are essentially submodular optimization

problems [33]. From its definition, the submodular maximization problem could be viewed,

in a sense, as a discrete version of an easy concave maximization problem. However, the

submodular maximization problem is, in general, NP-hard [76, 86]. In contrast, according to

[76], the submodular minimization problem can be converted through Lovasz extension into

a convex minimization problem, which is computationally tractable [89, 97]. Such drastically

different results from the theoretical perspective and the great need from various applications

have inspired a number of research studies on submodular optimization in recent decades,

in particular, on its difficult maximization version [19, 39, 65].

When the submodular function is monotone (i.e., f(S) ≤ f(T ) for any S ⊆ T ), Nemhauser

and Wolsey [87] propose a tight (1 − 1/e)-approximation greedy algorithm that incremen-

tally includes into S an element with the largest improvement. By generalizing this classical

result, a number of approximation algorithms have been developed in recent decades for the

submodular maximization problem in various settings. We refer the readers to [19, 39, 65]

for detailed surveys. As for the specific submodular function in the form of (4.2), Yu and

Ahmed [121] propose an approximation algorithm for the expected utility maximization prob-

lem with a knapsack constraint that yields an approximation ratio better than (1 − 1/e).

In [5], Atamtürk and Gómez develop an 1/2-approximation algorithm for maximizing a class

of the submodular function over the vertices of conv(X ) with general integer variable x.

In recent years, there are several celebrated results that provide a better understanding of

the mathematical structure of submodular optimization problems. Ahmed and Atamtürk [2]

employ the lifting technique to derive the first set of strong lifted inequalities for a class

of submodular maximization problems. Yu and Ahmed [122] generalized their approach to

3



a more difficult set involving one additional knapsack constraint. Besides the polyhedral

results of the submodular maximization set in [2, 122], Wu and Küçükyavuz [117] propose

the optimality cuts for the two-stage stochastic submodular maximization problem. A de-

composition algorithm with several classes of valid inequalities [118] is then developed for a

class of risk-averse submodular maximization problem in their subsequent work. For other

polyhedral studies related to the submodular minimization set and the submodular knapsack

polytope, we refer the readers to [7, 8, 60, 76, 123].

However, the computational experiments in [2] for a class of submodular functions in-

dicate that the current state-of-the-art exact approaches can only deal with small-sized

problems with up to one hundred binary decision variables. On the other hand, the best ap-

proximation ratio for the unconstrained submodular maximization problem is 1−1/e ≈ 0.63

when the submodular function is monotone [87]. We note that the ratio value of 0.63 implies

that the worst-case bound given by the approximation algorithm is relatively weak.

1.3 Contribution & Outline

In this dissertation, we exploit the local optimality conditions and strong valid inequali-

ties for solving bilevel combinatorial optimization and submodular maximization problems.

Furthermore, we find some interesting connections between the bilevel optimization and sub-

modular optimization, which enables us to develop advanced algorithms and approaches for

the considered problems.

In particular, Chapter 2 studies a class of bilevel spanning tree problems (BSTs) that

involve two independent decision-makers (DMs), the leader and the follower with different

objectives, who jointly construct a spanning tree in a graph. The leader selects an initial

subset of edges that do not contain a cycle, from the set under her control. The follower then

selects the remaining edges to complete the construction of a spanning tree, but optimizes

his own objective function. We study BSTs with the sum- and bottleneck-type objective

functions for the DMs under both the optimistic and pessimistic settings. The polynomial-

time algorithms are then proposed in both optimistic and pessimistic settings for BSTs in
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which at least one of the DMs has the bottleneck-type objective function. For BST with the

sum-type objective functions for both the leader and the follower, we provide an equivalent

single-level MILP formulation. A computational study is then presented to explore the

efficacy of our reformulation.

In Chapter 3, we consider a class of mixed integer bilevel linear optimization problems in

which the decision variables of the lower-level (follower’s) problem are all binary. We propose

a general modeling and solution framework motivated by the practical reality that in a bilevel

problem, the follower does not always solve their optimization problem to optimality. They

may instead implement a locally optimal solution with respect to a given upper-level decision.

Such scenarios may occur when the follower’s computational capabilities are limited, or when

the follower is not completely rational. Our framework relaxes the typical assumption of

perfect rationality that underlies the standard modeling framework by defining a hierarchy

of increasingly stringent assumptions about the behavior of the follower. Namely, at level k

of this hierarchy, it is assumed that the follower produces a k-optimal solution. Associated

with this hierarchy is a hierarchy of upper and lower bounds that are in fact valid for the

classical case in which complete rationality of the follower is assumed.

We exploit submodularity and disjuctive approach to develop mixed integer linear pro-

gramming (MILP) formulations for the resulting optimization problems. Extensive com-

putational results are provided to demonstrate the effectiveness of the proposed MILP for-

mulations and the quality of the bounds produced. The latter are shown to dominate the

standard approach based on a single-level relaxation at a reasonable computational cost.

Furthermore, we explore a general class of bilevel matroid problems for which 2-optimal

lower-level solutions imply global optimality that is, the follower is fully rational. We also

show that the bilevel spanning tree problem considered in Chapter 2 is a special case of the

bilevel matroid problem. Single-level MILP formulations are further revisited and investi-

gated for several variants of the bilevel spanning tree problems.

Finally, in Chapter 4, we study the polyhedral structure of a mixed 0-1 set arising from the

submodular maximization problem, given by P = {(w, x) ∈ R× {0, 1}n : w ≤ f(x), x ∈ X},

where submodular function f(x) is represented by a concave function composed with a

linear function, and X is the feasible region of binary variables x. For X = {0, 1}n, two

5



families of facet-defining inequalities are proposed for the convex hull of P through restriction

and lifting using submodular inequalities. When X involves multiple disjoint cardinality

constraints, we propose a new class of facet-defining inequalities for the convex hull of P

through multidimensional sequence independent lifting. The derived polyhedral results not

only strengthen and generalize some existing developments in the literature, but are also

linked to the classical results for the mixed 0-1 knapsack and single-node flow sets. Our

computational study on a set of randomly generated submodular maximization instances

demonstrates the superiority of the proposed facet-defining inequalities within a branch-

and-cut scheme.
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2.0 On Bilevel Minimum and Bottleneck Spanning Tree Problems

The contents of this chapter are mostly based on the published journal paper [99]1.

2.1 Motivation

In this chapter, we consider a class of bilevel spanning tree problems. Given a connected

undirected edge-weighted graph G = (V,E) with vertex set V and edge set E, the minimum

spanning tree (MST) is defined as a connected subgraph that spans all vertices, does not

contain any cycle and has the minimum possible total edge weight [3]. The problem of find-

ing an MST, referred to as the MST problem, is one of the classical and well-known network

optimization problems, which has numerous applications arising in a variety of important

domains, such as network design [58, 73, 81], data storage [55], clustering [110, 120, 125],

network reliability analysis [15, 44], etc.

The MST problem often arises in the design of physical systems (e.g., in communica-

tion, or transportation contexts), which are represented by a set of structural elements (i.e.,

vertices) that need to be fully connected in the simplest possible configuration with no re-

dundancy (i.e., with no cycles); see, e.g., the discussions in [3, 4, 116] and the references

therein. In the standard MST problem, a single decision-maker fully controls the edge selec-

tion process and optimizes his/her own objective function, i.e., the total sum of edge weights

(costs) in the resulting tree. However, in many practical settings the decision-making process

is decentralized and performed in a hierarchical manner. Consider the following motivating

example. Assume that we are given a network design (e.g., communication, transporta-

tion) problem, where the overall goal is to connect n facilities by building n − 1 pairwise

connections (e.g., communication or transportation links). Thus, the resulting network cor-

responds to a spanning tree. The upper-level decision-maker, e.g., the central government,

1Reprinted by permission from John Wiley & Son, Inc.: Wiley Periodicals, Networks: On bilevel minimum
and bottleneck spanning tree problem. Shi, X., Zeng, B., & Prokopyev, O. A. (2019), 74(3), 251-273. ©2019
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first constructs some of the required connections, for example, to ensure pairwise connectiv-

ity between some of the most important (from the perspective of the central government)

facilities. Then the lower-level decision-maker, e.g., a local government, completes the con-

struction by connecting the remaining facilities. The construction of each link is undertaken

by one of these decision-makers and thus, their costs (or values) for each pairwise connection

do not necessarily coincide. Furthermore, the objectives of the decision-makers involved in

this hierarchical process can also be different. Therefore, the underlying optimization prob-

lem is, in fact, bilevel. Clearly, this example allows for a simple generalization if there are

multiple decision-makers at the lower level.

This type of hierarchical decision-making processes is naturally captured by bilevel op-

timization models [27] and leads to a class of bilevel spanning tree (BST) problems, which

can be viewed as a bilevel generalization of the MST problem. The BST problem involves

two independent decision-makers who jointly construct a spanning tree in a graph through

a two-level hierarchical decision-making process. The upper-level decision-maker (called the

leader) acts first and selects a subset of edges that do not contain a cycle, from the edges of

the graph under her control. In the second level, i.e., the lower level, the other decision-maker

(called the follower) selects the remaining edges that are necessary to complete the spanning

tree construction. Note that for convenience, we use “she/her” and “he/his” whenever we

refer to the leader and the follower, respectively.

Each of the decision-makers has his/her own objective function, which is a function of

their individual edge weights in the constructed spanning tree. Therefore, to optimize her

objective function value, the leader needs to make decisions by taking into account the

follower’s actions (i.e., optimal solutions of the lower-level problem), which is referred to as

the follower’s reaction set. We refer readers to [27] for a survey on bilevel optimization that

also overviews some basic concepts and algorithms in the area.

Formally, given a connected undirected graph G = (V,E), let edge sets E` and Ef

be subsets of E that are controlled by the leader and the follower, respectively. Denote

by T (G) the set of all spanning trees in G. For a leader’s decision L ⊆ E`, the follower

completes the construction of a spanning tree by selecting a set of edges F ⊆ Ef such that

L ∪ F ∈ T (G). Let g`(L, F ) and gf (L, F ) be the objective functions of the leader and the

8



follower, respectively, for L ∪ F ∈ T (G). Then the bilevel spanning tree (BST) problem is

formally given by:

[BST] z∗ = “ min ”
L⊆E`

g`(L, F ) (2.1)

s.t. F ∈ R(L) = arg min
F̃
{gf (L, F̃ ) : F̃ ∈ P(L)},

where P(L) = {F̃ ⊆ Ef : L ∪ F̃ ∈ T (G)} denotes the follower’s feasible region given the

leader’s decision L. Note that R(L) is the collection of optimal solutions of the lower-level

problem that form the follower’s reaction set. We point out that there may exist multiple

optimal solutions in the follower’s reaction set, i.e., |R(L)| > 1, which result in different ob-

jective function values for the leader. Then the follower needs to have a strategy to determine

his action. In (2.1), similar to other related studies [31], we use the quotation marks to reflect

this possibility of different approaches by the follower. Two major strategies, namely, the

optimistic and pessimistic rules, are typically considered in the bilevel optimization literature

[27].

Under the optimistic rule, the follower who is collaborative, selects the most favorable

solution for the leader from his reaction set R(L). The optimistic reaction set, Ro(L), is

then given by:

Ro(L) = {F ∈ R(L) : g`(L, F ) ≤ g`(L, F
′) ∀F ′ ∈ R(L)}.

In contrast, the pessimistic rule specifies that the follower is adversarial and chooses the

least favorable solution for the leader from his reaction set R(L). The pessimistic reaction

set, Rp(L), is given by:

Rp(L) = {F ∈ R(L) : g`(L, F ) ≥ g`(L, F
′) ∀F ′ ∈ R(L)}.

In this chapter, we focus on the two most popular objective functions that arise in differ-

ent classes of the spanning tree optimization problems [3], namely, the sum- and bottleneck-

type functions. For each edge (i, j) ∈ E, we denote the edge weights of the leader and the

follower, by cij and dij, respectively. Then the objective function of the leader g` is either

cS(L, F ) =
∑

(i,j)∈L∪F

cij or cB(L, F ) = max
(i,j)∈L∪F

cij, (2.2)
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where subscripts “S” and “B” are used to represent the “sum” and “bottleneck” function

types, respectively. Similarly, the follower’s objective function gf is given by either

dS(L, F ) =
∑

(i,j)∈L∪F

dij or dB(L, F ) = max
(i,j)∈L∪F

dij. (2.3)

For convenience, we refer to different versions of the BST problem as BST(X,Y ), where

X ∈ {S,B} and Y ∈ {S,B} denote the leader’s and the follower’s objective function types,

respectively. If g`(L, F ) = −gf (L, F ), then the BST problem reduces to the min-max span-

ning tree (MMST) problem, referred to as the MMSTX problem, where X ∈ {S,B}.

In general, the idea of extending classical combinatorial optimization problems into the

bilevel settings has attracted substantial research attention in past decades. Some recent

examples include the bilevel knapsack problem [12, 21] and the bilevel assignment problem

[13, 42]. However, to the best of our knowledge, there are only few related studies that

consider bilevel extensions of the spanning tree problems. In particular, Frederickson and

Solis-Oba [38] present two versions of the minimum spanning tree interdiction problem. In

the first version, referred to as the discrete one, the leader seeks to increase the MST weight

by removing a subset of edges subject to a budgetary constraint. This problem turns out

to be NP-hard. The other, continuous version, where instead of removing edges the leader

can increase the weights of some edges, is polynomially solvable. Gassner [42] extends the

setting of [38] to allow the leader and the follower have their own individual objective func-

tions. Furthermore, the leader can either decrease or increase the edge weights, and her

objective function consists of the weight modification costs and the function of the spanning

tree completed by the follower. It is shown that the problem is NP-hard when both the

upper-level and lower-level objective functions are of the sum-type; if the follower has the

bottleneck-type objective function, then the problem is polynomially solvable. Cardinal et al.

[24] introduce the Stackelberg pricing minimum spanning tree problem, in which the leader

maximizes her revenue by setting prices for a set of edges, while the follower constructs the

minimum spanning tree in the obtained graph. The problem is shown to be APX-hard but

allows for an O(log n)-approximation algorithm.
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In view of our discussion above, the contribution of this chapter can be summarized as

follows. We explore both the optimistic and pessimistic versions of the considered BST prob-

lems, where the leader’s and the follower’s objectives are either the sum- or bottleneck-type

functions. More specifically, we develop polynomial-time algorithms for the MMST problem

(both MMSTB and MMSTS) and almost all versions of the BST problems (namely, BST(B,B),

BST(B,S) and BST(S,B)), except the BST(S,S) case. The theoretical computational complexity

of BST(S,S) remains an open question. However, for BST(S,S) we provide a single-level linear

mixed-integer programming (MIP) formulation and perform a set of computational experi-

ments with a standard MIP solver to explore its effectiveness. Admittedly, the considered

bilevel setting can be viewed as somewhat stylized. However, given the importance and wide

applicability of the MST problem and its variations, this study contributes to the growing

body of literature on bilevel network and bilevel combinatorial optimization problems.

The remainder of the chapter is organized as follows. Section 2.2 introduces some neces-

sary notations and describe basic structural properties of the BST problem that are required

for our further derivations. In Section 2.3, we develop a polynomial-time algorithm for solv-

ing the MMST problem. Next, we discuss solution approaches for the BST(X,B) and BST(X,S)

problems in Sections 2.4 and 2.5, respectively. Finally, our concluding remarks are presented

in Section 2.6.

2.2 Technical Preliminaries

Given an edge subset T ⊆ E, let G[T ] = (Ṽ , T ) be the subgraph of G induced by T ,

where Ṽ ⊆ V is the set of vertices that are endpoints of edges in T , i.e., Ṽ = {i ∈ V : ∃ j ∈

V, such that (i, j) ∈ T}. Note that if G[T ] is a spanning tree, then Ṽ = V .

Throughout this chapter, we make the following assumption.

Assumption. The follower controls all edges in graph G, that is, Ef = E.

This assumption ensures that for any leader’s decision L, the follower’s reaction problem

is always feasible as long as G[L] is acyclic, which is a technical standard in the related

bilevel optimization literature [27].
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Definition 2.1. For the BST problem, we say that (L, F ) is a bilevel feasible solution with re-

spect to the optimistic (pessimistic) rule, if L ⊆ E`, and F ∈ Ro(L) (F ∈ Rp(L), respectively).

Let z(L) = g`(L, F ), where (L, F ) is a bilevel feasible solution. If G[L] contains cycles, we

set z(L) = +∞.

Next, we present two technical results used further in the chapter, which also illustrate

that the BST problem is well-defined.

Lemma 2.1. If L ∪ F = L′ ∪ F ′, then g`(L, F ) = g`(L
′, F ′) and gf (L, F ) = gf (L

′, F ′).

Proof. If follows directly from the definition of the objective functions in (2.2) and (2.3).

Lemma 2.1 implies that if two bilevel feasible solutions define the same spanning tree in

the graph, then these two solutions also produce the same objective function value in both

levels. We next show that there may exist multiple distinct bilevel feasible solutions that

result in the same objective function value.

Lemma 2.2. If (L, F ) is a bilevel feasible solution of the BST problem under the optimistic

(pessimistic) rule, then (L∪L′, F \L′) is also a bilevel feasible solution under the optimistic

(pessimistic, respectively) rule for any subset L′ ⊆ E` ∩ F .

Proof. If L′ = ∅, then the statement is trivial. Otherwise, it is sufficient to show that F \L′

is contained in the follower’s reaction setRo(L∪L′) (orRp(L∪L′)) under the optimistic (pes-

simistic, respectively) rule. Firstly, since L∪L′ ⊆ E` and (L∪L′)∪(F \L′) = L∪F ∈ T (G),

we have F \ L′ ∈ P(L ∪ L′).

Next, assume the optimistic problem. Suppose that F \ L′ /∈ Ro(L ∪ L′). Then there

must exist a better follower’s response that is a set F ′ ∈ Ro(L ∪ L′), such that either

gf (L ∪ L′, F \ L′) > gf (L ∪ L′, F ′)

or

gf (L ∪ L′, F \ L′) = gf (L ∪ L′, F ′) and g`(L ∪ L′, F \ L′) > g`(L ∪ L′, F ′).

The latter holds as we consider the optimistic version. Then note from Lemma 2.1 that

gf (L ∪ L′, F \ L′) = gf (L, F ) and g`(L ∪ L′, F \ L′) = g`(L, F ). Thus, we have either

gf (L, F ) > gf (L ∪ L′, F ′), or gf (L, F ) = gf (L ∪ L′, F ′) and g`(L, F ) > g`(L ∪ L′, F ′).
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On the other hand, recall that L′ ∪ F ′ ∈ P(L) and F ∈ Ro(L). Then by the definition

of Ro(L) we have either

gf (L, F ) < gf (L ∪ L′, F ′), or gf (L, F ) = gf (L ∪ L′, F ′) and g`(L, F ) ≤ g`(L ∪ L′, F ′).

Hence, we have a contradiction. Therefore, (L ∪ L′, F \ L′) is a bilevel feasible solu-

tion of the BST problem under the optimistic rule. The pessimistic version can be proved

similarly.

2.3 The MMST Problem

In this section, we consider a version of the BST problem in which the objective functions

of two decision-makers are opposite, i.e., g`(L, F ) = −gf (L, F ). Simply speaking, the follower

is adversarial to the leader. This problem is formally given by:

[MMST] min
L⊆E`

max
F⊆Ef

g`(L, F )

s.t. L ∪ F ∈ T (G).

The objective function g`(L, F ) is either sum- or bottleneck-type functions as in (2.2),

respectively. We note that for the min-max version, the optimistic and pessimistic cases

coincide, that is R(L) = Ro(L) = Rp(L) = {F ∈ P(L) : g`(L, F ) ≥ g`(L, F
′) ∀F ′ ∈ P(L)}.

Lemma 2.3. Assume E = {(i1, j1), . . . , (im, jm)}, where m = |E|. If there exists an ordering

of edges, such that ci1j1 < ci2j2 < · · · < cimjm and di1j1 > di2j2 > · · · > dimjm, then the problem

BST(S,S) reduces to the MMSTS problem with weight vector c.

Proof. Denote by problem P1, the BST(S,S) problem with the leader’s and follower’s edge

weights given by c and d, respectively. Define d̂ as d̂ij = −cij for all (i, j) ∈ E. Then denote

by problem P2, the BST(S,S) problem with the leader’s and follower’s edge weights given

by c and d̂, respectively. Clearly, by construction P2 reduces to the MMSTS problem with

weight vector c. Therefore, to establish the required result it suffices to show that for any

leader’s decision L, the followers in P1 and P2 have the same rational reaction set.
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By the definition of d̂, we have d and d̂ have same ordering of edges, that is d̂i1j1 >

d̂i2j2 > · · · > d̂imjm . Therefore, an MST with respect to d is also an MST with respect

to d̂; see, e.g., [3]. Furthermore, by construction P1 and P2 have same leader’s objective

functions. Consequently, for both the optimistic and pessimistic cases in P1, any follower’s

feasible solution in P2 is contained in the follower’s reaction set in P2 if and only if it is in

the follower’s reaction set in P1. Then the result follows.

Let RX(L) be the follower’s reaction set corresponding to the leader’s decision L of the

MMSTX problem, where X ∈ {S,B}.

Lemma 2.4. For any leader’s decision L ⊆ E`, we have RS(L) ⊆ RB(L).

Proof. It is sufficient to show that if F ∈ RS(L), then F ∈ RB(L). Let F ′ ∈ RB(L)

and (ū, v̄) ∈ arg max(i,j)∈L∪F ′ cij. If (ū, v̄) ∈ L, then max(i,j)∈L∪F cij ≥ max(i,j)∈L cij = cūv̄.

Hence, F ∈ RB(L) by the definition of R(L).

If (ū, v̄) /∈ L, we claim that there exists an edge (u, v) in F , such that cuv = cūv̄.

To establish the latter, suppose that for any edge (i, j) ∈ F , cij < cūv̄. Then we add

edge (ū, v̄) into F ∪ L ∈ T (G). Note that F ∪ L ∪ {(ū, v̄)} contains a cycle, which we

denote by C. Furthermore, recall that (ū, v̄) ∈ F ′. Thus, L ∪ {(ū, v̄)} is a forest and does

not contain a cycle, which implies that C contains at least one edge, say (u′, v′), from F .

Then L ∪ (F \ (u′, v′)) ∪ (ū, v̄) ∈ T (G), i.e., (F \ (u′, v′)) ∪ (ū, v̄) ∈ P(L). It follows that∑
(i,j)∈L∪F cij <

∑
(i,j)∈L∪(F\(u′,v′))∪(ū,v̄) cij as cūv̄ > cu′v′ and thus, F /∈ RS(L), which is a

contradiction.

Consequently, the aforementioned claim holds and we have max(i,j)∈L∪F cij ≥ cūv̄, which

implies that F ∈ RB(L). This observation completes the proof.

The above result is not surprising given that a minimum spanning tree is also a bottleneck

spanning tree [3]. Next, we establish several properties of the leader’s optimal decisions that

can be further exploited to show that MMST can be decomposed into two simpler problems.

Definition 2.2. We say that edge set L ⊆ E` is maximal if G[L] is acyclic and either

L = E`, or G[L ∪ {e}] contains a cycle for any edge e ∈ E` \ L. Define set L = {L ⊆ E` :

L is maximal} that consists of all maximal edge sets of E`.
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(a) L1 = {(v2, v3), (v2, v4), (v4, v5)} is an op-
timal solution of the leader that is a maximal
edge set.
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(b) {(v2, v4), (v4, v5)} is an alternative
leader’s optimal solution that is not a
maximal edge set.

Figure 1: An illustrative example for the MMSTS problem. Bold and bold dashed edges (the
latter in blue) are controlled by the leader, while the bold dashed edges (in blue) correspond to a
leader’s optimal solution.

Figure 1 provides an illustrative example of the MMSTS problem, where the leader’s

edge set E` = {(v2, v3), (v2, v4), (v2, v5), (v4, v5)}; see the edges depicted in bold. According

to Definition 2.2, the maximal edge sets of E` are L1 = {(v2, v3), (v2, v4), (v4, v5)}, L2 =

{(v2, v3), (v2, v4), (v2, v5)} and L3 = {(v2, v3), (v2, v5), (v4, v5)}, i.e., L = {L1, L2, L3}. Set L1

is depicted in Figure 1(a).

Furthermore, we can verify that L1 is also an optimal leader’s solution. Next, we formally

show that there always exists an optimal leader’s solution that is a maximal edge set. Note,

however, that there may exist alternative optimal leader’s solutions that do not form maximal

edge sets; see Figure 1(b) for an illustrative example.

Proposition 2.1. For the MMST problem, let (L, F ) and (L′, F ′) be two bilevel feasible

solutions. Then the following statements hold:

(i) If L′ = L ∪ {e}, where e ∈ E` \ L, then z(L′) ≤ z(L).

(ii) If L,L′ ⊆ L and L′ = (L \ {e}) ∪ {e′}, where e ∈ L, e′ ∈ E` \ L and ce ≥ ce′, then

z(L′) ≤ z(L).
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Proof. The MMSTS problem is discussed first. The proof for MMSTB can be shown in a

similar manner by applying Lemma 2.4.

(i) Observe that F ′∪{e} ∈ P(L) as L′∪F ′ = L∪(F ′∪{e}) ∈ T (G). Also, since F ∈ RS(L)

and from Lemma 2.1, we have z(L) = g`(L, F ) ≥ g`(L, F
′ ∪ {e}) = g`(L

′, F ′) = z(L′).

(ii) Note that L and L′ are maximal sets in E` and e′ ∈ E` \L. Thus, e ∈ E` \L′. It follows

that L′∪{e} and L∪{e′} contain cycles. In addition, we observe that L∪{e′} = L′∪{e},

which implies that e′ is contained in the cycle of G[L′∪{e}]. Hence, F ′∪ (L′ \{e′})∪{e}

is a spanning tree in G, i.e., F ′ ∈ P(L). Similarly, F ∈ P(L′).

Recall that F ∈ R(L) and F ′ ∈ R(L′). Then by definition
∑

(i,j)∈L∪F cij ≥
∑

(i,j)∈L∪F ′ cij

and
∑

(i,j)∈L′∪F cij ≤
∑

(i,j)∈L′∪F ′ cij, which yields that
∑

(i,j)∈F cij =
∑

(i,j)∈F ′ cij.

On the other hand,
∑

(i,j)∈L cij ≥
∑

(i,j)∈L′ cij due to ce ≥ ce′ . Therefore, z(L) =

g`(L, F ) =
∑

(i,j)∈L cij +
∑

(i,j)∈F cij ≥
∑

(i,j)∈L′ cij +
∑

(i,j)∈F ′ cij = g`(L
′, F ′) = z(L′).

Based on the first statement in Proposition 2.1, for the leader, it is always favorable to

select more edges in E`, and there exists an optimal leader’s decision in L. Furthermore,

the second statement illustrates that an optimal decision of the leader can be obtained by

minimizing the total edge weights of the maximal edge set of E` for both MMSTS and

MMSTB. Thus, we can consider the following single-level problem:

min
L⊆E`

{ ∑
(i,j)∈L

cij : L ∈ L
}
. (2.4)

The problem (2.4) seeks for an edge set in L whose total edge weights are as small as

possible from among all other maximal sets in L. Similar to the minimum spanning tree

problem, Kruskal’s algorithm [3] can be applied for solving the reformulation (2.4). After

the optimal upper-level’s decisions are fixed, the optimal value of the MMST problem can

be obtained by solving the corresponding lower-level problem. The formal pseudo-code of

this approach is outlined in Algorithm 1.

Proposition 2.2. Algorithm 1 runs in O(|E`|2 + |E| · log |V |) time.
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Algorithm 1 Algorithm for the MMST problem

Input G = (V,E), E`, c
1: L← ∅
2: E` ← E` and sort E` in the nondecreasing order with respect to c
3: while E` 6= ∅ do
4: e ∈ arg min(i,j)∈E`{cij}
5: if L ∪ {e} is acyclic then
6: L← L ∪ {e}
7: end if
8: E` ← E` \ {e}
9: end while

10: z ← maxF⊆E\E`{g`(L,F ) : L ∪ F ∈ T (G)}
Return z and L

Proof. First, sorting E` in the nondecreasing order requires O(|E`| · log |E`|) time. In lines

3-9 of each iteration, the operation to verify whether there exists a cycle needs O(|E`|) time.

Therefore, the total time required to find the leader’s optimal decision is O(|E`|2) as there

are at most |E`| iterations. Recall that the single-level spanning tree problem over graph

G = (V,E) can be solved within O(|E| · log |V |) time [3]. Thus, in line 10 we obtain an

optimal solution for MMST by solving a single-level maximum spanning tree problem over

graph (V,E \ E`), which requires O(|E| · log |V |) time.

2.4 The BST(X,B) Problem

In this section, we first consider structural properties of BST(X,B) and derive its equivalent

reformulation in Section 2.4.1. Next, polynomial-time algorithms are proposed in Section

2.4.2 and 2.4.3 for the optimistic and pessimistic cases of the problem, respectively.

2.4.1 Structural Properties

Given the leader’s decision L, the follower solves the single-level bottleneck spanning tree

problem. If L 6= ∅, then define the maximum edge weight of L under the weight d as:

dL = max
(i,j)∈L

dij.
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Define subgraph GL = (V,EL), where EL = {(i, j) ∈ E : dij ≤ dL}. If the leader does

not choose any edge, i.e., L = ∅, then the optimal objective function value of the lower-level

problem is the maximum edge weight of the bottleneck spanning tree in G, given by:

d̄ = min
T⊆E
{max

(i,j)∈T
dij : T ∈ T (G)}.

Define subgraph Ḡ = (V, Ē), where Ē = {(i, j) ∈ E : dij ≤ d̄}. We note that Ḡ is a

connected graph, which can be computed in polynomial time for any G.

For a feasible leader’s decision L, if dL ≥ d̄, then Ḡ ⊆ GL, which implies that GL is

connected. Then there exists at least one spanning tree containing L in GL. Hence, for

any follower’s reaction F ∈ R(L), the objective function value of the lower-level problem

satisfies that dL = gf (L, ∅) ≤ gf (L, F ) ≤ dL. Thus, the optimal objective function value of

the lower-level problem is dL, and the reaction set can be represented as:

R(L) = {F ⊆ EL : L ∪ F ∈ T (G)}.

Similarly, when dL ≤ d̄, due to the connectivity of Ḡ, we can find a feasible solution of

the lower-level problem, say F̂ , such that F̂ ⊆ Ē and L ∪ F̂ ∈ T (G). Since the maximum

edge weight of any spanning tree in G is no less than d̄, then for any follower’s solution

F ∈ P(L), we have gf (L, F̂ ) ≤ d̄ ≤ gf (L, F ). It follows that F̂ ∈ R(L) and the optimal

value of the lower-level problem is d̄. Then the follower’s reaction set is given by:

R(L) = {F ⊆ Ē : L ∪ F ∈ T (G)}.

Therefore, the BST(X,B) problem can be reformulated as:

z∗ = min {z∗1 , z∗2}.

where

z∗1 = “ min ”
L⊆E`

{g`(L, F ) : dL ≤ d̄, F ⊆ Ē, L ∪ F ∈ T (G)}, (2.5)

z∗2 = “ min ”
L⊆E`

{g`(L, F ) : dL ≥ d̄, F ⊆ EL, L ∪ F ∈ T (G)}, (2.6)

where the quotation marks are used with the same meaning as in (2.1). We next explore the

optimistic and pessimistic versions in detail.
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2.4.2 Optimistic Case

Under the optimistic rule, (2.5) and (2.6) are single-level optimization problems. We

first establish that z∗1 = z(∅).

Lemma 2.5. For the BST(X,B) problem under the optimistic rule, let L be the leader’s

decision and let G[L] be acyclic. If L 6= ∅ and dL ≤ d̄, then z(L) ≥ z(∅). Thus, z∗1 = z(∅).

Proof. Let F ∈ Ro(L) and F̄ ∈ Ro(∅). Since dL ≤ d̄, then the optimal objective function

value of the follower’s problem corresponding to L is d̄ because of the connectivity of Ḡ.

That is, gf (L, F ) = gf (∅, F̄ ) = d̄. Also, L ∪ F ∈ T (G) = P(∅). Thus, L ∪ F ∈ R(∅). Based

on the definition of Ro(∅), we have z(∅) = g`(∅, F̄ ) ≤ g`(∅, L ∪ F ) = z(L).

Let E` = {(i, j) ∈ E` : dij ≥ d̄}. For a leader’s decision L, if edge e of the maximum

edge weight over d in L is known and e ∈ E`, then L ⊆ Ee
` := {(i, j) ∈ E` : dij ≤ de} and

GL becomes Ge = (V,Ee), where Ee := {(i, j) ∈ E : dij ≤ de}. Then problem (2.6) can be

reformulated as follows:

z∗2 = min
L⊆E`,F⊆EL

{g`(L, F ) : dL ≥ d̄, L ∪ F ∈ T (G)}

= min
e∈E`

min
L⊆Ee` ,F⊆Ee

{g`(L, F ) : e ∈ L,L ∪ F ∈ T (G)}

= min
e∈E`

min
T⊆Ee

{g`(∅, T ) : e ∈ T, T ∈ T (G)}, (2.7)

where the first equality holds under the optimistic rule and the last equality follows from

Lemma 2.1 as Ee
` ⊆ Ee and T = L ∪ F .

Next, assume the optimal solution of (2.7) is (e∗, T ∗) with de∗ ≥ d̄. Let L∗ = {e∗} and

F ∗ = T ∗ \ {e∗}. Then we can show that (L∗, F ∗) is an optimal solution of BST(X,B) as

follows.

Proposition 2.3. For the BST(X,B) problem under the optimistic rule, there exists an opti-

mal solution (L∗, F ∗), such that either L∗ = ∅ or L∗ = {(i, j)} such that dij ≥ d̄.

Proof. Assume (L, F ) is an optimal solution of the bilevel problem. If dL ≤ d̄, then let

L∗ = ∅. From Lemma 2.5, we conclude that L∗ is also an optimal decision of the leader.
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v1 v2

v3 v4
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(3, 1)

(2, 1)

(1, 3)

(2, 2)

(6, 4)

(2, 1)

(5, 2)

(1, 4)

(a) {(v1, v3), (v1, v4), (v2, v3)} is an optimal
solution of the leader in both optimistic and
pessimistic cases.

v1 v2

v3 v4

v5

(3, 1)

(2, 1)

(1, 3)

(2, 2)

(6, 4)

(2, 1)

(5, 2)

(1, 4)

(b) {(v1, v4)} is an alternative leader’s opti-
mal solution in the optimistic case that con-
tains only one edge.

Figure 2: An illustrative example for BST(S,B) and Proposition 2.3. For each edge (i, j), pair
(cij , dij) depicted above the edge denotes the leader’s and the follower’s edge weights, respectively.
Bold and bold dashed edges (the latter in blue) are controlled by the leader, while the bold dashed
edges (in blue) correspond to a leader’s optimal solution.

On the other hand, if dL ≥ d̄, suppose (i1, j1) ∈ L and dL = di1j1 ≥ duv for every (u, v) ∈

L. Let L∗ = {(i1, j1)} and F ∗ ∈ Ro(L∗). Since di1j1 = dL ≥ d̄, then gf (L, F ) = gf (L
∗, F ∗) =

di1j1 . Observe that F ∪ (L \L∗) ∈ P(L∗) and gf (L
∗, F ∪ (L \L∗)) = gf (L, F ) = di1j1 . Hence,

we have z(L∗) = g`(L
∗, F ∗) ≤ g`(L

∗, F ∪ (L \ L∗)) = g`(L, F ) = z(L) as F ∗ ∈ Ro(L∗).

Therefore, L∗ is an optimal decision of the leader, and the result follows.

Figure 2 provides an illustrative example for Proposition 2.3 with an instance of the

BST(S,B) problem, where E` = {(v1, v3), (v1, v4), (v2, v3), (v2, v4)}. Note that d̄ = 2 and

the subset of edges {(v1, v3), (v1, v4), (v2, v3)} depicted in Figure 2(a) is an optimal leader’s

solution for both the optimistic and pessimistic versions of BST(S,B). The corresponding

lower-level reaction is {(v2, v5)}. Furthermore, according to Proposition 2.3 we observe that

{(v1, v4)} is also an optimal leader’s decision, with the corresponding follower’s decision given

by {(v1, v3), (v2, v3), (v2, v5)}.

Based on reformulation (2.7) and Proposition 2.3, we conclude that to solve the BST(X,B)

problem it is sufficient to consider edges in E` = {(i, j) ∈ E` : dij ≥ d̄} as possible leader’s

decisions, L∗. Then the optimal solution is returned by comparing the obtained objective

20



function values and z(∅). This approach results in a polynomial-time algorithm formalized

with the pseudo-code given in Algorithm 2.

Algorithm 2 Algorithm for the BST(X,B) problem under the optimistic rule

Input G = (V,E), E`, c, d
1: L← ∅, L∗ ← ∅
2: z∗ ← g`(∅, F ), where F ∈ Ro(∅)
3: d̄← max(i,j)∈F dij
4: E` ← {(i, j) ∈ E` : dij ≥ d̄}
5: while E` 6= ∅ do
6: L← {e}, where edge e is chosen from E`
7: z(L)← g`(L,F ), where F ∈ Ro(L)
8: if z(L) ≤ z∗ then
9: z∗ ← z(L)

10: L∗ ← L
11: end if
12: E` ← E` \ {e}
13: end while

Return z∗ and L∗

Proposition 2.4. Algorithm 2 runs in O(|E`| · |E| · log |V |) time.

Proof. The algorithm requires at most |E`| iterations in lines 5-13. In every iteration, after

fixing an edge in L, in line 7 we solve the follower’s reaction problem that is a single-level

spanning tree problem. The latter requires O(|E| · log |V |) time and the result follows.

2.4.3 Pessimistic Case

For the pessimistic version, the reformulations (2.5) and (2.6) can be re-written as:

z∗1 = min
L⊆{(i,j)∈E`: dij≤d̄}

max
F⊆Ē
{g`(L, F ) : L ∪ F ∈ T (G)}, (2.8)

z∗2 = min
L⊆E`

max
F⊆EL

{g`(L, F ) : dL ≥ d̄, L ∪ F ∈ T (G)}, (2.9)

which allows us to observe that problem (2.8) is, in fact, an instance of the MMST problem

over graph Ḡ = (V, Ē), where the leader’s edge set is limited to {(i, j) ∈ E` : dij ≤ d̄}

instead of E`. Therefore, z∗1 can be computed using Algorithm 1 within O(|E`|2+|Ē|·log |V |)

time; see Proposition 2.2.
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Regarding problem (2.9), recall first that for fixed edge e ∈ E` = {(i, j) ∈ E` : dij ≥ d̄},

we have Ee
` = {(i, j) ∈ E` : dij ≤ de}, Ee = {(i, j) ∈ E : dij ≤ de} and Ge = (V,Ee).

Let e be the maximum weight edge in the leader’s decision L. Then problem (2.9) can be

reformulated as follows:

z∗2 = min
e∈E`

{
min
L⊆Ee`

max
F⊆Ee

{g`(L, F ) : e ∈ L,L ∪ F ∈ T (G)}
}
. (2.10)

Next, we observe that for fixed e ∈ E`, reformulation (2.10) reduces to the MMST

problem over graph Ge = (V,Ee), where the leader controls Ee
` and e ∈ L. Thus, we can

simply enumerate over all possible choices of e and use Algorithm 1 from Section 2.3 as a

sub-procedure.

Given the above discussion, the formal pseudo-code for solving the BST(X,B) problem

under the pessimistic rule is given in Algorithm 3. An optimal solution is obtained by

comparing the objective function values z∗1 and z∗2 . The former is computed in line 3, while

the latter is evaluated iteratively in lines 6-14.

Algorithm 3 Algorithm for the BST(X,B) problem under the pessimistic rule

Input G = (V,E), E`, c, d
1: L← ∅, L∗ ← ∅
2: d̄← minT∈T (G){max(i,j)∈T dij}
3: L ∈ arg minL⊆E`{maxF⊆E g`(L,F ) : dij ≤ d̄ ∀(i, j) ∈ L ∪ F,L ∪ F ∈ T (G)}

// solved as MMST by Algorithm 1
4: z∗ ← z(L), L∗ ← L
5: E` ← {(i, j) ∈ E` : dij ≥ d̄}
6: while E` 6= ∅ do
7: Choose an edge e ∈ E`
8: L ∈ arg minL∈E`{maxF∈E g`(L,F ) : dij ≤ de ∀(i, j) ∈ L ∪ F, e ∈ L,L ∪ F ∈ T (G)}

// solved as MMST by Algorithm 1
9: if z(L) ≤ z∗ then

10: z∗ ← z(L)
11: L∗ ← L
12: end if
13: E` ← E` \ {e}
14: end while

Return z∗ and L∗

Proposition 2.5. Algorithm 3 runs in O(|E`|3 + |E`| · |E| · log |V |) time.
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Proof. To compute z∗1 in line 3, the algorithm solves an instance of the MMST problem in

O(|E`|2 +|Ē|·log |V |) time; see Proposition 2.2. The algorithm terminates in at most O(|E`|)

iterations from lines 6 to 14. In each iteration, an instance of the MMST problem is solved

in O(|E`|2 + |E| · log |V |) time in line 8; see Proposition 2.2. Then the result follows.

2.5 The BST(X,S) Problem

In Section 2.5.1, we derive structural properties of the reaction set for the lower-level

problem in BST(X,S). The results are obtained for both the optimistic and pessimistic cases.

Thus, in Sections 2.5.2 and 2.5.3 we focus on solution methods for the optimistic case, which

can be adapted to the pessimistic case in a simple manner. Specifically, in Section 2.5.2 we

develop a polynomial-time algorithm for the BST(B,S) problem. In Section 2.5.3, we first show

that BST(S,S) can be formulated as a single-level mixed-integer program and then provide a

preliminary computational study to explore its performance. The theoretical computational

complexity of BST(S,S) remains an open question.

2.5.1 Structural Properties

For a given leader’s decision, assume that the follower needs to choose either (i, j) or (u, v)

in Ef and dij = duv. If cij < cuv, then the follower selects (i, j) under the optimistic rule,

as it is preferable for the leader. Otherwise, the follower selects (u, v) under the pessimistic

rule. Based on the above observation, we then define the following edge ordering:

Definition 2.3. For any pair of edges (i, j) and (u, v) in E, define the order of (i, j) and

(u, v) under the optimistic rule:

(i) if either dij < duv, or dij = duv and cij ≤ cuv, then (i, j) � (u, v);

(ii) if (i, j) � (u, v) and (u, v) � (i, j) then (i, j) = (u, v);

(iii) if (i, j) � (u, v) and (i, j) 6= (u, v), then (i, j) ≺ (u, v).

Similarly, we define the order of (i, j) and (u, v) under the pessimistic rule as follows:

(i) if either dij < duv, or dij = duv and cij ≥ cuv, then (i, j) � (u, v);
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(ii) if (i, j) � (u, v) and (u, v) � (i, j) then (i, j) = (u, v);

(iii) if (i, j) � (u, v) and (i, j) 6= (u, v), then (i, j) ≺ (u, v).

The path- and cut-optimality conditions for the minimum spanning tree, see [3], can be

directly adopted, see Lemma 2.6 below, to provide optimality conditions for the lower-level

problem of BST(S,S) for a given leader’s decision. The proof of Lemma 2.6 is omitted as it

is similar to those provided in [3].

Definition 2.4. Let G[T ] = (V, T ) be a spanning tree in G. If we delete an edge (i, j) in

T , then the resulting graph G[T \ (i, j)] becomes disconnected with two disjoint connected

components. Denote the sets of vertices in these two components as ST (i, j) and S ′T (i, j),

respectively.

Lemma 2.6. For the BST(S,S) problem, let G[T ] = (V, T ) be a spanning tree of graph G,

where T = L ∪ F,L ⊆ E` and F ⊆ Ef . Then the following statements are equivalent:

(i) F ∈ Ro(L) (F ∈ Rp(L)).

(ii) (Cut optimality condition) Let (i, j) ∈ F . Then (i, j) � (u, v) for any (u, v) ∈ E \

T , where u ∈ ST (i, j), v ∈ S ′T (i, j) and the operator � is defined under the optimistic

(pessimistic, respectively) rule.

(iii) (Path optimality condition) Let (u, v) ∈ E\T . Then (u, v) � (i, j) for any (i, j) ∈ ∆∩F ,

where ∆ is the unique path in G[T ] connecting u and v, and the operator � is defined

under the optimistic (pessimistic, respectively) rule.

Denote by Ro
(B,S)(L) and Ro

(S,S)(L) the optimistic reactions sets of the BST(B,S) and the

BST(S,S) problems, respectively. Similarly, denote by Rp
(B,S)(L) and Rp

(S,S)(L) the corre-

sponding reaction sets for the pessimistic versions of the problems. Similar to Lemma 2.4

for MMTS, there exists a relationship between the reaction sets of BST(B,S) and BST(S,S).

Lemma 2.7. Given the leader’s decision L, we have Ro
(S,S)(L) ⊆ Ro

(B,S)(L), and Rp
(S,S)(L) ⊆

Rp
(B,S)(L).

Proof. We provide the proof for the optimistic case. The proof of the pessimistic case is

similar and omitted for brevity. Suppose F ∈ Ro
(S,S)(L), F ′ ∈ Ro

(B,S)(L), and let T = L∪F .

It is sufficient to show that F ∈ Ro
(B,S)(L), which is the case if max(i,j)∈F cij ≤ max(i,j)∈F ′ cij.
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We note first that F, F ′ ∈ R(L), which implies that
∑

(i,j)∈L∪F dij =
∑

(i,j)∈L∪F ′ dij.

It follows that for any edge (i, j) ∈ F \ F ′, there exists an edge (u′, v′) ∈ F ′, such that

u′ ∈ ST (i, j), v′ ∈ S ′T (i, j) and du′v′ = dij. Based on the optimality conditions of F in

Lemma 2.6, we have (u′, v′) � (i, j). Hence, from Definition 2.3 we have dij = du′v′ and

cij ≤ cu′v′ .

Therefore, for each edge (i, j) ∈ F \F ′, there exists edge (u′, v′) in F ′, such that dij = du′v′

and cij ≤ cu′v′ , which implies max(i,j)∈F cij ≤ max(i,j)∈F ′ cij and the result follows.

Next, we show that for any leader’s decision, the edges selected by the follower are con-

tained in a particular subset of E; see Corollary 2.1 of Theorem 2.1. First, we derive the

following technical result.

Lemma 2.8. Let T = L ∪ F , where (L, F ) is a bilevel feasible solution of the BST(S,S)

problem. If L
′
= L ∪ (i′, j′), where (i′, j′) ∈ E` \ L and G[L′] is acyclic, then:

(i) if (i′, j′) ∈ F , then (L′, F \ (i′, j′)) is a bilevel feasible solution.

(ii) if (i′, j′) /∈ F , then (L′, F \ (ū, v̄)) is a bilevel feasible solution, where (ū, v̄) is the edge

of largest order in ∆′ ∩ F and ∆′ is the unique path in G[T ] connecting i′ and j′, i.e.,

(u, v) ∈ ∆′ ∩ F and (ū, v̄) � (u, v) for any (u, v) ∈ ∆′ ∩ F .

The result holds for both the optimistic and pessimistic versions of the BST(S,S) problem.

Proof. We assume the optimistic case. The proof for the pessimistic version is similar.

(i) Clearly, if (i′, j′) ∈ F , then the result is a special case of Lemma 2.2.

(ii) If (i′, j′) /∈ F , then let F ′ = F \ (ū, v̄), where (ū, v̄) is the edge of largest order in ∆′ ∩ F

and ∆′ is the unique path in G[T ] connecting i′ and j′. Let T ′ = L′ ∪ F ′. To prove

that (L′, F \ (ū, v̄)) is bilevel feasible, it is sufficient to show that F ′ satisfies the path

optimality condition in Lemma 2.6, and we establish this result next.

For edge (ū, v̄), denote the unique path in G[T ′] connecting ū and v̄ as ∆̄. Clearly, ∆̄ con-

sists of edges in the set (i′, j′)∪∆′\(ū, v̄). Since (ū, v̄) is the edge of largest order in ∆′∩F ,

then (ū, v̄) � (u, v) for all (u, v) ∈ ∆̄ ∩ F ′, as by construction ∆̄ ∩ F ′ = ∆′ ∩ F \ (ū, v̄).

This means that F ′ satisfies the path optimality condition for edge (ū, v̄).
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To establish the condition for any other edge (u, v) ∈ E \ T ′, denote by ∆1 and ∆2 the

unique paths in G[T ] and G[T ′], respectively, that connect u and v. Recall that (L, F ) is

bilevel feasible. Thus, (u, v) � (i, j) for any (i, j) ∈ ∆1∩F because of the path optimality

condition in Lemma 2.6 for F . Then there are two possible cases:

(a) If (ū, v̄) /∈ ∆1, then ∆1 ⊆ T ′ as T \ (ū, v̄) = T ′ \ (i′, j′). Since the path in G[T ′]

connecting ū and v̄ is unique, it follows that ∆1 = ∆2. Thus, (u, v) � (i, j) for any

(i, j) in ∆2 ∩ F ′ due to F ′ ⊆ F .

(b) If (ū, v̄) ∈ ∆1, then (u, v) � (ū, v̄) and ∆1 \ (ū, v̄) ⊆ T ′. Observe that ∆1 \ (ū, v̄)

contains two disconnected paths; assume that one path is between u and ū, and the

other is between v and v̄. Then in spanning tree G[T ′], we can walk from u to ū,

from ū to v̄ through ∆̄, and then from v̄ to v. It follows that the unique path in G[T ′]

connecting u and v belongs to ∆1 ∪ ∆̄, i.e., ∆2 ⊆ ∆1 ∪ ∆̄. Recall that (u, v) � (i, j)

for any (i, j) ∈ ∆1 ∩ F , and (ū, v̄) � (i, j) for any (i, j) ∈ ∆̄ ∩ F ′. Thus, we have

(u, v) � (i, j) for any (i, j) ∈ (∆1 ∪ ∆̄)∩ F ′, which implies that F ′ satisfies the path

optimality condition for (u, v).

Therefore, F ′ ∈ Ro
(S,S)(L) and the result follows.

Theorem 2.1. Let (L, F ) be a bilevel feasible solution of BST(S,S) under the optimistic

(pessimistic) rule. Assume that L ⊆ L′ ⊆ E` and G[L′] is acyclic. Then there exists a

reaction solution of the follower F ′ ∈ Ro
(S,S)(L

′) (F ′ ∈ Rp
(S,S)(L

′), respectively), such that

F ′ ⊆ F .

Proof. The theorem can be proved by induction using Lemma 2.8.

Recall that when the leader does not select any edge, i.e., L = ∅, we use Ro(∅) and Rp(∅)

to denote the follower’s optimistic and pessimistic reaction sets, respectively. Then:

Corollary 2.1. For the BST(X,S) problem under the optimistic (pessimistic) rule, for ev-

ery T ∈ Ro
(S,S)(∅) (T ∈ Rp

(S,S)(∅), respectively), there exists an optimal solution (L∗, F ∗) of

BST(X,S) such that F ∗ ⊆ T , where X ∈ {S,B}.

Proof. By setting L = ∅ in Theorem 2.1 the result follows directly for the BST(S,S) problem.

That is, for any tree T ∈ Ro
(S,S)(∅), there exists F ∗ ∈ Ro

(S,S)(L
∗), such that F ∗ ⊆ T . By
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applying Lemma 2.7, we have F ∗ ∈ Ro
(S,S)(L

∗) ⊆ Ro
(B,S)(L

∗). The proof for the pessimistic

case is similar.

Our initial assumption for the models in this chapter is that Ef = E (see Section 2.2),

i.e., the follower controls all edges in the graph. From the above analysis, we conclude that

the BST(X,S) problem can be simplified by setting Ef = T̄ , where T̄ is arbitrarily chosen

from either Ro
(S,S)(∅) or Rp

(S,S)(∅) under the optimistic or pessimistic rule, respectively. This

reduction of the follower’s edge set simplifies the solution procedures discussed next.

Finally, we note that the results of this subsection are established for both the optimistic

and pessimistic rules simultaneously. Therefore, in the following discussion, we focus on the

optimistic version of the BST(X,S) problem, X ∈ {B, S}. The pessimistic version can be

handled similarly.

2.5.2 Algorithm for the BST(B,S) Problem

For the BST(B,S) problem, recall that the leader’s objective is to minimize the maximum

edge weight of the resulting spanning tree with respect to the leader’s weight vector c.

Assume T̄ ∈ Ro
(S,S)(∅), and (ū, v̄) is the maximum weight edge of T̄ with respect to the

leader’s cost vector c. Hence, we obtain an upper bound on the optimal objective function

of the bilevel problem as g`(∅, T̄ ) = cūv̄, which corresponds to L = ∅. Therefore, in order to

decrease her objective function value, the leader needs to prevent the follower from selecting

(ū, v̄). According to Lemma 2.8, the only possibility for the leader to remove (ū, v̄) from

the follower’s decision is to select some edge (i, j) in E` such that the cycle in G[T̄ ∪ (i, j)]

contains (ū, v̄).

Based on this general idea, we propose a greedy algorithm for solving BST(B,S), where we

attempt to decrease the objective function value of the upper level in every iteration. After

obtaining the follower’s reaction at the most recent iteration, the leader adds the lowest

weight edge (with respect to the weights given by c) that allows the leader to “forbid” the

maximum weight edge of the follower’s current solution. The algorithm terminates if there

is no further improvement is possible for the leader. The sketch of the algorithm is provided

in Algorithm 4.
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Algorithm 4 Algorithm for the BST(B,S) problem under the optimistic rule

Input G = (V,E), E`, c, d
1: L0 ← ∅; k ← 0; E` ← E`
2: while |E`| 6= 0 do
3: F k ∈ Ro(S,S)(L

k)

4: T k ← Lk ∪ F k
5: Choose (ū, v̄) ∈ argmax(i,j)∈Tkcij and find sets STk(ū, v̄) and S′

Tk
(ū, v̄)

6: E′` ← {(i, j) ∈ E` : i ∈ STk(ū, v̄), j ∈ S′
Tk

(ū, v̄), cij < cūv̄}
7: if E′` 6= ∅ then
8: Choose edge e ∈ arg min(i,j)∈E′`{cij}
9: Lk+1 ← Lk ∪ {e}

10: E` ← E` \ {e}
11: k ← k + 1
12: else
13: break
14: end if
15: end while

Return z(Lk) and Lk

Note that in line 3 of Algorithm 4, the lower-level solution F k corresponds to the fol-

lower’s reaction in the BST(S,S) problem. By Lemma 2.7, F k is also contained in Ro
(B,S)(L

k).

Furthermore, since we only add one edge to Lk−1 in line 9, then by Lemma 2.8 F k can be

constructed by simply deleting one edge (u′, v′) of F k−1. If (u′, v′) ∈ arg max(i,j)∈Fk−1 cij,

then the leader’s objective function g` decreases. Otherwise, g` does not change. Hence, the

objective function value of the upper-level problem is nonincreasing after every iterations.

Next, we establish the correctness of the outlined algorithm.

Lemma 2.9. For the BST(B,S) problem, let L ⊆ E`, and define E ′` = {(i, j) ∈ E` : cij ≤

z(L)}. If L′ ⊆ E ′` and G[L ∪ L′] is acyclic, then z(L ∪ L′) ≤ z(L).

Proof. Let F ∈ Ro
(S,S)(L). Then by Lemma 2.7, we have F ∈ Ro

(B,S)(L) and z(L) =

max(u,v)∈L∪F cuv. Furthermore, because L ∪ L′ is a feasible leader’s decision, then by Theo-

rem 2.1 there exists F ′ ∈ Ro
(S,S)(L ∪ L′) ⊆ Ro

(B,S)(L ∪ L′) such that F ′ ⊆ F . Note that by

construction, max(u,v)∈F ′ cuv ≤ max(u,v)∈F cuv and max(u,v)∈L∪L′ cuv = max(u,v)∈L cuv. Hence,

z(L ∪ L′) = max(u,v)∈L∪L′∪F ′ cuv ≤ max(u,v)∈L∪F cuv = z(L).

Lemma 2.10. Let (L, F ) be a bilevel feasible solution of the BST(B,S) problem. Assume that
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there exists an edge (u, v) ∈ E` such that G[L ∪ (u, v)] contains cycle C. If cuv ≤ z(L) and

(u′, v′) ∈ C, then z((L \ (u′, v′)) ∪ (u, v)) ≤ z(L).

Proof. Let L′ = (L \ (u′, v′))∪ (u, v) and F ′ ∈ Ro
(B,S)(L

′). Observe that L′ ∪F ∈ T (G) and

thus, F ∈ P(L′). Then gf (L
′, F ′) ≤ gf (L

′, F ), i.e.,
∑

(i,j)∈F ′ dij ≤
∑

(i,j)∈F dij.

Similarly, F ′ ∈ P(L), and F ∈ Ro
(B,S)(L) by their definition. Then we have

∑
(i,j)∈F dij ≤∑

(i,j)∈F ′ dij. It immediately follows that
∑

(i,j)∈F dij =
∑

(i,j)∈F ′ dij.

Finally, recall that F ′ ∈ Ro
(B,S)(L

′) and F ∈ P(L′). By construction, max(i,j)∈L′ cij ≤

z(L). Therefore, summarizing the above derivations we conclude that z(L′) = max(i,j)∈L′∪F ′ cij ≤

max(i,j)∈L′∪F cij ≤ z(L), which implies the result.

Denote by L∗ = {L∗ ⊆ E` : z(L∗) ≤ z(L) ∀L ⊆ E`} the set of all optimal leader’s

decisions for the BST(B,S) problem. Based on the above two technical results provided by

Lemmas 2.9 and 2.10, we conclude:

Proposition 2.6. Let L∗ be an optimal leader’s decision for the BST(B,S) problem. Assume

that edge (u, v) ∈ E` and cuv ≤ z(L∗). If G[L∗∪(u, v)] contains cycle C and (u′, v′) ∈ C∩L∗,

then (L∗ \ (u′, v′)) ∪ (u, v) ∈ L∗ . Otherwise, G[L∗ ∪ (u, v)] is acyclic and L∗ ∪ (u, v) ∈ L∗.

From the above analysis, we conclude that the BST(B,S) problem may have multi-

ple optimal solutions. We provide an example to demonstrate this observation in Fig-

ure 3, where the leader’s edge set E` = {(v1, v2), (v1, v3), (v2, v3), (v2, v4)}. Observe that

L∗ = {(v2, v3), (v2, v4)} is an optimal solution of the leader, which is depicted in Figure 3(a)

with dashed blue edges. The corresponding reaction of the follower F ∗ = {(v1, v3), (v4, v5)}.

Observe that the maximum weight with respect to c in L∗∪F ∗ is 3. Furthermore, cv1v2 = 2

and cv1v3 = 1. Thus, based on Proposition 2.6, we conclude that {(v1, v3), (v2, v3), (v2, v4)},

{(v1, v2), (v1, v3), (v2, v4)}, {(v1, v2), (v1, v3), (v2, v4)} are also optimal leader’s decisions.

If we apply Algorithm 4, then we first compute T 0 = {(v1, v3), (v3, v4), (v4, v5), (v2, v5)}.

To remove the maximum weight edge (v2, v5) in T 0 from the follower’s decision, the algorithm

prescribes choosing edge (v1, v2), while (v1, v3) is then removed from the follower’s decision.

Consequently, by performing two additional iterations, edges (v1, v3) and (v2, v4) are added

to the leader’s decision, and the follower’s reaction solution reduces to {(v4, v5)}. Since
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v1 v2

v3 v4

v5

(2, 4)

(1, 4)

(4, 4)

(3, 5)

(3, 4)

(6, 2)

(5, 3)

(3, 1)

(a) {(v2, v3), (v2, v4)} is a leader’s optimal so-
lution.

v1 v2

v3 v4

v5

(2, 4)

(1, 4)

(4, 4)

(3, 5)

(3, 4)

(6, 2)

(5, 3)

(3, 1)

(b) {(v1, v2), (v1, v3), (v2, v4)} is an alterna-
tive optimal solution of the leader obtained
by Algorithm 4.

Figure 3: An illustrative example of multiple optimal leader’s decisions for the BST(B,S) problem.
For every edge (i, j), pair (cij , dij) depicted above each edge denotes the leader’s and the follower’s
edge weights, respectively. Bold and bold dashed edges (the latter in blue) are controlled by the
leader, while the bold dashed edges (in blue) correspond to a leader’s optimal solution.

there does not exist any edge to remove (v4, v5) from the follower’s decision, the algorithm

terminates with the leader’s decision {(v1, v2), (v1, v3), (v2, v4)} shown in Figure 3(b).

Theorem 2.2. Algorithm 4 returns an optimal solution of the BST(B,S) problem.

Proof. Define z∗ to be the optimal objective function value. Let Lk be the solution obtained

after iteration k, and denote L∗k = {L ∈ L∗ : Lk ⊆ L} as the set of optimal leader’s decision

containing Lk. We next show that L∗k is not empty for each k by induction.

(i) For k = 0, L∗0 = L∗ is clearly not empty.

(ii) Suppose that the statement holds for iteration k, we then prove that the statement also

holds for iteration k + 1. Let T k = Lk ∪ F k, where F k ∈ Ro
(S,S)(L

k), and (ū, v̄) is the

maximum weight edge of T k with respect to c.

Next, assume that the algorithm adds edge (i′, j′) at iteration k + 1, that is Lk+1 =

Lk ∪ (i′, j′). If Lk ∈ L∗k, then z∗ = z(Lk) = cūv̄, where (ū, v̄) is obtained in line 5 during

iteration k. Since ci′j′ < cūv̄, then based on Proposition 2.6, Lk+1 is also an optimal

leader’s decision. Thus, Lk+1 ∈ L∗k+1.
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On the other hand, if Lk /∈ L∗k, we have z∗ < cūv̄. For each L∗ ∈ L∗k, let L̂ = L∗ \ Lk.

Observe that there must exist an edge (û, v̂) ∈ L̂, such that cûv̂ < cūv̄, and the path in

G[T k] connecting û and v̂ contains (ū, v̄). Note that in line 8 of Algorithm 4 we choose

the minimum weight edge whose path in G[T k] contains (ū, v̄), hence ci′j′ ≤ cûv̂ ≤ z(L∗).

Thus, there are three possible cases to consider:

(a) If (i′, j′) ∈ L̂, then Lk+1 ⊆ L∗ ∈ L∗k+1.

(b) If (i′, j′) /∈ L̂ and G[L∗ ∪ (i′, j′)] is acyclic, then L∗ ∪ (i′, j′) is also optimal by

Proposition 2.6. Therefore, Lk+1 ⊆ L∗ ∪ (i′, j′) ∈ L∗k+1.

(c) If (i′, j′) /∈ L̂ and G[L∗ ∪ (i′, j′)] contains cycle C, then consider (i, j) ∈ C. Then

(L∗ \ (i, j)) ∪ (i′, j′) is also optimal by Proposition 2.6. It follows that Lk+1 ⊆

(L∗ \ (i, j)) ∪ (i′, j′) ∈ L∗k+1.

Therefore, after every iteration k, there exists at least one optimal leader’s decisions

containing Lk. Since |E`| is finite, then the algorithm terminates at LK for some integer K.

Suppose LK /∈ L∗. Then there exists L∗ ∈ L∗ such that LK ⊆ L∗. Since z(LK) > z(L∗),

then we can find an edge in L∗\LK to satisfy the property in line 6 of Algorithm 4. Therefore,

we have a contradiction with the termination assumption of the algorithm and the result

follows.

Proposition 2.7. Algorithm 4 runs in O(|E`| · |V |+ |E| · log |V |) time.

Proof. In the first iteration, we need to obtain T 0 ∈ Ro
(S,S)(∅) in line 3, which requires

O(|E| · log |V |) operations. At subsequent iterations, in line 3, by Lemma 2.8, we can solve

the follower’s reaction problem by deleting one edge, referred to as (u′, v′). Recall that (u′, v′)

is the edge of largest order occurring in the path connecting i′ and j′ in the tree G[T k]. Thus,

it takes only O(|V |) time. The algorithm terminates in at most |E`| iterations, since at ev-

ery step the algorithm removes one edge from E`. Consequently, the implementation of the

proposed algorithm requires O(|E`| · |V |+ |E| · log |V |) time.
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2.5.3 The BST(S,S) Problem

As briefly outlined in Section 2.1 there are several examples of NP-hard bilevel opti-

mization problems that are two-level generalizations of polynomially solvable single-level

problems. Linear programming is, perhaps, the most well-known example as bilevel linear

programs are known to be NP-hard [14]. Another interesting example is the bilevel linear

assignment problem [13, 43].

The versions of the bilevel spanning problems discussed in Sections 2.3, 2.4 and 2.5.2

are polynomially solvable. However, in the development of the proposed polynomial-time

algorithms we exploit the bottleneck structure of either the leader’s or the follower’s objective

functions. On the other hand, Buchheim et al. [20] show that the BST(S,S) problem, where

the objective functions at both levels are of the sum type, is NP-hard. It implies that there

does not exist a polynomial-time algorithm for solving the BST(S,S) problem unless P = NP.

In the remainder of the chapter we focus on a solution approach for BST(S,S) that does

not have a polynomial-time worst-case performance guarantee. Specifically, in Section 2.5.3.1

we provide a single-level mixed-integer programming (MIP) reformulation of BST(S,S) that

allows us to solve this problem by using standard MIP solvers. An iterative preprocessing

procedure is then proposed in Section 2.5.3.2 to reduce the size of the MIP model. The

scalability of this solution method is further explored with computational experiments in

Section 2.5.3.3.

2.5.3.1 Linear Mixed-Integer Formulation

There exist several MIP models for the single-level minimum spanning tree problem and

its variations [79, 107]. These MIP models typically exploit either subtour-elimination or

flow-based ideas. On the other hand, single-level reformulations of bilevel problems mostly

focus on using the optimality conditions (e.g., strong duality of linear programs) to replace

the lower-level problem with additional linear or nonlinear constraints [10, 126]. The models

proposed in this section represent a combination of these ideas in the context of the bilevel

spanning tree problem.
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Recall from our discussion in Section 2.5.1 that BST(S,S) can be simplified by setting Ef

to any edge set in Ro
(S,S)(∅). For the remainder of the section, let

E` = {(u1, v1), (u2, v2), . . . , (um` , vm`)},

Ef = {(i1, j1), (i2, j2), . . . , (in−1, jn−1)},

where edges in Ef are assumed to be ordered under the optimistic rule as (i1, j1) � (i2, j2) �

· · · � (in−1, jn−1); see Definition 2.3.

Suppose (L, F ) is a solution such that L ∪ F ∈ T (G), where L ⊆ E` and F ⊆ Ef . For

any edge (it, jt) ∈ Ef , we define directed graph induced by arcs A<tf as G[A<tf ] := (V,A<tf ),

where A<tf = {(uq, vq), (vq, uq) : (uq, vq) ∈ L} ∪ {(ip, jp), (jp, ip) : (ip, jp) ∈ F, 1 ≤ p < t}.

Based on the optimality conditions in Lemma 2.6, we have that (L, F ) is a bilevel feasible

solution if and only if the following conditions are satisfied:

(i) G[L] does not contain cycles;

(ii) For any edge (it, jt) ∈ Ef , if vertices it and jt are disconnected in the directed graph

G[A<tf ], then (it, jt) ∈ F . Otherwise, (it, jt) /∈ F .

To enforce that G[L] is acyclic, we first define the directed graph G[A6=k` ] := (V,A6=k` ),

where A6=k` = {(uq, vq), (vq, uq) : (uq, vq) ∈ L, q 6= k}, k ∈ {1, . . . ,m`}. Then for any edge

(uk, vk) in E`, we consider the shortest path problem from uk to vk in graph G[A6=k` ] and its

dual as the following linear programs (LPs):

[P1] min
∑

(u,v)∈Ak`

xkuv [D1] max πkuk

s.t. A 6=k` xk =


1, for vertex uk

0, for other vertices

−1, for vertex vk

, s.t. πku − πkv ≤ 1 ∀ (u, v) ∈ A6=k` ,

xkuv ≥ 0 ∀ (u, v) ∈ A6=k` . πkvk = 0.

Matrix A 6=k` is the node-arc matrix of graph G[A6=k` ]. If the leader selects (uk, vk), then uk

and vk need to be disconnected in G[A6=k` ] due to the acyclic condition on G[L]. Hence, the
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shortest path problem [P1] needs to be infeasible. Observe that π = 0 is a feasible solution of

the dual problem [D1], which implies that [D1] needs to be unbounded. Then there should

exist a feasible solution of the dual problem whose objective function value is n.

Henceforth, by defining Â6=k` = {(uq, vq), (vq, uq) : (uq, vq) ∈ E`, 1 ≤ q ≤ m`, q 6= k}, we

propose the following constraints:

πku − πkv ≤ 1 +M(1− xuv) ∀ (u, v) ∈ Â6=k` , (2.11a)

nxukvk ≤πkuk ≤ n− 1 + xukvk , (2.11b)

πkvk = 0, (2.11c)

where xuv ∈ {0, 1} is the binary variable indicating whether edge (u, v) ∈ E` is chosen by

the leader, and M is a sufficiently large constant parameter, e.g., M = n. If xukvk = 1,

then constraints (2.11b) ensure that a feasible solution with the objective function value of

n exists for problem [D1]. Thus, (uk, vk) ∈ L and the edge is not contained in any cycle of

G[L]. Otherwise, if xukvk = 0, then the edge (uk, vk) /∈ L and the relationship between [P1]

and [D1] is not enforced.

To ensure that the second condition for bilevel feasibility of (L, F ) is satisfied, see (ii)

above, for any (it, jt) ∈ Ef the follower needs to verify whether there exists a path connecting

it and jt in graph G[A<tf ]. We also formulate this question as the shortest path problem in

directed graph G[A<tf ∪ (it, jt)] with source vertex it and sink vertex jt. The arc weights of

1 are imposed for all arcs in A<tf and the weight of arc (it, jt) is set to n. The corresponding

shortest path problem and its dual problem are given by:

[P2] min
∑

(i,j)∈Atf

xtij + nxtitjt [D2] max πtit − π
t
jt

s.t. A<tf x
t =


1, for vertex it

0, for other vertices

−1, for vertex jt

, s.t. πtip − π
t
jp ≤ 1 ∀ (ip, jp) ∈ A<tf ,

xtij ≥ 0 ∀ (ip, jp) ∈ A<tf ∪ (it, jt). πtit − π
t
jt ≤ n.
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Matrix A<tf is the node-arc matrix of graph G[A<tf ∪ (it, jt)]. If it and jt are disconnected

in G[A<tf ], then the optimal objective function value of problem [P2] is n. Otherwise, the

optimal value is at most n−1. Let Â<tf = {(uq, vq), (vq, uq) : 1 ≤ q ≤ m`}∪{(ip, jp), (jp, ip) :

1 ≤ p < t} and let Â<tf be the node-arc matrix of graph G[Â<tf ∪ {(it, jt)}]. By applying

the strong duality property of LPs, we formulate the following set of constraints to indicate

whether the follower chooses (it, jt):

Â<tf x
t =


1, for vertex it

0, for other vertices

−1, for vertex jt

, (2.12a)

xtuqvq + xtvquq ≤ xuqvq ∀ (uq, vq) ∈ E`, (2.12b)

xtipjp + xtjpip ≤ yipjp ∀ p < t, (2.12c)

xtij ≥ 0 ∀ (i, j) ∈ Â<tf ∪ (it, jt), (2.12d)

πtuq − π
t
vq ≤ 1 +M(1− xuqvq) ∀ (uq, vq) ∈ E`, (2.12e)

πtvq − π
t
uq ≤ 1 +M(1− xuqvq) ∀ (uq, vq) ∈ E`, (2.12f)

πtip − π
t
jp ≤ 1 +M(1− yipjp) ∀ p ≤ t, (2.12g)

πtjp − π
t
ip ≤ 1 +M(1− yipjp) ∀ p ≤ t, (2.12h)

nyitjt ≤πtit ≤ n− 1 + yitjt , πtjt = 0, (2.12i)∑
(i,j)∈Âtf

xtij+nx
t
itjt = πtit , (2.12j)

where yipjp ∈ {0, 1} denotes whether edge (ip, jp) ∈ Ef is chosen by the follower, and M

is a sufficiently large constant parameter, e.g., M = n. If the value of πtit achieves n, then

constraint (2.12i) requires the follower to pick edge (it, jt), i.e., yitjt = 1. Otherwise, yitjt = 0.

Summarizing the discussion above, the bilevel spanning tree problem BST(S,S) can be

formulated as the following MIP:

min
x,y

∑
(uq ,vq)∈E`

cuqvqxuqvq +
∑

(ip,jp)∈Ef

cipjpyipjp (2.13a)

s.t. (2.11a)− (2.11c) ∀ k ∈ {1, . . . ,m`}, (2.13b)
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(2.12a)− (2.12j) ∀ t ∈ {1, . . . , n− 1}, (2.13c)∑
(uq ,vq)∈E`

xuqvq +
∑

(ip,jp)∈Ef

yipjp = n− 1, (2.13d)

xij + yij ≤ 1 ∀ (i, j) ∈ E` ∩ Ef , (2.13e)

xuqvq ∈ {0, 1} ∀ (uq, vq) ∈ E`, (2.13f)

yipjp ∈ {0, 1} ∀ (ip, jp) ∈ Ef , (2.13g)

where constraint (2.13d) ensures that there are n− 1 edges in the resulting solution. Based

on the discussion and derivations above, we state the following result.

Theorem 2.3. Any optimal solution of (2.13) is also an optimal solution of the BST(S,S)

problem.

In formulation (2.13), we have O(m` + n) binary variables. Constraints (2.11) con-

tain O(n) continuous variables and O(m`) constraints for each (uk, vk) ∈ E`, where k ∈

{1, 2, . . . ,m`}. In (2.12) there are O(m` + n) continuous variables and O(m` + n) linear

constraints for each (it, jt) ∈ Ef , where t ∈ {1, 2, . . . , n − 1}. Therefore, formulation (2.13)

consists of O(m` + n) binary variables, O(nm` + n2) continuous variables, and O(m2
` + n2)

constraints. Note that the total number of constraints and variables in (2.13) is polynomially

bounded by the problem size.

2.5.3.2 Preprocessing

In this subsection, we describe an iterative preprocessing procedure to reduce the size

of the MIP model (2.13). Assume that the input of the BST(S,S) problem is given by graph

G = (V,E), where E` ⊆ E and Ef = E. Then recall from the result of Corollary 2.1 (along

with the discussion at the end of Section 2.5.1 and at the beginning of Section 2.5.3.1) that

we can first set Ef to be any follower’s reaction in Ro
(S,S)(∅). After this simplification, we

have Ef ∈ Ro
(S,S)(∅) and |Ef | = |V |− 1. We refer to this simplification procedure as the first

preprocessing step.

The second preprocessing step is based on the observation that for any edge (i, j) ∈ E`, if

cij is greater than the weight of any edge in Ef , then (i, j) can not be in the leader’s optimal
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decision. Otherwise, we can construct a solution by removing (i, j) from the leader’s decision

to obtain a better objective function value.

Algorithm 5 Preprocessing for the BST(S,S) problem

Input G = (V,E), E`, c, d
1: Choose Ef ∈ Ro(S,S)(∅)
2: Sort Ef in the nondecreasing order as (i1, j1) � (i2, j2) � · · · � (in−1, jn−1)
3: k ← 0; E0

` ← E`; E0
f ← Ef

4: while k = 0 or Ek` 6= E
k−1
` do

5: c̄← max(i,j)∈Ekf
cij

6: Ek+1
` ← {(i, j) ∈ Ek` : cij < c̄}

7: Ek+1
f ← ∅

8: for (it, jt) ∈ Ekf do

9: Â<tf ← {(u, v), (v, u) : (u, v) ∈ Ek+1
` } ∪ {(ip, jp), (jp, ip) : 1 ≤ p < t}

10: if there exists a path connecting it and jt in graph G[Â<tf ] = (V, Â<tf ) then

11: Ek+1
f ← Ek+1

f ∪ (it, jt)
12: end if
13: end for
14: k ← k + 1
15: end while
16: E` ← Ek` ; set yij = 1 in formulation (2.13) for all (i, j) ∈ Ef \ Ekf

In the third preprocessing step, we identify edges in Ef that are always contained in the

follower’s reaction solution for any leader’s decision. Recall from Section 2.5.3.1 that:

(i) for the follower’s edges set we assumeEf = {(i1, j1), (i2, j2), . . . , (in−1, jn−1)} and (i1, j1) �

(i2, j2) � · · · � (in−1, jn−1);

(ii) edge (it, jt), t ∈ {1, 2, . . . , n − 1}, is chosen by the follower if and only if it and jt are

disconnected in directed graph G[A<tf ];

(iii) Â<tf = {(uq, vq), (vq, uq) : 1 ≤ q ≤ m`} ∪ {(ip, jp), (jp, ip) : 1 ≤ p < t} and thus,

A<tf ⊆ Â<tf .

In view of the above, we can verify whether there exists a path connecting it and jt in

graph G[Â<tf ]. If this is not the case, then it and jt are also disconnected in graph G[A<tf ]

regardless of the leader’s decision. Therefore, we can set yitjt = 1 in (2.13).

Naturally, we can repeat the second and the third steps in an iterative manner, as

formalized in the pseudo-code of Algorithm 5. Specifically, at iteration 0, we initialize E0
` as

E` and E0
f as a follower’s reaction in Ro

(S,S)(∅). Set Ek` denotes edges controlled by the leader
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after k iterations of the outlined procedure. Similarly, Ef \ Ekf denotes the follower’s edges

that are fixed to be selected in the follower’s reaction solution for any leader’s decision. The

algorithm stops whenever Ek` coincides with Ek−1
` and thus no additional leader’s edges are

removed.

2.5.3.3 Computational Experiments

Test instances. We test our MIP reformulation (2.13) using the graphs obtained from

the existing library of test instances for the Steiner tree problem [64]. Note that the latter

is a well-studied class of combinatorial optimization problems, and shares clear similarities

to the minimum spanning tree problem. Hence, test instances for the Steiner tree prob-

lem (after some appropriate modifications as described in details below) provide a suitable

computational platform for our study. Specifically, in our experiments we use the following

graph classes from [64]:

• sparse with random weights set B (50 - 100 nodes, 18 instances)

• sparse with Euclidian weights set P6E (100 - 200 nodes, 15 instances)

• sparse with random weights set P6Z (100 - 200 nodes, 15 instances)

• sparse with random weights set C (500 nodes, 12 instances)

• sparse with random weights set MC (400 nodes, 3 instances)

In our experiments, the number of edges controlled by the leader, |E`|, is assumed to be a

fraction, ρ, of the total number of edges |E|. That is, |E`| = dρ|E|e, where ρ ∈ {0.1, 0.2, 0.3}.

For all of the above instances we use two approaches for constructing the leader’s edge set:

• in the first approach, referred to as random, we consequently choose one of the edges

from E with equal probability and add it to the leader’s edge set, E`, until |E`| = dρ|E|e.

• in the second approach, referred to as random with a degree constraint, similar to the

previous approach we randomly select one of the edges to be added to E`; however, we

consider as candidates only edges in E that are incident to at least one vertex with its

degree no less than the third quartile of all vertex degrees in the graph.
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The rationale behind the second approach is based on the motivating network design

application outlined in Section 2.1. Recall that the leader (e.g., the central government)

prefers to construct only the most important connections (edges) in the graph. Naturally,

the latter consideration can be modeled by assuming that for such connections at least one

of its end-vertices is “highly influential,” that is a vertex with a reasonably high degree (i.e.,

the number of the vertex connections). This concept is also known as the degree centrality

in the network analysis literature [88].

Finally, for each (i, j) ∈ E the follower’s and leader’s edge weights (costs) are set to

cij = wijrij and dij = wij − cij, respectively, where wij is an original edge weight from the

corresponding data set in [64] and rij is generated following the uniform distribution over

[0, 1], i.e., rij ∼ U(0, 1).

Computational setup. Our numerical experiments are conducted using CPLEX 12.80 [51]

on a Windows 7 PC with a 3.6 GHz CPU and 32 GB of RAM. We set the time limit to

3,600 seconds. For each class of test instance considered (i.e., one of the above graph classes

along with the specific value of ρ and one of the two construction methods of the leader’s

edge set), we report the solver’s average performance over 10 randomly generated instances.

In particular, the average solution times (which include the times used by the preprocessing

procedure) are reported in seconds.

Furthermore, to explore the quality of the MIP formulation we also report the inte-

grality gap (IG). It is computed as IG(%) = z∗−zLP
z∗

× 100, where z∗ and zLP are the

optimal objective function values of the MIP model and its LP relaxation, respectively.

The average integrality gap is calculated across the instances solved to optimality within

the time limit. If the solver is not able to solve some instances for a particular size

within the time limit, then we show the average optimality gap (OG) that is reported

by the solver. The number of instances for which the solver can not find an optimal so-

lution within the time limit are indicated as the superscripts over the optimality gap val-

ues.

Results and discussion. The first set of our computational experiments focuses on eval-

uating the effect of the preprocessing procedure. In particular, we consider dataset B and
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ρ = 0.3. The computational results are summarized in Tables 1 and 2. The number of edges

in E` after preprocessing is given in the column denoted by “new |E`|”. The number of edges

in Ef that are fixed (by the preprocessing procedure) to belong to the follower’s reaction

set for any leader’s decision is reported in the column denoted by “FixEf”. The number of

iterations of the preprocessing procedure is reported in the column denoted by “Iter”.

As expected, compared to the input of Ef = E, the preprocessing procedure drastically

reduces the number of edges that need to be considered by the follower. For example, for

instance b01 in Table 1, before preprocessing the cardinalities of the edge sets controlled by

the leader and the follower are 19 and 63, respectively. After the preprocessing procedure,

|E`| is reduced on average to 18.3; furthermore, on average 30.8 edges are fixed to be in the

follower’s reaction set. Thus, the number of the follower’s edges that need to be considered

is on average |V |−1−30.8 = 18.2, compared to the initial |Ef | = 63. As for the MIP model

size, the original formulation contains 68 binary variables, 4,331 continuous variables and

7,221 constraints. After preprocessing the model size reduces to about 37 binary variables,

2,342 continuous variables and 2,681 constraints on average. Consequently, the running

times reported in Tables 1 and 2 indicate significant improvements after preprocessing for

both construction methods of the leader’s edge set.

Another observation from Tables 1 and 2 is that with the increase of the graph density

and the number of edges controlled by the leader, the positive effects of the preprocessing

procedure decrease, which is quite intuitive given the key ideas outlined in Section 2.5.3.2.

Nevertheless, the benefits of the preprocessing procedure are considerable. Thus, we apply

preprocessing procedure in the remaining set of our computational experiments for all test

instances.

We next investigate the performance of the MIP model (2.13) for test sets B, P6E and

P6Z and different sizes of the leader’s edge set (i.e., the value of ρ); see the results in

Tables 3–5. In general, the solver can easily handle these rather small-sized sparse graphs

with reasonable running times. The average integrality gaps of instances with ρ = 0.1

are typically under 5%, which suggests that the LP relaxation of the MIP formulation can

provide a sufficiently tight lower bound for the BST problem. With the increase in ρ, it is

not surprising that the lower bound becomes weaker with longer runtime. This degradation
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is due to the growth of the number of binary variables and constraints in the MIP model

when the leader is allowed to control more edges.

By comparing the construction methods for E`, Tables 3–5 show that the integrality gaps

between these two methods are reasonably close for each class of the test instances and the

same value of ρ. It demonstrates that the tightness of the LP relaxation associated with the

MIP model (2.13) depends on the number of leader’s edges rather than on the construction

method of E`. However, we observe that in most cases, the performance on instances with E`

randomly constructed is slightly better than that on the random instances generated with a

degree constraint. We attribute it to the fact that if the edges in E` that are incident to the

same vertex have similar weights, then it could be more difficult for the branch-and-bound

solver to perform pruning. Thus, if we generate the leader’s edges using a degree constraint,

then for a high-degree vertex, it is possible that E` contains several edges of similar weights

incident with this vertex, which causes the increase of the solver’s runtime.

Tables 6 and 7 show the performance for test sets MC and C, which consist of medium

size graphs. We note that in these tables, the symbol “–” means that the MIP model size is

too large for the solver to perform initialization. Two observations are consistent with our

earlier experiments. Namely, the LP relaxation quality is reasonably good even for larger

instances in these test sets and the problems become more difficult as the cardinality of

the leader’s edge set increases. In test set C, all instances have 500 nodes, but different

graph densities. By comparing the results for these graphs, as one would expect the problem

becomes more difficult as the edge density increases.

We conclude this section by summarizing our main observations.

(i) The preprocessing procedure is useful in reducing the size of the MIP model, especially

for large-scale sparse graphs, and hence leads to significant running time improvements.

(ii) The MIP formulation (2.13) has a reasonably good LP relaxation quality, particularly

when the leader’s edge set is reasonably small.

(iii) The performance of the MIP model degrades with the increase of either the number of

nodes, the number of leader’s edges or the graph density. Although, the MIP model can

be effectively handled by a standard solver for moderately sized sparse graphs, large-scale

graphs are still intractable and more memory intensive with the current MIP model. We
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believe that more sophisticated preprocessing procedures and advanced branch-and-cut

strategies using the underlying network structures are two interesting directions of the

future research.

2.6 Concluding Remarks

In this chapter, we consider a class of bilevel spanning tree problems with two types of

objective functions, namely, the sum and bottleneck. We show that whenever one of the

objective functions (either at the lower or upper level) involves the bottleneck-type function,

then the problem admits a polynomial-time solution algorithm. In particular, our algorithms

exploit the structural properties that are enforced by the presence of the bottleneck objective.

The obtained results hold for both the optimistic and pessimistic cases. Furthermore, the

min-max version of the problem is also polynomially solvable regardless of the objective

function type. These results are particularly interesting if one recalls that for many other

classes of polynomially solvable single-level optimization problems, their bilevel extensions

are often NP-hard.
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Table 1: Computational results for test set B, where ρ = 0.3 and E` is randomly constructed. The
number of edges in E` after preprocessing is given in the column denoted by “new E`”. The number
of edges in Ef that are fixed (by the preprocessing procedure) to belong to the follower’s reaction
solution for any leader’s decision is reported in the column denoted by “FixEf”. The number of
iterations of the preprocessing procedure is reported in the column “Iter”.

with preprocessing no preprocessing

Ins. |V | |E| |E`| new |E`| FixEf IG(%) Time Iter IG(%) Time

b01 50 63 19 18.3 30.8 5.15 0.12 1.2 6.02 0.18
b02 50 63 19 15.3 33.8 2.14 0.09 2.8 5.77 0.17
b03 50 63 19 16.4 32.6 2.87 0.09 2.3 6.01 0.15
b04 50 100 30 28.2 21.7 10.03 0.51 1.9 14.72 1.02
b05 50 100 30 28.7 20.9 11.84 0.93 1.5 16.39 1.62
b06 50 100 30 29.8 20 21.29 1.42 1 22.35 2.62
b07 75 94 29 25.9 48.2 4.83 0.23 2.5 6.71 0.47
b08 75 94 29 24 50 2.1 0.18 3.2 7.63 0.52
b09 75 94 29 27.7 46.3 5.07 0.22 1.7 7.75 0.44
b10 75 150 45 44.6 30.2 14.43 7.07 1.1 14.81 16.5
b11 75 150 45 44.3 29.8 16.68 7.73 1.3 17.91 15.4
b12 75 150 45 44 30.7 12.24 12.22 1.2 14.32 31.48
b13 100 125 38 35.5 63.5 5.75 0.59 2 8.03 1.68
b14 100 125 38 34.7 64.4 5.66 0.39 2.4 10.73 1.09
b15 100 125 38 35.2 63.9 5.68 0.58 2 8.91 1.42
b16 100 200 60 58.9 40.9 15.41 71.61 1.1 17.84 171.83
b17 100 200 60 59.4 41.1 19.8 123.6 1 20.52 300.86
b18 100 200 60 58.5 41.2 17.35 156.07 1 18.02 417.07
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Table 2: Computational results for test set B, where ρ = 0.3 and E` is randomly constructed with
a degree constraint. The number of edges in E` after preprocessing is given in the column denoted
by “new E`”. The number of edges in Ef that are fixed (by the preprocessing procedure) to belong
to the follower’s reaction solution for any leader’s decision is reported in the column denoted by
“FixEf”. The number of iterations of the preprocessing procedure is reported in the column “Iter”.

with preprocessing no preprocessing

Ins. |V | |E| |E`| new |E`| FixEf IG(%) Time Iter IG(%) Time

b01 50 63 19 16.5 32.7 4.11 0.1 1.8 7.14 0.2
b02 50 63 19 16.2 32.8 2.46 0.07 2.6 5.71 0.23
b03 50 63 19 16.5 32.6 4.09 0.11 2.1 6.84 0.21
b04 50 100 30 28.8 21.2 11.45 0.44 1.5 13.77 0.7
b05 50 100 30 28.5 21.1 12.85 1.25 1.2 17.89 2.25
b06 50 100 30 29.6 20.5 19.4 1.51 1 20.31 2.78
b07 75 94 29 25 49.1 3.69 0.26 2.7 7.24 0.63
b08 75 94 29 23.6 50.4 2.95 0.18 3.2 7.43 0.46
b09 75 94 29 28.1 46 4.79 0.24 1.6 6.46 0.49
b10 75 150 45 44.5 31.4 12.84 14.94 1.1 12.84 25.05
b11 75 150 45 44.8 30.3 12.63 7.85 1.2 12.63 15.99
b12 75 150 45 44.2 30.8 12.08 10.03 1.4 13.35 19.74
b13 100 125 38 33.5 65.5 3.79 0.46 3 7.85 1.4
b14 100 125 38 35.4 63.6 6.41 0.49 2.1 9.57 1.73
b15 100 125 38 35 64 5.51 0.46 1.9 8.83 1.57
b16 100 200 60 58.6 41.9 14.29 117.65 1.4 16.63 339.18
b17 100 200 60 59.2 43.2 18.05 151.17 1 19.31 373.69
b18 100 200 60 58.1 42.5 16.55 293.44 1 17.66 911.22
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3.0 Mixed Integer Bilevel Optimization with k-optimal Follower: A Hierarchy

of Bounds

3.1 Motivation

In this chapter, we focus on a broad class of mixed integer bilevel linear optimization

problems (MIBLP) in which the follower’s decision variables are all binary. In particular,

the considered class of problems is formally stated as:

η∗ = max
x,y

α1x+ α2y

s.t. x ∈ X ,

y ∈ arg max
ȳ
{βȳ : Ax+Gȳ ≤ d, ȳ ∈ {0, 1}n},

(BP)

where X = P ∩ (Qp1
+ × Zp2

+ ) for a given polyhedron P ; A ∈ Zm×(p1+p2), G ∈ Zm×n, d ∈ Zm;

and α1 ∈ Q(p1+p2), α2 ∈ Qn, and β ∈ Qn
+ are given row vectors. Let

S = {(x, y) ∈ X × {0, 1}n : Ax+Gy ≤ d}

be the feasible region of the relaxation obtained by dropping the optimality conditions on

the follower’s decision. We refer to x and y as the upper-level (leader’s) variables and the

lower-level (follower’s) variables, respectively. Given x ∈ X , we refer to

S(x) = {y ∈ {0, 1}n : (x, y) ∈ S} and R(x) = {y ∈ S(x) : βy ≥ βȳ ∀ȳ ∈ S(x)},

as the follower’s feasible region and the follower’s (rational) reaction set, respectively. The

feasible region S(x) represents the options available to the follower, given a fixed solution x

chosen by the leader, while the reaction setR(x) is the subset of the feasible region containing

the feasible solutions that maximize the follower’s objection function.

Note that (BP) specifies the optimistic case of the bilevel problem (BP). That is, there

is an implicit assumption that the follower selects the most favorable solution for the leader

from their reaction set R(x), i.e., if (x, y) is optimal for (BP), then we must have y ∈ R(x)

and α2y ≥ α2ȳ for all ȳ ∈ R(x).
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If we relax the optimality requirement on the follower’s solution, the resulting single-level

relaxation of (BP) is the mixed integer linear optimization problem (MILP)

ηSLR = max
(x,y)∈S

{α1x+ α2y}, (SLR)

with feasible region S. Problem (SLR) is also known as the high-point problem in the related

literature; see, e.g., [85].

Observe that a feasible solution for (BP) can be obtained by fixing the leader’s decision to

an optimal solution obtained from (SLR). Specifically, assume (x0, y0) is optimal for (SLR).

Then if ŷ0 ∈ R(x0) is an optimal (optimistic) follower’s decision for the lower-level problem

corresponding to x0, then clearly, (x0, ŷ0) is a feasible solution for (BP). Denote by η̂SLR :=

α1x0 + α2ŷ0 the leader’s objective function value corresponding to (x0, ŷ0). Thus, we have

that:

η̂SLR ≤ η∗ ≤ ηSLR.

The majority of branch-and-bound and branch-and-cut approaches for MIBLPs in the liter-

ature, see, e.g., [77, 85, 104, 109], solve either (SLR) or the linear programming relaxation

of (SLR) to obtain the initial lower and upper bounds. We refer to the bounds obtained by

this single-level relaxation-based approach as the SLR-based bounds.

Throughout the chapter, we make the following assumptions, which are standard in the

bilevel optimization literature:

Assumption 3.1. All entries in A,G and d are integers; β ≥ 0.

Assumption 3.2. P is compact.

As for Assumption 3.1, the components of A,G, and d can always be scaled to be in-

tegral as long as they are rational; this assumption is often exploited in the literature on

MILPs, see, e.g., [37]. As for the second part of Assumption 3.1, this is without loss of

generality, since whenever βj < 0 for some j ∈ [n] := {1, 2, . . . , n}, we can simply replace ȳj

by 1− ȳj, and then reduce the problem into an equivalent one with this assumption satisfied.

As for Assumptions 3.2, it is common in the bilevel optimization literature to assume the

compactness of the leader’s feasible region, see, e.g., [36, 100, 104] and the references therein.
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We also make a technical assumption involving the set of upper-level variables that we

refer to as the linking variables, those with at least one non-zero coefficient in the lower-level

constraint matrix. The linking variables are formally defined as those with indices in the set

L =
{
i ∈ {1, . . . , p1 + p2} : Ai 6= 0

}
,

where Ai denotes the ith column of A. We make the following assumption to ensure that

optimal solutions of (BP) exist [108]:

Assumption 3.3. All linking variables are integer variables.

For any positive integer n, we use [n] to denote the set {1, . . . , n}. We denote by ej ∈ Rn

the jth unit vector; by 0 the vector with all components equal to 0 and 1 the vector with

all components equal to 1; and finally by M i and mi the ith column and row of matrix M ,

respectively. All vectors are column vectors by default, with the exception of vectors used

exclusively as objective function vectors (and the rows of matrices), which are taken to be

row vectors for notational simplicity.

Related Work. In general, solving MIBLPs is quite challenging. The initial bounds used

within branch-and-bound and branch-and-cut frameworks are of critical importance for the

overall performance of this type of exact methods. Unfortunately, for general classes of

bilevel problems there are no theoretical guarantees on the quality of the SLR-based bounds.

Moreover, the computational experiments available in the literature also indicate that (SLR)

typically yields relatively poor bounds; see, e.g., [23]. Consequently, exact solution of large-

scale bilevel optimization problems remains an intractable task, in particular, if one com-

pares available bilevel solvers to the state-of-the-art commercial solvers for MILPs, e.g.,

CPLEX [51]. The latter is capable of handling millions of variables and constraints for many

broad classes of MILPs. On the other hand, the most recent version of MibS can typically

solve medium-sized problems with only up to several hundred integer decision variables at

the lower level.

There are only a few studies, mostly focused on special classes of bilevel problem, that use

bounding methods that are not SLR-based. In particular, the studies in [23, 105] describe
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rather effective continuous relaxation based bounds that provide a lower bound for the

mixed integer max-min optimization problems, where the objective functions of the decision-

makers have the same functional form but have opposite signs. Specifically, these approaches

relax the integrality constraints of the follower and then reformulate the resulting bilevel

linear optimization problem as a MILP through optimality conditions. In [29], the knapsack

interdiction problem is studied and the concept of the critical items in the follower’s knapsack

problem is explored to further improve the bounds of the continuous relaxation. However,

the aforementioned types of bounding methods exploit specific structure of the considered

classes of bilevel problems and are not applicable for more general MIBLPs.

Overview. The remainder of the chapter is organized as follows. Section 3.2 provides a

formal description of our proposed framework and summarizes our contributions. Section 3.3

develops the hierarchy of lower and upper bounds for the considered class of MIBLPs. Then,

in Section 3.4, we describe two single-level MILP reformulations for our bilevel problems.

Section 3.5 considers a class of bilevel problems for which the follower’s local optimality

implies global optimality and hence, the follower can be viewed as rational, despite using a

solution methodology typically employed as a heuristic. Finally, extensively computational

experiments are conducted to illustrate the effectiveness of our proposed framework in Section

3.6.

3.2 Bilevel Optimization With k-optimal Follower

The main idea in the remainder of the chapter is to consider an optimality-based relax-

ation of (BP) in which the follower’s response is required only to be a locally optimal solution

to the parametric follower’s problem. Formally, given a positive integer k, in response to the

leader’s decision x, the follower chooses a solution in the k-optimal reaction set, defined as

follows.

Definition 3.1. The k-swap neighborhood of y ∈ {0, 1}n is the set

Nk(y) = {ȳ ∈ {0, 1}n : ‖ȳ − y‖1 ≤ k} (Nk)
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of all vectors within Hamming distance k of y, where the Hamming distance [49] between

two binary vectors y and ȳ is the number of positions at which these vectors are different,

i.e., ‖ȳ − y‖1.

Definition 3.2. The k-optimal reaction set with respect to x ∈ X is the set

Rk(x) = {y ∈ S(x) : βy ≥ βȳ ∀ ȳ ∈ Nk(y) ∩ S(x)} (Rk)

of all k-optimal solutions to the lower-level problem with respect to x ∈ X .

The concept of a k-optimal solution in Definition 3.2 is commonly used in the literature

on combinatorial optimization in methods that exploit local optimality as a way of gener-

ating heuristic solutions; see examples in the context of the traveling salesman [1, 25, 48],

routing and scheduling [17, 91, 94], as well as many other combinatorial optimization prob-

lems [56, 59, 82, 95].

The mixed integer bilevel linear optimization problem with k-optimal follower is then

formally stated as follows:

η∗k = max
x,y

α1x+ α2y

s.t. x ∈ X ,

y ∈ Rk(x).

(BPk)

We say that (x, y) is feasible for (BPk) if x ∈ X and y ∈ Rk(x). Note that, as with (BP), the

formulation of (BPk) implicitly assumes the optimistic case, although the approach can also

be generalized to the pessimistic case (there is a brief discussion on this issue in Section 3.7).

Observe that (x, y) is a feasible solution for (BP0) if and only if (x, y) ∈ S. Hence,

R0(x) = S(x) and (BP0) is equivalent to (SLR). Furthermore, Rn(x) = R(x), so that

(BPn) is equivalent to (BP). We show in Section 3.3 that for any other k ∈ {0, . . . , n},

the optimal objective function value of (BPk) provides an upper bound on the optimal ob-

jective function value of (BP); furthermore, the optimal objective function value of (BPk)

is monotonic in k. Optimal solutions to (BPk) can also be used to derive a hierarchy of

monotonically increasing lower bounds for (BP).
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To solve (BPk), in Section 3.4 we propose two single-level MILP formulations solvable

by standard MILP solvers. The first one follows a disjunctive-based approach with addi-

tional logical variables. The second formulation extends the previous idea and exploits the

inherent structure of (BPk) through the lens of mixing-set inequalities [9, 46, 130]. Our ex-

tensive numerical study with these MILP formulations indicates that the developed bounds

are substantially better than the SLR-based bounds. Furthermore, the bounds converge to

the optimal objective function value of (BP) for rather small values of k, and the required

computational efforts is small. This observation suggests that the bounds provided by (BPk)

have tremendous potential for boosting the performance of exact solvers, especially for bilevel

problems with low quality single-level relaxation bounds, which are common in practice.

Aside from the obvious usefulness of the bounds that can be derived from (BPk), another

important reason for studying (BPk) is that it provides an exact reformulation for classes

of MIBLPs for which k-optimal solutions (ideally, for some small fixed k) are also globally

optimal for the lower-level problem. In Section 3.5, we exploit this idea by showing that

2-optimality of the lower-level problem implies global optimality for a general class of bilevel

matroid problems. Specialized approaches for solving the bilevel minimum spanning tree

problem (BMST) are then developed and tested in Section 3.6.3.

Finally, the proposed modeling framework (BPk) provides a natural connection between

theoretical exact formulations for hierarchical decision-making problems and the practical

considerations arising in many real-life applications. In standard exact formulations of bilevel

optimization problems, it is typically assumed that the follower is completely rational and

their computational resources are sufficient to solve the lower-level problem to global optimal-

ity for any leader’s decision. In many practical settings, it is clear that this is an unrealistic

assumption. The follower often faces a situation in which either their computational re-

sources are limited or they simply lack the knowledge to develop an efficient approach to

obtaining the exact solution of their lower-level problem (this may be the case, in particular,

when the follower’s problem is NP-hard). Furthermore, in practice it is often the case that the

follower only seeks a high-quality sub-optimal solution within reasonable time. To address

such “inexact” followers, Smith et al. [101] and Zare et al. [127] study mxied integer bilevel

optimization problems, where the reaction solutions by the follower are computed using a
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finite set of heuristic algorithms. In our framework, we do not specify the follower’s strategies

and algorithms, but instead quantify their possible reaction by exploiting the concept of lo-

cally optimal solutions. Thus, the proposed (BPk) problems can be viewed as a more general

modeling framework for hierarchical decision-making problems than the classical MIBLPs.

3.2.1 Characterization of k-optimal Reaction Set

Although the definition of the k-optimal reaction set given is already straightforward, we

would ideally like a characterization that can be used to formulate (BPk) as a mathematical

optimization problem (preferably an MILP). To develop such a characterization, we first

define the notion of an improving k-swap.

Definition 3.3. A vector w ∈ {−1, 0, 1}n represents an improving k-swap if ‖w‖1 = k and

βw > 0. The set of all improving k-swaps is denoted by Tk.

In the above definition, the members of Tk represent ways of flipping the values of k variables

in a given solution to get a new solution with improved objective function value. Note that

membership in Tk only considers the number of flips and their effect on the objective function

value, not the effect on feasibility of the lower-level problem, since the effect of the k-swap

on feasibility would vary depending on the solution.

To illustrate, let x ∈ X , y ∈ S(x), and w ∈ Tk be given. Applying the k-swap to y, we

get y + w, which is an improved solution if and only if y + w ∈ S(x). Note that y + w may

be infeasible either because G(y+w) 6≤ d−Ax or because y+w 6∈ {0, 1}n, e.g., yi = wi = 1.

The following necessary and sufficient conditions characterize membership in Rk(x) for

x ∈ X . Informally, the result says that y is k-optimal if and only if no improving j-swap is

feasible for j ∈ [k].

Proposition 3.1. Let (x, y) ∈ S. Then y ∈ Rk(x) if and only if y + w /∈ S(x) for all

w ∈ T k, where T k = ∪j∈[k]Tj.

Proof. Let k ∈ [n] and x ∈ X be given. There are two parts to the proof.

“⇐” We prove the contrapositive. Let y 6∈ Rk(x) given. Then there exists ȳ ∈ Nk(y) ∩ S(x)

such that βȳ > βy. Let w̄ = ȳ − y and j = ‖w‖1. We have j ∈ [k], w ∈ Tj, and
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y + w ∈ S(x), so the contrapositive is proven.

“⇒” We again prove the contrapositive. We therefore have j ∈ [k] and w ∈ Tj such that

ȳ = y+w ∈ S(x). Then ȳ ∈ Nk(y)∩S(x) and βȳ > βy, so the contrapositive is proven.

We next illustrate Definition 3.3 and Proposition 3.1 as follows.

Example 3.1. Consider the bilevel knapsack problem

max
x,y
− βy

s.t.
n∑
j=1

xj ≤ b, x ∈ {0, 1}n,

y ∈ arg max
ȳ∈{0,1}n

{βȳ : aȳ ≤ C, xj + ȳj ≤ 1 ∀j ∈ [n]},

where n = 6, vector β = (70, 40, 39, 37, 17, 15), weight vector a = (28, 25, 20, 18, 13, 10), the

leader’s and the follower’s knapsack capacities are given by b = 1 and C = 30, respectively.

We note that

min
x

max
y

βy = −max
x

(
−max

y
βy
)

and thus, the considered example is essentially an instance of the knapsack interdiction prob-

lem [32].

For a fixed leader’s decision x0 = (1, 0, 0, 0, 0, 0)>, the lower-level problem becomes a

knapsack problem given by

max
y∈{0,1}6

70y1 + 40y2 + 39y3 + 37y4 + 17y5 + 15y6

s.t. 25y2 + 20y3 + 18y4 + 13y5 + 10y6 ≤ 30,

y1 = 0.

First, consider the case of k = 1. From Definition 3.3, we have T1 = {w ∈ {−1, 0, 1}n :

βw > 0, ‖w‖1 = 1}. Since βj > 0 for each j, it follows that

T1 = {ej : j ∈ [n]}.
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Furthermore, we have y is a 1-optimal solution for the follower if and only if it is maximal

(i.e., ay ≤ C and ay + aj > C for any j such that yj = 0). Therefore, it can be verified that

in this example we have that

R1(x0) = {{2}, {3, 6}, {4, 6}, {5, 6}}.

In the above, for simplicity we use subsets of the selected items in the follower’s knapsack

to describe R1(x0) instead of the corresponding binary vector y, e.g., set {2} denotes the

follower’s solution y = (0, 1, 0, 0, 0, 0)>.

Next, it is also easy to verify that

T2 = {ei − ej : i, j ∈ [n], βi > βj} ∪ {ei + ej : i, j ∈ [n], i 6= j}

and the 2-optimal reaction set of the follower is given by R2(x0) = {{2}, {3, 6}} ⊆ R1(x0).

Then we can compute

T3 ={ei + ej + ek : i, j, k ∈ [n], i 6= j 6= k} ∪

{ei + ej − ek : i, j, k ∈ [n], i 6= j 6= k, βi + βj > βk} ∪

{ei − ej − ek : i, j, k ∈ [n], i 6= j 6= k, βi > βj + βk}.

Finally, we have that R3(x0) = · · · = Rn(x0) = {{3, 6}}. It implies that in this instance the

k-optimal reaction sets of follower are monotone decreasing and converge to R(x0) for k = 3.
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3.2.2 Complexity of (BPk)

The next question of interest is to explore the theoretical computational complexity of

computing (BPk) for a fixed value of k. It is easy to guess that since the problem of sim-

ply finding a feasible solution to a 0-1 integer optimization problem is already NP-hard,

then (BPk) should also be NP-hard. In fact, for any pure 0-1 integer optimization problem,

one can easily construct a bilevel optimization problem with a lower-level problem in which

a solution is optimal if and only if it is 1-optimal.

Theorem 3.1. (BPk) is NP-hard for any fixed integer k ≥ 1.

Proof. We show that pure binary integer optimization can be reduced to an instance

of (BPk). Let X ⊆ {0, 1}n be the feasible region of a pure binary integer optimization

problem with objective function vector α ∈ Rn. Let an instance of (BPk) be defined as

follows. The set X is as given. We let A = In, G = −In, d = 0, βi = −1 for i ∈ [n], α1 = α

and α2 = 0. Then the second-level problem is trivially solvable, since Rk(x) = R(x) = {x}

for all x ∈ X ⊆ {0, 1}n. The solution to this instance of (BPk) also solves

max
x∈X

αx

Remark 3.1. It is evident that the proof did not depend at all on the lower-level problem.

As long as α2 = 0, the solution to (BPk) will be the same as that of the binary integer

optimization problem. A stronger result also holds—that the decision version of (BPk) is

NP-complete for fixed k—as we show later.

Remark 3.2. The MIBLP is known to be hard for complexity class Σp
2 in general [54, 75].

However, in Section 3.4, we demonstrate a polynomial-time procedure to reduce (BPk) to a

single-level linear MILP of polynomial size for a fixed value of k. Thus, for any fixed k, the

decision version of (BPk) is in class NP.
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3.3 Hierarchy of Bounds

In this section, we formally describe the hierarchy of upper and lower bounds associated

with (BPk). Some basic properties of these bounds are also established.

3.3.1 Upper Bounds

We first show that (BPk) provides a natural hierarchy of upper bounds for (BP). In

particular, these upper bounds can be shown to be progressively tighter with increasing k.

Formally:

Theorem 3.2. ηSLR = η∗0 ≥ η∗1 ≥ η∗2 ≥ · · · ≥ η∗n = η∗.

Proof. Recall that η∗k is computed as

η∗k = max {α1x+ α2y : x ∈ X , y ∈ Rk(x)}.

To prove η∗k ≥ η∗k+1 for k = 0, 1, . . . , n − 1, it is sufficient to observe from Proposition 3.1

that Rk(x) ⊇ Rk+1(x). If k = 0, then N0(y) = {y} and R0(x) = S(x), which implies

that ηSLR = η∗0. If k = n, then Nn(y) = {0, 1}n and Rn(x) = R(x), which implies that

η∗n = η∗.

Our computational study in Section 3.6 indicates that the upper bound η∗k is substantially

tighter than the SLR-based bound, η∗0, even for k = 1, and the optimal objective function

value of (BPk) converges to that of (BP) rather fast. The following example is provided as

an illustration.

Example 1 (continued). Observe that in Example 3.1, η∗0 = 0 with optimal solution

(x0, y0) = (0,0). For k = 1, we can verify that the optimal leader’s decision for (BP1) is

{6} and the follower’s 1-optimal solution is {5}, resulting in η∗1 = −17. For k = 2, the

leader selects {1}, with the follower’s 2-optimum given by {2}; thus, η∗2 = −40. For k = 3,

the leader’s optimal decision is {1} and the follower chooses {3, 6} with η∗3 = −54. We can

further verify that η∗4 = · · · = η∗6 = −54 with the leader’s and the follower’s optimal decisions

given by {1} and {3, 6}, respectively.
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In the above example in order to obtain an optimal solution for (BP) it is sufficient to solve

(BP3). Thus, a natural question is to establish when an optimal solution for (BPk) is also

optimal for (BP). The following results provide possible answers for this question.

Proposition 3.2. Given an optimal solution (xk, yk) for (BPk), if yk ∈ R(xk) (i.e., yk is

also a globally optimal solution for the lower-level problem with respect to the leader’s decision

xk), then (xk, yk) is also optimal for (BP) and η∗k = η∗k+1 = · · · = η∗n = η∗.

Proof. Since yk ∈ R(xk), we have that (xk, yk) is a bilevel feasible solution. It follows that

η∗ ≥ αxk + βyk = η∗k as (xk, yk) is optimal for (BPk). Therefore, based on Theorem 3.2, we

have η∗k = η∗k+1 = · · · = η∗n.

Note that Proposition 3.2 provides a practical approach to verify whether η∗k = η∗. Next,

we discuss a more general condition.

Proposition 3.3. If any k-optimal solution of the lower-level problem is also a globally

optimal solution for the follower, then η∗k = η∗k+1 = · · · = η∗n.

Proof. It follows directly from the observation that Rk(x) = Rk+1(x) = · · · = Rn(x).

For some single-level combinatorial optimization problems, locally optimal solutions are also

globally optimal for reasonably small values of k, e.g., the minimum spanning tree prob-

lem with k = 2. Hence, Proposition 3.3 provides us with one possible approach for treating

bilevel generalizations of such problems. In Section 3.5, we use Proposition 3.3 in the context

of a general class of bilevel matroid problems.

On the other hand, it also may occur that the upper bounds provided by (BPk), k ≥ 1, does

not improve the SLR-based bound, η∗0. The next example illustrates this situation.

Example 3.2. Consider an instance of the bilevel knapsack problem:

max
x,y

α(x+ y)

s.t.
n∑
j=1

xj ≤ 1, x1 = 0, x ∈ {0, 1}n,

y ∈ arg max
ȳ∈{0,1}n

{
n∑
j=1

βȳ : ax+ aȳ ≤ C, xj + ȳj ≤ 1 ∀j ∈ [n]},
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where n = 4, vector α = (15, 7, 6, 5), vector β = (10, 9, 7, 4), weight vector a = (10, 6, 4, 3),

and C = 10. We can verify that (SLR), (BP1) and (BP2) lead to the same optimal objective

function value of 15 with the leader’s decision ∅ and the follower’s decision {1}. That is,

η∗0 = η∗1 = η∗2 = 15. On the other hand, η∗ = η∗3 = 13 for (BP3) with the leader’s decision ∅

and the follower’s decision {2, 3}.

Finally, this example can be generalized via the following analytical result.

Proposition 3.4. If α2w > 0 for any w ∈ T k and 1 ≤ k ≤ n, then η∗0 = η∗1 = · · · = η∗k.

Proof. From Theorem 3.2, we have η∗0 ≥ · · · ≥ η∗k−1 ≥ η∗k. Thus, we only need to prove

that η∗0 ≤ η∗k. Suppose (x0, y0) is an optimal solution of (BP0). Then it suffices to show

that (x0, y0) is also a feasible solution for (BPk), that is y0 ∈ Rk(x
0). We first note that

y0 ∈ S(x0) and α2y0 ≥ α2y for any y ∈ S(x0).

Suppose y0 /∈ Rk(x
0), then based on Proposition 3.1, there exists w ∈ T k such that

y0 + w ∈ {0, 1}n and y0 + w ∈ S(x0). Since α2w > 0, then α2(y + w) > α2y, which

contradicts with the assumption that (x0, y0) is optimal for (BP0). Hence, y ∈ Rk(x
0) and

the result follows.

Corollary 3.1. If α2
j > 0 for all j ∈ [n] such that βj > 0, then η∗0 = η∗1.

3.3.2 Lower Bounds

As outlined in Section 3.2, (BPk) can also be exploited to construct lower bounds for

(BP). Formally, let (xk, yk) be an optimal solution for (BPk). Denote by ŷk the follower’s

optimal solution that corresponds to the leader’s decision xk, i.e., ŷk ∈ R(xk). Clearly, a

pair (xk, ŷk) forms a bilevel feasible solution for (BP). Then we define:

η̂k = α1xk + α2ŷk,

which provides a valid lower bound for η∗.

However, it can be verified (see an example below) that η̂k is not necessarily monotonic

in k. To present a hierarchy of monotonically increasing lower bounds for (BP), we need to

slightly modify the definition of η̂k as follows:
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Definition 3.4. Given an integer k, 1 ≤ k ≤ n, the modified η̂k, denoted as η̂′k, is given by

η̂′k = max
t=0,1,...,k

{α1xt + α2ŷt}.

Then we obtain the following hierarchy of lower bounds:

Theorem 3.3. η̂k ≤ η̂′k for 1 ≤ k ≤ n, and η̂SLR = η̂0 ≤ η̂′1 ≤ η̂′2 ≤ · · · ≤ η̂′n = η∗.

Proof. Note that η̂k = α1xk + α2ŷk ≤ η∗. Thus, based on Definition 3.4 we have η̂k ≤

η̂′k = maxt=0,1...,k{η̂k} ≤ η∗. Also, it directly follows from Definition 3.4 that η̂′k ≤ η̂′k+1 for

0 ≤ k ≤ n − 1. If k = n, then Rn(x) = R(x), which yields that η∗ = η∗n = η̂n ≤ η̂′n ≤ η∗,

and the result follows.

We next illustrate the considered lower bounds in the following example.

Example 3.3. Consider an instance of the knapsack interdiction problem:

max
x∈{0,1}6

(
− max

y∈{0,1}6
11y1 + 2y2 + 7y3 + 8y4 + 3y5 + 10y6

)
s.t.

6∑
j=1

xj ≤ 1, xj + yj ≤ 1 ∀j ∈ [6],

14y1 + 12y2 + 6y3 + 5y4 + 3y5 + 2y6 ≤ 14.

Then we compute that η∗0 = 0 with the leader’s decision 0, which leads to η̂0 = η̂′0 = −25 with

follower’s decision {4, 5, 6}. For k = 1, the leader’s optimal decision set is {6} with η∗1 = −2.

We can compute η̂1 = η̂′1 = −18 with follower’s decision {3, 4, 5}. For k = 2, we see that

0 is optimal for the leader with η∗2 = −11 < η∗1, while its corresponding lower bound η̂2 =

−25 < η̂1 with the follower’s decision {3, 4, 6}. On the contrary, our modified lower bound

η̂′2 = maxk=0,1,2{η̂k} = −18 ≥ η̂′1. We can further verify that ′̂η3 = · · · = ′̂η6 = η∗ = −18.
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3.4 Extended Formulations

In this section, we present two extended formulations based on the concepts presented

so far. In Section 3.4.1, we begin by describing a formulation of (BP1), i.e., the case when

k = 1, using a disjunctive-based approach. We then generalize this formulation to general

k in Section 3.4.2. In doing so, we show that (BPk) is polynomially reducible to a single-

level MILP for any fixed k. Additionally, several preprocessing procedures are considered

to reduce the number of variables and constraints in the proposed MILP formulations. Fi-

nally, by looking carefully into the structure of (BPk), we identify, somewhat surprisingly,

a mixing-set substructure within (BPk), which is exploited to develop a tighter extended

MILP formulation in Section 3.4.3.

3.4.1 Formulation for (BP1)

For k = 1, Definitions 3.1 and 3.2 imply that the the follower’s 1-optimal reaction set is

defined as:

R1(x) = {y ∈ S(x) : βy ≥ βȳ ∀ ȳ ∈ N1(y) ∩ S(x)},

where N1(y) = {ȳ ∈ {0, 1}n : ||y− ȳ||1 ≤ 1}. We have T1 = {ej : βj > 0}. Then Proposition

3.1 can be used to provide a simplified condition to determine whether y ∈ R1(x) as follows:

Proposition 3.5. Let (x, y) ∈ S. Then y ∈ R1(x) if and only if either yj = 1, or yj = 0

and y + ej /∈ S(x) for j ∈ J+
β , where J+

β = {j ∈ [n] : βj > 0}.

Observe that for any y ∈ {0, 1}n, if y /∈ S(x), then based on Assumption 3.1, there must

exist some row i ∈ [m] such that

aix+ giy ≥ di + 1,

which (recalling that ai and gi are the ith rows of matrices A and G, respectively) yields that{
y ∈ {0, 1}n : y /∈ S(x)

}
=

m⋃
i=1

{
y ∈ {0, 1}n : giy ≥ di + 1− aix

}
.

To develop a formulation that reflects the conditions in Proposition 3.5, we introduce binary

variables zij for i ∈ [m], j ∈ J+
β , such that when zij = 1, we must have aix+gi(y+ej) ≥ di+1,
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i.e., zij = 1 ⇒ y + ej /∈ S(x). Using this set of auxiliary binary variables, we reformulate

(BP1) as a linear MILP in the following form:

η∗1 = max
x,y,z

α1x+ α2y (BP1-DF-a)

s.t. (x, y) ∈ S, (BP1-DF-b)

aix+ giy + zij(µi − hij) ≥ µi ∀i ∈ [m], j ∈ J+
β , (BP1-DF-c)

m∑
i=1

zij + yj ≥ 1 ∀j ∈ J+
β , (BP1-DF-d)

zij ∈ {0, 1} ∀i ∈ [m], j ∈ J+
β , (BP1-DF-e)

where hij = di + 1− gij, and µi is a sufficiently small constant parameter (below we provide

some additional discussion on its appropriate values).

To demonstrate the correctness of the obtained formulation, we make the following ob-

servations. First, note that constraint (BP1-DF-c) ensures that if zij = 1, then we must

have aix + gi(y + ej) ≥ di + 1; if zij = 0, then constraint (BP1-DF-c) is always satisfied for

appropriate values of µi. Constraint (BP1-DF-d) guarantees that if yj = 0 for some j ∈ J+
β ,

then there exists i ∈ [m] such that zij = 1. This, in turn, ensures that y+ ej 6∈ S(x). On the

other hand, since yj = 1 already implies y + ej 6∈ S(x), we do not need to ensure violation

of any constraints in this case.

For a constraint (BP1-DF-c) to be redundant when zij = 0, it is sufficient to have

µi ≤ min
(x,y)∈S

aix+ giy.

Based on Assumption 3.2, there exist vectors l and u such that for any x ∈ X we have

l ≤ x ≤ u, which leads to a straightforward choice of µi as

µi =
∑
j:aij>0

aijlj +
∑
j:aij<0

aijuj +
∑
j:gij<0

gij.

If all entries in A and G are non-negative, then µi can be trivially set to 0. Note that the

chosen value of µi may influence the quality of the above MILP reformulation (BP1-DF).

A tighter µi can be achieved for bilevel problems with identifiable structures; this issue is

further addressed in Section 3.6.
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Next, we discuss how to reduce the number of variables and constraints in the formula-

tion (BP1-DF) through some simple preprocessing steps.

Proposition 3.6.(i) If gij ≤ 0 for some i ∈ [m] and j ∈ J+
β , then zij = 0 for any feasible

solution of (BP1-DF).

(ii) If α2
j > 0 and gij ≥ 0 for some j ∈ J+

β and all i ∈ [m], then removing variables zij and the

associated constraints for all i ∈ [m] in (BP1-DF) does not change its optimal objective

function value.

Proof. (i) Suppose (x, y, z) is a feasible solution of (BP1-DF). Since (x, y) ∈ S, then

aix + giy ≤ di for all i ∈ [m]. If zij = 1 for some i ∈ [m] and j ∈ J+
β such that gij ≤ 0,

then from constraint (BP1-DF-c), we have

aix+ giy ≥ di + 1− gij ≥ di + 1,

where the second inequality follows from the assumption that gij ≤ 0. Thus, we obtain

a contradiction and it immediately follows that zij should be equal to 0 in any feasible

solution.

(ii) We refer to (BP′1-DF) as the problem obtained by removing zij0 for some j0 ∈ J+
β and

all i ∈ [m] such that α2
j0
> 0 and gij0 ≥ 0. Denote by η′1 the resulting optimal objective

function value of (BP′1-DF). It is clear that η′1 ≥ η∗1.

Assume (x′, y′, z′) is an optimal solution of (BP′1-DF). Next, it is sufficient to show that

y′ ∈ R1(x′) as the latter implies that η′1 ≤ η∗1. By Proposition 3.5 (recall that zij is not

removed from (BP1-DF) for any j 6= j0) we have that y′+ ej /∈ S(x′) for any j ∈ J+
β and

j 6= j0. Therefore, we only need to show y′ + ej0 /∈ S(x′).

If y′j0 = 1, then the statement holds trivially. If y′j0 = 0, then suppose y′ + ej0 ∈ S(x).

Consider j ∈ J+
β such that j 6= j0 and y′j = 0. Since y′ + ej /∈ S(x′), assume that aix +

gi(y′+ej) ≥ di+1 for some i ∈ [m] (i.e., zij = 1 in constraint (BP1-DF-c)). It immediately

follows that aix+gi(y′+ej+ej0) ≥ di+1 as gij0 ≥ 0. Therefore, we have y′+ej0 +ej /∈ S(x′)

for any j ∈ J+
β . Hence, based on Proposition 3.5, y′ + ej0 is a feasible solution for

(BP1-DF). However, η∗1 ≥ α1x′ + α2(y′ + ej0) = α1x′ + α2y′ + α2
j0
> α1x′ + α2y′ = η′1,

which contradicts with the fact that η∗1 ≤ η′1. Thus, y′+ej0 /∈ S(x′) and the result follows.
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Note that (i) simply follows from the fact that given any y ∈ S(x), if yj = 0, then

aix+ gi(y + ej) ≤ d, as gij ≤ 0.

Remark 3.3. Note that if zij can be fixed to zero, then the corresponding constraint in

(BP1-DF-c) can also be removed.

Remark 3.4. Observe that the statement in Proposition 3.6 (ii) is consistent with Corollary

3.1. In particular, if α2
j > 0 for all j ∈ J+

β (as in Corollary 3.1), then in fact, we do not

need to consider the signs of gij and all zij variables can be removed, as (BP1-DF) coincides

with (SLR).

Remark 3.5. The proposed MILP formulation can be further strengthened as follows. As-

sume there exist j1, j2 ∈ [n] such that gij1 ≤ gij2 for all i ∈ [m]. Clearly, if y + ej1 /∈ S(x) for

some y ∈ S(x) and yj1 = 0, then y+ej2 /∈ S(x). Thus, we can replace constraint (BP1-DF-d)

for j2 with
m∑
i=1

zij2 + yj1yj2 ≥ yj1 . (3.1)

Constraint (3.1) takes the value of yj1 into consideration: if yj1 = 0, then constraints

(BP1-DF-c) and (BP1-DF-d) for j1 ensure y + ej1 /∈ S(x). Hence, the values of zij2 are

not required to be considered, as y + ej2 /∈ S(x) is already implied by y + ej1 /∈ S(x); oth-

erwise, if yj1 = 1, constraint (3.1) reduces to (BP1-DF-d). We can linearize the nonlinear

item yj1yj2 through McCormick envelopes [50] by introducing additional binary variables.

Next, we discuss how to generalize the MILP formulation (BP1-DF) for (BP1) to (BPk).

3.4.2 Formulation for (BPk)

Similar to the MILP formulation (BP1-DF), we introduce binary variables ziw for i ∈ [m]

and w ∈ T k to verify the condition that y + w /∈ S(x) (recall Proposition 3.1). We then

reformulate (BPk) as:

η∗k = max
x,y,z

α1x+ α2y (BPk-DF-a)

s.t. (x, y) ∈ S, (BPk-DF-b)
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aix+ giy + ziw(µi − hiw) ≥ µi ∀i ∈ [m], w ∈ T k, (BPk-DF-c)

m∑
i=1

ziw + w>y + ‖w−‖1 ≥ 1 ∀w ∈ T k, (BPk-DF-d)

ziw ∈ {0, 1} ∀i ∈ [m], w ∈ T k, (BPk-DF-e)

where µi is a sufficiently small constant chosen as in Section 3.4.1; hiw = di + 1− giw for all

i ∈ [m] and w ∈ T k; and ‖w−‖1 is the number of entires of w with negative values.

If ziw = 1, then constraint (BPk-DF-c) implies that aix + gi(y + w) ≥ di + 1; on

the contrary, if ziw = 0, then the associated constraint (BPk-DF-c) is redundant. As

for constraints (BPk-DF-d), first note that w>y + ‖w−‖1 ≥ 0 for all y ∈ {0, 1}n and

w>y + ‖w−‖1 = 0 if and only if y + w ∈ {0, 1}n. Hence, w>y + ‖w−‖1 > 0 implies

y + w 6∈ S(x). When w>y + ‖w−‖1 = 0, we ensure y + w 6∈ S(x) by again employing

Proposition 3.1, ensuring that there exists at least one i ∈ [m] such that ziw = 1, which

further implies that y+w /∈ S(x) by constraint (BPk-DF-c). Hence, the overall combination

of constraints (BPk-DF-c) and (BPk-DF-d) ensure y + w /∈ S(x).

For a fixed k, the cardinality of T k is O(nk) and the number of variables and constraints

in (BPk-DF) is O(mnk). Therefore, the above reformulation is of polynomial size for any

fixed k. This is an interesting observation from the theoretical perspective in two respects.

First, for a fixed value of k, we can say that (BPk) is polynomially reducible to an MILP.

It immediately follows that (BPk) is in class NP; recall our discussions in Remark 3.2.

Furthermore, if for some fixed k, any follower’s k-optimal solution is globally optimal, then

based on Proposition 3.3, we have (BP) ≡ (BPk). Thus, we conclude that the decision

version of such a class of bilevel problems is in NP-complete and the problem itself is NP-

hard. For example, in Section 3.5 we show that (BP) ≡ (BP2) for a general class of bilevel

matroid problems.

From the practical implementation perspective, the magnitude of O(nk) is still sub-

stantial, even for small values of k, when n is large. Thus, we now consider two essential

questions: how to reduce the size of (BPk-DF) through some simple preprocessing to remove

irrelevant members of T k and how to efficiently enumerate a relevant subset of T k in an

efficient manner.
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We first discuss procedures for fixing some variable values and removing redundant vari-

ables and constraints from (BPk-DF).

Proposition 3.7.(i) If giw ≤ 0 for some w ∈ T k and i ∈ [m], then ziw = 0 for any feasible

solution of (BPk-DF).

(ii) If hiw0 = hiw1 for some i ∈ [m] and w0, w1 ∈ T k, then there exists an optimal solution

to (BPk-DF) in which ziw1 = ziw0.

Proof. (i) Suppose (x, y, z) is a feasible solution of (BPk-DF). Since (x, y) ∈ S, then

aix+ giy ≤ di. If ziw = 1, then from constraint (BPk-DF-c), we have

aix+ giy ≥ di + 1− giw ≥ di + 1,

where the second inequality follows from the assumption that giw ≤ 0. Thus, we obtain

a contradiction and it immediately follows that ziw should be equal to 0 in any feasible

solution.

(ii) Suppose (x∗, y∗, z∗) is an optimal solution of (BPk-DF), and z∗iw0 6= z∗iw1 . Without loss

of generality, assume z∗iw0 = 1 and z∗iw1 = 0. Define z′ as follows: z′iw1 = 1 and z′iw = z∗iw

for all i ∈ [m] and w ∈ T k \ {w1}. Observe that constraints (BPk-DF-d) are trivially

satisfied for (x∗, y∗, z′). Since z∗iw0 = 1 and hiw0 = hiw1 , then aix∗+giy∗ ≥ hiw1 . Thus, we

can verify that constraints (BPk-DF-c) also hold for (x∗, y∗, z′). Consequently, it follows

that (x∗, y∗, z′) is also optimal for (BPk) and z′iw0 = z′iw1 .

Note that when we either fix ziw1 = 0 or set it equal to ziw0 for some i ∈ [m] and

w0, w1 ∈ T k, the corresponding constraint (BPk-DF-c) can also be removed. Our compu-

tational study in Section 3.6 indicates that the preprocessing procedures in Proposition 3.7

can significantly decrease the number of variables and constraints (BPk-DF-c). Also, observe

that the computational efforts required to evaluate conditions (i) and (ii) in Proposition 3.7

are of order O(nm|T k|), and O(m|T k| log(|T k|)), respectively. Thus, the cardinality of T k is

a primary driver of the efficiency of the proposed approach. In view of this, we next discuss

how to prune the components in T k in order to effectively reduce the formulation size.
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Proposition 3.8.(i) Given w0 ∈ T k−1 and ` ∈ [n] such that w0
` = 0, let w1 = w0+e` ∈ T k.

If gi` ≥ 0 for all i ∈ [m], then removing variables ziw1 and the associated constraints for

all i ∈ [m] in (BPk-DF) does not change its optimal objective function value.

(ii) Given w0 ∈ T k and ` ∈ [n] such that w0
` = 1 , let w1 = w0 − e` ∈ T k−1. If gi` ≤ 0 for

all i ∈ [m], then removing variables ziw1 and the associated constraints for all i ∈ [m] in

(BPk-DF) does not change its optimal objective function value.

(iii) If α2w > 0 for some w ∈ T k, and giw ≥ 0 for all i ∈ [m], then removing variables ziw

and the associated constraints for all i ∈ [m] in (BPk-DF) does not change its optimal

objective function value.

Proof. (i) Denote by (BP′k-DF) and η′k the problem and its optimal objective function

value, respectively, where ziw1 and associated constraints are removed from (BPk-DF).

It is clear that η′k ≥ η∗k. It suffices to show that given any optimal solution (x′, y′, z′) in

(BP′k-DF), there exists z∗ such that (x′, y′, z∗) is a feasible solution of (BPk-DF), which

leads to η′k ≤ η∗k

If y′+w1 6∈ {0, 1}n, then let z∗iw1 = 0 for all i ∈ [m], and z∗iw = z′iw for all w ∈ T k \ {w1}.

Clearly, (x′, y′, z∗) is feasible for (BPk-DF). Otherwise, if y′+w1 ∈ {0, 1}n, then based on

constraint (BP′k-DF-d) for w0, we have
∑m

i=1 z
′
iw0 ≥ 1. Since gi` ≥ 0, we have hiw1 = di +

1−giw1 ≤ hiw0 for all i ∈ [m]. Let z∗iw1 = z′iw0 , and z∗iw = z′iw for all w ∈ T k\{w1}, then we

can verify that (x′, y′, z∗) is feasible for (BPk-DF). This observation completes the proof.

(ii) The proof is similar to (i) above, and omitted for brevity.

(iii) Denote by (BP′k-DF) and η′k the corresponding problem and its optimal objective func-

tion value, respectively where ziw and associated constraints are removed from T k in (BPk-DF).

It is clear that η′k ≥ η∗k. Suppose (x′, y′, z′) is an optimal solution of (BP′k). We next

focus on proving that y′ ∈ Rk(x), which implies that there exists z∗ such that (x′, y′, z∗)

is feasible for (BPk-DF) and η′k ≤ η∗k. Note that to verify y′ ∈ Rk(x), we only need to

show that y′ + w /∈ S(x).

If y′+w 6∈ {0, 1}n, then y′+w 6∈ S(x) trivially. Otherwise, we proceed by contradiction,

so suppose y′+w ∈ S(x). Since giw ≥ 0, then we can verify that (x′, y′+w) is also feasi-

ble for (BP′k-DF). Moreover, α1x′+α2(y′+w) > α1x′+α2y′, which contradicts our initial
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Algorithm 6 Algorithm for constructing T k

Input A,G, d, α1, α2, β
1: T k ← ∅
2: J+

G ← {j ∈ [n] : gij ≥ 0 ∀i ∈ [m]}
3: J−

G ← {j ∈ [n] : gij ≤ 0 ∀i ∈ [m]}
4: for all w ∈ {−1, 0, 1}n such that ‖w‖1 ≤ k do
5: if βw ≤ 0 then
6: Discard w and go to Line 4
7: end if
8: β0 ← min{βj : wj = 1 and j ∈ J+

G}
9: if βw ≥ β0 then

10: Discard w and go to Line 4 // based on Proposition 3.8(i)
11: end if
12: if ∃j ∈ J−

G such that wj = −1 then
13: Discard w and go to Line 4 // based on Proposition 3.8(ii)
14: end if
15: if α2w > 0 and giw > 0 for all i ∈ [m] then
16: Discard w and go to Line 4 // based on Proposition 3.8(iii)
17: end if
18: T k ← T k ∪ {w}
19: end for

Return T k

assumption that (x′, y′, z′) is an optimal solution for (BP′k-DF). Thus, y′+w /∈ S(x) and

the result follows.

We outline the pseudocode of the procedure to construct T k in Algorithm 6. In lines 8-11,

we first find the component ` ∈ [n], for which the corresponding value of β is smallest among

j ∈ J+
G for which wj = 1, where J+

G := {j ∈ [n] : gij ≥ 0 ∀i ∈ [m]}. Then w is discarded

based on Proposition 3.8(i). Following Proposition 3.8(ii), we discard w in lines 12-14 if

there exists ` ∈ J−G = {j ∈ [n] : gij ≤ 0 ∀i ∈ [m]} such that w` = −1. We finally evaluate the

conditions of Proposition 3.8(iii) in lines 15-17 to determine whether to add w into T k.

3.4.3 Strengthened Formulation for (BPk)

Next, we provide a strengthened formulation based on the inherent structural proper-

ties of (BPk). Though the results here are derived from first principles, we note that the

properties we exploit and the resulting formulations are closely related to the mixing-set

inequalities, which have been studied in a number of contexts [9, 46, 130].
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To derive the stronger formulation, we first re-write constraints (BPk-DF-c) as

aix+ giy ≥ µi − (µi − hiw)ziw ∀i ∈ [m], w ∈ T k. (3.2)

This rewriting is to emphasize that the combined effect of the additional binary variables

introduced is to essentially set the right-hand side of a single constraint to one of a number

of different possible values. This is illustrated even more clearly by combining the inequali-

ties (3.2) associated with i ∈ [m] into the single inequality

aix+ giy ≥ max
w∈T k
{µi − (µi − hiw)ziw} ∀i ∈ [m]. (3.3)

Of course, this inequality involves a non-linear function, but there is a way to combine the

inequalities in a different way that yields a strong linear formulation that we describe next.

The next property that we use is that after the preprocessing procedure described in

Proposition 3.7, the values of hiw are distinct in the remaining constraints (BPk-DF-c) for

each i ∈ [m]. Denote the number of distinct values of hiw for i ∈ [m] as `i. We assume

without loss of generality that hiw1 < hiw2 < · · · < hiw`i for w1, w2, . . . , w`i in T k.

The strengthened formulation for (BPk) is then given by:

η̃∗k = max
x,y,z

α1x+ α2y (BPk-Mix-a)

s.t. (x, y) ∈ S, (BPk-Mix-b)

aix+ giy +

`i∑
j=1

(hiwj−1 − hiwj)ziwj ≥ µi ∀i ∈ [m], (BPk-Mix-c)

ziwj ≥ ziwj+1 ∀j ∈ [`i], i ∈ [m], (BPk-Mix-d)

m∑
i=1

ziw + w>y + ‖w−‖1 ≥ 1 ∀w ∈ T k, (BPk-Mix-e)

ziwj ∈ {0, 1} ∀j ∈ [`i], i ∈ [m], (BPk-Mix-f)

where hiw0 = µi for all i ∈ [m]. The underlying concept is the one illustrated earlier, that

the value of the (variable) right-hand side is, in fact, controlled by the largest hiw whose

corresponding variable ziw is equal to one (as illustrated in (3.3)), so that the whole set of

constraints involving the original constraint i ∈ [m] can be collapsed into a single constraint

that dominates the set of original ones.
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We refer the readers for more technical discussion about the extended formulation of the

mixing-set inequality in [78]. Note that the z variables here ultimately play the same role

as in the original formulation, but we enforce more structure on them with the addition of

the precedence constraints (BPk-Mix-d) for reasons that will become clear in the proof of

the next theorem.

Theorem 3.4. (BPk-Mix) and (BPk-DF) have the same optimal objective function values,

that is, η∗k = η̃∗k.

Proof. Let (x, y, z) be a feasible solution for (BPk-DF). We show that there exists a feasible

solution to (BPk-Mix) with the same objective function value. For i ∈ [m], let j0 = max{j ∈

[`i] : ziwj = 1}. Let z′iwj = 1 for all j = 1, . . . , j0 and z′iwj = 0 for j = j0 + 1, . . . , `i.

Recalling (3.3), we have aix+ giy − hiwj0 ≥ 0. Then

aix+ giy +

`i∑
j=1

(hiwj−1 − hiwj)z′iwj = aix+ giy +

j0∑
j=1

(hiwj−1 − hiwj)

= aix+ giy + hiw0 − hiwj0

= aix+ giy + µi − hiwj0

≥ µi.

Therefore, (x, y, z′) satisfies constraints (BPk-Mix-c) and is feasible for (BPk-Mix). It also

has the same objective function value (BPk-Mix) as (x, y, z) has in (BPk-DF). It immediately

yields that η∗k ≤ η̃∗k.

On the other hand, let (x′, y′, z′) be a feasible solution of (BPk-Mix). For i ∈ [m], let

j0 = max{j ∈ [`i] : z′iwj = 1}. Based on constraint (BPk-Mix-c), we have

aix′ + giy′ +

`i∑
j=1

(hiwj−1 − hiwj)z′iwj = aix′ + giy′ + hiw0 − hiwj0

= aix′ + giy′ + µi − hiwj0

≥ µi

which results in aix′ + giy′ ≥ hiwj0 . Observe that constraints (BPk-DF-c) are trivially sat-

isfied for i and j ≥ j0 because z′iwj = 0 for j ≥ j0. If j < j0, then z′iwj = 1, and we have
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aix′ + giy′ ≥ hiwj0 > hiwj , which implies that (x′, y′, z′) satisfies constraints (BPk-DF-c).

Therefore, (x′, y′, z′) is itself feasible for (BPk-DF) and η̃∗k ≤ η∗k.

When we remove the integrality constraints of decision variables in a MILP, the resulting

linear optimization problem (LP) is referred to as the LP relaxation of the original MILP.

It is known that the tightness of the LP relaxations for MILPs is a critical factor affecting

the overall performance of the solver. We then show that the MILP formulation (BPk-Mix)

is stronger than (BPk-DF).

Proposition 3.9. The LP relaxation of (BPk-Mix) is at least as strong as that of (BPk-DF).

Proof. Let (x, y, z) be any feasible solution for the LP relaxation of (BPk-Mix). It suffices

to show that (x, y, z) is also feasible for the LP relaxation of (BPk-DF). Since constraints

(BPk-DF-d) are also included in (BPk-Mix), we need to show that (x, y, z) satisfies con-

straints (BPk-DF-c). Based on constraints (BPk-Mix-c) and (BPk-Mix-d), we have, for any

i ∈ [m], and j0 ∈ [`i],

aix+ giy + (µi − hiwj0 )ziwj0 = aix+ giy +

j0∑
j=1

(hiwj−1 − hiwj)ziwj0

≥ aix+ giy +

j0∑
j=1

(hiwj−1 − hiwj)ziwj

≥ µi,

where the first inequality follows from ziwj ≥ ziwj+1 (recall constraint (BPk-Mix-d)) and

hiwj−1 − hiwj < 0; the second inequality follows from our initial assumption that (x, y, z)

satisfies constraint (BPk-Mix-c).

We next illustrate Theorem 4 and Proposition 3.9 with the following example.

Example 3.4. Consider an instance of the bilevel problem:

min
x∈R

max
y
{y1 + y2 : 2y1 + 3y2 ≤ 4, y ∈ {0, 1}2}.

If k = 1, then T1 = {e1, e2}. Let z1, z2 be the binary variables in (BPk-DF) that correspond

to e1 and e2, respectively. We set µ = 0 for constraint (BPk-DF-c). Then the feasible region

for the LP relaxation of (BPk-DF) with k = 1 is given as:
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Q1
DF =


(x, y, z) ∈ R× [0, 1]4 :

2y1 + 3y2 ≤ 4,

2y1 + 3y2 ≥ 3z1,

2y1 + 3y2 ≥ 2z2,

y1 + z1 ≥ 1,

y2 + z2 ≥ 1


.

The feasible region for the LP relaxation of (BPk-Mix) with k = 1 is given as:

Q1
Mix =


(x, y, z) ∈ R× [0, 1]4 :

2y1 + 3y2 ≤ 4,

2y1 + 3y2 ≥ 2z2 + z1,

y1 + z1 ≥ 1,

y2 + z2 ≥ 1,

z2 ≥ z1


.

It is easy to verify that Q1
Mix ⊆ Q1

DF. Meantime, note that (0, 1, 2
3
, 1, 1

3
)> ∈ Q1

DF. How-

ever, solution (0, 1, 2
3
, 1, 1

3
)> is not feasible in Q1

Mix. It immediately follows that Q1
Mix ⊂ Q1

DF.

Remark 3.6. Based on the results of the mixing-set in [9, 46], we can show that for any

i ∈ [m], the inequalities

aix+ giy +
∑̀
j=1

(hiwtj−1 − hiwtj )ziwtj ≥ µi ∀{wt1 , wt2 , . . . , wt`} ⊆ T k,

where hiwt1 < hiwt2 < · · · < hiwt` are valid for (BPk-DF). The above inequalities are called

star inequalities, which can be further shown to describe the convex hull of a mixing-set

polytope; see [9, 46]. In our strengthened formulation (BPk-Mix), we note that constraint

(BPk-Mix-c) is a special class of star inequalities. We exploit the inherent structure in (BPk)

to simplify the star inequalities and provide the stronger formulation (BPk-Mix).
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3.5 Bilevel Matroid Optimization

Next, we focus on exploring in more detail a special case of (BPk). Specifically, by ex-

ploiting Proposition 3.3 we show that (BP) ≡ (BPk) for a general class of bilevel matroid

problems whenever k ≥ 2.

Definition 3.5 ([70]). Let [n] = {1, . . . , n} be a finite set, and let F be a set of subsets of

[n]. We say that M = ([n],F) is a matroid if the following conditions are satisfied:

(i) ∅ ∈ F ;

(ii) S ∈ F and S ′ ⊆ S implies S ′ ⊆ F ;

(iii) for any S, S ′ ∈ F , if |S| > |S ′|, then there exists j ∈ S \ S ′ such that S ′ ∪ {j} ∈ F .

Elements of F are called independent sets, and the remaining sets of [n] are called dependent

sets.

Denote the set that contains the characteristic vectors of all independent sets of a matroid

M = ([n],F) as:

I = {yS ∈ {0, 1}n : S ∈ F},

where yS is the characteristic vector of set S such that ySj = 1 for j ∈ S, and ySj = 0,

otherwise. The basic properties of I are shown as follows.

Lemma 3.1. If I is the set of characteristic vectors of the independent sets of a matroid,

then I satisfies the following statements:

(i) 0 ∈ I;

(ii) given y, y′ ∈ {0, 1}n and y ≤ y′, if y′ ∈ I, then y ∈ I;

(iii) if y, y′ ∈ I, and ‖y‖1 < ‖y′‖1, then there exists j ∈ {i ∈ [n] : yi = 0, y′i = 1} such that

y + ej ∈ I.

Proof. It directly follows from Definition 3.5.

Denote by FB and IB the set of all maximal independent sets in F and the set of

its corresponding characteristic vectors, respectively. The most fundamental matroid opti-

mization problems are maximum-weight independent set problem max{βy : y ∈ I} and

minimum-weight basis problem min{βy : y ∈ IB}.
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It is well known that these two matroid optimization problems are polynomially solvable

by a greedy algorithm [69, 70], which iteratively selects an element with the largest/smallest

weight among the remaining elements. In particular, observe that the obtained greedy

solutions are 2-optimal. We next provide a self-contained proof to show that if the lower-level

feasible region contains the matroid structure, (BP) is equivalent to (BPk) whenever k ≥ 2.

Lemma 3.2. Suppose S(x) is the characteristic vector set of all independent sets of a matroid

for any x ∈ X .

(i) If y, y′ ∈ Rk(x) for some k ≥ 1 and y′ ≤ y, then βy′ = βy.

(ii) Given y, y′ ∈ S(x) and y′ ≤ y, if y′ ∈ Rk(x) for some k ≥ 1, then y ∈ Rk(x).

Proof. (i) Since β ≥ 0 and y′ ≤ y, we have βy′ ≤ βy. Suppose βy′ < βy. Then there

exists at least one j such that y′j = 0, yj = 1 and βj > 0. By Lemma 3.1(ii), we have

y′+ ej ∈ S(x). Then we have a contradiction by observing that y′+ ej ∈ Nk(y) for k ≥ 1

and β(y′ + ej) > βy′.

(ii) According to the definition of Rk(x), we need to show that βy ≥ βȳ for any ȳ ∈ Nk(y)∩

S(x). Let w = y − ȳ, then w ∈ {−1, 0, 1}n and ‖w‖1 ≤ k.

Construct w′ ∈ {−1, 0, 1}n such that w′j = 0 if wj = 1 and y′j = 0; otherwise w′j = wj.

Thus, ‖w′‖1 ≤ ‖w‖1 ≤ k and y′ − w′ ∈ {0, 1}n. Observe that y′ − w′ ≤ y − w = ȳ.

Thus, based on Lemma 3.1(ii), we have y′ − w′ ∈ S(x). Following our condition that

y′ ∈ Rk(x), we have βy′ ≥ β(y′ − w′) as y′ − w′ ∈ Nk(y′) ∩ S(x), which implies that

βy ≥ β(y − w′) ≥ β(y − w) and the result follows.

Theorem 3.5.(i) If S(x) is the characteristic vector set of all independent sets of a matroid

for any x ∈ X , then (BP) ≡ (BPk) for any integer k ≥ 2.

(ii) If the follower solves a minimization problem, and S(x) is the characteristic vector set

of all maximal independent sets of a matroid, then (BP) ≡ (BPk) for any integer k ≥ 2.

Proof. For brevity, we only provide the proof for (i); the proof for (ii) can be derived in

a similar manner. By Proposition 3.3, it is sufficient to show that for any leader’s decision

x the corresponding 2-optimal follower’s response is also a globally optimal solution for the
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lower-level problem. That is, R2(x) = R(x). Since R(x) ⊆ R2(x), we only need to verify

that R2(x) ⊆ R(x) for any x ∈ X .

Based on Lemmas 3.2(i) and 3.2(ii), it suffices to focus on the maximal independent set

in R2(x) and R(x). Let y′ and y∗ be the characteristic vector of any maximal independent

set in R2(x) and R(x), respectively. It is clear that ‖y′‖1 = ‖y∗‖1 based on Lemma 3.1(iii).

We next show that βy′ = βy∗, which implies that y′ ∈ R(x).

Without loss of generality, assume β1 ≥ β2 ≥ · · · ≥ βn; also, suppose y′ =
∑t

j=1 e
i′j and

y∗ =
∑t

j=1 e
i∗j such that i′1 < i′2 < · · · < i′t and i∗1 < i∗2 < · · · < i∗t . Suppose there exists

j ∈ [t] such that βi′j 6= βi∗j , let ` = min{j ∈ [t] : βi′j 6= βi∗j}. Then we need to consider two

cases: βi′` < βi∗` , and βi′` > βi∗` .

We first discuss the case that βi′` < βi∗` . Since
∑`

j=1 e
i∗j ∈ I,

∑`−1
j=1 e

i′j ∈ I and ‖
∑`

j=1 e
i∗j‖1 >

‖
∑`−1

j=1 e
i′j‖1, based on Lemma 3.1(iii), there exists j∗ ∈ {1, . . . , `} such that

∑`−1
j=1 e

i′j +ei
∗
j∗ ∈

I. Observe that ‖
∑`−1

j=1 e
i′j + e

i∗
j′‖1 < ‖y′‖1. Based on Lemma 3.1(iii), there exists j′ such

that y′i′
j′

= 1, i′j′ ≥ i′`, and ȳ := y′ − ei
′
j′ + ei

∗
j∗ ∈ I. Note that ȳ ∈ N2(y′) and βȳ > βy′ as

βi∗
j∗
≥ βi∗` > βi′` ≥ βi′

j′
, which contradicts with the assumption that y′ ∈ R2(x). Thus, the

first case (i.e., βi′` < βi∗` ) is considered.

The proof for the case of βi′` > βi∗` is similar and omitted for brevity. Therefore, we have

that βi′j = βi∗j for all j ∈ [t] and the result immediately follows.

To illustrate Theorem 3.5, we next outline several bilevel problems such that their lower-

level problems are reducible to a matroid optimization problem. Specifically, we focus on

problems with

S = {(x, y) ∈ X × {0, 1}n : y ∈ I(x)},

where I(x) is some characteristic vector set of a matroid for any x ∈ X . We also consider

two special cases of the above set given by:

• S = {(x, y) ∈ X × {0, 1}n : y ∈ I, x + y ≤ 1}, and I is the characteristic vector set of

a matroid; and

• S = {(x, y) ∈ X × {0, 1}n : x + y ∈ I}, and I is the characteristic vector set of a

matroid.
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There are a number of single-level combinatorial optimization problems that contain

the matroid structure; we refer the reader to [70, 90, 113] and the references therein. In

the literature, there are several bilevel generalizations of these problems with the following

feasible sets at the lower level:

(i) The knapsack set with a cardinality constraint: Given a positive budget C, let

I = {y ∈ {0, 1}n :
n∑
j=1

yj ≤ C},

which is the characteristic vector set of the uniform matroid; see, e.g., [113]. The bilevel

knapsack problem has been extensively studied in recent years; see [22, 23, 29, 32].

(ii) The knapsack problem with multiple disjoint cardinality constraints: Given a partition

of set [n], {Ni}ri=1 and budgets Ci for each class i, let

I = {y ∈ {0, 1}n :
∑
j∈Ni

yj ≤ Ci ∀i ∈ [r]},

which is the characteristic vector set of the partition matroid; see, e.g., [4]. Some inter-

esting results for the bilevel multidimensional knapsack problem are developed in [37].

(iii) The spanning tree set: Given an undirected graph G = (N,E), let

IB = {y ∈ {0, 1}n : G[y] is a spanning tree of graph G},

where G[y] := G[Ey] = (N,Ey) is the subgraph induced by edges in Ey = {(i, j) ∈ E :

yij = 1}. The spanning tree set contains all maximal independent sets of a tree matroid

[4], and its bilevel versions are considered in [38, 99, 112].

(iv) Unit-time task scheduling problem: Given a set of unit-time tasks N ∈ {1, . . . , n} and

their deadlines di for each task i ∈ N , let

I = {y ∈ {0, 1}n} : there exists a schedule for tasks Ny without delay},

where Ny = {i ∈ N : yi = 1}. Several scheduling problems are shown to have matroid

structures; see, e.g., [69, 70, 113]. Examples of bilevel scheduling problems can be found

in [61, 77].

In Section 3.6.3, we provide a case study illustrating the use of (BPk) to solve the bilevel

minimum spanning tree problem (BMST) [38, 99, 112], in which the follower’s optimization

problem involves constructing a minimum spanning tree (MST) in a graph.
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3.6 Computational Experiments

In this section, we report the results of our computational experiments with several

classes of bilevel problems. We would like to point out that our main goal is not to solve

general bilevel problems to optimality, but rather to evaluate (i) the quality of the proposed

lower and upper bounds provided by (BPk) as well as (ii) the performance of our MILP

formulations. Therefore, we do not compare our approaches against specialized algorithms

designed for solving particular classes of bilevel problems. Instead, the generic mixed integer

bilevel solver MibS [104] and the SLR-based bounds are used as the main benchmarks.

This section is organized as follows. We first consider the knapsack interdiction problem

(KIP) in Section 3.6.1. In Section 3.6.2, we consider the bilevel vertex cover problem. Section

3.6.3 illustrates our results developed in Section 3.5 by running the experiments on the

bilevel minimum spanning tree problem. Finally, we note that our numerical experiments

are performed using CPLEX 12.8 [51] on an Ubuntu 16.04 system with a 3.2GHz CPU and

19 GB of RAM.

3.6.1 Knapsack Interdiction Problem (KIP)

We consider the knapsack interdiction problem [32, 37] given as:

min
x∈{0,1}n

max
y∈{0,1}n

n∑
j=1

βjyj (KIP-a)

s.t.
n∑
j=1

aijxj ≤ hi ∀i ∈ [m`], (KIP-b)

n∑
j=1

gijyj ≤ dj ∀i ∈ [mf ], (KIP-c)

xj + yj ≤ 1 ∀j ∈ [n], (KIP-d)

where βj, a
i
j, g

i
j, hi and di are positive integers for all i and j; parameters m` and mf denote

the number of knapsack constraints at the upper and lower levels, respectively. We refer to

the knapsack interdiction problem with k-optimal follower as (KIPk). Since the leader aims

to minimize their objective function, we note that the optimal objective function values of
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(KIPk), η
∗
k, provide a hierarchy of lower bounds for η∗. The objective function values η̂∗k of

bilevel feasible solutions that are constructed from (KIPk), on the other hand, are natural

upper bounds for η∗.

Experimental setup. To construct the test instances, we follow an approach similar to

the one used in [23, 84]. The costs βj as well as the weights aij and gij are generated

randomly and independently using the discrete uniform distribution in interval [0, 100].

For each n ∈ {10, 20, 30, 40, 50} and r ∈ {1, 2, . . . , 10}, parameter di, i ∈ [mf ], is set to

d r
11

∑n
j=1 g

i
je; parameter hi, i ∈ [m`], is generated using the discrete uniform distribution in

interval [
∑mf
i=1 di
mf

− 10,
∑mf
i=1 di
mf

+ 10]. We construct 10 instances for each pair of n and r, and

report the corresponding average performance.

In our computational experiments, we set the time limit for MibS and (KIPk) to 600

seconds (10 minutes); all results are reported in seconds. Denote by η∗M and η̂∗M the best

lower and upper bounds obtained by MibS at termination, respectively. Whenever CPLEX

cannot solve (KIPk) to optimality within the time limit, the best lower bound reported by

CPLEX is referred to as η∗k. Then the leader’s feasible solution reported by CPLEX is used

to derive the upper bound η̂∗k.

Next, we first discuss the sizes of the formulation (BPk-DF) for (KIPk) after the pre-

processing steps based on Propositions 3.7 and 3.8 are applied. Then we first conduct

the experiments on (KIP) instances with a single knapsack constraint at both levels, i.e.,

m` = mf = 1. Finally, we also explore the quality of our bounds for the instances of (KIP)

with multiple knapsack constraints at the lower level.

Formulation size for (KIPk). The average cardinality of T k and the average number

of constraints (BPk-DF-c) for each n and mf are shown in Table 8. Observe that despite

the fact that the cardinality of T k grows exponentially with respect to k, the number of

constraints (BPk-DF-c) after preprocessing has a rather moderate increase and is roughly a

concave function with respect to mf , n and k. Since the numbers of constraints (BPk-DF-c)

and variables z are equal, these results also indicate that we introduce a reasonably small

number of additional binary variables z in our MILP reformulations for (KIPk).
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Table 8: The average cardinality of T k and the average number of constraints (BPk-DF-c) for the
formulation (BPk-DF) of (KIPk) after the preprocessing procedure.

k = 1 k = 2 k = 3
n |T k| #(BPk-DF-c) |T k| #(BPk-DF-c) |T k| #(BPk-DF-c)

mf = 1

10 9 9 53 25 163 57
20 20 18 208 61 1,324 137
30 30 26 461 81 4,503 163
40 40 33 812 88 10,694 174
50 50 40 1,262 93 20,889 182

mf = 3

10 10 28 54 137 174 357
20 20 54 208 347 1,344 837
30 30 78 460 467 4,520 986
40 40 98 812 524 10,704 1,056
50 50 118 1,262 549 20,856 1,087

mf = 5

10 10 47 54 232 174 599
20 20 90 208 576 1,348 1,404
30 30 129 460 778 4,515 1,640
40 40 165 811 868 10,702 1,750
50 50 196 1,261 911 20,897 1,809

Results for (KIP) with a single knapsack constraint at both levels (m` = mf = 1).

To evaluate MILP formulations (BPk-DF) and (BPk-Mix) for (KIPk), we need first to select

a tight value of µ for constraint (BPk-DF-c), which corresponds to (KIP-c). Recall from

our discussion in Section 3.4 that µ can be set to some lower bound for the term
∑n

j=1 a
2
jyj.

For the knapsack interdiction problem, we separate the leader’s decisions into two possible

groups:

(i) if
∑n

j=1 a
2
j(1−xj) ≤ CF for some leader’s feasible decision x, then the lower-level problem

has a k-optimal solution yj = 1− xj for all j ∈ [n] and any k ≥ 1. Therefore, the value

of µ for such leader’s decision x can be trivially achieved by solving:

µ1 = min
x∈[0,1]n

{
n∑
j=1

a2
j(1− xj) :

n∑
j=1

a1
jxj ≤ CL}.

(ii) if
∑n

j=1 a
2
j(1−xj) > CF for some leader’s feasible decision x, then any follower’s k-optimal

solution y is maximal for k ≥ 1, that is
∑n

j=1 a
2
jyj ≤ CF and

∑n
j=1 a

2
jyj + a2

` > CF for
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(a) n = 15, r = 4. (b) n = 20, r = 4.

Figure 4: The average deviations from the optimal value of (KIPk) for different k. The solution
time of formulation (BPk-DF) is shown in red.

any ` such that y` = 0 and x` = 0. Therefore, the value of µ for such leader’s decision x

can be set to:

µ2 = CF −max
j∈[n]
{a2

j}.

Therefore, we set µ = min{dµ1e, µ2} in our experiments.

Next, we evaluate the quality of our bounds, which are also depicted in Figure 4 for

n = 15 and n = 20. The horizontal axis shows the value of k and the vertical axis in-

dicates the deviation of the bounds from the true optimal objective function value η∗ of

the bilevel optimization problem. In Figure 4 we also indicate the solution time of the

formulation (BPk-DF) for each k, please see the labels in red.

One observation is that the bounds provided by (KIPk) for k ≥ 1 are substantially better

than the SLR-based bounds (i.e., k = 0). For example, in Figure 4(a) for n = 15, r = 4, the

gaps between the optimal objective function value and the SLR-based bounds are 197% and

100%, respectively. On the contrast, the bounds provided by (KIP1) are only 40% and 34%

away from the optimal values, respectively, and are computed within 0.02 seconds in total.

Consistent with Theorem 3.2, we can see from Figure 4 that the obtained lower bounds η∗k

improves monotonically with respect to k, but, of course, at increased computational expense.
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Moreover, these lower bounds converge rapidly and the optimal value η∗ is achieved at k = 3

for both cases, with the corresponding (KIP3) solved to optimality within a second. As for

η̂∗k, although these upper bounds are not guaranteed to be monotone with respect to k (recall

our discussion in Section 3.3.2), it is interesting to observe that for almost all of the tested

instances, η̂∗k provides better upper bound with the increase of k.

For both cases in Figure 4, we observe that the required computational time is small for

sufficiently small values of k. For n = 15 and r = 4, the solver can efficiently tackle the

formulation (BPk-DF) for (KIPk) with k ≥ 10. However, we observed memory limitations

in some cases for n = 20 and r = 4, when k ≥ 9. We attribute it to the fact that the formu-

lation size grows considerably with the increase of k (recall our discussion in Section 3.4.2).

Therefore, we next focus on examining the performance of (KIPk) for k ≤ 3.

Specifically, in our next set of experiments, we compare the performances of the formu-

lations for (KIPk) against (SLR) and the general bilevel solver, MibS [104]. The average

performances for the considered solution approaches are presented in Tables 9 and 10. In

particular, for MibS and (SLR) (i.e., k = 0), we report the average runtime in seconds

(column “Time”). For (KIPk), k ∈ {1, 2, 3}, the average runtime in seconds for formula-

tions (BPk-DF) and (BPk-Mix) are shown in columns “Time” and “ExtTime”, respectively.

For each solution approach, the ratios between the achieved bounds and η̂∗M (i.e.,
η∗k
η̂∗M

and

η̂∗k
η̂∗M
, k ∈ {0, 1, 2, 3}) are reported in columns “ObjL” and “ObjU”, respectively.

MibS succeeds in solving the small instances to optimality within the time limit up to

n = 30. We can also observe that the instances with either sufficiently small r or large r were

easier to solve, e.g., when r ≥ 6 in Table 10. This is because when the leader has a large inter-

diction budget (i.e., r is large), then the feasible region of the follower is typically small, which

leads to fewer bilevel feasible solutions. Similarly, a scarce budget (i.e., small r) results in a

small number of feasible decisions for the leader, and also makes the overall problem easier.

From Tables 9 and 10, we observe that (SLR) provides rather poor bounds for all consid-

ered instances. On the contrast, it is usually possible to obtain a bound equal to the optimal

value by solving (KIPk) for some small k. For the easy instances in Table 10, k = 1 suffices.

For the hard instances in Table 9, the improvements provided by (KIP1) are less significant;

nevertheless, the optimal values are attained by η∗3 and η̂∗3 for more than half of the instances.
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In Tables 9 and 10, we also highlight that the MILP formulations (BPk-DF) and (BPk-Mix)

for all tested instances can be solved to optimality in under 20 seconds. We can also ob-

serve that there is no significant difference between these two formulations in terms of their

running time performance in Tables 9 and 10.

Results for (KIP) with multiple knapsack constraints at the lower level (mf > 1).

Since the formulation sizes of (BPk-DF) and (BPk-Mix) depend only on the size of the

lower-level problem, we use m` = 1 in our experiments, i.e., there is a single constraint at

the upper-level problem. For simplicity, we set µi = 0 for all i ∈ [mf ] in (BPk-DF) and

(BPk-Mix).

We report the average performance of (KIP) instances with mf ∈ {3, 5} in Table 11.

In particular, similar to the discussions for (KIP) with a single knapsack constraint, larger

values of r correspond to easier instances. Similar to the previous set of experiments, the

bounds provided by (KIPk) dramatically improve with the increase of k at the expense of

more computational efforts. We observe that the optimal value of (KIP) can be achieved by

(KIP3) in most of our test instances.

For k = 1, the quality of achieved bounds notably outperforms those provided by (SLR).

The formulations (BPk-DF) and (BPk-Mix) for (KIP1) have fairly fast and stable solution

times across all the instances, which implies that (KIP1) is very scalable. Therefore, using

(KIP1) instead of (SLR) as the initial relaxation problem could be a promising approach for

speeding up the performance of general branch-and-cut solvers.

Furthermore, Table 11 shows that (BPk-Mix) significantly outperforms (BPk-DF) (in

contrast to our previous set of experiments for problems with a single constraint). This

observation can be justified by a more complex structure of the lower-level problem for test

instances with multiple constraints and highlights our theoretical results in Proposition 3.9.

In particular, (BPk-Mix) provides a speedup of at least one order of magnitude for k ≥ 2

in Table 11; see e.g., the results for mf = 3, n = 40 and r = 2. On the other hand, we

recognize that our proposed formulations (BPk-DF) and (BPk-Mix) for (KIPk) with k ≥ 2

are sensitive to the size of instances and the value of parameter r. We attribute it to the

fact the cardinality of T k remains in order of O(nk) despite our preprocessing; see Table 8.
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Hence, we have the exponential growth of the number of constraints in (BPk-DF-d) with the

increase of k, which leads to the deterioration of the overall performance.

3.6.2 Bilevel Vertex Cover (BVC)

Given a graph G = (N,E), the vertex cover problem is to find a subset of vertices whose

total weight is as small as possible such that each vertex in the graph is either in this subset

or connected to at least one vertex in this subset [41]. We consider its bilevel extension with

interdiction constraints, referred to as the bilevel vertex cover (BVC) problem [11]. In BVC,

the leader first removes vertices from N subject to some budgetary constraint, and then the

follower solves the vertex cover problem. Formally, the BVC problem is stated as:

max
x,y

n∑
j=1

αjyj

s.t.
n∑
j=1

xj ≤ b, x ∈ {0, 1}n,

y ∈ arg min
ȳ
{

n∑
j=1

βj ȳj : ȳ ∈ SVC(x)},

(BVC)

where n = |N |, and

SVC(x) =
{
y ∈ {0, 1}n : xj + yj ≤ 1 ∀j ∈ N,

∑
i∈Nj

yi ≥ 1 ∀j ∈ N
}
,

where Nj := {i ∈ N : (i, j) ∈ E}∪{j} is the extended neighborhood of j ∈ N , that includes

j itself. If αj = βj for all j ∈ N , then we say that the BVC problem is symmetric, and can be

referred to as the vertex cover interdiction problem; otherwise, the BVC problem is asymmet-

ric. Note that in the formulations (BPk-DF) and (BPk-Mix), a valid µj is the upper bound

for the term
∑

i∈Nj yj for each j ∈ N . Thus, we trivially set µj = |Nj| in our experiments.

Experimental setup. Let (BVCk) be the bilevel vertex cover problem with k-optimal

follower. In the BVC problem, the leader maximizes her objective function, thus η∗k and η̂∗k

provide valid upper and lower bounds for η∗, respectively. Denote by η∗M and η̂∗M the best
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(a) n = 15, deg= 8, b = 8. (b) n = 20, deg= 10, b = 10.

Figure 5: The average deviations from the optimal value of (BVCk) for different k. The solution
time of formulation (BPk-DF) is shown in red.

upper and lower bounds reported by MibS at termination, respectively. In our experiments,

we use η̂∗M as the benchmark.

We randomly construct graphs with SNAP [71], in which the degree of each vertex is no

less than dn
2
e with respect to the vertex size n ∈ {10, 15, 20, . . . , 45, 50}. We refer to the min-

imum vertex degree in the graph as “deg”. For each pair of the considered classes (i.e., the

number of vertices n along with the specific value of deg and b), we report the average perfor-

mance over 10 randomly constructed instances. The time limit for MibS is set to 30 minutes

in order to avoid the out-of-memory error. The time limit for (BVCk) is also set to 30 minutes.

Results and discussions. In Figure 5, we first depict the deviation of our proposed bounds

from the true optimal objective function value η∗ of (BVC) for different values of k. We

evaluate the average performance of 10 randomly constructed symmetric (BVC) instances

for each n ∈ {15, 20}. The solution time is indicated as the labels in red. Similar to Figure 4

for (KIP), we observe that the bounds provided by (BVCk), k ≥ 1, significantly outperform

the quality of SLR-based bounds. Furthermore, our bounds converge rapidly to the optimal

value η∗ for relatively small values of k.
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The numerical results for MibS and BVCk, k ∈ {0, 1, 2, 3}, are reported for both symmet-

ric and asymmetric objectives in Table 12. In particular, for MibS and (SLR) (i.e., k = 0),

we report the average runtime in seconds (column “Time”). For BVCk, k ∈ {1, 2, 3}, the

average runtime in seconds for formulations (BPk-DF) and (BPk-Mix) are shown in columns

“Time” and “ExtTime”, respectively. For each solution approach, the ratios between the

achieved bounds and η̂∗M (i.e.,
η̂∗k
η̂∗M

and
η∗k
η̂∗M
, k ∈ {M, 0, 1, 2, 3}) are reported in columns “ObjL”

and “ObjU”, respectively.

In Table 12, we observe that MibS can only handle the smallest instances within the

computational limits. For instances with n = 50, deg= b = 25 and symmetric objectives,

the average ratio between the best upper and lower bounds (i.e.,
η∗M
η̂∗M

) obtained by MibS at

termination is 32.19, and the average ratio between the upper bound obtained by (SLR) and

η̂∗M (i.e.,
η∗0
η̂∗M

) is 33.86. The difference between these two ratios is less than 2, which suggests

that there is no substantial progress achieved by MibS to reduce the optimality gap after

extensive branching and cut generation.

On the other hand, all instances (except for n = 50, deg= b = 25 and symmetric objec-

tives) are solved to optimality when using formulations (BPk-DF) and (BPk-Mix) for (BVCk)

with k ∈ {1, 2, 3}. The average ratio between the obtained upper bound and η̂∗M is reduced

from 33.86 to 5.86 for k = 1, and further to 2.94 for k = 3. As for the lower bound, the

average ratio between the obtained lower bound of (BVC1) and η̂∗M does not improve over

that of (SLR). It is not a surprising result as we can easily verify that (SLR) and (BVC1)

have identical optimal values of x = 0. However, when k = 2, this ratio increases from 0.17

to 0.83. Moreover, the ratio is further improved to 1.63 when k = 3, which implies that the

lower bound obtained by (BVC3) is better than the best lower bound reported by MibS. For

the instances with asymmetric objectives, similar improvements can be observed for (BVCk).

Hence, we conclude that the bounds by (BVCk) are superior to the SLR-based bounds, and

the overall performances of (BVCk) is better than MibS for larger instances.

With respect to the solution times for (BVCk), one immediate observation is that the

instances with asymmetric objectives are much easier for the solver. We also observe that the

average computational times are very similar for the formulations (BPk-DF) and (BPk-Mix),

for k ∈ {1, 2}. Also, the runtime of formulation (BPk-DF) is relatively better than that of
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formulation (BPk-Mix) for k = 3. Recall Proposition 3.9 that the LP relaxation of (BPk-Mix)

is stronger than that of (BPk-DF). However, the strengthened constraints in (BPk-Mix) are

denser, which may result in more computational efforts required for solving its LP relaxation.

In our next set of experiments, we explore how the quality of bounds obtained by (BVCk)

depends on the minimum vertex degree in the graph. The corresponding results are pre-

sented in Table 13. Observe that the performance of MibS deteriorates when the minimum

vertex degree increases. It is intuitive given that the graph density increases for larger val-

ues of the minimum vertex degree. On the other hand, we note that the quality of bounds

obtained by BVCk, k ≥ 1, improves for larger minimum vertex degrees and with smaller

computational times. These comparisons illustrate that our proposed bounding approach

is capable of exploiting the problem inherent structure, which further supports our earlier

results in Section 3.6.1.

3.6.3 Bilevel Minimum Spanning Tree (BMST)

In this section, we study the bilevel minimum spanning tree problem (BMST) to illustrate

our results in Section 3.5. Two single-level formulations for BMST are developed based on

(BPk) for k = 2 in Section 3.6.3.1. The computational experiments are then conducted in

Section 3.6.3.2.

In particular, we focus on the variant of the BMST problem considered in [99], which

is described as follows: given an undirected graph G = (N,E), the leader and the follower

construct a spanning tree of graph G in a hierarchical manner. The leader first selects a

subset of edges from among those in EL ⊆ E. The follower then selects a set of edges from

E that complete a spanning tree, according to their own objective function. Formally, the

BMST problem can be stated as:

η∗ = min
x,y

α(x+ y)

s.t. xij ∈ {0, 1} ∀(i, j) ∈ EL,

y ∈ arg min
ȳ
{βȳ : ȳ ∈ SMST(x)},

(BMST)
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where we let m0 = |EL|, m = |E|, and

SMST(x) =

y ∈ {0, 1}
m : xij + yij ≤ 1 ∀(i, j) ∈ EL,

G[x+ y] is a spanning tree of graph G

 ,

where G[x] := G[Ex] = (N,Ex) is the subgraph induced by edges in Ex = {(i, j) ∈ E :

xij = 1} for x ∈ {0, 1}m. We also define directed graph G̃[x] = (N,A[x]), where A[x] =

{(i, j), (j, i) : xij = 1} for any x ∈ {0, 1}m.

We refer to the bilevel minimum spanning tree problem with a k-optimal follower as

(BMSTk). Following our discussion in Section 3.5, the follower’s feasible region SMST(x) is

the set of characteristic vectors of all maximal independent sets of a matroid. Therefore, by

Theorem 3.5 we have (BMST) ≡ (BMSTk) for k ≥ 2. Next, we derive single-level MILP

formulations for (BMST) based on (BMST2) and its particular structure.

3.6.3.1 MILP Formulations

Based on Proposition 3.1, we have T 2 = {w = (ei0j0 − ei1j1) : βi0j0 < βi1j1}. We then

explore the optimality conditions for the lower-level problem of (BMST2).

Proposition 3.10. Let x be a given leader’s decision. Then y is a follower’s 2-optimal

solution, i.e., y ∈ R2(x) if and only if the following two conditions hold:

(i) y ∈ SMST(x);

(ii) for any w ∈ T 2, then G[x+ y+w] is not a spanning tree (i.e., either x+ y+w /∈ {0, 1}m

or G[x+ y + w] contains a cycle).

Proof. The result follows directly from Proposition 3.1.

Thus, we can reformulate (BMST) as:

η∗ = min
x,y

α(x+ y)

s.t. xij + yij ≤ 1 ∀(i, j) ∈ EL,

G[x+ y] is a spanning tree of graph G,

G[x+ y + w] is not a spanning tree ∀w = (ei0j0 − ei1j1) ∈ T 2,

x ∈ {0, 1}m0 , y ∈ {0, 1}m.
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To formulate the condition that G[x+y] is a spanning tree via a set of linear constraints,

we apply the multi-commodity flow model [80]. Let A = {(i, j), (j, i) : (i, j) ∈ E} be the

directed arcs that are constructed from E, i.e., each edge in E is cloned into two arcs with

opposite directions. Let vertex u0 in N be an arbitrary source node. Then we impose the

following constraints:∑
(i,j)∈EL

xij +
∑

(i,j)∈E

yij = n− 1, (3.4a)

Af v =


1, for vertex u0

−1, for vertex v

0, otherwise

∀v ∈ N \ {u0}, (3.4b)

f vij + f vji ≤ xij + yij ∀(i, j) ∈ E, v ∈ N \ {u0}, (3.4c)

f vij ≥ 0 ∀v ∈ N \ {u0}, (i, j) ∈ A, (3.4d)

where A is the node-arc matrix of the directed graph G̃ := (N,A).

To formulate the condition (ii) in Proposition 3.10, we first observe that if x+ y + w /∈

{0, 1}n, then it is clear that the condition holds; if x+y+w ∈ {0, 1}n and w = (ei0j0−ei1j1) ∈

T 2, then it implies that w>y+ ||w−||1 + |w|>x = 0. Next, we use linear constraints to ensure

that G[x+ y + w] is not a spanning tree.

Let (i0, j0) ∈ E be such that w = (ei0j0 − ei1j1) ∈ T 2. Consider a shortest path problem

from i0 to j0 in graph G̃[x + y + w], where the edge weight for (i0, j0) is set to n, and the

weight for all other edges is set to 1. Observe that G[x+ y+w] is not a spanning tree if and

only if the length of the shortest path from i0 to j0 in G̃[x + y + w] is strictly less than n.

Therefore, to ensure condition (ii) in Proposition 3.10, we restrict the objective function of

the shortest path problem to take values less than n, as follows:

Azw =


1, for vertex i0

−1, for vertex j0

0, otherwise

, (3.5a)
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∑
(i,j)∈Aw

zwij + nzwi0j0 ≤ n− 1 + w>y + ||w−||1 + |w|>x, (3.5b)

0 ≤ zwij ≤ max{0, xij + yij + wij} ∀(i, j) ∈ A, (3.5c)

Finally, we formalize the single-level MILP formulation for the BMST problem as:

η∗ = min
x,y

α(x+ y)

s.t. (3.4),

(3.5) ∀w ∈ T 2,

xij + yij ≤ 1 ∀(i, j) ∈ EL,

x ∈ {0, 1}m0 , y ∈ {0, 1}m.

(BMST-1)

Although, the mixing-set structure is not evident in the above MILP formulation, the key

idea behind the extended formulation derived in Section 3.4.3 can be similarly applied. Recall

that additional variables and precedence constraints are introduced for the extended formu-

lation (BPk-Mix) of (BPk). For the BMST problem, we can thus develop another MILP for-

mulation that also employs the precedence conditions, as described next. Note that this tech-

nique is also exploited by Shi et al. [99] (see Section 5.3), but we highlight that this idea can be

generalized to other variants of the bilevel minimum spanning tree problem. For the sake of

completeness and to provide a self-contained narrative, we review the concepts in our context.

Proposition 3.11 ([99]). Assume w.l.o.g. that E = {(ik, jk) : 1 ≤ k ≤ m} is such that

βi1j1 ≤ βi2j2 ≤ · · · ≤ βimjm and let y<` be such that

y<`ikjk =

yikjk if k < `

0 otherwise.

for a given y ∈ {0, 1}m. Then for a given x ∈ X , y ∈ R2(x) if and only if

(i) y ∈ SMST(x); and

(ii) For 1 ≤ ` ≤ m, yi`j` = 1 if and only if i` is disconnected from j` in G̃[x+ y<`].
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In a fashion similar to that used in deriving constraints (3.5), we formulate condition

(ii) in Proposition 3.11 by considering a shortest path problem in graphs G[x + y<` + ei`j` ]

from vertex i` to vertex j` as follows, where the formulation on the right is the LP dual of

the formulation on the left.

min
z`

∑
(i,j)∈A`

[x+y<`]

z`ij + nz`i`j` max
π`

π`i` − π
`
j`

s.t. A[x+y<`+ei`j` ]
z` =


1, for vertex i`

−1, for vertex j`

0, otherwise

, s.t. π`i − π`j ≤ 1 ∀ (i, j) ∈ A[x+y<`],

z`ij ≥ 0 ∀ (i, j) ∈ A[x+y<`+ei`j` ]
, π`i` − π

`
j`
≤ n,

where A[x+y<`+ei`j` ]
is the node-arc matrix of graph G̃[x+ y<` + ei`j` ] and A[x+y<`+ei`j` ]

is its

associated set of arcs. Note that there does not exist a path from i` to j` in G̃[x+y<`] if and

only if the above shortest path problem has optimal objective function value of n. Therefore,

we enforce the following constraints for condition (ii) in Proposition 3.11:

A`z` =


1, for vertex i`

−1, for vertex j`

0, otherwise

, (3.6a)

z`ij + z`ji ≤ xij + yij ∀(i, j) ∈ A`, (3.6b)

z`ij ≥ 0 ∀(i, j) ∈ A` ∪ (i`, j`), (3.6c)

π`i − π`j ≤ 1 + µ(1− yij) ∀ (i, j) ∈ A`, (3.6d)

π`i` − π
`
j`
≤ n− 1 + xi`j` + yi`j` , (3.6e)

π`i` − π
`
j`
≥ n− µ(1− yi`j` + xi`j`), (3.6f)

z`ij + nz`i`j` = π`i` − π
`
j`
, (3.6g)

where A` is the node-arc incidence matrix of graph G̃` = (N,A`) and A` = {(i, j), (j, i) :

(i, j) ∈ EL} ∪ {(ip, jp), (jp, ip) : 1 ≤ p < `}, and µ is sufficiently large, e.g., n.
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Based on the above, we provide another MILP formulation for BMST as follows:

η∗ = min
x,y

α(x+ y)

s.t. (3.4),

(3.6) ∀` = 1, . . . ,m,

xij + yij ≤ 1 ∀(i, j) ∈ EL,

x ∈ {0, 1}m0 , y ∈ {0, 1}m.

(BMST-2)

All in all, the MILP formulations (BMST-1) and (BMST-2) are derived based on the local

optimality conditions in Propositions 3.10 and 3.11, respectively. We note that (BMST-2)

is similar to the formulation proposed in [99]. With respect to the latter, we need to point

out the following observations.

(i) The only difference between (BMST-2) and the model in [99] is how to formulate condi-

tion (i) in Proposition 3.11 (i.e., G[x+ y] is a spanning tree of G). Since the considered

version of (BMST) is to construct a spanning tree by joint actions of both decision-

makers, the condition in Proposition 3.11 (i) is implied by Proposition 3.11 (ii) and

a new condition that G[x] does not contain a cycle. The formulation in [99] adopts

the latter approach to reformulate (BMST), which also allows to reduce the number of

constraints in comparison to the formulation in (BMST-2). However, we observe in our

experiments (not reported here) that the formulation (BMST-2) is stronger than the one

in [99], as the LP relaxation of (BMST-2) always provides a tighter lower bound.

(ii) The modeling approach discussed in this section can be applied to other variants of

(BMST), e.g., the minimum edge blocker spanning tree problem [112], the minimum

spanning tree interdiction problem [38], where the leader removes the edges in the graph

to maximize the weight of follower’s minimum spanning tree. Under this setting, the con-

dition (i) in Propositions 3.10 and 3.11 is that G[y] is a spanning tree of G. Thus, the

constraints used in the formulation from [99] are not applicable, while the formulations

(BMST-1) and (BMST-2) can be easily extended with slight modifications.

Finally, Shi et al. [99] discuss an efficient preprocessing procedure to substantially reduce the

size of the formulation. We note that their procedure can also be applied to our formulations

(BMST-1) and (BMST-2); we omit its discussion for brevity.
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3.6.3.2 Computational Results for (BMST)

We now computationally compare the MILP formulations (BMST-1) and (BMST-2).

Experimental setup. We use the graphs from the test set B in [64]. The test set B

contains 18 graphs with 50− 100 number of vertices. We generate our test instances similar

to the procedure in [99]. Specifically, for each graph in B, we randomly generate the edges

in EL with a specific fractional value ρ ∈ {0.05, 0.1, 0.15}. Here, ρ denotes the ratio between

the number of edges in EL and in E, i.e., ρ := |EL|
|E| .

The follower’s and leader’s edge weight is generated through βij = wijrij and αij =

wij(1 − rij) for each (i, j) ∈ E, respectively; where wij is the original edge weight from

graphs in B and proportion rij is uniformly generated from interval [0, 1]. The average

performance is reported over 10 random instances for each pair of graph and ρ. We set the

time limit to one hour.

Results and discussion. The computational results for the MILP formulations (BMST-1)

and (BMST-2) are reported in Table 14. For each graph in B, the number of vertices and

edges are denoted in the columns “|N |” and “|E|”, respectively. For each formulation, we

report the average solver’s runtime in the column “Time”. We also report the integrality

gap in the column “IG (%)”, which is computed by

IG(%) :=
(η∗ − ηLP )

η∗
× 100,

where η∗ and ηLP denote the optimal objective function value of the formulation and its LP

relaxation, respectively.

As expected, the BMST instances become more difficult as we increase of the number

edges controlled by the leader (i.e., larger value of ρ) and the graph density. However, as we

can see in Table 14, the average integrality gaps of both MILP formulations are very close

and rather small, typically, under 5% for all instances even with ρ = 0.15. Moreover, all

of the tested instances can be solved to optimality within the time limits when using both

formulations. In particular, we observe that the formulation (BMST-2) based on the prece-

dence edge orders performs better than (BMST-1). It usually requires a few seconds for the
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solver to handle (BMST-2), while (BMST-1) needs more than 5 minutes for large graphs and

ρ. These results suggest that our formulations (BMST-1) and (BMST-2) are extremely tight,

and the MILP formulation (BMST-2) might be more effective for solving the BMST problem.

3.7 Concluding Remarks

We considered mixed integer bilevel linear optimization problems in which the follower’s

decision variables are all binary. In response to the leader’s decision, the proposed frame-

work assumes that the follower does not have sufficient computational capabilities to obtain

globally optimal solutions but instead implements a locally optimal solution. To capture the

local optimality requirement we use the concept of k-optimality, where k is some predeter-

mined neighborhood size of a given 0–1 vector. That is, k = 0 implies that the follower’s

objective function is completely ignored (also known as the single-level relaxation of the

original bilevel problem), while k = n corresponds for the fully-rational follower, who solves

the lower-level problem to global optimality.

Under the assumption that the follower is optimistic, our framework naturally provides

a hierarchy of upper and lower bounds for the standard bilevel optimization problem, where

the follower is fully rational. To compute these bound for any fixed k, we develop single-level

formulations, which can be solved by off-the-shelf solvers. In our extensive computational

study the proposed bounds converge to the optimal objective function values of bilevel prob-

lems for reasonably small values of k. Moreover, the proposed framework provides lower and

upper bounds of substantially better quality than those based on the widely used single-level

relaxation method. Hence, our framework can be embedded into exact solvers—in particular,

those that rely on single-level relaxations.

Our framework can also be used for solving classes of bilevel problems, in which local

optimality of a follower’s decision (within some sufficiently “small” neighborhood) implies its

global optimality for the lower-level problem. As an example, in this chapter we exploit this

idea to reformulate a general class of bilevel matroid problems as equivalent linear MILPs.
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One of our framework’s limitations is that the sizes of the proposed MILP formulations

with large k prevent us for solving large-scale instances. Thus, improving the scalability of

our approaches (e.g., by designing more advanced exact and approximate solution methods)

is another important direction for future research.

Finally, if the follower is pessimistic, then our framework results in a tri-level optimization

problem, which can be formalized as:

max
x

min
y

α1x+ α2y

s.t. (x, y) ∈ S,

y ∈ Rk(x) = {y ∈ S(x) : βy ≥ βŷ ∀ŷ ∈ Nk(y) ∩ S(x)}.

Note that the ideas behind our MILP reformulations can be directly extended to represent

Rk(x) via linear constraints. It implies that the above tri-level optimization problem can be

reduced to a bilevel max-min problem. To solve the latter, development of more advanced

solution strategies provides an interesting topic for further research.
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4.0 Sequence Independent Lifting for a Set of Submodular Maximization

Problems

An extended abstract of this chapter appeared in the proceedings of the 21st Conference

on Integer Programming and Combinatorial Optimization (IPCO 2020) [98]1.

4.1 Motivation

Given a ground set N = {1, . . . , n}, we consider a submodular maximization problem in

the form:

max
S⊆N
{f(S) : S ∈ I}, (4.1)

where I is a collection of subsets of N , and f : 2N → R is a real-valued, submodular set

function. Let ρj(S) = f(S ∪ {j}) − f(S) for S ⊆ N and j ∈ N \ S. Function f is said to

be submodular if ρj(S) ≥ ρj(T ) for all subsets S ⊆ T ⊆ N and for any j ∈ N \ T . We note

that this property is often referred to as the law of diminishing returns; see, e.g., [65].

In this chapter, we are primarily interested in solving a class of the submodular maxi-

mization problems via mixed-integer programming (MIP) approaches. Specifically, we focus

on a class of submodular functions that are represented by a concave function composed

with a affine function [2], i.e.,

f(S) = g(a(S) + b), (4.2)

where g : R→ R is a concave function, b ∈ R, vector a ∈ Rn consists of components that are

either all nonnegative or all nonpositive, and a(S) :=
∑

j∈S aj. The same sign of the compo-

nents of a is a necessary condition to ensure that f is submodular; see [2]. For convenience,

in the remainder of the chapter we assume that b = 0 and a ∈ Rn
+. The considered class of

functions f is, in fact, very flexible and has been widely used in a number of contexts, in-

1Reprinted by permission from Springer Nature: Sequence independent lifting for the set of submodular
maximization problem. Shi, X., Prokopyev, O. A., & Zeng B.. In International Conference on Integer
Programming and Combinatorial Optimization, pp. 378-390. Springer, Cham, ©2020.
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cluding utility maximization [2, 72, 96], data summarization [33, 34, 106, 111], combinatorial

multi-armed bandits [26, 92, 124], and multi-class queuing systems [53, 102], etc.

Formally, let binary vector x be the incidence vector for subsets of N . Then submodular

maximization problem (4.1) can be written as:

max{w : w ≤ f(x), x ∈ X ⊆ {0, 1}n}, (4.3)

where X is the feasible region of x with respect to I. In this chapter, we study the corre-

sponding mixed-integer submodular maximization set given by:

P = {(w, x) ∈ R× {0, 1}n : w ≤ g(aTx), x ∈ X}. (4.4)

In the remainder of the chapter if X = {0, 1}n, then we refer to P as P0. Note that we can

remove the assumption on the signs of the components of a when X = {0, 1}n as xj can be

replaced by 1− xj for all j such that aj < 0. Therefore, the valid inequalities developed for

the convex hull of P0 (i.e., conv(P0) with X = {0, 1}n) and a ∈ Rn
+ are also applicable for

the convex hull of P (i.e., conv(P )) with general X and a ∈ Rn.

The convex hull of P is a polyhedron since P is a union of a finite number of rays with the

same directions. Nevertheless, problem (4.1), with f as in (4.2), is NP-hard; see, e.g., a discus-

sion in [2]. To understand the mathematical structure of (4.4), Nemhauser and Wolsey [86]

propose an approach with exponentially many submodular inequalities to formulate P as a

mixed-integer linear program. However, its linear programming relaxation is quite weak and

the traditional branch-and-bound methods are often ineffective [2]. Hence, the submodular

maximization problem (4.1) remains challenging from the computational perspective.

To address this challenge, Ahmed and his colleagues obtained several pioneering results

that provide a better understanding of the mathematical structure of P . When X = {0, 1}n

and g is strictly increasing, concave and differentiable, Ahmed and Atamtürk [2] employ the

lifting technique to derive the first set of strong lifted inequalities for conv(P0). Their study

is mostly focused on a continuous relaxation of the lifting function as it allows for application

of the Karush–Kuhn–Tucker (KKT) conditions to derive its subadditive approximation. The

numerical results in [2] demonstrate that this approximate lifting is computationally effec-

tive. In a subsequent paper, Yu and Ahmed [122] adopt this approximation idea to study set
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P , where X involves exactly one additional knapsack constraint. In particular, the authors

consider its cardinality relaxation, i.e., the knapsack constraint is replaced by a cardinality

constraint, and extend the subadditive approximate lifting developed in [2] to handle this

somewhat more complicated case.

Inspired by the fundamental results in [2, 122], in this chapter, we revisit the sequence

independent lifting and its multidimensional extensions for conv(P ). After developing a new

class of subadditive functions, we recognize that the lifting function of conv(P0) given in [2]

is naturally subadditive. We believe that this new finding is of a significant value for further

systematic study of the submodular maximization problem and the associated set P .

Specifically, our technical results and contributions in this chapter can be summarized

as follows. First, instead of assuming that g is strictly concave, increasing and differentiable

as in [2, 122], we only assume that g is concave to ensure its submodularity. As mentioned

earlier, in [2, 122] the increasing and differentiability properties are exploited for application

of the KKT conditions in order to derive the closed-form subadditive approximation of the

lifting function. Our approach does not rely on the KKT conditions. Clearly, with those key

assumptions removed, a much broader class of concave functions that does not carry those

properties can be considered.

Second, as an immediate consequence of the above generalization, piecewise linear func-

tions g can be analyzed. In particular, it can be shown that the well-known mixed 0-1

knapsack set is a special case of set P as in (4.4). Consider the mixed 0-1 knapsack set

K [83] given by:

K = {(π, x) ∈ R× {0, 1}n : aTx ≤ b+ π, π ≥ 0, x ∈ X}.

Define variable w = −π, and concave function g(z) = min{0, b − z}. Then set K can be

represented in the form of (4.4). We believe that these connections between the mixed 0-1

knapsack sets and submodular sets are novel and rather important, given that a number of

computationally effective results have been derived in the literature for the mixed 0-1 knap-

sack sets. Furthermore, it is known [83] that the mixed 0-1 knapsack set K can be viewed

as a relaxation of the popular single-node flow set, given by

F = {(x, y) ∈ {0, 1}n × Rn
+ :

∑
j∈N+

yj −
∑
j∈N−

yj ≤ b, yj ≤ ajxj ∀j ∈ N, x ∈ X},
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where N = N+ ∪N−. This result immediately implies that the valid inequalities for P are

valid for the flow set F . Note that the connections between the submodularity and the flow

models are also considered by Wolsey [115] and Atamtürk et al. [6].

Third, we develop several results to support lifting operations in the context of submod-

ular optimization. In particular, new results on multidimensional sequence independent (SI)

lifting are derived, and a new type of subadditive functions to ensure SI lifting is constructed

and verified. The latter result generalizes the existing ones in the literature.

Finally, in addition to strengthening the existing polyhedral results for P0 we also de-

rive new interesting results when P has a more involved structure. Specifically, for P0, i.e.,

when X = {0, 1}n, we strengthen the results in [2, 122] and present two family of facets for

conv(P0). Also, the connections with the mixed 0-1 knapsack and the single-node flow sets

highlighted above allow us to unify the existing results in [83] by deriving valid inequalities

for conv(K) and conv(F ). Moreover, we consider a somewhat more involved set P , where X

contains multiple disjoint cardinality constraints; such X is often encountered in the discrete

optimization literature. For its convex hull, denoted by conv(PMC), facet-defining and strong

valid inequalities are derived based on the multidimensional lifting function and its strongest

subadditive approximation, respectively. Again, these inequalities extend the results for the

mixed 0-1 knapsack set and the single-node flow set with disjoint cardinality constraints.

An extended abstract of this chapter can be found in the Proceedings of the IPCO 2020

conference [98]. This full version includes more detailed proofs of our results, a new family

of strong valid inequalities for conv(P ) when X contains disjoint cardinality constraints, and

a new separation algorithm for its implementation. Furthemore, this chapter also reports

substantially more extensive computational experiments.

The remainder of the chapter is organized as follows. In Section 4.2, we discuss basic prop-

erties of conv(P ) and provide a brief overview of the sequential and sequence independent lift-

ing. Also, a new class of subadditive functions is described, which is then exploited in deriva-

tions of our subsequent results. In Section 4.3, we consider one-dimensional sequential lifting

for conv(P0); furthermore, two family of lifted inequalities are shown to be facet-defining for

conv(P0). In Section 4.4, we discuss multidimensional sequential lifting for conv(P ) when

X involves disjoint cardinality constraints. One family of lifted inequalities is shown to be
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facet-defining; another family of strong valid inequalities is proposed through a subadditive

approximation of the associated lifting function. Our computational study is presented in

Section 4.5. Finally, we summarize our results and conclude the chapter in Section 4.6.

Additional notation. Given a positive integer k, let [k] := {1, 2, . . . , k}. Denote by ek a

vector with 1 in its kth component, and 0 in the others. Given a vector a ∈ Rn and a set

S ⊆ N , we define a(S) :=
∑

j∈S aj; denote by xS the corresponding incidence vector of S

such that xj = 1 for j ∈ S, and xj = 0, otherwise. We use |S| to denote the cardinality of

set S. For any set S ⊆ N , we let S̄ := N \ S. Finally, to simplify the notation we use S ∪ j

and S \ j to denote the union and subtraction of set S and a singleton set {j}, respectively.

4.2 Technical Preliminaries

In Section 4.2.1, we consider some basic properties and facet-defining inequalities of

conv(P ). We then briefly review the lifting process, including both sequential lifting and

SI lifting in Section 4.2.2. More importantly, a new class of piecewise concave subadditive

functions is developed in Section 4.2.3, which is then exploited to derive our subsequent

results in Section 4.3.

4.2.1 Basic Properties

Given a partition of N , {Ni}ri=1 (i.e., ∪ri=1Ni = N and Ni ∩ Nj = ∅ for any i 6= j), and

a set of positive integers d1, . . . , dr, the mixed-integer set of the submodular maximization

problem with multiple disjoint cardinality constraints is formally given by:

PMC = {(w, x) ∈ R× {0, 1}n : w ≤ g(aTx),
∑
j∈Ni

xj ≤ di ∀i ∈ [r]}.

Note that P0 is a special case of PMC when r = n and Nj = {j}, dj = 1 for all j ∈ N . Below

we summarize several basic properties for conv(PMC) following [2, 86].

Proposition 4.1. The following statements hold for conv(PMC):
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(i) conv(PMC) is full-dimensional.

(ii) Inequality xj ≥ 0 defines a facet of conv(PMC) for any j ∈ N .

(iii) Inequality xj ≤ 1 defines a facet of conv(PMC) for any j ∈ N if di ≥ 2 for i ∈ [r] such

that j ∈ Ni.

(iv) Inequality w ≤ f(∅) +
∑

j∈N ρj(∅)xj defines a facet of conv(PMC).

(v) Inequality w ≤ f(N)−
∑

j∈N ρj(N \ j)(1− xj) defines a facet of conv(PMC) if |Ni| ≤ di

for all i ∈ [r].

Denote by relax(P ) the continuous relaxation of P , in which the 0-1 binary restriction

on xj is simply replaced by 0 ≤ xj ≤ 1 for all j ∈ N . Without applying the KKT conditions

(recall our earlier discussion in Section 4.1), we next extend Corollary 1 in [2] derived for

relax(P0) to the case of a general concave function g for relax(PMC).

Proposition 4.2. If (w′, x′) is an extreme point of relax(PMC), then w′ = g(aTx′) and the

following conditions are satisfied:

(i) if 0 <
∑

j∈Ni x
′
j < di for some i ∈ [r], then there is at most one fractional component x′j

for j ∈ Ni;

(ii) there is at most one i ∈ [r] such that 0 <
∑

j∈Ni x
′
j < di and fractional components of x′

exist in Ni;

(iii) if
∑

j∈Ni x
′
j = di for some i ∈ [r], then there are at most two fractional components x′j

for j ∈ Ni.

Proof. It is clear that w′ = g(aTx′). We first prove condition (i). Suppose there exist

1, 2 ∈ Ni such that x′1, x
′
2 are fractional. If either a1 = 0 or a2 = 0, then we can easily verify

that (w′, x′) is not an extreme point with the assumption. If a1, a2 > 0, then let

δ = min{x′1, 1− x′1,
di −

∑
j∈Ni x

′
j

|a1/a2 − 1|
,
a2

a1

x′2,
a2

a1

(1− x′2)} > 0.

We consider (w1, x1) and (w2, x2) defined as w1 = w2 = w′ and

x1
j =


x′1 + δ j = 1,

x′2 − a1

a2
δ j = 2,

x′j otherwise,

x2
j =


x′1 − δ j = 1,

x′2 + a1

a2
δ j = 2,

x′j otherwise.

(4.5)
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It is easy to verify that (w1, x1) and (w2, x2) are feasible solutions of relax(PMC). Further-

more, (w′, x′) = 1
2
(w1, x1) + 1

2
(w2, x2), which leads to a contradiction with the assumption

that (w′, x′) is an extreme point.

To prove condition (ii), suppose there exist i1, i2 ∈ [r] such that 0 <
∑

j∈Ni1
x′j < di1 ,

0 <
∑

j∈Ni2
x′j < di2 , and 1 ∈ Ni1 , 2 ∈ Ni2 , and x′1 and x′2 are fractional. Let

δ = min{x′1, 1− x′1, di1 −
∑
j∈Ni1

x′j,
a2

a1

x′2,
a2

a1

(1− x′2),
a2

a1

(di2 −
∑
j∈Ni2

x′j)} > 0.

The contradiction is obtained by constructing (w1, x1) and (w2, x2) as in (4.5).

To prove condition (iii), suppose there exist 1, 2, 3 ∈ Ni such that x′1, x
′
2, x
′
3 are fractional

and a1 ≥ a2 ≥ a3. Assume a2 = λa1 + (1− λ)a3 for λ ∈ [0, 1]. Let

δ = min{x
′
1

λ
,
1− x′1
λ

, x′2, 1− x′2,
x′3

1− λ
,
1− x′3
1− λ

} > 0.

We consider (w1, x1) and (w2, x2) defined as w1 = w2 = w′ and

x1
j =



x′1 + λδ j = 1,

x′2 − δ j = 2,

x′3 + (1− λ)δ j = 3,

x′j otherwise,

x2
j =



x′1 − λδ j = 1,

x′2 + δ j = 2,

x′3 − (1− λ)δ j = 3,

x′j otherwise.

We can verify that (w1, x1) and (w2, x2) are feasible for relax(PMC). Furthermore, (w′, x′) =

1
2
(w1, x1) + 1

2
(w2, x2), which leads to a contradiction with the assumption that (w′, x′) is an

extreme point.

Corollary 4.1. Any extreme point of relax(P0) has at most one fractional component xj,

j ∈ N .

Proof. Recall that P0 is reducible to PMC by setting r = n,Nj = {j}, and dj = 1 for all

j ∈ N . The result directly follows from Proposition 4.2(ii).
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4.2.2 Sequential and Sequence Independent Lifting

Consider a general set, X , in the form X = {x ∈ {0, 1}n : Bx ≤ d} and two disjoint

subsets S0, S1 ⊆ N . If we fix the variables with the indices in S0 and S1 to 0 and 1,

respectively, then P becomes a low-dimensional set, which we denote as:

P (S0, S1) = {x ∈ P : xj = 0 ∀j ∈ S0, xj = 1 ∀j ∈ S1}.

Suppose an inequality

w ≤ α0 +
∑

j∈N\(S0∪S1)

αjxj (4.6)

is valid for conv(P (S0, S1)). The goal of lifting [86] is to determine coefficients αj ∈ R for

j ∈ S0 ∪ S1 such that

w ≤ α0 +
∑

j∈N\(S0∪S1)

αjxj +
∑
j∈S0

αjxj +
∑
j∈S1

αj(1− xj)

is a valid inequality for conv(P ). We refer to (4.6) as the seed inequality.

For convenience, we discuss next the case of S0 = S̄ and S1 = ∅ for some S ⊆ N ; recall

our notation that S̄ := N \ S. Suppose S̄ = {1, . . . , s̄}, and without loss of generality,

assume that the lifting sequence is 1, 2, . . . , s̄. Then for each ` ∈ S̄, the lifting coefficient α`

for ` = 1, . . . , s̄ can be derived from the function:

ζ`

(
z

u

)
= max

w,x
w −

∑
j∈S

αjxj −
`−1∑
j=1

αjxj − α0

s.t. w ≤ g(
∑
j∈S

ajxj +
`−1∑
j=1

ajxj + z),

∑
j∈S

Bjxj +
`−1∑
j=1

Bjxj ≤ d− u,

xj ∈ {0, 1} ∀j ∈ S ∪ [`− 1],

where z ∈ R+, Bj is the jth column vector of B and u has the same dimension as d. We set

ζ` = −∞ if the above problem is infeasible. Observe that function ζ` is nondecreasing in `,

that is ζ`
(
z
u

)
≤ ζk

(
z
u

)
for any k > `.

Denote by ζ
(
z
u

)
= ζ1

(
z
u

)
the lifting function of the seed inequality (4.6) for P . Note that

if X = {0, 1}n (i.e., B = 0, d = 0), then the lifting function ζ is one-dimensional.
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Proposition 4.3. The inequality

w ≤ α0 +
∑
j∈S

αjxj +
∑
`∈S̄

α`x` (4.7)

is valid for conv(P ) if α` ≥ ζ`
(
a`
B`

)
for all ` ∈ S̄. If conv(P (S̄, ∅)) and conv(P ) are full-

dimensional, and inequality (4.6) is facet-defining for conv(P (S̄, ∅)), then inequality (4.7) is

facet-defining for conv(P ) if α` = ζ`
(
a`
B`

)
.

Proof. Although our model is slightly different than those used in the related literature (see

Chapter 7 in [28], Section 2 in [45] and Chapter II.2 in [86]), the proof is essentially the

same.

Note that the lifting coefficients are typically dependent on the lifting sequence in S̄. If

the lifting coefficients are unique regardless of the lifting order, i.e.,

ζ

(
z

u

)
= ζ`

(
z

u

)
∀` ∈ S̄, (4.8)

then the lifting is said to be sequence independent (SI).

Definition 4.1. A function φ : Rn → R is subadditive on Z ⊆ Rn if φ(z1)+φ(z2) ≥ φ(z1+z2)

whenever z1, z2 ∈ Z and z1 + z2 ∈ Z. A function φ is called supperadditive on Z if −φ is

subadditive on Z.

Denote by set Zj all possible values of
(
aj
Bj

)
, j ∈ S̄. To show that the lifting is SI, the

general idea is that we first choose a convex set Z such that Zj ⊆ Z for all j ∈ S̄, and then

the following sufficient condition can be applied.

Theorem 4.1. If ζ is subadditive on Z, then the lifting is SI.

Proof. The proof is similar to Theorem 2 in [45].

However, the subadditivity requirement may be too strong and difficult to verify in a

high-dimensional space. In this chapter we also exploit another necessary and sufficient

condition, which is similar in spirit to the one used in [114, 129].
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Theorem 4.2. The lifting is SI for all
(
aj
Bj

)
∈ Zj, j ∈ S̄, if and only if for any Γ ⊆ S̄ function

ζ satisfies: ∑
j∈Γ

ζ

(
zj
uj

)
≥ ζ(

∑
j∈Γ

(
zj
uj

)
) ∀

(
zj
uj

)
∈ Zj, j ∈ Γ. (4.9)

Proof. Given a lifting order 1, 2, . . . , s̄, we note that

ζ`

(
z`
u`

)
= max

Γ⊆[`−1]

{
ζ(
∑
j∈Γ

(
zj
uj

)
+

(
z`
u`

)
)−

∑
j∈Γ

ζj

(
zj
uj

)}
. (4.10)

We first show the ”if” part. Since ζ`
(
z`
u`

)
≥ ζ
(
z`
u`

)
, it suffices to prove that ζ`

(
z`
u`

)
≤ ζ
(
z`
u`

)
.

If the condition (4.9) holds, then∑
j∈Γ

ζ

(
zj
uj

)
+ ζ

(
z`
u`

)
≥ ζ(

∑
j∈Γ

(
zj
uj

)
+

(
z`
u`

)
),

which yields the required result by applying the induction and equation (4.10).

To show the “only if” part, suppose there exists Γ ⊆ S̄ such that
∑

j∈Γ ζ
(
zj
uj

)
< ζ(

∑
j∈Γ

(
zj
uj

)
)

and
∑

j∈Γ′ ζ
(
zj
uj

)
≥ ζ(

∑
j∈Γ′

(
zj
uj

)
) for all Γ′ $ Γ. Assume Γ = {1, . . . , `}, and the lifting se-

quence is 1, . . . , `. Thus, based on the assumption and equation (4.10), we have ζj
(
zj
uj

)
= ζ
(
zj
uj

)
for j = 1, . . . , `− 1, and

ζ`

(
z`
u`

)
≥ ζ(

∑
j∈Γ

(
zj
uj

)
)−

`−1∑
j=1

ζj

(
zj
uj

)
> ζ

(
z`
u`

)
,

where the last inequality follows from
∑

j∈Γ ζ
(
zj
uj

)
< ζ(

∑
j∈Γ

(
zj
uj

)
). Therefore, we contradict

with (4.8) and the result follows.
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4.2.3 A Class of Subadditive Function

In this section, we introduce a new class of subadditive functions that contains as a

special case the lifting function for the single-node flow set derived in [45].

Theorem 4.3. Given a sequence of values a1, a2, . . . such that ak ≥ ak+1 ≥ 0, let A0 = 0

and Ak =
∑k

j=1 aj for k = 1, 2, . . .. Define a piecewise concave function φ : R+ → R as

follows:

φ(z) =

0 if z = 0,

g(z − Ak + vk) + φ(Ak)− g(vk) if Ak ≤ z ≤ Ak+1, k = 0, 1, . . . ,

(4.11)

where g is a concave function and {vk}∞k=0 is a sequence of values such that vk−1 + ak ≤

vk + ak+1. Then φ is a subadditive function on R+.

The proof the above result is detailed further in this section. Based on the definition of

φ(z) in (4.11), we note that if vk = vk−1+ak, for all k = 1, 2, . . . , then φ(z) = g(z+v0)−g(v0)

for z ∈ R+ is simply a concave function. Following this observation, we derive another variant

of (4.11).

Proposition 4.4. Given a sequence of values a1, a2, . . . , an such that ak ≥ ak+1 ≥ 0, let

A0 = 0 and Ak =
∑k

j=1 aj for k ∈ [n]. A piecewise concave function φ̂ : R+ → R is defined

as follows: φ̂(0) = 0 and

φ̂(z) =


g(z − Ak + vk) + φ̂(Ak)− g(vk) if Ak ≤ z ≤ Ak+1,

k = 0, 1, . . . , n− 2,

g(z − An−1 + vn−1) + φ̂(An−1)− g(vn−1) if z ≥ An−1,

(4.12)

where g is a concave function and {vk}n−1
k=0 is a sequence of values such that vk−1 + ak ≤

vk + ak+1. Then φ̂ is a subadditive function on R+.

Proof. Define ak = an for k = n + 1, n + 2, . . . , and vk = vk−1 + ak for k = n, n + 1, . . . .

Then function φ̂(z) can be written in the form of (4.11), and the results follows.

Furthermore, the superadditivity of φ can be verified when g is a convex function.
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(a) g(z) = −(z − b)2. (b) g(z) = max{0, z − (a1 − λ)}.

Figure 6: The subadditive and superadditive examples that illustrate Theorem 4.3 and Corollary
4.2, respectively.

Corollary 4.2. If function g is convex, then φ(z) in the form of either (4.11) or (4.12) is

a superadditive function on R+.

Proof. Let g̃ = −g and denote φ̃(z) as the function φ that replaces g by g̃. It follows that

g̃ is a concave function, and φ̃(z) = −φ(z) for all z ∈ R+. Therefore, based on Theorem 4.3

and Proposition 4.4, we conclude that φ̃ is subadditive and the result follows.

Note that in the above results we do not specify any particular functional form of g

and require only its concavity. Thus, subadditive function φ can be constructed no matter

whether g is linear, monotonic or differentiable. Figure 6 illustrates two examples when

function g is quadratic and piecewise linear.

We point out that Theorem 4.3 provides a framework to either verify the function’s

subadditivity or to construct its subadditive approximation for functions, φ, with particular

structures. As long as we recognize that the function is piecewise concave, then our results

might be applicable. We next present one immediate application to the single-node flow set

F , which matches the corresponding result in [45].
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Example 4.1 (Adapted from Section 5 in [45]). Consider the single-node flow set F , with

N− = ∅ and X = {0, 1}n. Given a flow cover S such that λ =
∑

j∈S aj − b > 0, the flow

cover inequality ∑
j∈S

xj +
∑
j∈S

max{0, aj − λ}(1− yj) ≤ b

defines a facet of conv(F (S̄, ∅)). Suppose S = {1, . . . , s} and a1 ≥ · · · ≥ a` > λ ≥ a`+1 ≥

· · · ≥ as, let A0 = 0 and Ak =
∑k

j=1 ak for k ∈ [`]. Then the lifting function of the flow

cover inequality (depicted in Figure 6(b)) is φ(0) = 0 and

φ(z) =

g(z − Ak + a1 − ak+1) + φ(Ak) if Ak ≤ z ≤ Ak+1, k = 0, 1, . . . , `− 2,

g(z − A` + a1) + φ(A`−1) if z ≥ A`−1,

where φ(Ak) = kλ for k = 0, 1, . . . , ` − 1, and g(z) = max{0, z − (a1 − λ)} is a convex

function. Let vk = a1 − ak+1 for k = 0, 1 . . . , ` − 1, then g(vk) = 0 and the above lifting

function can be written in the form of (4.12). Also, observe that vk−1 + ak = a1 for all

k ∈ [`]. Therefore, based on Corollary 4.2, the lifting function of the flow cover inequality is

superadditive on R+.

We next provide the detailed proof of Theorem 4.3, with some preliminary results pre-

sented first in the following two lemmata.

Lemma 4.1. Let z ∈ [Ak, Ak+1] for some integer k ≥ 1. Then for any ∆ ≥ 0 and z + ∆ ≤

Ak+1, we have

φ(z + ∆)− φ(z) ≤ φ(z −
k+1∑
j=`

aj + ∆)− φ(z −
k+1∑
j=`

aj) ∀` = 2, . . . , k + 1.

Proof. Note that for any ` ≥ 2, z −
∑k+1

j=` aj ≥ Ak −
∑k+1

j=` aj ≥ a1 − ak+1 ≥ 0 due to

z ∈ [Ak, Ak+1] and a1 ≥ ak ≥ ak+1. We next show the statement for each ` = 2, . . . , k+ 1 by

induction.
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a) If ` = k + 1, then z − ak+1 ∈ [Ak−1, Ak] and z − ak+1 + ∆ ≤ Ak. Let Ω = z − Ak−1, we

have that

φ(z + ∆)− φ(z) = g(z − Ak + vk + ∆)− g(z − Ak + vk)

= g(Ω + vk − ak + ∆)− g(Ω + vk − ak)

≤ g(Ω + vk−1 − ak+1 + ∆)− g(Ω + vk−1 − ak+1)

= φ(z − ak+1 + ∆)− φ(z − ak+1),

where the inequality follows from vk−1 + ak ≤ vk + ak+1 (recall the assumptions in Theo-

rem 4.3) and the concavity of g; that is, g(z0 + ∆)− g(z0) ≥ g(z1 + ∆)− g(z1) if z0 ≤ z1

and ∆ ≥ 0.

b) If the statement holds for ` = `0 + 1, 2 ≤ `0 ≤ k, then we show that the statement also

holds for ` = `0. Based on the induction hypothesis, we have

φ(z + ∆)− φ(z) ≤ φ(z −
k+1∑

j=`0+1

aj + ∆)− φ(z −
k+1∑

j=`0+1

aj) = φ(z′ + ∆)− φ(z′),

where we let z′ = z −
∑k+1

j=`0+1 aj. Also, observe that z′ ∈ [A`0−1, A`0 ] and z′ + ∆ =

z + ∆−
∑k+1

j=`0+1 aj ≤ Ak+1 −
∑k+1

j=`0+1 aj = A`0 . Thus, based on a), we have

φ(z′ + ∆)− φ(z′) ≤ φ(z′ − a`0 + ∆)− φ(z′ − a`0) = φ(z −
k+1∑
j=`0

aj + ∆)− φ(z −
k+1∑
j=`0

aj),

which yields the result.

Lemma 4.2. Let ∆ ∈ [0, ak+1] for some integer k ≥ 0. Then for any z ≥ Ak, we have

φ(Ak + ∆)− φ(Ak) ≥ φ(z + ∆)− φ(z).

Proof. Suppose z ∈ [Ak1 , Ak1+1] and z + ∆ ∈ [Ak2 , Ak2+1], where k ≤ k1 ≤ k2. We establish

the result for each k2 − k1 by induction.
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a) If k2 = k1, then based on Lemma 4.1, we have

φ(z + ∆)− φ(z) ≤ φ(z −
k1+1∑
j=k+2

aj + ∆)− φ(z −
k1+1∑
j=k+2

aj)

= g(Ω + vk + ∆)− g(Ω + vk)

≤ g(vk + ∆)− g(vk) = φ(Ak + ∆)− φ(Ak),

where Ω = z − Ak −
∑k1+1

j=k+2 aj, and the second inequality follows from the fact that

ak+1 ≥ ak1+1 and Ω ≥ z − Ak −
∑k1

j=k+1 aj = z − Ak1 ≥ 0.

b) If the statement holds for k2 − k1 = m ≥ 0, then we show that the statement also holds

for k2 − k1 = m + 1 ≥ 1. Let z′ = Ak1+1, and ∆′ = Ak1+1 − z, then ∆ ≥ ∆′ due to

z + ∆ ≥ Ak2 ≥ Ak1+1. We have that

φ(Ak1+1)− φ(z) = φ(z′)− φ(z′ −∆′)

≤ φ(z′ −
k1+1∑
j=k+2

aj)− φ(z′ −∆′ −
k1+1∑
j=k+2

aj)

= φ(Ak+1)− φ(Ak+1 −∆′)

≤ φ(Ak + ∆)− φ(Ak + ∆−∆′),

where the first inequality follows from Lemma 4.1 with the conditions that ∆′ ≤ ak1+1

and z′ − ∆′ ∈ [Ak1 , Ak1+1]; and the second inequality follows from the fact that φ is

concave on [Ak, Ak+1] and Ak+1 −∆′ ∈ [Ak, Ak+1], Ak + ∆ ∈ [Ak, Ak+1].

Also, note that z′ ∈ [Ak1+1, Ak1+2] and z + ∆ = z′ + ∆ − ∆′ ∈ [Ak2 , Ak2+1]. Since

k2 − (k1 + 1) = m, by the induction hypothesis, we have

φ(z + ∆)− φ(Ak1+1) = φ(z′ + ∆−∆′)− φ(z′) ≤ φ(Ak + ∆−∆′)− φ(Ak).

Summing the above two inequalities, we obtain the desired inequality.

118



Theorem 4.3. To show that φ is subadditive on [0,+∞), it is sufficient to prove that the

following inequality holds:

φ(z)− φ(0) ≥ φ(z + ∆)− φ(∆) ∀z ≥ 0,∆ ≥ 0.

First, let ∆′ = aj+1 for some j ≥ 0 and z′ = Aj + ∆ for any ∆ ≥ 0. Observe that z′ ≥ Aj

and ∆′ ∈ [0, aj+1]. Therefore, by Lemma 2, we have

φ(Aj + ∆′)− φ(Aj) ≥ φ(z′ + ∆′)− φ(z′) ∀j = 0, 1, . . . ,

which can be rewritten as

φ(Aj+1)− φ(Aj) ≥ φ(Aj+1 + ∆)− φ(Aj + ∆) ∀j = 0, 1, . . . . (4.13)

Suppose z ∈ [Ak, Ak+1] for some k ≥ 0. Let z′′ = Ak + ∆ and ∆′′ = z − Ak, then observe

that z′′ ≥ Ak and ∆′′ ∈ [0, ak+1]. By Lemma 4.2 we have

φ(Ak + ∆′′)− φ(Ak) ≥ φ(z′′ + ∆′′)− φ(z′′). (4.14)

Note that Ak + ∆′′ = z and z′′ + ∆′′ = z + ∆. Finally, summing inequalities (4.13) over

j = 0, 1, . . . , k − 1 and (4.14), yields the desired result.

4.3 Lifting for conv(P0)

In this section, we study the lifting procedure for the convex hull of P when X = {0, 1}n.

Recall that

P0 = {(w, x) ∈ R× {0, 1}n : w ≤ g(aTx)}.

We first derive a set of valid inequalities by performing exact lifting on variables fixed

at zeros in Section 4.3.1. As it turns out, the lifting is SI and the resulting inequalities

are facet-defining for conv(P0). Similarly, in Section 4.3.2, another family of facet-defining

inequalities are derived by lifting variables fixed at ones.

119



4.3.1 Lifted Inequalities From P0(S̄, ∅)

Given a set S ⊆ N , consider set P0(S̄, ∅) by fixing xj = 0 for j ∈ S̄ in P0, i.e.,

P0(S̄, ∅) = {(w, x) ∈ R× {0, 1}n : w ≤ g(aTx), xj = 0 ∀j ∈ S̄}.

Following Proposition 4.1, the inequality

w ≤ f(S)−
∑
j∈S

ρj(S \ j)(1− xj) (4.15)

is facet-defining for the convex hull of P0(S̄, ∅). To lift seed inequality (4.15) for conv(P0),

the corresponding lifting function is then given by:

γ0(z) = max
w,x

w +
∑
j∈S

ρj(S \ j)(1− xj)− f(S)

s.t. w ≤ g(
∑
j∈S

ajxj + z),

xj ∈ {0, 1} ∀j ∈ S,

where z ∈ R+. For some z ∈ R+ and any subset Λ ⊆ S, denote the objective function value

for xΛ, and w = g(aTxΛ + z) of the above lifting problem γ0(z) as: h(z,Λ) = g(a(Λ) + z) +∑
j∈S\Λ ρj(S \ j)− f(S).

Two basic properties of h are discussed next. We note that h is not directly defined

in [2, 122], but its properties are used implicitly there. In particular, Lemma 4.4 below is

also provided in [122] (see Lemma 1), admittedly in a somewhat different form. Nevertheless,

for the sake of completeness, we provide self-contained proofs in our discussion below.

Lemma 4.3. Let Λ ⊆ S and j ∈ S \ Λ, then

(i) if a(Λ) + aj + z ≤ a(S), then h(z,Λ ∪ j) ≥ h(z,Λ);

(ii) if a(Λ) + aj + z ≥ a(S), then h(z,Λ ∪ j) ≤ h(z,Λ).
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Proof. We prove only statement (i) below, and (ii) can be proved in a similar manner. Let

Ω = a(Λ) + z, then Ω + aj ≤ a(S), and

h(z,Λ ∪ j)− h(z,Λ) = g(a(Λ) + aj + z)− g(a(Λ) + z)− ρj(S \ j)

= [g(Ω + aj)− g(Ω)]− [g(a(S))− g(a(S)− aj)] ≥ 0,

where the inequality follows from the concavity of g.

Lemma 4.4. Let Λ ⊆ S and j ∈ S \ Λ. If there exists i ∈ Λ such that ai ≤ aj, then

(i) if a(Λ) + aj + z ≤ a(S), then h(z,Λ ∪ j \ i) ≥ h(z,Λ);

(ii) if a(Λ) + aj + z ≥ a(S), then h(z,Λ ∪ j \ i) ≤ h(z,Λ).

Proof. We prove only statement (i) below, and (ii) can be proved in a similar manner. Let

∆ = aj − ai and Ω = a(Λ) + z, then ∆ ≥ 0 and Ω ≤ a(s)− aj, and

h(z,Λ ∪ j \ i)− h(z,Λ) = g(a(Λ) + aj − ai + z) + ρi(S \ i)− g(a(Λ) + z)− ρj(S \ j)

= [g(Ω + ∆)− g(Ω)]− [g(a(S)− ai)− g(a(S)− aj)]

= [g(Ω + ∆)− g(Ω)]− [g(a(S)− aj + ∆)− g(a(S)− aj)]

≥ 0,

where the inequality follows from the concavity of g.

With a similar strategy as in Proposition 5 of [2], we can derive exactly the same formula

for γ0(z) and for any general concave function g.

Proposition 4.5. Suppose S = {1, . . . , s} and a1 ≥ · · · ≥ as, let A0 = 0 and Ak =
∑k

j=1 aj

for k ∈ S. The lifting function γ0(z) is computed as follows:

γ0(z) =


g(z − Ak+1 + a(S)) + γ0(Ak)− g(a(S)− ak+1) if Ak ≤ z ≤ Ak+1,

k = 0, . . . , s− 2,

g(z) + γ0(As−1)− g(a(S)− as) if z ≥ As−1,

where γ0(Ak) =
∑k

j=1 ρj(S \ j) for any k ∈ S.
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Proof. If Ak ≤ z ≤ Ak+1 for some k = 0, . . . , s−2, then it suffices to show that {k+2, . . . , s}

is an optimal solution set to compute γ0(z) in the lifting problem. Suppose there exists a

different optimal solution set Λ∗ ⊆ S. Based on Lemma 4.3, we can find a Λ∗ such that

a(Λ∗)+z ≤ a(S) and a(Λ∗∪j)+z > a(S) for all j ∈ S \Λ∗. Therefore, if {k+2, . . . , s} ⊆ Λ∗,

then Λ∗ = {k + 2, . . . , s}.

Suppose {k + 2, . . . , s} * Λ∗. Let k0 be the largest index in S such that k0 /∈ Λ∗, then

k0 ≥ k + 2. Next, we construct a new optimal solution set Λ̃ such that {k0, . . . , s} ⊆ Λ̃.

Since a(Λ∗) + ak0 + z > a(S), there must exist some j0 ∈ Λ∗ such that j0 < k0, otherwise

a(Λ∗)+ak0 +z =
∑s

j=k0
aj+z ≤

∑s
j=k+2 aj+z ≤ a(S). Since aj0 ≥ ak0 , then based on Lemma

4.4, we have h(z,Λ∗ ∪ k0 \ j0) ≥ h(z,Λ∗). Thus, Λ̃ = Λ∗ ∪ k0 \ j0 is also an optimal solution.

Proceeding in an iterative manner, we have that {k + 2, . . . , s} is an optimal solution.

If z ≥ As−1, then for any nonempty set Λ ⊆ S, we have a(Λ) + z ≥ a(S). Based on

Lemma 4.3, it immediately yields that h(z,Λ) ≤ h(z, ∅). Therefore, ∅ is an optimal solution

set to compute γ0(z) in the lifting problem and the result follows.

Let vk = a(S) − ak+1, then vk + ak+1 = a(S) for k = 0, 1, . . . , s − 1. Given that

γ0(Ak) =
∑k

j=1 ρj(S \ j) and g(vk) = g(a(S)−ak+1), it follows from Proposition 4.4 that the

lifting function γ0(z) is subadditive on R+. Thus, based on Proposition 4.3 and Theorem 4.1,

the exact lifting is SI, and the resulting inequality from lifting is facet-defining for conv(P0).

This result is formally stated as follows.

Theorem 4.4. For any S ⊆ N , the inequality

w ≤ f(S)−
∑
j∈S

ρj(S \ j)(1− xj) +
∑
j∈S̄

γ0(aj)xj (4.16)

is facet-defining for conv(P0).

Proof. It directly follows from the above discussion.

Note that Ahmed and Atamtürk [2] derive a subadditive approximation to the lifting

function γ0(z) by applying the continuous relaxation and then using the KKT conditions to

solve the convex program. Nevertheless, as pointed out in Proposition 4.4 and Theorem 4.4

the exact lifting function is naturally subadditive and we can directly obtain facet-defining
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inequalities without any approximations. Furthermore, similar to the results in [2], we can

show that any fractional extreme points of relax(P0) can be cut off by the lifted facet-defining

inequalities (4.16); the proofs in this chapter are omitted for brevity.

Next, we provide an example to illustrate the difference between inequalities obtained

by approximate lifting [2] and our exact lifting.

Example 4.2. Consider P0 = {(w, x) ∈ R × {0, 1}n : w ≤ − exp(−aTx)}, where n = 7,

and a = (0.8, 0.7, 0.7, 0.6, 0.5, 0.3, 0.2)T . Let S = {3, 4, 5, 6}. The seed inequality (4.15) is

w ≤ −0.4695 + 0.1241x3 + 0.1007x4 + 0.0794x5 + 0.0428x6.

The approximate lifted inequality in [2] is computed as:

w ≤− 0.4695 + 0.1484x1 + 0.1317x2 + 0.1241x3 + 0.1007x4

+ 0.0794x5 + 0.0428x6 + 0.0447x7.

The lifted inequality (4.16), as in the following, dominates the above approximation by having

smaller coefficients of x1 and x2:

w ≤− 0.4695 + 0.1454x1 + 0.1241x2 + 0.1241x3 + 0.1007x4

+ 0.0794x5 + 0.0428x6 + 0.0447x7.

Figure 7 shows the lifting function γ0(z) and its approximation γ̂0(z) proposed in [2]. In

around 80% intervals, the approximations γ̂0 are strictly larger than the exact values γ0. In

particular, the largest difference ratio in this example is around 20%.

Denote by K0 and F0 the mixed 0-1 knapsack set and the single-node flow set when

X = {0, 1}n, respectively. As mentioned in Section 4.1, the well-known mixed 0-1 knapsack

set K0, is a special case of P0. Next, we show that the lifted facet-defining inequalities for

conv(K0) can be obtained directly via (4.16). A class of valid inequalities for conv(F0) can

also be easily derived through the reduction to K0, which is well studied in [83]. Hence, our

study on this submodular set unifies those classical results.
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Figure 7: Lifting function γ0(z) and its approximation γ̂0(z) proposed in [2].

Corollary 4.3 ([83]). Consider any S ⊆ N such that λ = a(S) − b > 0. Suppose S =

{1, . . . , s} is such that a1 ≥ · · · ≥ a` > λ ≥ · · · ≥ as. Then the inequality

−π ≤ −λ+
∑̀
j=1

λ(1− xj) +
s∑

j=`+1

aj(1− xj) +
∑
j∈S̄

γ0(aj)xj

is facet-defining for conv(K0), where γ0(z) is computed as

γ0(z) =


−kλ if Ak ≤ z ≤ Ak+1 − λ, k = 0, . . . , `− 1,

−(k + 1)λ+ Ak+1 − z if Ak+1 − λ ≤ z ≤ Ak+1, k = 0, . . . , `− 1,

−`λ+ A` − z if z ≥ A`.

Proof. Recall from the discussion of Section 4.1 that if we define w = −π and g(z) =

min{0, b− z}, then K0 is equivalent to the form of P0. Therefore, for any S ⊆ N such that

λ = a(S)− b > 0, we have f(S) = g(a(S)) = −λ and

ρj(S \ j) = −λ−min{0, aj − λ} =

−λ if j = 1, . . . , `,

−aj if j = `+ 1, . . . , s.
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If Ak ≤ z ≤ Ak+1 for some k = 0, . . . , ` − 1, then based on Proposition 4.5, we have∑k
j=1 ρj(S \ j) = −kλ, g(a(S)− ak+1) = 0 and

γ0(z) = g(z − Ak+1 + a(S))− kλ = min{0, Ak+1 − z − λ} − kλ.

If Ak ≤ z ≤ Ak+1 for some k = `, . . . , s− 2, then
∑k

j=1 ρj(S \ j) = −`λ−
∑k

j=`+1 aj and

g(a(S)− ak+1) = −λ+ ak+1. Based on Proposition 4.5, we have

γ0(z) = min{0, Ak+1 − z − λ} − (`− 1)λ−
k+1∑
j=`+1

aj

= Ak+1 − z − λ− (`− 1)λ−
k+1∑
j=`+1

aj = A` − z − `λ,

where the second equality follows from Ak+1 − z − λ ≤ ak+1 − λ ≤ 0.

If z ≥ As−1, then the derivation is omitted for brevity as it is similar to the case where

Ak ≤ z ≤ Ak+1 for some k = `, . . . , s− 2.

4.3.2 Lifted Inequalities From P0(∅, S)

Given a set S ⊆ N , consider set P0(∅, S) by fixing xj = 1 for j ∈ S in P0, i.e.,

P0(∅, S) = {(w, x) ∈ R× {0, 1}n : w ≤ g(aTx), xj = 1 ∀j ∈ S}.

It follows from Proposition 4.1 that the inequality

w ≤ f(S) +
∑
j∈S̄

ρj(S)xj (4.17)

defines a facet of the convex hull of P0(∅, S). To lift seed inequality (4.17) for conv(P0), the

corresponding lifting function is given as:

η0(z) = max
w,x

w −
∑
j∈S̄

ρj(S)xj − f(S)

s.t. w ≤ g(
∑
j∈S̄

ajxj + a(S)− z), (4.18)

xj ∈ {0, 1} ∀j ∈ S̄,
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where z ∈ R+. For some z ∈ R+ and any subset Λ ⊆ S̄, denote the objective func-

tion value for xΛ and w = g(aTxΛ + a(S) − z) of the above lifting problem as χ(z,Λ) =

g(a(Λ) + a(S)− z)−
∑

j∈Λ ρj(S)− f(S).

Next, we discuss two basic properties of χ. Similar to the derivations in Section 4.3.1, we

note that χ is not directly defined in [2, 122], but its properties are used implicitly there. As

in the above, we provide self-contained proofs for the sake of completeness in our discussion

below.

Lemma 4.5. Let Λ ⊆ S̄ and j ∈ S̄ \ Λ, then

(i) if a(Λ)− z ≤ 0, then χ(z,Λ ∪ j) ≥ χ(z,Λ);

(ii) if a(Λ)− z ≥ 0, then χ(z,Λ ∪ j) ≤ χ(z,Λ).

Proof. We establish only statement (i) below, and (ii) can be proved in a similar manner.

Let Ω = a(Λ) + a(S)− z, then Ω ≤ a(S) and

χ(z,Λ ∪ j)− χ(z,Λ) = g(Ω + aj)− ρj(S)− g(Ω)

= [g(Ω + aj)− g(Ω)]− [g(a(S) + aj)− g(a(S))] ≥ 0,

where the inequality follows from the fact that g is concave.

Lemma 4.6. Let Λ ⊆ S̄ and j ∈ S̄ \ Λ. If there exists i ∈ Λ such that ai ≤ aj, then

(i) if a(Λ)− ai − z ≤ 0, then χ(z,Λ ∪ j \ i) ≥ χ(z,Λ);

(ii) if a(Λ)− ai − z ≥ 0, then χ(z,Λ ∪ j \ i) ≤ χ(z,Λ).

Proof. We prove only statement (i) below, and (ii) can be proved in a similar manner. Let

∆ = aj − ai and Ω = a(Λ) + a(S)− z, then ∆ ≥ 0, Ω ≤ a(S) + ai and

χ(z,Λ ∪ j \ i)− χ(z,Λ) = g(Ω + aj − ai)− ρj(S)− g(Ω) + ρi(S)

= [g(Ω + ∆)− g(Ω)]− [g(a(S) + aj)− g(a(S) + ai)]

= [g(Ω + ∆)− g(Ω)]− [g(a(S) + ai + ∆)− g(a(S) + ai)]

≥ 0,

where the inequality follows from the concavity of g .
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We can compute η0(z) using the same formula as in [2] (see Proposition 10 there), as

given below. Furthermore, we strengthen the result in [2] by showing that the lifting function

is, in fact, subadditive.

Proposition 4.6. Suppose S̄ = {1, 2, . . . , s̄} such that a1 ≥ · · · ≥ as̄, let A0 = 0 and

Ak =
∑k

j=1 aj for k ∈ S̄. The lifting function η0(z) is computed as follows:

η0(z) =


g(Ak+1 + a(S)− z) + η0(Ak)− g(a(S) + ak+1) if Ak ≤ z ≤ Ak+1,

k = 0, . . . , s̄− 2,

g(a(N)− z) + η0(As̄−1)− g(a(S) + as̄) if z ≥ As̄−1,

where η0(Ak) = −
∑k

j=1 ρj(S). Furthermore, function η0(z) is subadditive on R+.

Proof. If Ak < z ≤ Ak+1 for some k = 0, 1, . . . , s̄−1, then it suffices to show that {1, . . . , k+

1} is an optimal solution set to compute η0(z) in the lifting problem. Suppose there exists

a different optimal solution set Λ∗ ⊆ S̄. Based on Lemma 4.5, there exists a Λ∗ such that

a(Λ∗)− z ≥ 0 and a(Λ∗ \ j)− z ≤ 0 for any j ∈ Λ∗. Therefore, if {1, . . . , k + 1} ⊆ Λ∗, then

Λ∗ = {1, . . . , k + 1}.

Suppose {1, . . . , k + 1} * Λ∗. Let k0 be the smallest index in S̄ such that k0 /∈ Λ∗, then

k0 ≤ k + 1. We next construct a new optimal solution set Λ̃ such that {1, . . . , k0} ⊆ Λ̃.

First, there must exist some j0 ∈ Λ∗ such that j0 > k+ 1, otherwise a(Λ∗) ≤ Ak+1−ak0 < z.

Let Λ̃ = Λ ∪ k0 \ j0, then based on Lemma 4.6, we have χ(z, Λ̃) ≥ χ(z,Λ∗) as ak0 ≥ aj0 and

a(Λ∗ \ j0)− z ≤ 0. It implies that Λ̃ is also an optimal solution. Proceeding in an iterative

manner, we can conclude that {1, . . . , k + 1} is an optimal solution.

If z ≥ As̄−1, then we have a(Λ) − z ≤ 0 for any set Λ $ S̄, which yields that

χ(z,Λ) ≤ χ(z, S̄) based on Lemma 4.5. Therefore, S̄ is an optimal solution set to com-

pute η0(z) in the lifting problem and the result follows.

To show the subadditivity of η0(z), let g̃(z) = g(−z). Then g̃ is also a concave function.

Thus, η0(z) can be rewritten as

η0(z) =


g̃(z − Ak+1 − a(S)) + η0(Ak)− g̃(−a(S)− ak+1) if Ak ≤ z ≤ Ak+1,

k = 0, . . . , s̄− 2,

g̃(z − a(N)) + η0(As̄−1)− g̃(−a(S)− as̄) if z ≥ As̄−1.
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Let vk = −a(S) − ak+1, then vk + ak+1 = −a(S) for all k = 0, 1, . . . , s̄ − 1. It immediately

follows from Proposition 4.4 that η0 is subadditive on R+.

Consequently, based on Proposition 4.3 and Theorem 4.1, the lifting is SI, and the lifted

inequality is facet-defining for conv(P0). Again, it unifies some classical results for the mixed

0-1 knapsack set K0 and the single-node flow set F0.

Theorem 4.5. For any S ⊆ N , the inequality

w ≤ f(S) +
∑
j∈S̄

ρj(S)xj +
∑
j∈S

η0(aj)(1− xj) (4.19)

is facet-defining for conv(P0).

Proof. It directly follows from Proposition 4.6.

Corollary 4.4 ([83]). Consider any S ⊆ N such that µ = b − a(S) > 0. Suppose S̄ =

{1, . . . , s̄} is such that a1 ≥ · · · ≥ a¯̀> µ ≥ · · · ≥ as̄. Then the inequality

−π ≤
¯̀∑

j=1

(µ− aj)xj +
∑
j∈S

η0(aj)(1− xj)

is facet-defining for conv(K0), where η0(z) is computed as:

η0(z) =


−kµ+ Ak if Ak − µ ≤ z ≤ Ak, k = 1, . . . , ¯̀,

−kµ+ z if Ak ≤ z ≤ Ak+1 − µ, k = 0, . . . , ¯̀− 1,

−¯̀µ+ A¯̀ if z ≥ A¯̀.

Proof. Recall that we define w = −π and g(z) = min{0, b− z}, then K0 is equivalent to the

form of P0. We then focus on computing the lifting function η0. For any S ⊆ N such that

µ = b− a(S) > 0, we have f(S) = g(a(S)) = 0 and

ρj(S) = min{0, µ− aj} =

µ− aj if j = 1, . . . , ¯̀,

0 if j = ¯̀+ 1, . . . , s̄.
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If Ak ≤ z ≤ Ak+1 for some k = 0, . . . , ¯̀− 2, then
∑k

j=1 ρj(S) = kµ − Ak, and g(a(S) +

ak+1) = µ− ak+1. Based on Proposition 4.6, we have

η0(z) = g(Ak+1 + a(S)− z)− kµ+ Ak − µ+ ak+1

= min{0, µ+ z − Ak+1}+ Ak+1 − (k + 1)µ.

If Ak ≤ z ≤ Ak+1 for some k = ¯̀, . . . , s̄ − 1, then
∑k

j=1 ρj(S) = ¯̀µ − A¯̀ and g(a(S) +

ak+1) = 0. Based on Proposition 4.6, we have

η0(z) = g(Ak+1 + a(S)− z)− ¯̀µ+ A¯̀

= min{0, µ+ z − Ak+1} − ¯̀µ+ A¯̀ = −¯̀µ+ A¯̀,

where the third equality follows from µ+ z − Ak+1 ≥ µ− ak ≥ 0.

If z ≥ As̄−1, then the derivation is omitted for brevity as it is similar to the case where

Ak ≤ z ≤ Ak+1 for some k = ¯̀, . . . , s̄− 1.

4.4 Lifting for conv(PMC)

Next, we study the multidimensional lifting for conv(P ) when X contains multiple dis-

joint cardinality constraints. Recall that

PMC = {(w, x) ∈ R× {0, 1}n : w ≤ g(aTx),
∑
j∈Ni

xj ≤ di ∀i ∈ [r]},

where {Ni}ri=1 form a partition of N . Throughout this section, we define a mapping function

σ : N → [r] such that σ(j) = i if j ∈ Ni for some i ∈ [r]. For any set S ⊆ N , let Si := S∩Ni

for any i ∈ [r].

In this section, we show that the multidimensional lifting on variables fixed at zeros is

SI and a family of facet-defining inequalities is then derived for conv(PMC) in Section 4.4.1.

These results extend previous studies on the mixed 0-1 knapsack set and the single-node

flow set. In Section 4.4.2, we investigate the lifting procedure on variables fixed at ones.

Unfortunately, the multidimensional lifting is not SI in general, but we develop a family of

strong valid inequalities for conv(PMC) through subadditive approximation.
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4.4.1 Lifted Inequalities From PMC(S̄, ∅)

Given a set S ⊆ N such that |Si| ≤ di for all i ∈ [r], we start with the lifting for

conv(PMC) by restricting xj = 0 for j ∈ S̄. Let PMC(S̄, ∅) = {(w, x) ∈ PMC : xj = 0 ∀j ∈

S̄}. By Proposition 4.1, the inequality w ≤ f(S) −
∑

j∈S ρj(S \ j)(1 − xj) defines a facet

of conv(PMC(S̄, ∅)). To lift this seed inequality for conv(PMC), the corresponding lifting

function is given by:

γ

(
z

u

)
= max

w,x
w +

∑
j∈S

ρj(S \ j)(1− xj)− f(S)

s.t. w ≤ g(
∑
j∈S

ajxj + z),

∑
j∈Si

xj + ui ≤ di ∀i ∈ [r],

xj ∈ {0, 1} ∀j ∈ S,

where z ∈ R+ and u ∈ Zr+. Note that if r = n and di = 1 for all i ∈ [r], then γ
(
z
u

)
= γ0(z)

as discussed in Section 4.3.1.

Although the value of u is multidimensional, the coefficients column of xj is eσ(j) for

j ∈ S̄; recall that the mapping function σ(j) = i if j ∈ Ni for some i ∈ [r]. It implies that

all possible values of
(
z
u

)
for lifting variable xj are of a special structure, i.e., they are in

Zj := R+×{eσ(j)} for j ∈ S̄. Because of this observation, a “weaker subadditivity” condition

following Theorem 4.2 is sufficient to ensure the sequence independent lifting. We formalize

this result in the next lemma with the proof omitted, given that it is a direct consequence

of Theorem 4.2.

Lemma 4.7. The multidimensional lifting of w ≤ f(S)−
∑

j∈S ρj(S \ j)(1−xj) is SI for all

possible values of
(
z
u

)
∈ R+ × {e1, . . . , er} if and only if for any Γ ⊆ S̄ such that |Γi| ≤ di,

we have ∑
j∈Γ

γ

(
zj

eσ(j)

)
≥ γ(

∑
j∈Γ

(
zj

eσ(j)

)
) ∀zj ≥ 0, j ∈ Γ. (4.20)

By showing that lifting function γ
(
z
u

)
satisfies (4.20) in Lemma 4.7, we have the following

result as the main one of this subsection.
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Theorem 4.6. If |Si| ≤ di for some S ⊆ N and all i ∈ [r], then the inequality

w ≤ f(S)−
∑
j∈S

ρj(S \ j)(1− xj) +
∑
j∈S̄

γ

(
aj

eσ(j)

)
xj (4.21)

is facet-defining for conv(PMC).

Proof. See Appendix .

Next, we discuss how to compute γ
(
z
u

)
, and we introduce a simpler problem that replaces

the cardinality constraints by fixing a subset of variables. Given T ⊆ S, define

γT (z) = max


w +

∑
j∈S

ρj(S \ j)(1− xj)− f(S) : xj = 0 ∀j ∈ T,

w ≤ g(
∑
j∈S

ajxj + z), xj ∈ {0, 1} ∀j ∈ S

 . (4.22)

Note that if T = ∅, then γ∅(z) = γ0(z). If |Ti| ≥ |Si| + ui − di for all i ∈ [r], then problem

(4.22) can also be interpreted as the optimization problem for the lifting function γ
(
z
u

)
when

we fix variables in T to 0. Consequently, γ
(
z
u

)
is reducible to solving a set of subproblems

given by γT (z). Specifically, for any Γ ⊆ S̄, we have that

γ

(
z∑

j∈Γ eσ(j)

)
= max

T⊆S

{
γT (z) : |Ti| = max{0, |Si|+ |Γi| − di} ∀i ∈ [r]

}
, (4.23)

and our question of interest now is how to compute γT (z). Next, we assume that S =

{1, . . . , s} such that a1 ≥ · · · ≥ as. Let A0 = 0 and Ak =
∑k

j=1 aj for k ∈ S.

Lemma 4.8. Suppose T = {`1, . . . , `|T |} ⊆ S such that `1 < · · · < `|T |. Let ATt = a(T ) −∑t
j=1 a`j for t = 1, . . . , |T |, and AT0 = a(T ), `0 = 0. Then γT (z) is computed as follows:

Case 1 If 0 ≤ z ≤ a(T ), then

γT (z) = g(a(S)− a(T ) + z) +
∑
j∈T

ρj(S \ j)− f(S).

Case 2 If Ak +ATt ≤ z ≤ Ak+1 +ATt for k = `t, . . . , `t+1 − 2 and t = 0, 1, . . . , |T | − 1, then

γT (z) = g(a(S)− Ak+1 − ATt + z) +
∑

j∈[k+1]∪T

ρj(S \ j)− f(S).
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Case 3 If Ak ≤ z ≤ Ak+1 for k = `|T |, . . . , s− 2, then

γT (z) = g(a(S)− Ak+1 + z) +
∑

j∈[k+1]

ρj(S \ j)− f(S).

Case 4 If z ≥ As−1, then

γT (z) = g(z) +
∑
j∈S

ρj(S \ j)− f(S).

Proof. Recall from Section 4.3.1 that for any Λ ⊆ S, we denote the objective function value

for z and xΛ of the lifting problem as h(z,Λ) = g(a(Λ) + z) +
∑

j∈S\Λ ρj(S \ j)− f(S).

Case 1 If 0 ≤ z ≤ a(T ), then for any Λ $ S \ T , we have a(Λ) + z ≤ a(S), which implies

that h(z,Λ) ≤ h(z, S \ T ) based on Lemma 4.3. Therefore, S \ T is an optimal solution set

to compute γT (z) and the result follows.

Case 2 If Ak +ATt < z ≤ Ak+1 +ATt for k = `t, . . . , `t+1− 2 and t = 0, 1, . . . , |T | − 1, then it

suffices to show that {k+ 2, . . . , s} \T is an optimal solution set to compute γT (z). Suppose

Λ∗ ⊆ S \ T is an optimal solution set for γT (z). Note that based on Lemma 4.3, there exists

Λ∗ such that a(Λ∗) + z ≤ a(S) and a(Λ∗) + aj + z > a(S) for all j ∈ S \ (T ∪Λ∗). Therefore,

if {k + 2, . . . , s} \ T ⊆ Λ∗, then Λ∗ = {k + 2, . . . , s} \ T.

Suppose {k+ 2, . . . , s} \T * Λ∗. Let k0 be the largest index such that k0 /∈ Λ∗ ∪T , then

k0 ≥ k + 2. We next construct a new optimal solution set Λ̃ such that {k0, . . . , s} \ T ⊆ Λ̃.

Since a(Λ∗) + ak0 + z > a(S), there must exist some j0 ∈ Λ∗ such that j0 < k0. It follows

from Lemma 4.4 that h(z,Λ∗∪k0 \j0) ≥ h(z,Λ∗) because of aj0 ≥ ak0 . Thus, Λ̃ = Λ∗∪k0 \j0

is also an optimal solution set. Proceeding in a recursive manner, we can conclude that

{k + 2, . . . , s} \ T is an optimal solution.

Case 3 If Ak ≤ z ≤ Ak+1 for some k = `|T |, . . . , s − 2, then similar to Case 2, we can show

that {k + 2, . . . , s} is an optimal solution set to compute γT (z).

Case 4 If z ≥ As−1, then for any nonempty set Λ ⊆ S \ T , a(Λ) + z ≥ as + z ≥ a(S). It

immediately follows that h(z,Λ) ≤ h(z, ∅) based on Lemma 4.3. Therefore, ∅ is an optimal

solution set to compute γT (z) and the result follows.
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Observe that γT (z) = γ0(z) when z ≥ A`|T | for any T ⊆ S. Also, function γT (z) is

nonincreasing on T , that is γT (z) ≤ γT ′(z) ≤ γ0(z) if T ′ ⊆ T .

Figure 8: The functions γT (z) for Example 4.3.

Example 4.3. Consider PMC = {(w, x) ∈ R × {0, 1}7 : w ≤ − exp(−aTx), x3 + x5 + x6 ≤

2, x1+x4+x7 ≤ 2}, where n = 7 and a = (1, 0.8, 0.7, 0.6, 0.5, 0.3, 0.2)T . Let S = {2, 3, 4, 6, 7}.

The functions γT (z) are depicted in Figure 8. In Section 4.3.1, we show that γ0(z) is a

subadditive function on R+. However, we can see from Figure 8 that function γT (z) is not

subadditive on z ∈ R+ in general. One numerical example is also provided as follows: for

γ{4}(z), we have γ{4}(0.4) + γ{4}(0.5) = 0.0446 + 0.0533 < 0.1039 = γ{4}(0.9).

Next, we further simplify computing γ
(
z
ei

)
using the following observation.

Proposition 4.7. For any i ∈ [r], assume Si = {i1, . . . , i`} such that ai1 ≥ · · · ≥ ai`. If

|Si| < di, then γ
(
z
ei

)
= γ0(z). If |Si| = di, then

γ

(
z

ei

)
= max{γ{i1}(z), γ{i`}(z)}.
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Proof. First, by (4.23) we have

γ

(
z

ei

)
= max

T⊆Si
{γT (z) : |T | = max{0, |Si|+ 1− di}}.

If |Si| < di, then it is clear that the result follows. If |Si| = di, then γ
(
z
ei

)
= maxij∈Si{γ{ij}(z)}.

It follows that max{γ{i1}(z), γi`(z))} ≤ γ
(
z
ei

)
. Assume Λ∗ ⊆ S such that xΛ∗ is an op-

timal solution to compute γ
(
z
ei

)
. Note that Λ∗ 6= Si due to the cardinality constraints∑

j∈Si xj ≤ di − 1 and |Si| = di.

Suppose i1, i` ∈ Λ∗ and ij ∈ Si \ Λ∗, then we can construct a new optimal solution set

Λ̃ such that either i1 /∈ Λ̃ or i` /∈ Λ̃. If a(Λ∗) + aij + z ≤ a(S), then based on Lemma 4.4,

we have h(z,Λ∗ ∪ ij \ i`) ≥ h(z,Λ∗) as aij ≥ ai` . It follows that Λ̃ = Λ∗ ∪ ij \ i` is also an

optimal set and i` /∈ Λ̃. Otherwise, if a(Λ∗) + aij + z ≥ a(S), then based on Lemma 4.4,

we have h(z,Λ∗ ∪ ij \ i1) ≥ h(z,Λ∗) as ai1 ≥ aij . It follows that Λ̃ = Λ∗ ∪ ij \ i1 is also an

optimal set and i1 /∈ Λ̃.

Hence, there exists an optimal set Λ∗ such that either i1 /∈ Λ∗ or i` /∈ Λ∗. It yields that

γ
(
z
ei

)
= h(z,Λ∗) ≤ max{γ{i1}(z), γ{i`}(z)}.

Example 3 (Cont.) Let S = {2, 3, 4, 6, 7}. To lift variable x1, based on Proposition 4.7 the

corresponding lifting function (depicted in Figure 9(a)) is given by

γ

(
z

e2

)
= max{γ{4}(z), γ{7}(z)}.

If the cardinality constraints are ignored, then the inequality (4.16) for conv(P0) is:

w ≤− 0.3441 + 0.1181x1 + 0.091x2 + 0.0753x3 + 0.0611x4

+ 0.065x5 + 0.026x6 + 0.0164x7.

In contrast, the lifted inequality (4.21) for conv(PMC) is given by:

w ≤− 0.3441 + 0.1156x1 + 0.091x2 + 0.0753x3 + 0.0611x4

+ 0.0589x5 + 0.026x6 + 0.0164x7.
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Remark 4.1. Below numerical example shows that lifting function γ
(
z
u

)
is not subadditive

on
(
z
u

)
∈ R+ × Zr+ in general:

γ

(
2

e1

)
+ γ

(
0.2

e1 + e2

)
= 0.2196 + 0.0164 < 0.2369 = γ

(
2.2

2e1 + e2

)
.

Therefore, the subadditivity as a sufficient condition to ensure SI lifting, is not applicable to

prove Theorem 4.6.

(a) g(z) = − exp(−z). (b) g(z) = min{0, b− z}.

Figure 9: The lifting functions γ
(
z
u

)
for Examples 4.3 and 4.4.

We next discuss several immediate implications of Theorem 4.6 and Proposition 4.7 that

extend and strengthen some previous works. If N1 = N and d1 = d, then let PC = {(w, x) ∈

{0, 1}n : w ≤ g(aTx),
∑

j∈N xj ≤ d}. In [122], Yu and Ahmed provide a subadditive

approximation by solving the continuous relaxation of the lifting problem for PC . Here, as

the consequence of Theorem 4.6, we show that the lifting procedure is already SI and the

approximations are not required.

Corollary 4.5. If |S| ≤ d for any S ⊆ N , then the inequality w ≤ f(S)−
∑

j∈S ρj(S \j)(1−

xj) +
∑

j∈S̄ γ0(aj)xj defines a facet of conv(PC).
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Proof. Based on Theorem 4.6, we have that for any S ⊆ N such that |S| ≤ d, w ≤

f(S)−
∑

j∈S ρj(S \ j)(1− xj) +
∑

j∈S̄ γ
(
aj
1

)
xj defines a facet of conv(PC). Thus, it remains

to show that γ
(
z
1

)
= γ0(z). Suppose S = {1, . . . , s} such that a1 ≥ · · · ≥ as. Then based on

Proposition 4.7, we have

γ

(
z

1

)
= max{γ{1}(z), γ{s}(z)}.

By Lemma 4.8, we have γ{1}(z) = γ0(z). Since γT (z) ≤ γ0(z) for any T ⊆ S, it yields the

result.

Denote by KMC and FMC the mixed 0-1 knapsack set K and single-node flow set F

when X contains multiple disjoint cardinality constraints, respectively. Then our results can

be extended to obtain a family of facet-defining inequalities for conv(KMC). Note that the

polyhedral study of KMC has not been provided in the related literature (to the best of

our knowledge). Meantime, the valid inequalities for conv(FMC) can be derived through the

reduction from those for conv(KMC).

Corollary 4.6. Consider a set S ⊆ N and λ = a(S)− b > 0. Suppose S = {1, . . . , s} such

that a1 ≥ · · · ≥ a` > λ ≥ · · · ≥ as. If |Si| ≤ di for all i ∈ [r], then the inequality

−π ≤ −λ+
∑̀
j=1

λ(1− xj) +
s∑

j=`+1

aj(1− xj) +
∑
j∈S̄

γ

(
aj

eσ(j)

)
xj

is facet-defining for conv(KMC), where Si = {i1, . . . , i`} such that i1 < · · · < i`, and

γ

(
z

ei

)
=

γ0(z) if |Si| < di,

max{γ{i1}(z), γi`(z)} if |Si| = di,

where γ0(z) is given in Corollary 4.3. For j0 ∈ {i1, i`} we have that if j0 ≤ `, then

γ{j0}(z) =



min{0, aj0 − λ− z} if 0 ≤ z ≤ aj0 ,

−kλ+ min{0, Ak+1 + aj0 − λ− z} if Ak + aj0 ≤ z ≤ Ak+1 + aj0 ,

k = 0, . . . , j0 − 2,

γ0(z) if z ≥ Aj0 ,
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and if j0 > `, then

γ{j0}(z) =



−z if 0 ≤ z ≤ aj0 ,

−(k − 1)λ− aj0 if Ak + aj0 ≤ z ≤ Ak+1 + aj0 − λ,

k = 0, . . . , `− 1,

−kλ+ Ak+1 − z if Ak+1 + aj0 − λ ≤ z ≤ Ak+1 + aj0 ,

k = 0, . . . , `− 1,

−`λ+ A` − z if z ≥ A`.

Proof. Similar to the proof in Corollary 4.3, it directly follows from Theorem 4.6 and Propo-

sition 4.7.

Example 4.4. Consider KMC = {(π, x) ∈ R+ × {0, 1}n : aTx ≤ b + π, x3 + x5 + x6 ≤

2, x1+x4+x7 ≤ 2}, where n = 7 and a = (1, 0.8, 0.7, 0.6, 0.5, 0.3, 0.2)T . Let S = {2, 3, 4, 6, 7},

then the lifting function γ
(
z
e2

)
is depicted in Figure 9(b).

4.4.2 Lifted Inequalities From PMC(∅, S)

In this section, we describe valid inequalities for conv(PMC) through lifting procedure

from PMC(∅, S). Given a set S ⊆ N such that |Si| ≤ di for all i ∈ [r], the lifting function of

seed inequality w ≤ f(S) +
∑

j∈S̄ ρj(S)xj is given by:

η

(
z

u

)
= max

w,x
w −

∑
j∈S̄

ρj(S)xj − f(S)

s.t. w ≤ g(
∑
j∈S̄

ajxj + a(S)− z),

∑
j∈S̄i

xj − ui ≤ di − |Si| ∀i ∈ [r],

xj ∈ {0, 1} ∀j ∈ S̄,

where z ∈ R+ and u ∈ Zr+. Note that if ui ≥ |Ni| − di for all i ∈ [r], then the cardinality

constraints in the above problem can be removed, and η
(
z
u

)
= η0(z). Similar to the discussion

on γ
(
z
u

)
, we only need to consider the value of u = ei for i ∈ [r]. The sufficient and necessary
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conditions for SI lifting is derived below based on Theorem 4.2; the proof is omitted as it

follows directly.

Lemma 4.9. The lifting of w ≤ f(S) +
∑

j∈S̄ ρj(S)xj is SI for all possible values of
(
z
u

)
∈

R+ × {e1, . . . , er} if and only if for any Γ ⊆ S∑
j∈Γ

η

(
zj

eσ(j)

)
≥ η(

∑
j∈Γ

(
zj

eσ(j)

)
) ∀zj ≥ 0, j ∈ Γ. (4.24)

To verify condition (4.24), our first question of interest is to compute η
(
z
u

)
. We introduce

a simpler optimization problem as given below:

ηT (z) = max


w −

∑
j∈S̄

ρj(S)xj − f(S) : xj = 0 ∀j ∈ T,

w ≤ g(
∑
j∈S̄

ajxj + a(S)− z), xj ∈ {0, 1} ∀j ∈ S̄

 , (4.25)

where T is a subset of S̄. Note that if T = ∅, then η∅(z) = η0(z). In this section, we assume

that S̄ = {1, 2, . . . , s̄} such that a1 ≥ · · · ≥ as̄. Let A0 = 0 and Ak =
∑k

j=1 aj for k ∈ S̄.

Lemma 4.10. Suppose T = {`1, . . . , `|T |} ⊆ S̄ such that `1 < · · · < `|T |. Let ATt =
∑t

j=1 a`j

for t = 1, . . . , |T |, and AT0 = 0, `0 = 0. Then ηT (z) is computed as follows:

Case 1. If Ak−ATt ≤ z ≤ Ak+1−ATt for k = `t, . . . , `t+1− 2, and t = 0, 1, . . . , |T | − 1, then

ηT (z) = g(a(S) + Ak+1 − ATt − z)−
∑

j∈[k+1]\T

ρj(S)− f(S).

Case 2. If Ak − a(T ) ≤ z ≤ Ak+1 − a(T ) for k = `|T |, . . . , s̄− 2, then

ηT (z) = g(a(S) + Ak+1 − a(T )− z)−
∑

j∈[k+1]\T

ρj(S)− f(S).

Case 3. If z ≥ As̄−1 − a(T ), then

ηT (z) = g(a(N \ T )− z)−
∑
j∈S̄\T

ρj(S)− f(S).

Furthermore, ηT (z) is subadditive on z ∈ R+.

138



Proof. Let N ′ = N \ T, S ′ = S, then S̄ ′ = S̄ \ T. Consider

P ′0 = {(w, x) ∈ R× {0, 1}|N ′| : w ≤ g(aTx)}.

Then we note that ηT (z) is the lifting function of seed inequality w ≤ f(S ′) +
∑

j∈S̄′ ρj(S
′)xj

for conv(P ′0). Therefore, we can compute ηT (z) following from Proposition 4.6 and conclude

that ηT (z) is subadditive on R+.

Proposition 4.8. Suppose S̄i = {i1, . . . , is̄i} such that i1 < · · · < is̄i for all i ∈ [r]. For any

Γ ⊆ S, let d′i = min{|S̄i|, di − |Si|+ |Γi|} and

T = ∪i∈[r]{id′i+1, . . . , is̄i}.

Then η
(

z∑
j∈Γ eσ(j)

)
= ηT (z).

Proof. It is sufficient to show that there exists an optimal solution set Λ∗ ⊆ S̄ \ T to

compute η
(

z∑
j∈Γ eσ(j)

)
. Suppose not, let Λ0 be an optimal solution set for η

(
z∑

j∈Γ eσ(j)

)
. Assume

j0 ∈ Λ0 ∩ T , and j0 ∈ Ni0 for some i0 ∈ [r]. By Lemma 4.5, we can find Λ0 such that

a(Λ0)− aj0 ≤ z

Note that there exists at least one j1 ∈ Ni0 and aj1 ≥ aj0 such that j1 /∈ Λ0 due to the

cardinality constraint
∑

j∈S̄i0
xj ≤ di0−|Si0|+ |Γi0|. Consider Λ̃ = Λ0∪j1\j0. It follows from

Lemma 4.6 that χ(z, Λ̃) ≥ χ(z,Λ0) as aj1 ≥ aj0 . Therefore, Λ̃ is also an optimal solution to

compute η
(

z∑
j∈Γ eσ(j)

)
. Then the result follows after the iterative construction.

Unfortunately, the following example indicates that the lifting procedure of seed inequal-

ity w ≤ f(S) +
∑

j∈S̄ ρj(S)xj for conv(PMC) might be sequence dependent in some cases.

Example 4.5. Consider PMC = {(w, x) ∈ R × {0, 1}7 : w ≤ − exp(−aTx),
∑7

j=1 xj ≤ 4},

where n = 7 and a = (0.8, 0.7, 0.6, 0.4, 2.2, 0.1)T . Let S = {5, 6}, then we have

η

(
2.2

e1

)
+ η

(
0.1

e1

)
= −0.1615− 0.0047 < η

(
2.3

2e1

)
= −0.1658.
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In view of the above example, we focus next on approximating η by subadditive functions

with some quality guarantees, which are consequently exploited to derive valid inequalities

for PMC .

Denote by Z = R+ × {0, 1, . . . , |S1|} × · · · × {0, 1, . . . , |Sr|} the domain of η
(
z
u

)
.

Definition 4.2. We say function ψ : Z → R is a subadditive valid approximation of η
(
z
u

)
if

ψ
(
z
u

)
≥ η
(
z
u

)
for all

(
z
u

)
∈ Z and∑

j∈Γ

ψ

(
zj

eσ(j)

)
≥ ψ(

∑
j∈Γ

(
zj

eσ(j)

)
) ∀zj ≥ 0,Γ ⊆ S.

To compare the strengths of subadditive valid approximate functions, Gu et al. [45]

develop two criteria, namely, non-dominance and maximality. Zeng and Richard [129] further

generalize these concepts for multidimensional lifting procedure. We follow these two criteria

to describe a “good” quality subadditive valid approximation.

Let Z = R+ × {e1, . . . , er} and E = {
(
z
u

)
∈ Z : η

(
z
u

)
= ηj

(
z
u

)
for all aj ≥ 0, and all j ∈

S, and all lifting sequences}. Then we define:

Definition 4.3. A subadditive valid approximate function ψ is non-dominated if there does

not exist any valid subadditive approximation ψ′ such that ψ
(
z
u

)
≥ ψ′

(
z
u

)
for all

(
z
u

)
∈ Z, and

ψ
(
z0
u0

)
> ψ′

(
z0
u0

)
for some

(
z0
u0

)
∈ Z.

Definition 4.4. A subadditive valid approximate function ψ is maximal if ψ
(
z
u

)
= η
(
z
u

)
for

all
(
z
u

)
∈ E.

Proposition 4.9. The subadditive valid approximate function ψ
(
z
u

)
= η
(
z
u0

)
for all

(
z
u

)
∈ Z,

where u0 =
∑

i∈[r] λiei and λi = min{|Si|, |Ni| − di} is non-dominated and maximal.

Proof. It is clear that ψ
(
z
u

)
≥ η

(
z
u

)
for all

(
z
u

)
∈ Z. By Lemma 4.10, we have that η

(
z
u0

)
is

subadditive on R+. Thus, for any Γ ⊆ S and zj ≥ 0, we have∑
j∈Γ

ψ

(
zj

eσ(j)

)
=
∑
j∈Γ

η

(
zj
u0

)
≥ η

(
z(Γ)

u0

)
= ψ

(
z(Γ)∑
j∈Γ eσ(j)

)
.

Therefore, ψ
(
z
u

)
is a subadditive valid approximation for η.

We next prove that ψ
(
z
u

)
is non-dominated. Suppose ψ

(
z
u

)
is dominated by another

subadditive valid approximation ψ′
(
z
u

)
. Firstly, note that ψ

(
0
u

)
= η
(

0
u0

)
= 0 and 0 = η

(
0
u

)
≤
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ψ′
(

0
u

)
≤ ψ

(
0
u

)
, which yields that ψ′

(
0
u

)
= 0 for all u. Suppose there exists

(
z0
ei0

)
∈ Z such

that ψ
(
z0
ei0

)
> ψ′

(
z0
ei0

)
.

If λi0 = 0, then di = |Ni| and η
(
z
ei0

)
= η0(z). Therefore, ψ′

(
z0
ei0

)
≥ η
(
z
ei0

)
= η0(z) ≥ η

(
z0
u0

)
,

where the last inequality follows from η
(
z
u

)
≤ η0(z) for all

(
z
u

)
∈ Z. On the other hand, if

λi0 > 0, then based on Definition 4.2 of ψ′, we have
∑

i∈[r]\i0 λiψ
′( 0

ei

)
+ (λi0 − 1)ψ′

(
0
ei0

)
+

ψ′
(
z0
ei0

)
≥ ψ′

(
z0
u0

)
≥ η
(
z0
u0

)
. It immediately follows that ψ′

(
z0
ei0

)
≥ η
(
z0
u0

)
.

Since ψ
(
z0
ei0

)
= η
(
z0
u0

)
based on the construction of ψ, we have

η

(
z0

u0

)
= ψ

(
z0

ei0

)
> ψ′

(
z0

ei0

)
≥ η

(
z0

u0

)
,

which is a contradiction. It follows that ψ is a non-dominated approximation.

Finally, we need to show that ψ
(
z
u

)
is maximal. Suppose ψ

(
z0
ei0

)
> η

(
z0
ei0

)
for some(

z0
ei0

)
∈ E, which implies that η

(
z0
u0

)
> η

(
z0
ei0

)
. For any j0 ∈ Si0 , let aj0 = z0, and aj = 0 for

other j ∈ S. Consider the lifting process that lifts j0 in the last step and thus, based on

equation (4.10), we have

η|S|

(
z0

ei0

)
≥ max

{
η

(
z0

ei0

)
, η

(
z0∑

j∈S eσ(j)

)
−
∑
j∈S

η

(
0

eσ(j)

)}

≥ η

(
z0∑

j∈S eσ(j)

)
= η

(
z0∑

i∈[r] |Si|ei

)
≥ η

(
z0

u0

)
> η

(
z0

ei0

)
,

where the second inequality follows from η
(

0
u

)
= 0 and the third inequality follows from the

fact that η
(
z
u

)
is monotone increasing on u for a fixed z. Therefore, we obtain a contradiction

with our initial assumption that
(
z0
ei0

)
∈ E.

Theorem 4.7. Consider ψ
(
z
u

)
= η

(
z
u0

)
for all

(
z
u

)
∈ Z, where u0 =

∑
i∈[r] λiei and λi =

min{|Si|, |Ni| − di}. Then the inequality

w ≤ f(S) +
∑
j∈S̄

ρj(S)xj +
∑
j∈S

ψ

(
aj

eσ(j)

)
(1− xj) (4.26)

is valid for conv(PMC).

Proof. It directly follows from ψ
(
z
u

)
≥ η
(
z
u

)
for all

(
z
u

)
∈ Z and Proposition 4.9.
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4.5 Computational Experiments

In our computational study we evaluate the lifted inequalities for conv(P0) and conv(PMC).

Our experiments are performed using Gurobi 8.1.1 [47] on a Windows 10 PC with a 3.2 GHz

CPU and 8 GB of RAM. The time limit is set to 1800 seconds and the relative MIP optimality

gap is set to 0.01%.

For each fixed instance size (i.e., each row in any of the tables in this section), we ran-

domly generate 10 instances and report the solver’s average performance in all tables. In

particular, for those instances solved to optimality within the time limit, we report their

average solution time in seconds (under column “Time”), the number of added cuts (under

column “Cuts”), and the number of explored branch-and-cut nodes (under column “Nodes”).

For instances that cannot be solved to optimality within the time limit, we show their aver-

age relative gaps between the best known upper bound and the lower bound at termination

(“Egap”); also, the number of unsolved instances (out of 10) is presented as the superscript

over the gap value.

Next, in Section 4.5.1 we discuss a heuristic separation algorithm to generate lifted in-

equalities. The computational results are then discussed in Sections 4.5.2 and 4.5.3 for the

monotonic and non-monotonic submodular functions, respectively.

4.5.1 Separation Problem

To derive the violated inequalities of the form (4.16) and (4.19) that separate solution

(w̄, x̄) ∈ R×Rn
+, the key step is to identify initial set S and the seed inequality. If x̄ is binary,

then the separation is trivial by setting S := {j ∈ N : x̄j = 1}. Otherwise, i.e., when some

of x̄’s components are not binary, we are interested in finding S such that the corresponding

inequality of the form (4.16) is most violated. That is, we consider the following optimization

problem:

min
S∈I
{f(S)−

∑
j∈S

ρj(S)(1− x̄j) +
∑
j∈S̄

γS0 (aj)x̄j}, (4.27)

where I is a collection of feasible sets, and γS0 is the lifting function of the seed inequality

w ≤ f(S)−
∑

j∈S̄ ρj(S)xj for conv(P0).
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Algorithm 7 Separation Algorithm for constructing S

1: S0 = {j ∈ N : x̄j ≥ 1− ε0}; S = S0;
2: R = {j ∈ N : ε1 < x̄j < 1− ε0}; assume R = {1, 2, . . . , |R|};
3: Sort (ρj(S)− γS0 (aj))x̄j for j ∈ R in monotonic increasing order;
4: for j = 1, 2, . . . |R| do
5: if S ∪ j0 ∈ I then
6: S = S ∪ j0;
7: end if
8: end for

Return S;

We first discuss the property of the objective function in (4.27). Given S0 ⊆ N and

j0 ∈ N\S0, denote by z0 and z1 the objective function values of (4.27) for S0 and S1 := S0∪j0,

respectively. We have

z1 − z0 = f(S1)− f(S0) + ∆1 + ∆2 − ρj0(S0)(1− x̄j0)− γS0
0 (aj0)x̄j0

= [ρj0(S0)− γS0
0 (aj0)]x̄j0 + ∆1 + ∆2,

where ∆1 =
∑

j∈S̄1
[ρj(S0)− ρj(S1)](1− x̄j) and ∆2 =

∑
j∈S0

[γS1
0 (aj)− γS0

0 (aj)]x̄j.

Based on the submodularity definition, we have that ρj(S0) ≥ ρj(S1) and ∆1 ≥ 0. We

can also verify that γS1
0 (z) ≤ γS0

0 (z) for any z ≥ 0, which implies that ∆2 ≤ 0. Thus, the

separation problem becomes rather complex if we take ∆1 and ∆2 into account, in particular,

with respect to the required computational efforts.

Instead, we drop the terms ∆1 and ∆2 and consider the term [ρj0(S0)−γS0
0 (aj0)]x̄j0 only,

within a greedy algorithm to construct S. The pseudo-code is outlined in Algorithm 7. We

set ε0 = 0.5 and ε1 = 10−4 in the experiments.

Remark 4.2. If we ignore γS0 (aj)x̄j in (4.27), then the difference between z1 and z0 becomes

z1 − z0 = ρj0(S0)x̄j0 + ∆1.

If f is an increasing function, then ρj0(S0) ≥ 0 and ∆1 ≥ 0. It yields that z1 − z0 ≥ 0 for

any j0, and ∅ is optimal for the problem (4.27). Hence, it is necessary to consider the term

γS0 (aj)x̄j in (4.27) to derive a seed inequality.
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4.5.2 Monotonic Submodular Function f

We evaluate the lifted inequalities using the expected utility maximization problem

from [2, 122]. Given a set of investment options N , let vi ∈ Rn
+ be the value of investments

in the future at scenario i ∈ [m] with probability πi, i = 1, . . . ,m. We use the exponential

function 1 − exp(z/λ) as the utility function with risk tolerance λ. Then the problem is

formulated as:

max

{
m∑
i=1

πiwi : wi ≤ − exp(−v
T
i x

λ
) ∀i ∈ [m], x ∈ X

}
.

We generate the values of vi using exactly the same settings as in [2]. Specifically, the prob-

ability of each scenario is equal to πi = 1
m

for all i ∈ [m]. The value of investment j at

scenario i is

vij = aj · exp(αj + βj ln fi + εij), (4.28)

where aj is uniformly generated from [0, 0.2]. For each j ∈ N , we draw the active return αj

from the uniform distribution [0.05, 0.1]. The passive return is represented by βj log fi, where

βj is uniformly generated from [0, 1] and log fi is from Normal(0.05, 0.0025). We generate

the residual error εij from Normal(0, 0.0025).

In our first set of experiments, we consider the cardinality constrained problem with

X = {x ∈ {0, 1}n :
∑n

j=1 xj ≤ d}. We set d = 15 for all test instances. Note that the lifted

inequalities developed in [122] coincide with those in [2] under the cardinality constraint X .

The computational results that compare cutting planes using the approximate lifted in-

equalities from [2, 122] and our exact lifted inequalities (4.16) and (4.19) are reported in

Table 15. Based on those results, we observe a few significant advantages of our exact lifted

inequalities (4.16) and (4.19) over the approximated ones. First, cutting planes using our

inequalities (4.16) and (4.19) demonstrate a superior computational capacity, given that all

instances can be solved exactly with negligible computational times. The approximate lifted

inequalities from [2] often need hundred times more computational efforts, and fail to com-

pute a large number of instances within the time limit. Second, utilizing (4.16) and (4.19)

makes the branch-and-cut algorithm very scalable. Unlike the case with the lifted inequalities
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from [2], which is sensitive to the size of instances and parameter λ, the branch-and-cut algo-

rithm with (4.16) and (4.19) has a rather stable performance across all instances, regardless

of sizes or parameter values. Finally, the exact lifted inequalities (4.16) and (4.19) provide a

very strong polyhedral description to the convex hull of P0. Although theoretically they are

not sufficient to describe the whole convex hull, it is interesting to note that all instances

are solved to optimality at the root node without branching. This observation suggests that

(4.16) and (4.19) represent a large portion of facet-defining inequalities of conv(P0).

Next, in our second set of experiments, we evaluate the lifted inequalities for conv(PMC).

We set r = 5, and divide N equally likely into 5 subsets. For each i ∈ [r], we then generate

integer di uniformly from [1, 5]. Table 16 reports the average performance of the approximate

lifted inequalities from [2], the lifted inequalities (4.16) and (4.19) for conv(P0), and the

lifted inequalities (4.21) and (4.26) for conv(PMC). As expected, the overall performance by

applying the approximate lifted inequalities from [2] is worst.

By comparing the lifted inequalities (4.16) and (4.19) with respect to (4.21) and (4.26),

we observe from Table 16 that the number of added cuts and branch-and-cut nodes are

reasonably close for each instance size (i.e., each row in Table 16). It is not surprising due to

the fact that the latter group is a direct extension of the former one. Nevertheless, for m =

100, we can see a considerable reduction in the number of cuts, and similar improvements

in the number of nodes and in the computational time can also be observed.

Another interesting observation from Table 16 is that one instance with n = 100,m = 100

and λ = 0.4 cannot be solved to optimality within the time limit by applying the lifted

inequalities (4.16) and (4.19), while all instances in this class can be solved within 21 seconds

on average by applying the lifted inequalities (4.21) and (4.26). Hence, we believe that for

more difficult instances considering the underlying structure of conv(PMC), rather than the

simple set P0, and then applying the corresponding exact lifted inequalities have a good

potential to be more effective.
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4.5.3 Non-Monotonic Submodular Function f

As pointed out earlier, unlike [2, 122], our results do not depend on the monotonic prop-

erty of submodular function f . Hence, it is of interest to carry out a computational study

with instances that involve non-monotonic f , and then to evaluate and analyze the perfor-

mance of our lifted inequalities. Specifically, we consider the power function −( z−b
λ

)
12
5 ; see

an illustrative example in Figure 10(a). To be consistent and comparable to our previous

results, a cardinality constraint is also considered. Hence, we have:

max

{
m∑
i=1

πiwi : wi ≤ −(
vTi x− bi

λ
)

12
5 ∀i ∈ [m],

n∑
j=1

xj ≤ d

}
.

In our experiments, for each i ∈ [m], we set πi = 1
m

and bi = 2.5, and then generate vi

according to (4.28). The cardinality budget d is generated from the discrete uniform distri-

bution [10, 20]. Since the approximate lifted inequalities from [2, 121] are not applicable, we

simply compare our exact lifted inequalities (4.16) and (4.19) with submodular inequalities

proposed by Nemhauser and Wolsey [86]. The coefficients of the lifting variables computed

by γ0(z) and γ̃0(z) proposed in [86] are depicted in Figure 10(b). Our numerical results are

summarized in Table 17.

Comparing to the results in Table 15, the non-monotonic instances are more challenging

than their monotonic counterparts. For the non-monotonic instances, almost half of them

cannot be solved within the time limit using the standard submodular formulation based

on the submodular inequalities from [86]. For some unsolved instances with small λ, the

average gaps at termination can be very large. For example, the average optimality gap at

termination over four unsolved instances with n = 50,m = 50 and λ = 0.8 is 55.32%. It is

worth pointing out that, a very large number of submodular inequalities are often generated

by the branch-and-cut algorithm, despite the fact that our test instances are rather small. A

similar observation is also made by Ahmed and Atamtürk [2] on monotonic instances. Hence,

it is reasonable to believe that the standard submodular formulation from [86] is often not

a practical strategy to solve general submodular maximization problems.

In contrast, after applying our exact lifted inequalities, all instances can be solved to

optimality within less than half an hour. Compared to the standard submodular formulation,
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the numbers of added cuts and explored branch-and-cut nodes are significantly smaller,

especially for large values of λ. Hence, these lifted inequalities can be computationally

effective, and, in general, strengthening the submodular inequalities is critical for solving the

submodular maximization problem.

By further comparing the results for inequalities (4.16) and (4.19) in Tables 15 and

17, we observe that the numbers of cuts and branch-and-cut nodes for the non-monotonic

submodular function are much larger than those for the monotonic one. Clearly, it demon-

strates that the set of non-monotonic submodular function is much harder to solve, while

its continuous relaxation provides, perhaps, a weak approximation. Indeed, we note that it

always requires a number of branching operations to find a feasible solution. It indicates

that our lifted inequalities probably represent only a small set of facet-defining inequalities.

Therefore, developing different types of valid inequalities and more advanced branch-and-cut

strategies for the non-monotonic submodular function maximization problems would be two

interesting questions to address in future research.

4.6 Concluding Remarks

In this chapter, we study the mixed-integer set of the submodular maximization problem

through sequence independent lifting. We strengthen and generalize the previous results

from [2] in the following three aspects: (i) our results can be applied to any general concave

function g that allows us to build the connections with the mixed 0-1 knapsack set and the

single-node flow set; (ii) for P when X = {0, 1}n, we prove that the lifting functions on

two classes of seed inequalities are naturally subadditive, which immediately leads to two

family of facet-defining inequalities; (iii) we further investigate the convex hull of P when X

involves disjoint cardinality constraints and a family of facets is developed by exploiting mul-

tidimensional lifting; another family of strong valid inequalities is also developed with some

quality guarantees. The computational experiments with monotonic and non-monotonic

submodular functions illustrate the effectiveness of the proposed lifted inequalities.
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Table 15: The performance of lifted inequalities for P when f is monotonic and X is a cardinality

constraint, i.e., X = {x ∈ {0, 1}n :
∑n

j=1 xj ≤ d}. For each class of instances, the number of

unsolved instances (out of 10) is presented as the superscript over the “Egap” value.

Lifted ineqs. from [2] Ineqs. (4.16) & (4.19)

n m λ Cuts Nodes Time (s) Egap (%) Cuts Nodes Time (s)

100 100 0.4 1000 0 4 1000 0 2

100 100 0.6 6540 73 42 800 0 2

100 100 0.8 3349 30 21 600 0 1

100 100 1 3030 23 18 600 0 1

100 150 0.4 1500 0 6 1500 0 4

100 150 0.6 8985 67 58 1200 0 3

100 150 0.8 3209 12 19 900 0 2

100 150 1 2910 10 18 900 0 2

200 100 0.4 1000 0 8 5.34 1000 0 4

200 100 0.6 21342 423 376 1.433 800 0 3

200 100 0.8 16120 248 221 0.41 600 0 2

200 100 1 11690 217 208 600 0 2

200 150 0.4 1500 0 11 6.924 1500 0 6

200 150 0.6 30422 595 852 2.032 1200 0 5

200 150 0.8 19617 159 251 0.51 900 0 4

200 150 1 15990 118 194 900 0 4

300 100 0.4 1019 0 12 12.378 1000 0 6

300 100 0.6 22800 299 439 1.879 800 0 5

300 100 0.8 24235 795 1053 0.632 600 0 4

300 100 1 19830 344 483 600 0 4

300 150 0.4 1575 0 19 13.616 1500 0 10

300 150 0.6 22650 665 1414 2.448 1200 0 7

300 150 0.8 25250 286 637 1.224 900 0 5

300 150 1 20960 168 393 0.43 900 0 5
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Table 16: The performance of lifted inequalities for P when f is monotonic and X involves multiple

disjoint cardinality constraints. For each class of instances, the number of unsolved instances (out

of 10) is presented as the superscript over the “Egap” value.

Lifted ineqs. from [2] Ineqs. (4.16) & (4.19) Ineqs. (4.21) & (4.26)

n m λ Cuts Nodes Time (s) Egap (%) Cuts Nodes Time (s) Egap (%) Cuts Nodes Time (s)

100 50 0.4 12695 495 348 730 2 6 730 2 6

100 50 0.6 3014 62 77 999 8 11 1119 9 13

100 50 0.8 2290 36 56 790 6 9 865 8 10

100 50 1 1760 22 43 690 6 8 750 6 9

100 100 0.4 2225 10 33 8.862 1491 4 12 2.221 2299 12 21

100 100 0.6 6078 54 117 3.071 4080 41 37 2269 11 22

100 100 0.8 7428 82 177 3347 25 35 1997 10 22

100 100 1 4358 36 95 2830 21 28 1639 8 18

200 50 0.4 6450 246 362 7.415 820 5 13 770 4 13

200 50 0.6 10524 301 563 2.422 887 7 18 829 6 18

200 50 0.8 6289 155 291 719 5 15 810 6 18

200 50 1 3596 67 160 535 3 11 545 4 11

200 100 0.4 4836 70 221 9.633 1600 4 23 1226 2 18

200 100 0.6 17500 232 764 4.195 2630 16 44 2158 12 38

200 100 0.8 13004 151 530 1.152 2761 17 50 2699 16 51

200 100 1 9656 110 418 0.861 1730 8 35 1679 8 33

300 50 0.4 583 0 23 11.827 836 6 19 1285 13 34

300 50 0.6 19750 640 1539 4.479 776 6 18 820 7 21

300 50 0.8 8836 241 527 1.886 655 5 17 588 4 16

300 50 1 11507 380 869 1.242 810 7 21 900 8 25

300 100 0.4 1200 0 47 13.725 1080 0 20 1240 1 27

300 100 0.6 22500 280 1536 4.339 1180 2 24 880 0 18

300 100 0.8 11924 144 696 1.987 1358 5 35 1158 3 30

300 100 1 12329 143 770 1.083 1463 6 39 923 2 24
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(a) (b)

Figure 10: (a) The plot of concave function −(z − 1)12/5; (b) The plot of coefficients for the
lifting variables computed by our proposed γ0(z) and γ̃0(z), which is derived from submodular
inequalities [86].
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Table 17: The performance of lifted inequalities for P when f is non-monotonic and X is a
cardinality constraint, i.e., X = {x ∈ {0, 1}n :

∑n
j=1 xj ≤ d}. For each class of instances, the

number of unsolved instances (out of 10) is presented as the superscript over the “Egap” value.

Submodular ineqs. from [86] Ineqs. (4.16) & (4.19)

n m λ Cuts Nodes Time (s) Egap (%) Cuts Nodes Time (s)

50 25 0.8 21698 714 147 33.096 2867 132 22

50 25 1 17444 549 112 17.536 2935 126 22

50 25 2 12531 373 77 2.996 2302 89 16

50 25 4 17617 508 114 0.566 1808 62 12

50 50 0.8 25698 417 158 55.324 9633 214 69

50 50 1 24831 376 145 25.714 10046 227 74

50 50 2 29921 454 182 3.684 7911 173 59

50 50 4 23627 365 143 0.714 3645 70 25

50 100 0.8 56324 430 338 33.544 15793 176 118

50 100 1 75853 556 464 15.314 16002 174 118

50 100 2 65417 479 405 2.394 14760 160 113

50 100 4 58850 413 349 0.464 7480 74 53

100 25 0.8 26230 907 325 8.73 7799 340 99

100 25 1 23687 826 285 4.823 8018 334 101

100 25 2 33483 1057 438 1.023 7763 321 103

100 25 4 9502 371 114 0.252 3079 129 44

100 50 0.8 56978 982 733 7.836 19255 446 263

100 50 1 65942 1010 878 3.566 15629 361 216

100 50 2 72781 1129 958 0.876 15706 353 223

100 50 4 46631 662 583 0.146 12448 261 185

100 100 0.8 84090 815 1012 15.823 46021 494 637

100 100 1 96181 862 1162 6.934 43179 459 594

100 100 2 92225 775 1147 1.483 41406 428 587

100 100 4 59216 487 724 0.283 23576 231 313
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5.0 Conclusion

In this dissertation, we study two broad classes of mixed-integer optimization problems

that is, bilevel optimization and submodular maximization problems. In particular, for

bilevel problems our novel results are based on exploiting the concept of the local optimality

at the lower level, where we assume that the follower’s variables are all binary. Furthermore,

we provide several mathematical models with strong valid inequalities for solving these two

classes of problems. Some interesting connections between the bilevel optimization and

submodular optimization are also explored.

Chapter 2 studies a class of bilevel matroid problem, i.e., bilevel spanning tree prob-

lems (BST), with two types of objective functions. The polynomial-time algorithms are

developed for all considered BST variants, except the sum-sum BST problem. To solve the

sum-sum BST problem we derive an equivalent single-level linear mixed-integer program-

ming formulation and explore its scalability with computational experiments. However, in

our computational experiments the standard solver can handle only moderately sized net-

work instances. Thus, for future work it could be of interest to develop more advanced

solution approaches, e.g., those based on branch-and-cut ideas that are commonly used for

challenging network design problems; see examples in [63].

Next, in Chapter 3 we are motivated by the practical situation that in the bilevel opti-

mization settings, the follower might be not fully rational due to computational limitations.

A generalized bilevel framework is then proposed, which naturally provides a hierarchy of

upper and lower bounds for the standard bilevel optimization problem. The computational

experiments suggest that these bounds are substantially better than those based on the

widely used single-level relaxation method. Disjunctive approach and submodularity are

exploited to develop two efficient single-level MILP formulations. Therefore, embedding our

framework into general purpose branch-and-cut solvers for mixed integer bilevel optimization

problems provides a promising direction for future research.

As for the submodular maximization problem, we consider a class of submodular func-

tions that are represented by a concave function composed with a linear function. In Chapter
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4, we present the results of our polyhedral study for the submodular maximization problem.

Two families of facet-defining inequalities are derived via lifting techniques. The developed

polyhedral results complement nicely some classical well-known results on the mixed 0-1

knapsack and single-node flow sets. The computational experiments also show that these

lifted facet-defining inequalities are very effective for solving the considered submodular

maximization problems to optimality for medium-sized instances within the branch-and-cut

framework. Furthermore, for many test instances, we observe that the optimality gaps can

be decreased to reasonable small values (e.g., 1%) very quickly using a rather small number

of cutting planes and branch nodes. However, closing the gap to terminated optimality gap

(e.g., 0.01%) is often more difficult. Also, our proposed linear valid inequalities can be viewed

as the approximation to the nonlinear constraint involving a submodular function. It pro-

vides an interesting avenue for the future research to explore the approximation approaches

that linearize the nonlinear constraints for large-scale submodular maximization instances.
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Appendix Proof of Theorem 4.6

Let us first consider the function γT (z) (defined in equation (4.22)). As shown in Example

4.3, γT (z) is not subadditive on z ∈ R+ in general for T 6= ∅. However, we can still find

the subadditive structure inside γT (z) in the following discussion. Consider a new function

γ̃T (z) as follows:

γ̃T (z) = γT (z + a(T ))−
∑
j∈T

ρj(S \ j) ∀z ≥ 0.

Recall that we assume S = {1, . . . , s} such that a1 ≥ · · · ≥ as. Let Ãk =
∑

j∈[k]\T aj for

k ∈ S and Ã0 = 0. Note that if k ∈ T , then Ãk = Ãk−1. Then following Lemma 4.8, we

have γ̃T (Ãk) =
∑

j∈[k]\T ρj(S \ j) and

γ̃T (z) =


g(a(S)− Ãk+1 + z) + γ̃T (Ãk+1)− f(S) if Ãk ≤ z ≤ Ãk+1,

k = 0, . . . , s− 2,

g(z + a(T )) + γ̃T (Ãs)− f(S) if z ≥ Ãs−1.

(.1)

Consequently, based on Proposition 4.4, we can verify that function γ̃T (z) is subadditive on

z ∈ R+ for a given T ⊆ S.

To establish the proof of Theorem 4.6, our basic idea is to exploit inequalities (4.20) in

Lemma 4.7. To show (4.20), we first establish that inequalities similar in spirit to (4.20)

hold for γT (z) in Lemmata A.3 and A.4, which, in turn, rely on the technical results in

Lemmata A.1 and A.2. Then we use the fact that γ
(
z
u

)
can be computed through equation

(4.23) and γT (z) to complete the proof of Theorem 4.6.

Lemma A.1. Function γ̃T (z) is nonincreasing on T , that is γ̃T (z) ≤ γ̃T ′(z) ≤ γ0(z) for any

T ′ ⊆ T ⊆ S.

Proof. Note that if T = ∅, then γ̃∅(z) = γ∅(z) = γ0(z). Thus, it suffices to show that

γ̃T (z) ≤ γ̃T\j0(z) for any j0 ∈ T . Let T ′ = T \ j0 and Ã′k =
∑

j∈[k]\T ′ aj for k ∈ S.

If z ≤ Ãj0−1, then Ã′k = Ãk for k = 0, . . . , j0 − 1. By (.1), it is easy to verify that

γ̃T (z) = γ̃T ′(z).
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If z > Ãj0−1, then Ã′k = Ãk + aj0 for k = j0, . . . , s. By (.1), it is easy to verify that

γ̃T ′(z + aj0) − γ̃T ′(Ã′j0) = γ̃T (z) − γ̃T (Ãj0−1). Meantime, we can verify that γ̃T ′(z) has the

form of (4.12) in Section 4.2.3. Then by Lemma 4.2 we have

γ̃T ′(z)− γ̃T ′(Ã′j0−1) ≥ γ̃T ′(z + aj0)− γ̃T ′(Ã′j0)

= γ̃T (z)− γ̃T (Ãj0−1),

which implies that γ̃T ′(z) ≥ γ̃T (z) as γ̃T ′(Ã
′
j0−1) = γ̃T (Ãj0−1).

Lemma A.2. Let ∆ ∈ [0, aj] for some j ∈ T . If 0 ≤ z ≤ Ãj−1, then

γT (a(T ))− γT (a(T )−∆) ≤ γT (z + a(T ))− γT (z + a(T )−∆).

Proof. Firstly, by Lemma 4.8, we have

γT (a(T ))− γT (a(T )−∆) = g(a(S))− g(a(S)−∆).

We assume that z ∈ [Ãk−1, Ãk] for some k ∈ S \ T , then k ≤ j and ak ≥ aj. If z −∆ ≤ 0,

then k = 1. Let Ω = a(S) + z ≥ a(S). By Lemma 4.8, we have

[γT (z + a(T ))− γT (z + a(T )−∆)]− [γT (a(T ))− γT (a(T )−∆)]

= [g(Ω− a1)− g(Ω−∆)]− [g(a(S)− a1)− g(a(S)−∆)]

≥ 0,

where the inequality follows from a1 ≥ aj ≥ ∆ and the concavity of g.

If z −∆ ≥ 0, then γT (z + a(T ))− γT (z + a(T )−∆) = γ̃T (z)− γ̃T (z −∆) based on the

definition of γ̃T (z). Assume z − ∆ ∈ [Ã`−1, Ã`] for some ` ≤ k. Since ∆ ≤ aj ≤ ak, then

either ` = k or ` = k − 1. If ` = k, then

γ̃T (z)− γ̃T (z −∆) = g(a(S)− Ãk + z)− g(a(S)− Ãk + z −∆)

≥ g(a(S))− g(a(S)−∆),
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where the inequality follows from z ≤ Ãk and the concavity of g. If ` = k − 1, let Ω =

a(S)− Ãk−1 + z ≥ a(S). By equation (.1), we have

[γ̃T (z)− γ̃T (z −∆)]− [γT (a(T ))− γT (a(T )−∆)]

= [g(Ω− ak)− g(Ω−∆)]− [g(a(S)− ak)− g(a(S)−∆)]

≥ 0,

where the inequality follows from ∆ ≤ ak and the concavity of g.

Lemma A.3. For any T ⊆ S, we have∑
j∈T

γ{j}(zj) ≥ γT (z(T )) ∀zj ≥ 0,

where z(T ) =
∑

j∈T zj.

Proof. We prove the result by induction. If |T | = 1, then the statement is trivial.

If the statement holds for |T | = k − 1, then we establish that the statement still holds

for |T | = k. Observe that it is sufficient to show that there exists some ` ∈ T such that

γ{`}(z`) + γT\`(z(T ′)) ≥ γT (z(T )),

where T ′ = T \ `. There are four possible cases to consider:

Case 1 ∃ ` ∈ T such that z` ≥ a`, z(T
′) ≥ a(T ′):

Based on the assumption, we have z(T ) ≥ a(T ), it follows that

γ{`}(z`) + γT ′(z(T ′)) = γ̃{`}(z` − a`) + γ̃T ′(z(T ′)− a(T ′)) +
∑
j∈T

ρj(S \ j)

≥ γ̃T (z` − a`) + γ̃T (z(T ′)− a(T ′)) +
∑
j∈T

ρj(S \ j)

≥ γ̃T (z` + z(T ′)− a(T )) +
∑
j∈T

ρj(S \ j)

= γT (z(T )),

where the first inequality is based on Lemma A.1, and the second inequality follows from

the fact that γ̃T (z) is subadditive on z ∈ R+ for a given T .
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Case 2 ∃ ` ∈ T such that z` ≤ a`, z(T
′) ≤ a(T ′):

Based on the assumption, we have z(T ) ≤ a(T ). Let Ω = a(S) + z(T ′) − a(T ′), then

Ω ≤ a(S). By Lemma 4.8, it follows that

γ{`}(z`) + γT ′(z(T ′))− γT (z(T ))

= g(a(S)− a` + z`) + g(Ω)− g(a(S))− g(Ω− a` + z`)

= [g(a(S)− a` + z`)− g(a(S))]− [g(Ω− a` + z`)− g(Ω)]

≥ 0,

where the inequality follows from the concavity of g and z` − a` ≤ 0.

Case 3 ∃ ` ∈ T such that z` ≤ a`, z(T
′) ≥ a(T ′):

Based on Lemma 4.8, we have γ{`}(z`) = g(a(S)− a` + z`)− g(a(S)− a`). Without loss

of generality, we assume ` is the smallest index in T . Then there have two cases to consider:

• if z(T ′) ≥ a(T ′) + Ã`−1, we have

γT ′(z` + z(T ′))− γT ′(z(T ′))

= γ̃T ′(z(T ′)− a(T ′) + z`)− γ̃T ′(z(T ′)− a(T ′))

≤ γ̃T ′(A`−1 + z`)− γ̃T ′(A`−1) = γ{`}(z`),

where the inequality follows from Lemma 4.2 that γ̃ has the form of (4.11). By Lemma

A.1, we have that

γ{`}(z`) + γT ′(z(T ′)) ≥ γT ′(z` + z(T ′)) ≥ γT (z(T )).

• if z(T ′) ≤ a(T ′) + Ã`−1, then by Lemma 4.8 it can be verified that

γT (z(T ′) + a`) = γT ′(z(T ′)) + ρ`(S \ `).

Let ∆ = a`− z` ≥ 0. Note that ∆ ≤ a` and z(T ′)−a(T ′) ≤ Ã`−1, it follows from Lemma

A.2 that

γT (z(T ′) + a`)− γT (z(T ′) + z`) ≥ γT (a(T ))− γT (a(T )−∆)

= g(a(S))− g(a(S)−∆)
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= ρ`(S \ `)− γ{`}(z`).

Replacing γT (z(T ′) + a`) with γT ′(z(T ′)) + ρ`(S \ `) in the above inequality, it yields the

desired results.

Case 4 ∃ ` ∈ T such that z` ≥ a`, z(T
′) ≤ a(T ′):

Since z(T ′) ≤ a(T ′), then there exists `′ ∈ T such that z`′ ≤ a`′ . We can reduce this case

to either Case 2 or Case 3.

In summary, the claim holds for |T | = k and we complete the proof.

Lemma A.4. For any j ∈ S and z0, z1 ≥ 0, we have

γ0(z0) + γ{j}(z1) ≥ γ{j}(z0 + z1).

Proof. If z1 ≥ Aj−1, then γ{j}(z) = γ0(z) and γ{j}(z0 + z1) = γ0(z0 + z1) based on Lemma

4.8. It yields that the claim holds due to the subadditivity of γ0 in this case.

If aj ≤ z1 ≤ Aj−1, then γ{j}(z1) = γ̃(z1− aj) + ρj(S \ j). Note that γ0(z) = γ̃{j}(z) when

z ≤ Aj−1 through (.1), thus

γ0(z0) + γ{j}(z1) = γ0(z0) + γ0(z1 − aj) + ρj(S \ j)

≥ γ0(z0 + z1 − aj) + ρj(S \ j)

≥ γ̃{j}(z0 + z1 − aj) + ρj(S \ j) = γ{j}(z0 + z1),

where the second inequality follows from Lemma A.1 that γ̃{j}(z) ≤ γ0(z).

If z1 ≤ aj and z0 + z1 ≤ aj, then by Lemma 4.8, we have

γ{j}(z0 + z1)− γ{j}(z1) = g(a(S)− aj + z0 + z1)− g(a(S)− aj + z1)

≤ g(a(S)− a1 + z0 + z1)− g(a(S)− a1 + z1)

= γ0(z0 + z1)− γ0(z1) ≤ γ0(z0),

where the first inequality follows from aj ≤ a1, and the second inequality follows from the

subadditivity of γ0.
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If z1 ≤ aj, z0 + z1 ≥ aj and z0 ≤ Aj, then let ∆ = aj − z1 ≤ z0. By Lemmata 4.1 and

4.8, we have that

γ0(z0)− γ0(z0 −∆) ≥ γ0(Aj)− γ0(Aj −∆) = γ{j}(aj)− γ{j}(z1).

Let z′1 = aj and z′0 = z0 − ∆, then z′0 + z′1 = z0 + z1. Since aj ≤ z′1 ≤ Aj, based on the

aforementioned case, we have

γ0(z0 −∆) + γ{j}(z
′
1) ≥ γ{j}(z0 + z1).

Summing the above two inequalities, we get the desired result.

If z1 ≤ aj and z0 ≥ Aj−1, then by Lemma 4.8, we have γ{j}(z1) = γ0(Aj−1 +z1)−γ0(Aj−1)

and γ{j}(z0 + z1) = γ0(z0 + z1). Then the result directly follows from Lemma 4.2.

We now come to prove Theorem 4.6.

Theorem 4.6. It suffices to show that the lifting function γ
(
z
u

)
satisfies the SI condition

(4.20). Let Γ ⊆ S̄ and zj ≥ 0 for j ∈ Γ. Then for any T ⊆ S such that |Ti| = max{0, |Si|+

|Γi| − di} for all i ∈ [r], we construct {T j}j∈Γ as follows: for each i ∈ [r], suppose Γi =

{1, . . . , |Γi|} and Ti = {i1, . . . , i|Ti|},

• if |Si| < di, then |Ti| < |Γi|. Let T j = {ij} for j = 1, . . . , |Ti|, and T j = ∅ for j =

|Ti|+ 1, . . . , |Γi|.

• if |Si| = di, then |Ti| = |Γi|. Let T j = {ij} for j ∈ Γi.

Therefore, by Lemmata A.3 and A.4, we have∑
j∈Γ

γT j(zj) ≥ γT (z(Γ)).

Recall equation (4.23), we have

γ

(
z(Γ)∑
j∈Γ eσ(j)

)
= max

T⊆S
{γT (z(Γ)) : |Ti| = max{0, |Si|+ |Γi| − di} ∀i ∈ [r]}

≤ max
{T j}j∈Γ

{
∑
j∈Γ

γT j(zj) : |T j| = max{0, |Si|+ 1− di}, T j ⊆ Si, i = σ(j)}
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=
∑
j∈Γ

max
T j
{γT j(zj) : |T j| = max{0, |Si|+ 1− di}, T j ⊆ Si, i = σ(j)}

=
∑
j∈Γ

γ

(
zj

eσ(j)

)
.
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[28] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming.
Springer, Berlin, 2014.

[29] Federico Della Croce and Rosario Scatamacchia. An exact approach for the bilevel
knapsack problem with interdiction constraints and extensions. Mathematical Pro-
gramming, 2020. To appear.

[30] Stephan Dempe. Foundations of Bilevel Programming. Kluwer Academic Publishers,
Dordrecht, 2002.

[31] Stephan Dempe, Boris S. Mordukhovich, and Alain Bertrand Zemkoho. Sensitivity
analysis for two-level value functions with applications to bilevel programming. SIAM
Journal on Optimization, 22(4):1309–1343, 2012.

[32] Scott DeNegre. Interdiction and discrete bilevel linear programming. PhD thesis,
Lehigh University, 2011.

[33] Brian W Dolhansky and Jeff A Bilmes. Deep submodular functions: Definitions and
learning. In Advances in Neural Information Processing Systems, pages 3404–3412,
2016.

[34] Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. Turning down
the noise in the blogosphere. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 289–298. ACM, 2009.
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[36] Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl. On the use of
intersection cuts for bilevel optimization. Mathematical Programming, 172(1-2):77–
103, 2018.
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[71] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST),
8(1):1, 2016.

[72] Jian Li and Amol Deshpande. Maximizing expected utility for stochastic combina-
torial optimization problems. Mathematics of Operations Research, 44(1):354–375,
2019.

[73] Ning Li, Jennifer C. Hou, and Lui Sha. Design and analysis of an MST-based topology
control algorithm. IEEE Transactions on Wireless Communications, 4(3):1195–1206,
2005.

[74] Hui Lin and Jeff Bilmes. A class of submodular functions for document summariza-
tion. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 510–520. Association for
Computational Linguistics, 2011.

[75] Andrea Lodi, Ted K. Ralphs, and Gerhard J. Woeginger. Bilevel programming and
the separation problem. Mathematical Programming, 146(1-2):437–458, 2014.
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