
LOCALIZATION OF EVENTS USING

UNDERDEVELOPED MICROBLOGGING DATA

by

Usman Anjum

MSc Telecom, University of Maryland College Park, 2011

Submitted to the Graduate Faculty of

the School of Computing & Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING & INFORMATION

This dissertation was presented

by

Usman Anjum

It was defended on

August 06 2021

and approved by

Dr. Prashant Krishnamurthy, Department of Informatics & Networked Systems

Dr. Vladimir Zadorozhny, Department of Informatics & Networked Systems

Dr. Martin Weiss, Department of Informatics & Networked Systems

Dr. Mai Abdelhakim, Department of Electrical & Computer Engineering

Dissertation Advisors: Dr. Prashant Krishnamurthy, Department of Informatics &

Networked Systems,

Dr. Vladimir Zadorozhny, Department of Informatics & Networked Systems

ii

Copyright © by Usman Anjum

2021

iii

LOCALIZATION OF EVENTS USING UNDERDEVELOPED

MICROBLOGGING DATA

Usman Anjum, PhD

University of Pittsburgh, 2021

Event localization is the task of finding the location of an event. Events are defined

as significant one-time occurrences that show notable deviation from expected or normal

behavior. Event localization has been studied in many domains including medical data,

internet-of-things (IoT), sensor data and microblogging/social media domain. In this dis-

sertation we focus on event localization in the microblogging domain. The data in the

microblogging presents a unique challenge in that it is underdeveloped. Underdeveloped data

has low reliability and sporadic delivery slate. Since, microblogging data is underdeveloped

it provides subjective and incomplete information, which is unsuitable for event localization.

We propose enrichment methods for underdeveloped data that would make the data more

suitable for event localization. Our enrichment methods include disaggregation, semantic

filtering and data generation using top-down and bottom-up approaches. Once the data is

enriched, we identify event signatures that are specific to an event. We find both explicit

and latent event signatures within the enriched data. Using these signatures an event can

be efficiently localized. We use generated data and data collected from Twitter to test our

enrichment methods and implement event localization strategies.

iv

Table of Contents

1.0 Introduction . 1

1.1 Dissertation objective . 6

1.2 Thesis statement . 7

1.3 Methodology . 8

1.4 Dissertation Outline . 9

2.0 Background and Literature Review . 10

2.1 Data fusion and Disaggregation . 10

2.2 Data Imputation and Augmentation . 11

2.3 Event Localization . 12

2.4 Relationship with this Dissertation . 15

3.0 Enrichment of Underdeveloped data . 16

3.1 Data Aggregation & Disaggregation . 16

3.1.1 Temporal aggregation . 20

3.1.2 Spatial aggregation . 22

3.1.3 Information reconstruction via disaggregation 25

3.2 Explicit Event Patterns . 28

3.2.1 Explicit Event Patterns . 28

3.2.1.1 Refining explicit patterns - low pass filters 29

3.2.1.2 Refining explicit patterns - semantic decay filters (SDF) . . . 30

3.2.2 Latent Event Patterns . 32

3.3 Top-down data generation . 33

3.3.1 TBAM design . 34

3.3.2 TBAM explanation . 35

3.4 Bottom-up data generation . 41

4.0 Data sets Used for Localization . 43

4.1 Introduction to the data sets . 43

v

4.1.1 Performance Metrics for TBAM analysis 47

4.1.2 Determining Optimum TBAM Parameters 48

4.2 TBAM Model Validation . 50

4.2.1 A Comparison of the Affect of Filters on TBAM and Data from Twitter 51

5.0 Event Pattern Detection . 64

5.1 Using Explicit Patterns . 64

5.1.1 Measuring disaggregation (reconstruction) quality 64

5.1.2 Data with ground truth and effect on parameters 65

5.1.3 AUC as an pattern detection metric 69

5.1.4 Using SDF for event-related patterns 70

5.2 Using Latent Patterns . 77

5.2.1 Latent pattern methodology . 77

5.2.2 Latent pattern analysis . 81

6.0 Localization and Other Applications . 87

6.0.1 Trilateration calculation . 87

6.0.2 Trilateration with TBAM generated data 88

6.0.3 Trilateration with real data . 89

6.0.4 Trilateration with latent patterns . 92

6.1 Potential Applications . 93

6.1.1 Application to more developed data 93

7.0 Conclusion . 102

7.1 Primary Conclusions of Result . 102

7.2 Discussion and Future Work . 103

7.3 Conclusion . 105

Bibliography . 106

vi

List of Tables

1 High/Low Reliability & Regular/Sporadic Delivery Slate Differences 3

2 Fixed parameters for all TBAM data generation simulations 37

3 Variable parameters for different TBAM data generation simulations 38

4 Summary of Real Data . 44

5 Determining the probabilities from Twitter data for TBAM 45

6 Summary of Metrics . 53

7 Summary of Simulations for determining optimum TBAM Parameters 53

8 Experimental Setup Summary . 68

9 Decay in number of similarity . 71

10 Event time according to the significant peak and the peak in SDF 72

11 Summary of Experimental Setup . 84

12 Triangulation using TBAM . 90

13 Trilateration Parameters and Results . 97

14 Triangulation using Parameters from Real Data 98

15 Trilateration Summary . 102

vii

List of Figures

1 Dimensions of Data . 4

2 Dissertation Workflow . 6

3 SPARE methodology . 17

4 Data Collection Methodology . 19

5 Temporal Observation Matrix . 22

6 Representation of Spatial Aggregation . 23

7 Comparison of original and disaggregated data using LSQ and smoothness . . 27

8 Effect of Filter Threshold on Data Collected from Twitter 29

9 Effect of filter threshold on data . 30

10 Long Short-Term Memory (LSTM) Architecture 32

11 Representation of the ABM world . 35

12 Changing qi with changing distance or ticks (with α = 1 and β = 20) 40

13 Generative Adversarial Network (GAN) Architecture 42

14 Comparison of Twitter data with TBAM generated data 46

15 Effect of changing TBAM parameters & GAN on metrics using STEM data set 54

16 Effect of changing TBAM parameters & GAN on metrics using VIRG data set 54

17 Boxplots for different simulations using STEM data set 55

18 Boxplots for different simulations using VIRG data set 56

19 Top values of parameters by ccf at lag = 0 for STEM 57

20 CCF of Real Twitter data with TBAM generated data 57

21 CCF of Real Twitter data with randomly generated data 57

22 Comparison of Filtered and Unfiltered Real Twitter data with TBAM data . 58

23 CCF of Filtered Real Twitter data with TBAM generated data 58

24 Average ccf for Different Filters (Peak Threshold=0.5) 59

25 Changing Filter Threshold for Butterworth Filter (Peak Threshold=0.5) . . . 60

26 Changing Filter Threshold for Butterworth Filter (Peak Threshold=0.02) . . 61

viii

27 Changing Filter Threshold for Low Pass Filter (Peak Threshold=0.5) 62

28 Changing Filter Threshold for Moving Average Filter (Peak Threshold=0.5) . 63

29 Complete filter/unfiltered framework . 65

30 Effect of changing tolerance, filter threshold and step on AUC 67

31 Effect of changing tolerance, filter threshold and step on AUC for FIFA . . . 70

32 Normalized aggregated number of similar tweets as a function of the threshold 74

33 Decay as a function of time for STEM, VIRG and LON 75

34 SDF as a function of time for STEM, VIRG and LON 76

35 Finding Event Patterns . 78

36 Methodology for Assigning Training Labels - Pre-Post Labeling (PPL) . . 78

37 AND Combine (AC) Example with 2 different δ 79

38 Matrix Combine (MC) Example with 2 different δ 80

39 Dividing STG into time slice (window) of size δ 81

40 Using Metrics for Latent Pattern Analysis . 82

41 Comparison when using event vector ev . 85

42 Comparison when using event vector ev1 . 85

43 Distribution of tweet count with layers . 89

44 STEM disaggregated with 3 and 12 hr time windows 95

45 Virginia disaggregated with 3 and 12 hr time windows 96

46 Garlic Festival disaggregated with 3 and 12 hr time windows 97

47 Plots of TBAM generated data along spatial dimension 98

48 Human Rights Documents as more Developed Data 99

49 Aspect Change by Year . 100

50 Ethiopia Aspect Count . 100

51 Tanzania Aspect Count . 101

ix

1.0 Introduction

Event localization is the task of determining the location or spot1 of an event using a

sequence of data that includes the occurrence of such an event. The “location” of an event

may be in time, space or another dimension in the sequence of data points. Events, for this

paper, are defined as significant one-time occurrences that show significant deviation from

expected or normal behavior in the sequence. Events have been classified as unexpected

or expected [4, 46]. Unexpected events are rare or at least infrequent occurrences that are

unpredictable/ unidentified/ unscheduled or unknown. Prior knowledge about event type,

time and location may not be readily available until well after the event has occurred which

presents a significant challenge in geographically localizing it. Event localization shares

similarity with rare event detection. Rare event detection has been used to find where a low

frequency event may have occurred in time series data (like sensor data [27]) and even in

stock and insurance data [65].

Identifying the spot of an event in a sequence is important in many domains including

medical data, internet-of-things (IoT), sensor data and microblogging/social media domain.

In the medical domain identifying the event’s spot corresponds to changes in a patient’s

medical condition – e.g., it is used in EKG data to find irregular heart-beats or brain activity.

Pattern changes may be used in the human rights documents to identify social violations and

conflicts ([7], [48]). In IoT and sensor domains, event localization may be used to find the

location of malicious or faulty sensors. Recently, inferences about the pandemic have been

made using aggregate date from sequences of temperature readings by smart thermometers

[70], counts of searches [17] or conducting tests on samples obtained from groups of people

[51]. In the microblogging domain a “crowd sourced” event localization approach has been

used to find the location of real-world events. Such real-world events include natural disasters

(e.g., earthquakes, floods, fires and typhoons), infectious disease outbreaks, traffic incidents,

riots, terrorist acts, etc., which may be unpredictable. Crowd sourced event localization

1

The term spot is used somewhat loosely here to denote the location in a sequence. Later we clarify it to
be the estimate of distance that enables us to determine the geographic location or for Localization.

1

monitors the microblogging pattern of the people, who are considered as “social sensors”.

The people respond to an event by changing their microblogging behavior. Other kinds of

aggregated/coarse data have been recently used for event detection (i.e., the event happened,

but not geographical localization) [58].

The task of localization requires specific data characteristics/features, e.g. spatial local-

ization requires geographical coordinates, etc. However, microblogging data is underdevel-

oped that makes these features not always available. We define undeveloped data in two

dimensions. These two dimensions are summarized in terms of reliability and delivery slate.

Data can have high or low reliability and data delivery can have regular or sporadic slate.

Table 1 summarizes the differences between high and low reliability and regular and sporadic

delivery slate.

High reliability commonly means that the data source has little human involvement and

provides objective information 2. The data format is consistent and homogeneous. Relevant

features for localization would be obvious and readily available. On the other hand, low

reliability data is provided from sources that have extensive human involvement which means

that the data provided would be subjective. The data format would be inconsistent and

heterogeneous. Relevant features for localization would be hidden and usually not available.

Medical and sensor data from well-defined fault-free instruments have high reliability unlike

microblogging and fake news data [42], created by humans or with human involvement, have

low reliability.

Data delivery slate can be regular or sporadic. Regular data delivery means that data

refresh frequency can be controlled and there is control on the scheduling of data. The

data source would provide large amount of data at continuous and regular intervals. The

data would be fine-grained to meet application needs. Sporadic data delivery slate means

that data refresh frequency cannot be controlled and there is no control on data scheduling.

There is limited data available and the data slate is irregular. The data would be aggregated

and/or coarse-grained. For example, as explained below, medical and fake news data have

regular delivery slate and microblogging and sensor data have sporadic delivery slate.

2

We do not consider misuse or malfunctioning equipment

2

Table 1: High/Low Reliability & Regular/Sporadic Delivery Slate Differences

Reliability Delivery Slate

High Low Regular Sporadic

Source has little to

no human involve-

ment

Source has human

involvement

Source delivery

slate is controllable

Source delivery slate

is uncontrollable

Source provides ob-

jective information

Source provides

subjective informa-

tion

Source provides un-

limited amount of

data

Source provides lim-

ited data

Structured data

with specific

schema

Unstructured data

with no specific

schema

Data slate is con-

tinuous and regular

Data slate is spo-

radic and irregular

Relevant features

for localization are

available

Relevant features

for localization are

unavailable

Data is fine-grained Data is aggregated

and coarse-grained

Medical & sensor

data

Microblogging &

fake news data

Medical & fake

news data

Microblogging &

sensor data

3

Sensor Data
Medical

Instrument
Data

Social Media
Data

Mis-
information

Data
H

ig
h

re
lia

bi
lit

y
Lo

w
 re

lia
bi

lit
y

Sporadic delivery
slate

Regular delivery
slate

Figure 1: Dimensions of Data

Figure 1 summarizes how the different data types are placed according to their reliability

and delivery slate.

Both sensor and medical data sources provides information that is objective and based

on the measurement of a parameter. Microblogging and fake news data involves humans as

sources, which means that the data could intentionally or unintentionally be distorted and

provides subjective information mixed with personal emotions. For example, microblogging

data usually does not contain complete spatial information (like latitude and longitude) that

is essential for accurate event localization. Use of location anonymization techniques for

privacy preservation makes the latitude and longitude (geotags) not readily available. Al-

ternatively, researchers have used location name [46] found in the message (also called place

name) and user location found in their profiles to localize an event. But again, this informa-

tion is not reliable as users may use multiple locations and may be slow in updating location

information, which means that the location in the profile and the user location may not be

consistent. Users may also create false messages or put incorrect location information which

further reduces the data reliability [4]. Microblogging messages, like in Twitter, are short in

length and can contain ambiguous words making it hard to obtain correct information from

the messages. Another factor that effects data reliability is lack of historic data. Since we

4

wish to localize rare events, we cannot be sure if an event signature has been identified or

not. Hence, the features required for localization would not be apparent and there may be

latent features in the data that would have to be discovered for localization.

Medical data has quasi-periodically delivery pattern and the data stream can be con-

trolled. Fake news data relies on regular update about news by reporters3. Sensor and

microblogging data have sporadic data delivery (refresh rate). Sensors, those of low power,

have limited resources (like battery and memory) and cannot send data regularly. Most of

the times sensors send data when there is a trigger, e.g. motion detection sensors send-

ing update about motion only when motion occurs. Similarly, microblogging data also has

sporadic data delivery slate. The delivery of microblogging data is sporadic because not

all users are sending out event related data and even if they do, it may not be about an

event and users may send messages only when it is convenient. Factors like number of users

who actively send microblogging message, time of day, population density, significance of the

microblogging message or event, etc., influence how frequently people may send out stan-

dard and event-related messages. Hence, there would sometimes be a limited data available

for localization. In addition, only sequences4 of counts of microblogging messages

and perhaps even then, only aggregate counts of microblogging messages with

minimal metadata may be all that is available for localizing an event.

3

Reporters includes citizens and news organization employees
4

These sequences are different when they are scraped at different reference spatial points.

5

1.1 Dissertation objective

Figure 2: Dissertation Workflow

The objective and the work of the dissertation can be summarized using Figure 2. We

aim to enrich underdeveloped data in the data layer that is subjective, insufficient/sparse,

aggregated and with a unreliable delivery slate and to use the enriched data for event local-

ization. We use microblogging service of Twitter as a use case for this work. Hence, we use

the term microblogging messages and tweets interchangeably.

We define an enrichment layer that implements novel techniques to enrich the data. The

enrichment methodologies include disaggregation, semantic filtering and augmentation. The

objective of disaggregation is to obtain fine-grained data from aggregated (coarse-grained)

data. We will show later that, as may be expected, the more fine-grained the data is the

more accurate will be the localization. We propose different metrics to measure how well

the disaggregated fine-grained data reconstructs patterns to match the original data. The

next part of enrichment layer is semantic filtering (or simply filtering). The objective of

semantic filtering is to enrich the data by filtering out unwanted and noisy information via

semantic information like text similarity of microblogging messages or simply low pass filters

which will improve event localization accuracy. The final phase of the enrichment layer is data

augmentation. The objective of the augmented data is to provide more control on the delivery

6

slate and the reliability of the data and create data that would more accurately reflect real

world microblogging data. The augmented data can also be used for localization of events.

We augment data using top-down and bottom-up data generation techniques. The top-down

technique generates data using an agent-based model. The agent-based model (ABM) uses

different parameters to emulate microblogging behavior. With ABM, we identify different

parameters that may affect the real-world microblogging data. On the other hand bottom-up

data generation uses machine learning methods, like generative adversarial networks (GAN),

to generate copies of the original data by learning its patterns and distribution. Our next

objective is to show how the enriched data can be used for localization.

We define the event localization layer to implement methods for event localization. We

perform event localization on data collected from microblogging service of Twitter and aug-

mented data. To perform localization, it is necessary to extract useful information from the

data. An event is localized first by identifying event signatures in the enriched data. Some

of the signatures are easy to observe (explicit signatures) and some are hidden within the

data (latent signatures). Explicit signatures can be discovered through peaks in the enriched

data and latent signatures can be discovered using machine learning methods, like long short-

term memory (LSTM)/neural networks, etc. Due to the limited real-world data related to

an event, we use enriched data to learn event patterns. Finally, we combine multiple explicit

or latent signatures to do trilateration which gives us improved event localization accuracy.

1.2 Thesis statement

In this thesis we aim to examine the challenge of using underdeveloped for event local-

ization and suggest approaches to address the situation. We use the microblogging service

of Twitter to collect data.

More specifically this thesis aims to address the following research questions:

Question 1. How can underdeveloped data, that is, data with low reliability and spo-

radic delivery slate, be enriched so the localization accuracy can be improved?

What techniques can be used to overcome low reliability sporadic delivery slate limitations

7

of the data to extract useful information from the data? For this purpose we propose the

enrichment layer in Figure 2. How well is the data enriched? We define the metrics that

measure how well the data patterns match in the enriched data and the original data. We

use both augmented data and data collected from Twitter for implementation of our enrich-

ment methodology. We further implement semantic filtering to enriched data to improve

localization.

Question 2. How to extract useful information from enriched underdeveloped data that

can be used for event localization?

What are the latent and explicit patterns in the data that are associated with an event?

Using both enriched data and data collected from Twitter we identify patterns that are

specific to an event. Some of these patterns are explicit. For example, peaks found in a

counts of microblogging messages (tweets) varying with distance from a specific coordinate

within a time window can be used as indication of an event. Semantic filtering enriches the

data by removing peaks that may not correspond to an event. Latent patterns are identified

using machine learning techniques, like LSTM. We use latent and explicit patterns for event

localization and further improve localization accuracy by implementing trilateration.

1.3 Methodology

To answer the first question we envision a scenario where there are multiple refer-

ence coordinates distributed throughout a geographic region that collect number of tweets

that change with distance from reference coordinate within a time window. The collected

data are underdeveloped, i.e., aggregated (coarse-grained), sparse and insufficient, subjec-

tive/distributed and with an unreliable delivery slate. Using such data for localization is

challenging. We enrich the underdeveloped data and then localize an event. It is observed

that the event localization accuracy is better with enriched data.

Data enrichment is done through disaggregation, i.e., obtaining fine-grained data from

coarse-grained data, data augmentation and filtering techniques. Disaggregation gives us

fine-grained information which gives us more accurate event locations. Data augmentation

8

allow us to measure how well enriched data allows us to perform localization especially when

there is no data with ground truth. Filtering further enriches the data by emphasizing the

event related patterns and removes any unwanted information in the enriched data. We

implemented different filters and compare how they effect the patterns in both data from

Twitter and augmented data.

For the second question, we begin by defining how events are manifested in enriched data.

Using those definitions, we find explicit and latent patterns within the data. We find explicit

patterns through heuristic observation of real world data, e.g., one explicit pattern of events

is peaks. We use machine learning and deep learning methods, like LSTM, to find latent

patterns within the data. Machine learning methods can automatically learn patterns that

are hidden in the data and hence, would be most suitable to learn any latent patterns. The

patterns are used to find the location of an event. The localization accuracy is improved by

implementing trilateration. We also compare the trilateration accuracy in both agent-based

and GAN augmented data.

1.4 Dissertation Outline

The dissertation is organized as follows: In Chapter 2, we provide background and lit-

erature review. In Chapter 3, we define our data enrichment techniques. In Chapter 4, we

introduce the different data sets used for analysis and compare the TBAM, GAN and the

data collected from Twitter. In Chapter 5, we show how event patterns are detected. In

Chapter 6 the patterns obtained from enriched data is used to localize an event. Finally, in

Chapter 7 we conclude.

9

2.0 Background and Literature Review

The literature review is divided into three sections. The first section reviews related

work on data disaggregation and data fusion. The second section explores literature on data

augmentation and data imputation. The final section reviews literature on event localization.

2.1 Data fusion and Disaggregation

Data disaggregation is a special kind of data fusion task. Data fusion techniques combine

data from multiple data sources to reconstruct a target sequence as accurately as possible.

Data fusion has been used widely in many applications like guidance for autonomous vehi-

cles, remote sensing, robotics and medical application ([59], [25]). Liu et. al. ([38] addressed

the challenge of disaggregation as recovering a time sequence of counts from possibly over-

lapping aggregated reports. For example, this task considers the question of how to obtain

daily counts of people infected with flu when only monthly or weekly sums are available.

They proposed a method called H-Fuse that formulates the disaggregation task as a linear

equation and added domain knowledge to improve reconstruction. The work in [38] was mod-

ified in [60] such that the disaggregation task was presented as a gray-box model with the

aim of reconstructing the time series of counts (and the gray-box model) parameters when

only the aggregated counts and the gray-box “model” is known. They used the susceptible-

infected-susceptible (SIS) model as their gray-box model to reconstruct epidemics time series

data with more accuracy than H-Fuse. H-Fuse [38] was expanded upon in [72] by adding

an annihilating filter technique as domain knowledge to improve reconstruction of time se-

quence counts. An annihilating filter is a linear shift-invariant operator which completely

suppresses a series. The filter coefficient that completely suppressed a series would then be

the approximate for the disaggregated time sequence of counts. The work in Homerun [3]

assumed that the aggregated reports are very sparse and represent a time series as a sum of

cosine signals. They use Discrete Cosine Transform (DCT) to find the coefficients that can

10

represent the disaggregated time sequence of counts. They also added domain constraints to

improve disaggregation accuracy. These papers have focused on the temporal domain. We

focus mainly on spatial series data, within a time window.

2.2 Data Imputation and Augmentation

A part of the enrichment process for underdeveloped data is to use synthetic data. Syn-

thetic data has been used in prior literature for data augmentation and data imputation.

Data augmentation and imputation are recent techniques with very little work found in

literature.

Data augmentation has been used in previous literature for image (e.g face data augmen-

tation in [64]), speech and natural language processing (NLP) [11] speech and time-series

data to reduce overfitting ([56], [66]). Augmentation increases the size of the training data

set by geometric and color transformations and deep learning techniques like Generative Ad-

versarial Networks (GAN). Augmentation also alleviates the issue of class imbalance, which

is a data set with skewed majority to minority sample ratios [56]. The effect of different

augmentation techniques on time-series data was evaluated in [31] and created a guide for

researchers and developers to help select the appropriate data augmentation method for

their applications. Generative adversarial networks (GAN) was used to generate synthetic

images in the medical domain ([6], [16], [26]). These works generated images of CT images

of liver lesions ([6], [16]) and MR images [26] which were very close in comparison to the

real data. Similarly, cycle-Consistent Generative Adversarial Networks (CycleGANs) was

proposed as an image classification method to detect floods using images found in social

media [50]. An agent-based model simulator called paysim was created to simulate mobile

money transaction and generated data that is similar to the original data set [39].

Data imputation is the task of estimating missing values in a data set. Data imputation

was done to find data missing values in traffic data arising from sensor damage, malfunction,

or transmission errors, etc., using low-rank matrix decomposition.

11

Most work on data imputation has focused on using GAN for data imputation by slightly

varying its structure or the loss function [33]. Two of the prominent works that have used

GAN as a method for finding missing values in time-series data are found in [40] and [74].

With regards to the use of Agent-Based Modelling (ABM) to understand user tweeting

behavior there is very little literature that has addressed the issue of using generated data.

Some research studies have used Agent-Based Modelling (ABM) but none of the works

focused on how user tweeting behavior changes when an event occurs. In [10], ABM was used

to investigate how information was spread during the 2011 Wenzhou train crash through the

Sina Weibo. They use an ABM framework to compare information diffusion through word-

of-mouth and mass media and to determine which is a more significant means of spreading

information when it comes to social media. ABM has been used to create an information

propagation model to study how retweeting occurs ([71], [49]). In [49], a retweeting model

was created based on two main parameters: the influence of the user (number of followers

a user has) and the time at which the tweet was received. In [71], the retweeting model

was based on the susceptible-infected-refractory (SIR) model. Similarly in [19], ABM was

used to study user behavior in a social network. The model was created to predict user’s

sentiment and if they choose to forward, reply or do nothing about a topic.

2.3 Event Localization

Localization has been widely used in locating unknown sensors ([73], [61], [12]), and in

global positioning systems (GPS). Localization has also been extended to social networks

and to find the location of an event within a time window. A list of surveys that summarized

the work done on event detection in the microblogging domain are [4], [62], [9], [18], [30],

and [28]. The survey in [4] identified challenges and limitations arising in event detection

and localization methodology due to use of content in tweets like, ambiguous texts in tweets,

and lack of relevant data. In [62], an advanced systemic literature review is presented on

methodologies, applications and use cases of Twitter as a Location-Based Social Network.

In [9], a taxonomy of event detection in social media is created and the different methods are

12

classified under type of event, type of detection method (supervised or unsupervised), and if

the event detected is a new event or an old event. Garg et. al. [18] focused on the different

types of data sets (images, texts, audio, etc.) in social media used for event detection. The

survey in [30] covers approaches, the challenges, and the benefits of different approaches for

use of social media messages for detecting emergency events (like natural disasters, etc.).

Finally, in [28] a survey on methods for real-time detection of events is done.

The location of an event can be a single geographical coordinate, a geographic area or

a name identified by users in their tweets [46]. In [1] the region of interest is divided into

cells and then keywords are extracted based on their temporal and geospatial properties

and then clustered. A cluster is defined as a localized event if its keywords have a high

frequency, is a member of a cluster for a long time and was recently bursty in the same

cluster. The Eyewitness [34] and its real-time version [8] algorithm looks through a corpus

of geotagged tweets over localized regions for unusual spikes in tweet counts. They divide the

area of interest into triangles and use time periods of different lengths. An event is defined

as a peak above a baseline tweet count, which is obtained through regression. However,

during pre-processing they remove retweets and repeat tweets which, we believe, may play

a significant role in event detection. Furthermore, they do not discuss spurious peaks which

we show later can cause inaccuracies in results. Peaks were also used to identify an event

in [5] and they used a Semantic Decay Filter (SDF) to eliminate random peaks. The SDF

removes peaks that have low similarity between tweet texts. The work in [36] presented a

geo-social event detection method focusing on the geographical regularities of local crowd

behaviors to detect events. They implemented their method using a fixed time window and

their geographic grids are created based on a clustering-based space partition method.

In [14], similar words are extracted in a stream of tweets to create a time series and

a wavelet-based method is applied to measure the similarity. Then different clusters are

created based on the similarity to find time and location of events. Shao et. al [55] used

keywords to create graphs to find the location and time of an event.

Sakaki et. al. [52] used tweets to find epicenter of an earthquake and trajectory of

typhoons. First, semantic analysis on the texts in the tweets is done to extract the relevant

tweets. The authors assume that tweets follow an exponential distribution with time which

13

is used to estimate the probability of occurrence of an event. Next, they use the geographic

coordinates of the tweets to estimate the location of an event using Kalman filters and particle

filters. Kalman filters assume a Gaussian distribution of the coordinates and particle filters

look at how the users are distributed in a region. Later, we use what a disaggregation

approach that uses what is called as an observation matrix. The Kalman and particle

filters can be considered as additional domain information to the observation matrix to

better estimate an event. Another work ([44]) estimates an event’s location by assigning

probabilities using Dempster–Shafer (DS) theory based on geotags, texts in tweets and user

profile. The location of the events was found by clustering. However, they only considered

two levels of granularity and require coordinates and names for assigning probabilities. [44]

was extended in [45] to incorporate real-time tweets. Similar to [44], the work in [54] uses

Dempster–Shafer (DS) to find the coarse-grained information (like city name) and fine-

grained information (coordinates of the event). They focus mostly on traffic accidents. In

our work we do not rely on the texts and information found within the tweets. In addition,

the granularity of the data is defined by the size of annular rings and can be as fine-grained as

the coordinate of an event instead of only having only two information granularity (city-level

and coordinate of event).

14

2.4 Relationship with this Dissertation

In this dissertation, we localize an event by finding patterns in counts of tweets rather

than using the content of the tweets. We address challenges that have not been considered

in previous literature, like aggregated data and lack of data. We use machine learning

techniques, like LSTM to find patterns in tweets rather than using clustering or classification.

We also use filtering to remove any patterns not related to an event. To our knowledge, our

work is first to use enriched data as a method to deal with aggregated data, lack of data and

class imbalance and use the enriched data for localization. We augment the data using agent-

based model and GAN. We use augmented data, in lieu of real data, for event localization.

Use of agent-based model to simulate people’s tweeting behavior changes around an event is

also something new that has not been considered in previous literature.

15

3.0 Enrichment of Underdeveloped data

The objective of this chapter is to focus on research question 1 and describe the exper-

imental design of the data enrichment techniques for underdeveloped data before the data

can be used for event localization. We begin by describing how data is aggregated along

both the temporal and spatial domain. Once we understand data aggregation, we describe

the disaggregation methodology.

Using the disaggregated data we find event related patterns within the data sequences.

We find both obvious (explicit/manifest) and latent event patterns. An explicit event pattern

observed in Twitter data collected for several events are peaks. Latent patterns are learned

through deep learning methods like long short-term memory (LSTM). Different filtering

techniques are proposed to assess the peaks and remove any peaks that may be falsely

identified as event related patterns.

The underdeveloped data for localization would have missing and incomplete informa-

tion that is necessary for localization. To deal with this issue we augment the data. We

propose bottom-up and top-down techniques for augmenting the data, which we explain in

the following sections.

3.1 Data Aggregation & Disaggregation

With the data sequences from microblogging, we want to formulate a framework to

perform event localization without relying on the spatial or contextual attributes. Instead, we

only rely on the number or count of microblog messages sent out by people (or social sensors

[21]) within a geographic region and time window. In fact, the only known information is

an aggregated count of the messages within a circle (also called layer) of a specific radius

ri around a reference coordinate (say Ci = (xi, yi) in 2D, which is NOT the event’s actual

location) within a time interval. To obtain more fine-grained location of an event, the count

of messages in rings of a smaller radius would have to be obtained.

16

Event Pattern (e.g., single peak)

Different Event Pattern
(e.g., periodic peaks)

Sequence in time window

C
ou

nt

Spot of event

Use
spots to
estimate

event
location

<latexit sha1_base64="3bAhA8/pJ7BigXM8JEZdedPwSxQ=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaKqMtiNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMefNDK/M2VK80g+mlnMvJCMJA84JcZKXj8kZkyJSBvzgTsoV5yqswBeJ25OKpCjOSh/9YcRTUImDRVE657rxMZLiTKcCjYv9RPNYkInZMR6lkoSMu2li9BzfGGVIQ4iZZ80eKH+3khJqPUs9O1kFlKvepn4n9dLTHDrpVzGiWGSLg8FicAmwlkDeMgVo0bMLCFUcZsV0zFRhBrbU8mW4K5+eZ20a1X3ulp7uKrU7/I6inAG53AJLtxAHe6hCS2g8ATP8ApvaIpe0Dv6WI4WUL5zCn+APn8AoySSBA==</latexit>C1

<latexit sha1_base64="0gs0231vPZXqfmoD29rvttQUxb4=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaKqMtiNy4r2Ae0Q8mkmTY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck+OHwuujeN8o8LG5tb2TnG3tLd/cHhUPj5p6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMefNDK/M2VK80g+mlnMvJCMJA84JcZKXj8kZkyJSBvzQW1QrjhVZwG8TtycVCBHc1D+6g8jmoRMGiqI1j3XiY2XEmU4FWxe6ieaxYROyIj1LJUkZNpLF6Hn+MIqQxxEyj5p8EL9vZGSUOtZ6NvJLKRe9TLxP6+XmODWS7mME8MkXR4KEoFNhLMG8JArRo2YWUKo4jYrpmOiCDW2p5ItwV398jpp16rudbX2cFWp3+V1FOEMzuESXLiBOtxDE1pA4Qme4RXe0BS9oHf0sRwtoHznFP4Aff4ApKiSBQ==</latexit>C2

<latexit sha1_base64="1a0LP+XGqWJ9M4RWLFb/0vgAICk=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6rLYjcsK9gHtUDJppg3NJGOSKZSh3+HGhSJu/Rh3/o2ZdhbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR23tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoNxPfPbE6o0k+LRTGPqR3goWMgINlbyexE2I4J5Wp/1L/ulsltx50CrxMtJGXI0+qWv3kCSJKLCEI617npubPwUK8MIp7NiL9E0xmSMh7RrqcAR1X46Dz1D51YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPRVuCt/zlVdKqVrzrSvXhqly7y+sowCmcwQV4cAM1uIcGNIHAEzzDK7w5E+fFeXc+FqNrTr5zAn/gfP4ApiySBg==</latexit>C3

Counts of tweets at various times within a circle of radius r around
<latexit sha1_base64="1a0LP+XGqWJ9M4RWLFb/0vgAICk=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6rLYjcsK9gHtUDJppg3NJGOSKZSh3+HGhSJu/Rh3/o2ZdhbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR23tEwUoU0iuVSdAGvKmaBNwwynnVhRHAWctoNxPfPbE6o0k+LRTGPqR3goWMgINlbyexE2I4J5Wp/1L/ulsltx50CrxMtJGXI0+qWv3kCSJKLCEI617npubPwUK8MIp7NiL9E0xmSMh7RrqcAR1X46Dz1D51YZoFAq+4RBc/X3RoojradRYCezkHrZy8T/vG5iwls/ZSJODBVkcShMODISZQ2gAVOUGD61BBPFbFZERlhhYmxPRVuCt/zlVdKqVrzrSvXhqly7y+sowCmcwQV4cAM1uIcGNIHAEzzDK7w5E+fFeXc+FqNrTr5zAn/gfP4ApiySBg==</latexit>C3

(a) Illustration of a sequence of data and peaks

(b) Steps in SPARE towards localization of event

Figure 3: SPARE methodology

Using the microblogging service of Twitter as a data source, we propose a novel approach

called SPARE (SPAtial REconstruction) that can (a) reconstruct fine-grained counts of mes-

sages (called tweets In Twitter) by disaggregation of aggregated coarse-grained counts over

the spatial (radial) dimension around Ci, (b) detect event related patterns or spots in the

fine-grained counts of tweets and (c) combine the spots from multiple reference points (Ci)
to localize the event. The complete SPARE methodology is summarized in Figure 3. The

count of tweets is disaggregated using an “assumed” basis function. After disaggregation,

we further refine the spot in the sequence so that we can identify at what distance from the

reference point the event may have occurred. The event pattern or spot in fine-grained count

of tweets are identified through peaks (increased but noisy counts). To eliminate spurious

peaks or background noise, we use low pass filtering explained in Section 3.2.1. The spots

17

are still not precise and only yield noisy distances of the event from a reference point Ci.
Finally, using the noisy distances obtained at each Ci, we use a localization technique (like

trilateration) to localize an event.

Figure 4 illustrates an overview of how we use our methods to localize an event. Figure

4(a) shows the disaggregated counts of tweets at different radii from a single reference point

C for the FIFA 2018 World Cup event (which is a known event providing a baseline). In

the figure, the position of the peaks corresponds to the presumed location of the event. The

counts are disaggregated at two different levels of granularity. The coarse-granularity is when

only the number of tweets at every fifth layer (or radius from C) is known which is typically

how the scraped real-world data from a micro-blogging service like Twitter is available and

fine-granularity is when the tweet count at every layer is known. Using the coarse-grained

number of tweets the event’s distance from the reference point is estimated to be between

1.8 and 2.3 miles. With finer granularity, the event’s distance is estimated to be between 2.1

and 2.2 miles from the reference point.

The position of the peak will identify an event’s location at a (noisy) distance of ri from

point Ci. If there are multiple reference points Ck, Cj, etc. each identifying an event location

at a distance of rj, rk, etc. using the position of the peaks they observe in their scraped

data, then the event location from each point can be combined to obtain a single geographic

coordinate for an event by using techniques like triangulation or trilateration [13]. Figure

4(b) illustrates the trilateration methodology which we use in this paper. The figure shows

4 reference points (Ci, i ∈ {1, 2, 3, 4}) at known coordinates. After disaggregation, each

reference point identifies the spot of an event as a peak at a specific radius. We can then

use trilateration to obtain an approximate location for the event. Our results shows that the

event location obtained from trilateration is quite close to the actual event location.

In the above example, we used a known event like the FIFA world cup as a proxy to

illustrate how SPARE works. In the case of unexpected events, we do not know the ground

truth. We apply our approach to both augmented (generated) and actual data collected from

Twitter. The augmented data is generated using Agent-Based Model (ABM) called TBAM

(Tweeting Behavior Agent Model) that can be used to test the applicability of SPARE.

In summary, our contributions in this section are as follows:

18

(a) Disaggregated Tweets related to FIFA event

(b) STEM data collection

Figure 4: Data Collection Methodology

19

Formulation and Algorithm: We designed an innovative approach for event localiza-

tion called SPARE (SPAtial REconstruction) Our approach discerns unknown event patterns

from a spatial distribution of tweets for event localization and does not completely rely on

spatial features and the content of tweets.

Applicability: We consider a novel collection of aggregate data with tweet counts over

the spatial dimension (in a time window) instead of the temporal dimension. We then apply

SPARE to this data to localize events.

Accuracy: Based on our experiments, events are localized very close to the actual event

coordinates and no more than a mile of their occurrence.

Generality: We believe our proposed method may be applied to other domains/signals

that have aggregate count information, such as waste water testing for diseases [58].

3.1.1 Temporal aggregation

We begin by describing temporal aggregation which forms the basis for spatial aggre-

gation. The linear equations for temporal aggregation can be generalized as Equation 3.1

where Ot is the temporal observation matrix, Nt is the vector of the smallest granularity

time units and Yt is the vector of aggregated values.

Ot ×Nt = Yt (3.1)

Temporal aggregation has been studied in prior work described in [60] and [38]. Consider

Figure 5(a), let n1,n7 be the values (e.g. number of tweets) observed at time t1,t7. For

example, each value in t1,t7 is an observed value for a single day, then y1 and y2 are two

aggregated values spanning 4 days each. Since, 4-days of observed data are aggregated to-

gether, then the report duration is 4 and there is one overlapping value in the two aggregated

values, which is a shift. Report duration and shift are the two parameters that determine the

aggregated values. Report duration is the number of fine-grained values aggregated together

to obtain a coarser grained value. Shift denotes the number of overlapping values between

corresponding aggregated values.

20

n1 + n2 + n3 + n4 = y1

n4 + n5 + n6 + n7 = y2

1 1 1 1 0 0 0

0 0 0 1 1 1 1

n1

n2

n3

n4

n5

n6

n7

=

y1
y2

 (3.2)

Temporal aggregation and the example from Figure 5(a) is represented as a system of

linear equations - characteristics linear system [38]. The combination of linear equations for

the aggregated values y1 and y2 are shown in Equations 3.1.1.

In the linear equations, the basis matrix that aggregates the values n1,n7 to obtain

y1, y2 is called the temporal observation matrix denoted Ot. The temporal observation matrix

is shown in Equation 3.3.

Ot =

1 1 1 1 0 0 0

0 0 0 1 1 1 1

 (3.3)

The report duration and shift can also be determined from the observation matrix (Fig-

ure 5(b)).

21

(a) Representation of temporal aggregation (b) Report duration and shift on temporal observa-
tion matrix

Figure 5: Temporal Observation Matrix

3.1.2 Spatial aggregation

The linear equation (in matrix form) typically used to represent aggregation [38] is shown

in Equation (3.4) where Os is called the spatial observation matrix, X is the vector of the

smallest granularity spatial units (layers) and Y is the vector of the aggregated values (counts

of tweets in our case).

Os ×X = Y (3.4)

In the problem we consider, Y is what we know, X is what we want, and Os is a set of

basis vectors we use to disaggregate Y . We explain this below.

Using Figure 6 as an example, we will explain how the number of tweets are aggregated

along the spatial domain as aggregated counts lying within a circle or layer at a fixed distance

(radius) from a point of reference Ci. As the distance (radius) from Ci changes there would

be a change in the number of tweets. In other words, the center of the layer Ci can also be

considered as the reference point that measures the total number of messages sent out by all

the social sensors within a certain radius. When we scrape data from Twitter, this is how

the tweet counts are reported (y1 tweets in a circle of radius r1 around C1, y2 tweets in a

22

<latexit sha1_base64="G9ArmxXR5HYqRcOYrAuBLlb9CdQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMT3vgZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buqXt7XKnU3j6MIJ3AK5+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/+vjZA=</latexit>r1

<latexit sha1_base64="XOFSlp525rEPOUsGgWULjNmyozI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buqXtxfVupuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwABQo2R</latexit>r2

<latexit sha1_base64="joU6cxXwUnPGtOJDg2HX1GhZQrM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0msqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVrd1fVupuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwACxo2S</latexit>r3

<latexit sha1_base64="4axFnXvEdCSfqbmQqg4ObFhaWgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB92v9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndVvbyvVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwAESo2T</latexit>r4

<latexit sha1_base64="CtVMK6W67oDjvIl0ehCZ0V7hTIs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga8eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBEwsaiqpuuruCRHBtXPfbKaysrq1vFDdLW9s7u3vl/YOmjlPFsMFiEat2QDUKLrFhuBHYThTSKBDYCka3U7/1hErzWD6acYJ+RAeSh5xRY6UH1bvslStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCGz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrelfV8/uLSs3N4yjCERzDKXhwDTW4gzo0gMEAnuEV3hzhvDjvzse8teDkM4fwB87nDwXOjZQ=</latexit>r5

Layer or
Annular ring

Reference
Point

5 layers (more granular) 3 layers (less granular - step = 2)

Tweets are aggregated at the reference point from layers. For example, the reference points accumulates tweets
from layers 1 (x1) and 2 (x2) to get

<latexit sha1_base64="OA0wcHVQVDaMaa7NklhvB7SLGEA=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSIIQkmqqBeh4MVjBfsBbQib7aZdutnE3U1pCP0dXjwo4tUf481/47bNQVsfDDzem2Fmnh9zprRtf1srq2vrG5uFreL2zu7efungsKmiRBLaIBGPZNvHinImaEMzzWk7lhSHPqctf3g39VsjKhWLxKNOY+qGuC9YwAjWRnJTr4pu0dhzzsde1SuV7Yo9A1omTk7KkKPulb66vYgkIRWacKxUx7Fj7WZYakY4nRS7iaIxJkPcpx1DBQ6pcrPZ0RN0apQeCiJpSmg0U39PZDhUKg190xliPVCL3lT8z+skOrhxMybiRFNB5ouChCMdoWkCqMckJZqnhmAimbkVkQGWmGiTU9GE4Cy+vEya1YpzVbl4uCzX7DyOAhzDCZyBA9dQg3uoQwMIPMEzvMKbNbJerHfrY966YuUzR/AH1ucPs5CQtQ==</latexit>

y2 = x1 + x2

Figure 6: Representation of Spatial Aggregation

circle of radius r2 around C2). In other words, we only have aggregated counts yi. In Figure

6, there are five different layers of radii r1, ...r5 around reference point Ci. In the annular

ring between each pair of radii, the number of tweets are x1, ...x5 respectively which are the

fine-grained values. Then the aggregated number of tweets are represented by y1, ...y5 - they

are aggregated in circles, rather than the annular rings. Since we consider aggregation as

the summation of all the number of tweets in the annular rings of smaller radii, aggregation

can be represented as a set of linear equations. Consequently, by inserting the values in

Equation (3.4), the aggregation for Figure 6 can be written as Equation (3.5).

23

y1 = x1

y2 = x1 + x2

y3 = x1 + x2 + x3

y4 = x1 + x2 + x3 + x4

y5 = x1 + x2 + x3 + x4 + x5

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

x1

x2

x3

x4

x5

=

y1

y2

y3

y4

y5

(3.5)

From Equation 3.5, the observation matrix is:

Os =

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

To represent the data with different granularity, we define the parameter ”step”. The

step size defines how many layers were aggregated and 1 ≥ step ≤ |X|. A higher step

size indicates coarse-granularity of data. Figure 6 shows that when the step = 2, then

only aggregated values in 3 layers are considered. The corresponding characteristic linear

equations for spatial aggregation with step = 2 and the corresponding observation matrix

are shown below:

y1 = x1

y3 = x1 + x2 + x3

y5 = x1 + x2 + x3 + x4 + x5

1 0 0 0 0

1 1 1 0 0

1 1 1 1 1

x1

x2

x3

x4

x5

=

y1

y3

y5

 (3.6)

Os =

1 0 0 0 0

1 1 1 0 0

1 1 1 1 1

24

Our objective is to find (as accurately as possible) the disaggregated values (X values)

given some observation matrix and aggregated data. In the next section, we describe the

disaggregation process and how the step affects the accuracy of disaggregation.

3.1.3 Information reconstruction via disaggregation

In the previous section how the aggregation of number of tweets occurs in space was

described. The raw data that is typically available from Twitter are aggregated, i.e., X in

Equation 3.4 is unknown and would have to be reconstructed through disaggregation, as

shown below in Equation 3.7:

O−1
s × Y = X̂ (3.7)

where O−1
s is the inverse of the observation matrix, Y is the vector of the aggregated values,

X̂ is the vector of the approximation of the fine-grained reconstructed values X.

It should be noted that the observation matrix may be non-square and finding the inverse

of a non-square matrix is not straight-forward. To find the inverse of the observation matrix

we use the pseudo-inverse of the matrix using the Moore-Penrose pseudo-inverse [43]. The

Moore-Penrose pseudo-inverse provides a Least Square Solution (LSQ) [22] to the system of

linear equations. LSQ finds the minimum-norm solution to a linear system by minimizing

the squared distance between the actual values and the product of the reconstructed values

and the observation matrix.

min||Y −OsX̂||22 (3.8)

where Y is the observed aggregated value, Os is the spatial observation matrix and X̂ are

the reconstructed approximate values.

Using Equation 3.5 and 3.6 as an example, disaggregation would be process of obtaining

the fine-grained number of tweets, X = x1, ...x5 when only the aggregated number of tweets

Y = y1, ...y5 and the observation matrix Os are known. In this case we would obtain X̂ =

x̂1, ...x̂5 which would be the approximate values. When step = 1, then X̂ approximate values

that would likely be equal toX. When step> 1, then |X| ≥ |Y |, i.e. the number of unknowns

which are in X become greater than the known values in Y . Such a characteristic system

is called under-determined and has infinite number of solutions. Equation 3.6 illustrates

25

an under-determined system when step = 2. Using only y1, y2, y3 we aim to obtain x̂1, ...x̂5

which can result in greater errors of approximation. In this case, only aggregated values at

layers of radius r1, r3, r5 are given and our disaggregation process estimates the number of

tweets for not only r1, r3, r5 but also r2, r4 which are added layers between r1 and r3 and

r3 and r5 respectively. In this way we are adding finer-granularity to the coarse-grained

number of tweets and the accuracy of reconstruction is reduced. Theoretically, if we had

only a single aggregated value yi at radius ri, we could use that value to estimate infinite

fine-grained values, but the reconstruction accuracy would greatly be reduced as more inner

layers are added. The example below adds 5 smaller layers to yi by disaggregation:

O−1
s × [yi] =

x̂1

x̂2

x̂3

x̂4

x̂5

(3.9)

where Os =
[
1 1 1 1 1

]

Reduced reconstruction accuracy with increasing step size is also observed in Figure 4

where we see disaggregated values, using LSQ, when step = 2 and step = 7. Similarly, Figure

7 shows disaggregation using LSQ with step = 3 using the ground truth data (described later

in Section 5.2.2) where the deviation from the actual values can be seen. We show more

experiments with changing step size and reconstruction accuracy later in Section 5.2.2.

26

Figure 7: Comparison of original and disaggregated data using LSQ and smoothness

In order to improve the accuracy we do “regularization” by adding a constraint matrix

to LSQ to improve the reconstruction ([38], [72]). Regularization aims to better estimate

the values in smaller granularity. The disaggregation can be visualized as an optimization

problem, where the aim is to minimize sum of the deviation from actual values taking into

account the constraint matrix. The constraint matrix considers domain knowledge and

the past and present trends to more accurately reconstruct the data. The mathematical

representation of the problem is as follows:

min(F (X̂) + C(X̂)) (3.10)

where F (X̂) = ||Y − OsX̂||22 is the deviation from actual values and C(X̂) =
∑N

t=1(xt −
xt+1)

2 = ||SX̂||22 is the smoothness matrix. In C(X̂), xt and xt+1 are part of a sequence

X = x1,, xT with T time-ticks or layers. The smoothness matrix S is a IR(T−1)×T matrix

with a 1 in the tth row and -1 in tth and (t + 1)th column and zero everywhere else. The

smoothness constraint [38] penalizes large variations between successive time or spatial units.

Note that there may be other definitions of constraint matrix like periodicity [38] or distance-

based constraints. The difference in reconstruction for the ground truth data when adding

the smoothness constraint can be clearly seen in Figure 7. The smoothness reconstructed

27

values appear to match the actual the actual values more closely than reconstruction with

LSQ only when step > 1. We use smoothness constraint as an example in this dissertation

to demonstrate the possibility of using constraints. We do not explore the “best” constraint

matrix in this dissertation.

3.2 Explicit Event Patterns

In this section we propose our definition of both explicit and latent event patterns. We

also propose filtering techniques to refine event patterns and assess the peaks.

3.2.1 Explicit Event Patterns

Figure 8 shows a time series of number of tweets collected from Twitter for two considered

events (VIRG and STEM). The event data is explained later in Chapter 4. We can observe

that the occurrence of an event is followed by a peak as there is a large change in the number

of tweets along the temporal dimension around the event. The peaks are an explicit patterns

of an event found in the time series. In SPARE and for our dissertation we define a peak as

a local maxima. We also consider a point as a peak if it is greater than δ points before it

and equal to δ points after it. For simplicity we consider only adjacent points, i.e., δ = 1.

With a sequence of numbers of tweets varying with time or space, the position of the

peaks can determine the time or location or spot of an event. There are alternative methods

of detecting events – for example, detecting event patterns through machine learning. If we

disaggregate the input sequence and obtain finer-grained data, a more precise position of

the peaks can be determined which can be used to approximate the location and time of an

event.

However, not all peaks are indicative of an event. For example, some peaks could be part

of routine Twitter behavior and are part of a standard recurring Twitter pattern. Obtaining

peaks from aggregated data can also lead to errors in event detection as some peaks may

be removed or appear at a different position. For example, in Figure 7 it can be seen that

28

(a) Effect of Filtering on STEM event data (b) Effect of Filtering on VIRG event data

Figure 8: Effect of Filter Threshold on Data Collected from Twitter

reconstructing data using smoothness clearly effects the magnitude and position of the peaks

which can influence the accuracy of event detection as peaks corresponding to an event may

be lost. We modify how we define peaks relating to events by considering what we call as

significant peaks.

3.2.1.1 Refining explicit patterns - low pass filters To extract “significant peaks”

we use a novel approach based on passing the disaggregated data through a filter. We could

use advanced filtering techniques or even look into some form of pattern recognition that

compares current data with historical data. For this thesis we propose a simple low pass

filter. The low pass filter removes any small variations and will keep the most “significant

peaks”. The filter threshold can vary the output sequence and the number of significant

peaks. Figure 9 shows how the filter affects the ground truth data for different values of

filter threshold. There is a trade-off in setting the filter threshold. At low filter thresholds

all the peaks are removed and the data only appears as a straight line and does not coincide

with the actual data. As the threshold increases the number of peaks detected increase which

can result in peaks not relating to events being detected which we observe from our results.

In later section, we look at different low pass filters and how they affect event patterns for

both real data and data generated using TBAM.

As Figure 8 shows, multiple significant peaks are present after different filter thresholds

29

Figure 9: Effect of filter threshold on data

are applied. Ideally all significant peaks should be caused by events. However, that is not

always the case. Low pass filtering may not be ideal to identify peaks caused by events. The

significant peaks that are due to events are called event-related peaks. Event-related peaks

can be used to identify the time (and or location) of an event. Differentiating event-related

peaks from significant peaks can be complicated and we propose using a similarity based

analysis to identify event-related peaks.

3.2.1.2 Refining explicit patterns - semantic decay filters (SDF) The similarity

based filter or semantic decay filter (SDF) [5] is based on the hypothesis that event-related

peaks would have a lot of similar texts in the tweets as users will make references to an event

in their tweets. For the similarity measure we use the function F [35] that maps words into

the real vector space Rn in such a way that the distance between two similar words (i.e., non-

standard spellings of the same word, or words used in the same context) will be the shortest

distance between the corresponding mapping in the real vector space. Consequently, an

event peak can be identified as follows: the aggregated decay in similarity over all the tweets

in an event-related peak will be slower than decay in similarity in a non-event-related peak.

30

Let Nk
t be the aggregated number of similar tweets is a set of tweets Tt = {T1, T2, ..., Tn}

posted during a time window t for a threshold ak. N
k
t is given by the following equation:

Nk
t =

n∑
i=1

n∑
j=1

1Similarity(Ti,Tj)>ak . (3.11)

Where:

1Similarity(Ti,Tj)>ak =

1 if Similarity(Ti, Tj) > ak

0 otherwise

The decay λkt is then calculated using the following equation:

λkt =
1

ak − a0
log

Nk
t

N0
t

. (3.12)

Equation 3.12 is an exponential decay function used in many areas, most notably in

physics to calculate the radioactive decay [24] by just replacing ak with the time and Nk
t

with the number of atoms. We used that analogy as source of inspiration for Equation 3.12.

A special case can occur in which, during the time window t, the number of posted tweets

is low. Nevertheless, those tweets are similar or identical. In this case, will observe a low

decay corresponding to depression in the number of tweets. Thus, using the decay alone as

an indicator is not sufficient. Our indicator is a linear combination of the normalized decay

and the normalized number of tweets |Tt| in a specific time window:

SDFt = αNorm(|Tt|) + βNorm(λkt) (3.13)

where Norm is a normalization function 1, α, and β are real numbers. α and β are added

to adjust the importance of normalized number of tweets and the normalized decay. To

generate the SDF, the parameters α = 1 and β = −1.

1

normalization function normalizes by dividing with the total number of tweets or λ so that the values lie
between 0 & 1

31

3.2.2 Latent Event Patterns

To find latent patterns related to an event we use Long short-term memory (LSTM).

LSTM is an artificial recurrent neural network (RNN) architecture used in the field of deep

learning [29]. Unlike standard feedforward neural networks, LSTM has feedback connec-

tions. It can process both images and sequences of data (such as time series data or speech

or video). LSTM can classify and predict time series data and has been used for handwriting

recognition, speech recognition, estimating future values in a time series data and anomaly

detection in network traffic or IDS (intrusion detection systems).

Figure 10: Long Short-Term Memory (LSTM) Architecture

The LSTM architecture is shown in Figure 10. In the figure “input” is the count of tweets

at a specific time unit. An LSTM unit is composed of a cell, an input gate, an output gate

and a forget gate. The cells store the values and transfers information all the way down the

sequence chain over an arbitrary time interval. The three gates are the neural networks that

decide which information is allowed to flow in and out of the cell. The gates use sigmoid

function and tanh function to make the decision about the information flow. The sigmoid

function is defined as σ(x) = 1
1+e−x and maps x between 0 and 1. The tanh function is

defined as tanh(x) = 2
1+e−2x − 1 and maps x between -1 and 1 for network regulation.

The forget gate decides which information should be kept or discarded. The forget gate

combines the values from previous hidden state and the value of the input sequence at a

specific time and uses the sigmoid function to map these values between 0 and 1. The

32

sigmoid function output is combined with the previous cell state. If the sigmoid function is

close to 0, then the previous cell state is forgotten and if the sigmoid function output is close

to 1, then the previous cell state is kept.

The input gate controls which values are passed through and if any new information is

added to the data from the previous state. First the product of the output of the sigmoid

function and the tanh function is taken. The tanh and sigmoid function are computed on the

combination of the values from previous hidden state and the value of the input sequence at

a specific time. Next the product is added to the previous cell state and becomes the current

cell state. The output of the the product is between 0 and 1. A 0 means the value is not

important, and 1 means it is important. In this way information is added to the previous

cell state that is important and not redundant and passed onto the next cell.

Finally, the output gate computes the next hidden state. First a tanh function is applied

on the current cell state, which was obtained from the input gate. The tanh function is

multiplied with the sigmoid function applied to the combination of the values from previous

hidden state and the value of the input sequence at a specific time. The output of the

product becomes the current hidden state which is passed onto the next cell.

Bidirectional LSTM [53] is a special type of LSTM. It can learn long-term dependencies

between time steps of time series or sequence data and is able to learn both forward and

backward information about the sequence at each step. We use this special type of LSTM for

learning latent event patterns. Bidirectional LSTM takes in two sets of inputs: values from

past to the future and from future to the past. For example, if a large number of tweets are

identified in the future, then the reverse direction would allow such a trend to be identified

as an event as people tend to send out a large number of tweets after an event.

3.3 Top-down data generation

We propose using agent-based modeling (ABM) as the top-down data generation model.

ABM augments the data by generating synthetic data using parameters which may be learned

from real Twitter data. ABM has been used in many different fields for analysis and un-

33

derstanding of the real world like biology, chemistry, cyber-security, social and economic

modeling, etc. [2]. Agent-based models (ABM) [69] have entities or agents. An agent can be

an individual or an object that has specific properties and actions. The agents move around

in a two dimensional grid called the world. The interactions between the agents can be

quite complex but can be defined according to a set of rules. An agent can be autonomous,

flexible, adaptable and self-learning [41]. There may be other models that can simulate

scenarios pertaining to human social behavior and social media information dispersion (like

system dynamics), however, ABM is able to better represent complex and heterogeneous

interactions ([69], [41]) which makes it suitable for creating our model.

To generate synthetic data we propose Tweeting Behavior Agent Model (TBAM) that

uses Agent-Based Model (ABM) to simulate how users tweet and how their behavior changes

when an event occurs. We use Netlogo to create the agent-based model. In this section we

provide a brief overview of the model and the different parameters used to generate synthetic

data. We call this as a top-down approach because we pick the parameters of the ABM and

try to match the data sequences observed with the microblogging data.

3.3.1 TBAM design

The idea behind TBAM is to simulate user behavior when an event occurs, more specifi-

cally to investigate the change in number of tweets as time and distance from event changes.

For our model we consider “local events” [46], i.e., events restricted to a certain region. Our

model simulates microblogging behavior of people within a city or a few small neighborhoods

and helps us examine how people’s microblogging behavior changes when they have close

spatial and temporal proximity to an event.

We use Netlogo [68] to create our agent based model. In Netlogo there are four types

of agents: turtles, patches, links and observer. The turtles are agents that move around in

the world. The world is sub-divided into smaller squares called patches and each patch has

a unique coordinate. Links are agents that connect two turtles. The observer observes the

agents and their interactions. In Netlogo models, time passes in discrete steps called ticks.

Figure 11 shows a snapshot of the synthetic world at a particular tick. The parameters in

34

Figure 11: Representation of the ABM world

the figure are summarized in Table 2 and Table 3. In our model, the turtles are the Twitter

users (people) who send out the tweets. A tweet can be a non-event related tweet (which is a

standard or routine tweet indicated by green colored users), an event related tweet (indicated

by users colored yellow) or tweets sent out during low Twitter activity (indication by users

colored black). The patches represent the locations over which Twitter users lie and where

an event can occur. Initially all patches are colored blue. Once an event occurs, the patches

change color to red as the patches are influenced by the event. In a real world setting a

patch could represent a geographical coordinate. A tick is a unit of time over which the total

number of tweets are measured. Ticks could be in hours, minutes or seconds depending on

the time granularity that is required.

3.3.2 TBAM explanation

In order to generate data that accurately reflects real world settings we define different

parameters. The parameters are summarized in Table 2 and Table 3. In this section we

provide an overview of these parameters and explain how our model simulates microblogging

35

behavior and event generation. The model is made of two phases. In the first phase, also

called the setup phase, the synthetic world settings are created in which the users will tweet.

In the second phase, also called the simulation phase the users tweet and once an event

occurs, their microblogging behavior changes.

The setup phase begins by generating N users. The users are randomly distributed

throughout the world. Some of the users are clustered together. The number of clusters are

defined by the parameter num-clusters. The parameter cluster? determines if the users

are clustered or not and percentage-clustering determines what percentage of users are

clustered together randomly in each of the clusters. The setup phase also generates concentric

circles around the central coordinate, i.e., (0, 0). The central coordinate is the location of

the sensor that counts the number of tweets. Each consequent circle increases its radius by

the parameter step. These circles aim to provide a visual analysis of how tweets change

with changing distance.

To simulate a Twitter network, some users are linked together with bi-directional links.

The links are generated using Erdos-Renyi model which has been used in previous literature

to study social networks [15]. In the Erdos-Renyi model, each link between a user has a fixed

probability of being present and being absent independent of the links in a network. The

parameter probability can be varied to change the probability and create networks with

a lot of links or with very few links between users. There is also an option for generating a

network with random links between users. The num-links is a parameter specific to random

networks which randomly creates num-links number of links between different users. The

twitter-network can be set to true or false to choose between Erdos-Renyi or random

model to generate the network.

In the simulation phase at each tick the total number of tweets sent out are counted.

The total number of tweets are the sum of standard tweets, event related tweets and tweets

sent out during low Twitter activity. It should be noted that we are able to separate these

in TBAM but it may not be possible to do so with scrapped Twitter data. At each tick,

a random number zi is generated for each user. The random number is used to create the

random conditions where users may not choose to tweet at a specific time. Since it is hard

to determine these random conditions, we assume that zi is normally distributed random

36

Table 2: Fixed parameters for all TBAM data generation simulations

Parameter Description Value

n-events? binary: chooses between one event or n-

events

FALSE

event-sources sets number of events. Only valid if n-

events is true

1

eight-mode? binary: chooses between spreading event

to both diagonal and adjacent patches or

only to adjacent patches

true

twitter-network binary: chooses between Erdos-Renyii

and random network

Erdos-

Renyii

num-links number of links in the random network -NA-

people number of people microblogging 1000

probability probability of a link being created be-

tween two people in the Erdos-Renyii Net-

work

0.45

step distance between each layer 7

num-clusters number of clusters of people 9

cluster? binary: choose to cluster people (1) or dis-

tribute people uniformly (0)

1

percentage-clustering percentage of people in clusters 0.75

tweet-threshold used to generate random number that a

user will tweet

0.7

user-interest duration over which people remain inter-

ested about a tweet

5

event-interest duration over which people remain inter-

ested about tweets related to an event

5

night-mode to consider periodicity in tweets and sepa-

rate users microblogging at day and night

True

37

Table 3: Variable parameters for different TBAM data generation simulations

Parameter Description VIRG STEM GAR

tweet-chance probability of a person sending out a tweet 0.33 0.29 0.22

event-duration length of time that event remains active 31 48 8

event-tweet-chance probability of a person sending out a tweet about

an event

0.49 0.55 0.67

night-tweet-chance probability of sending out tweets during low Twit-

ter activity

0.17 0.16 0.12

night-duration the duration of low Twitter activity 8 8 8

ndist scaling factor effecting decay for qi 0.07 0.12 2

number of mean tweet-threshold and variance 0.2. The scrapped twitter data also follows

a rough normal distribution which is why we chose the random conditions to be normally

distributed. Before an event occurs a user will only send out a routine tweet. A user will

only tweet if zi < tweet-chance where zi is a random number generated for user i and

tweet-chance is probability of sending out a standard tweet (from Table 3).

At a specific time (tick) and location (patch) the event occurs and with each tick spreads

across the world. The rumor spreading model has been used as a basis to simulate spreading

of an event influence (or information) [67]. There may be other models that can be used

to simulate spreading of an event, like the susceptible-infected-refractory (SIR) model [71].

Similar to the rumor spreading model, immediately after an event occurs, the event influence

starts spreading to all the neighboring patches (shown by the red colored patches in Figure

11). However, the rate at which the event influence spreads to its adjacent neighbors may

not be uniform and may vary with time. Initially, as soon as the event occurs, the event

influence immediately spreads to all patches within a fixed radius. The influence then spreads

to adjacent neighboring patches with decreasing rate as more time elapses. This assumption

is based on the observations made from Twitter data collected that shows a sharp rise in

the immediately after an event. One parameter that effects the spreading of event is the

eightmode?. Setting the eightmode? parameter to true causes the event to spread to its

38

diagonals and its adjacent neighbours but setting the eightmode? parameter to false causes

the event to only spread to its adjacent neighbours. When the eightmode? is true, then the

event spreads outwards more quickly.

Once an event occurs, a user can send out either an event related tweet or a routine

tweet. A user will choose to send out a tweet about an event if zi <
qi

(qi+tweet-chance)
where zi

is a random number generated for user i as described previously, qi is probability a user i will

tweet about an event and tweet-chance is from Table 3. Once a user chooses to tweet about

an event, then a user will only send out tweet about an event if they are on a patch where

an event has spread to and zi < qi where zi is a random number generated for user i and qi

is probability a user i will tweet about an event. There are multiple methods of determining

qi. qi could be fixed or vary with time and distance from event. For the model we create a

hybrid approach. In the immediate vicinity of the event qi = event-tweet-chance where

event-tweet-chance is one of the parameters from Table 3. But as the distance and time

from event increases, then qi decreases according to Equation 3.14.

qi = event− tweet− chance ∗ [(t− tevent)−ndist/α ∗ (devent)
−ndist/β] (3.14)

t is current time tick measured after the event occurs, tevent is the time tick at which event

occurred, devent is the distance of the user from the event, ndist/α and ndist/β is a scaling

factor. A high ndist values means that event-tweet-chance decays less rapidly with

changing time and distance respectively. For our model we keep α fixed at 1 and β fixed

at 20. Since we are considering local events and users would generally be in close proximity

to the event, therefore, the decay of event-tweet-chance with distance should reduce less

rapidly than decay due to time. Hence, we choose a larger value of β than for α. It should

be noted that there are many different functions that could be used to simulate the decay of

probability of microblogging about an event. Previous literature ([49], [52]) have considered

exponential distribution for tweets which can also be observed from the collected twitter data.

Hence, we choose an exponential function to simulate how probability of microblogging about

an event decays with time and distance. Figure 12 is a plot of the function showing how qi

changes as distance and time from event changes when α = 1 and β = 20.

39

Figure 12: Changing qi with changing distance or ticks (with α = 1 and β = 20)

During the simulation phase, users can also send out retweets. A user will send out a

standard retweet if zi < tweet-chance and there is a link with another user who has sent

out a standard tweet. Consequently, a user will only send out an event related retweet, if

zi < qi and there is a link with another user who has sent out an event related tweet. We

define the parameters event-interest and user-interest as the tick duration over which

users will keep on talking about an event or a routine tweet. These parameters quantify

the importance of standard or event related tweets and the higher these parameters are the

larger will be the number of retweets sent out. For our simulations, we keep these values

constant.

The event ends when event-duration ticks have elapsed. Once the event ends, then

just like the rumor spreading model, the patches lose the influence of the the events. No new

tweets relating to an event are generated and the event related tweets gradually decrease

until they eventually stop. Higher event-duration value signifies that users will continue

to generate new tweets about an event for longer periods of time.

There is also the option of choosing multiple events which is done by setting n-events?

true. If there are multiple events then event-sources sets the number of event sources. For

this model we use one event source. In short, event-duration, event-tweet-chance and

40

event-interest determine how significant an event is. If these values are set high then it

indicates an event that has a high impact on users’ lives and they will tweet and retweet more

about the event and remain interested in the event for longer duration. These parameters

can be changed to incorporate different types of events.

The data collected from Twitter reveals periods of time with very few tweets being

sent out. To incorporate such behavior we introduce the parameter night-mode that en-

ables or disables consideration of time when there is low Twitter activity. If night-mode

is enabled, then there are two parameters that affect the low Twitter activity. One pa-

rameter night-duration effects how long the low activity period lasts. The other pa-

rameter night-tweet-chance is a measure of the probability of a user microblogging dur-

ing the low Twitter time period. A user sends out tweets during this time only when

zi < night-tweet-chance. Usually night-tweet-chance would be less than tweet-chance

which in turn is usually less than event-tweet-chance.

3.4 Bottom-up data generation

Our bottom-up approach generates data by learning from the real world data directly

without input of any parameters. In this thesis we use generative adversarial network (GAN)

as a bottom-up approach to generate data. As we discussed in Section 2.2, GAN has been

used to generate data to augment and enhance the real data. As we are also attempting to

augment our data, using GAN is a logical option.

41

Figure 13: Generative Adversarial Network (GAN) Architecture

GAN is a deep learning framework invented in 2014 [23]. The GAN architecture can be

seen in Figure 13. GAN generates new data based on the same statistics as the training

set. GAN has been used to generate new photographs that can look very similar to the

photographs on which GAN was trained on.

GAN consists of two agents: the generator and the discriminator. The generator and the

discriminator work against each other (almost like game theory). The generative network

generates realistic looking fake data with the objective to increase the error rate of the

discriminator. The discriminator would attempt to catch the deceptive data. The generator

trains on data that successfully fools the discriminator while the discriminator trains on the

known training data. The generator is seeded with randomized input that is selected from a

latent space of a specific distribution (like normal distribution). Back propagation allows the

generator to produces better data and the discriminator becomes more proficient at catching

fake data.

42

4.0 Data sets Used for Localization

In this chapter, we introduce the data on which we apply the enrichment strategy and

use the data for localization. We perform the following tasks in this chapter:

• Introduce three different data sets

• Show how TBAM data can be generated using heuristics

• Define metrics that can be used to validate the TBAM generated data

• Show how the metrics are affected when different TBAM parameters are changed

• Compare TBAM and GAN and their affect on the metrics

• Apply filters on TBAM and real data and show how the patterns are affected in the two

data sets

4.1 Introduction to the data sets

In this section we first describe the data that we use for analysis in the subsequent

sections. We explored three different types of data sets to examine how different parameters

effect the performance of disaggregation, reconstruction, and localization. The first data set

is based an epidemiological series based on weekly trend of New York measles cases from

1928 to 1936 obtained from Tycho [63]. This was used previously ([38], [72]), and although

not in the spatial domain, provides a baseline for the proposed approach. We examine step

size, filter threshold and tolerance and this epidemiological data set seems most viable as it

has dynamics similar to Twitter data [32].

The second type of data set uses raw tweets from different events that are represented

in a way similar to Section 3.1.2. The ’TwitteR’ package in R [20] allows tweet count to

be collected with in a specific radius around a central coordinate. The data set with their

details are summarized in Table 4. However, this data is aggregated and there is no ground

truth to assess the disaggregated data.

43

Table 4: Summary of Real Data

Event Name Ref

Name

Event Date Event Location (lati-

tude, longitude)

FIFA World Cup Final FIFA 03-15-2018 55.715989, 37.553758

London Bridge Attacks LON 06-03-2017 10:16pm 51.508056, -0.085717

STEM School Shootings STEM 05-07-2019 1:53pm 39.556, -104.9979

Virginia Beach Shootings VIRG 05-31-2019 4:44pm 36.7509, -76.0575

Garlic Festival Shootings GAR 07-28-2019 5:40pm 36.997778, -121.585278

El-Paso Shootings ELP 09-03-2019 10:45am 31.7771, -106.3843

Santa Clarita Shootings SANTA 11-14-2019 7:38am 34.4419, -118.5177

The third type of data sets are generated using different modeling methods TBAM and

GAN. The implementation of data generated using GAN is described later in Section 5.2.

To generate data using TBAM, we use the parameter values described in Table 2 and

Table 3. Table 2 shows the parameters that are kept fixed for all the simulations. Table 3

shows the parameters that are changed according to the Twitter data set they are meant

to match. The parameters in Table 3 were estimated by inspection of the Twitter data.

Table 5 summarizes how we estimated the different parameters from the Twitter data. The

event-duration was estimated as the duration over which the number of tweets sent after

the event were higher than tweets sent before the event. For example, in Figure 14(b) the

number of tweets in the Real data return to the value before the event after 48 ticks, hence,

the TBAM event-duration parameter was set to 48 to generate the data in that figure.

Similarly, from the real data we calculate the values for tweetsnight, tweetspre−event and

tweetspost−event. Then using these values we estimate the probabilities for the TBAM pa-

rameters of tweet-chance, event-tweet-chance and night-tweet-chance which are then

used to generate TBAM data.

The heuristic analysis of the data from Twitter reveals how the different parameters

vary for different areas and events. The difference in these parameters could be due to

44

Table 5: Determining the probabilities from Twitter data for TBAM

Parameter Description

tweetsnight mean number of tweets sent in low Twitter

activity hours

tweetspre−event mean number of tweets sent before the event

(excluding low Twitter activity tweets)

tweetspost−event mean number of tweets sent after the event

(excluding low Twitter activity hour tweets)

event-duration duration over which number of tweets sent af-

ter event are remain higher than number of

tweets sent before event

tweet-chance
tweetspre−event

(tweetsnight)+tweetspre−event+tweetspost−event

event-tweet-chance
tweetspost−event

(tweetsnight)+tweetspre−event+tweetspost−event

night-tweet-chance
tweetsnight

(tweetsnight)+tweetspre−event+tweetspost−event

the difference in demographics, Twitter usage and density of the Twitter network. For all

three data sets we considered a similar event. VIRG and STEM had roughly similar pa-

rameters but GAR has very different parameters. This is because GAR refers to two events

combined as one. GAR event is different from the other two events as it started off as a

different event which was a festival but ended up as a shooting event. As a result there

were more Twitter users compared to usual days and the parameters event-tweet-chance,

event-duration and ndist are significantly different than the other two events. The pa-

rameter of event-duration is significantly shorter due to Twitter users leaving the event

location and hence, the scaling factor is high to account for the high outflow of Twitter users.

Figures 14(a), 14(b) and 14(c) represents the plots of the data. Real indicates data obtained

from Twitter and TBAM indicates data generated through TBAM. Each tick represents the

number of tweets sent out in an hour. The occurrence of an event is indicated by the vertical

line.

45

(a) VIRG Twitter Data vs TBAM generated data (b) STEM Twitter Data vs TBAM generated data

(c) GAR Twitter Data vs TBAM generated data

Figure 14: Comparison of Twitter data with TBAM generated data

46

4.1.1 Performance Metrics for TBAM analysis

For comparing the peaks in the TBAM data with the real data we define a set of metrics.

The metrics are summarized in Table 6. The accuracy, penalty and quality measure how

well the peaks in the data from Twitter compare to the TBAM generated data.

The metrics are based on some essential parameters. The first parameter is distance (d).

The distance (d) is defined as the distance of peak in the TBAM data to the nearest peak

in data collected from Twitter. Lower the distance better is the identification of the event

signature.

The next parameter is number of mismatches (m). This is defined as the difference in

the number of peaks in the data collected from Twitter and the TBAM generated data.

The parameters can be explained through the following example. Let the position of peaks

in data collected from Twitter be A = [3, 7, 9, 10, 13] and the position of peaks in TBAM

generated data be B = [3, 6, 9, 12]. Then we define a matrix (Equation 4.1) AB which is the

difference of vectors A and B. Then d would be the mean of the minimum distance values

in each of the rows. In case of our example d = mean(0, 0, 0, 1) = 0.25. Consequently,

m = |A| − |B| = 6− 5 = 1.

AB =

0 −4 −6 −7 −10

4 0 −2 −3 −6

6 2 0 −1 −4

9 5 3 2 1

 (4.1)

The first metric is accuracy (acc) which is defined as: acc = 1− d
ts−1

. The second metric

is event detection penalty (pen) which is defined as m
ts

. The third metric is event detection

quality (qual) which is defined as 1− (d+m)
(2ts−1)

. In the equations for the metrics ts is the length

of data collected from Twitter. Ideally acc and qual should be high and pen should be low.

In addition to the parameters above, we also use the cross-correlation function (ccf)

[57]. The cross-correlation function between two time series xt and yt is given by:

47

ρxy(s, t) =
γxy(s, t)√

γx(s, s)γy(t, t)
(4.2)

γxy(s, t) = cov(xs, yt) = E[(xs − µxs)(ys − µyt)] (4.3)

µxs is the mean of time series xs and µyt is the mean of time series yt.

The cross-correlation measures the dependence between two points on different time

series observed at different times. In other words, ccf measures the linear predictability of

the series at time s, say xs, using only the value yt. In our TBAM data we are trying to see

if the trends and patterns in the original data match. Hence, ccf will be a suitable metric

and provides a measure of similarity between the two data sets.

4.1.2 Determining Optimum TBAM Parameters

In the previous section we generated our data using heuristics. Previous works have

looked at using similarity [37] or a surrogate approach [75] to optimize and calibrate agent

based model and its parameters. In this section, we will look at how the different parameters

effect the metrics maximum ccf, ccf at lag = 0 and root mean square error (RMSE).

By measuring these metrics, we can determine the optimum set of parameters for generating

the data using TBAM. We focus on the STEM and VIRG data sets as the basis for the

TBAM parameters and to generate the GAN data set. We also compare our data generation

technique with generative adversarial network (GAN) which is a popular data augmentation

technique. There are four different simulations that look at the different parameters. In each

simulation some parameters were kept fixed while others were changed. The simulations are

summarized in Table 7.

Figure 15(a) and Figure 15(b) show the result of our simulation. Ideally, rmse should

be low and ccf at lag = 0 should be near 1. Figure 15(a) shows that ccf at lag = 0 and

maximum ccf are the same which is the ideal case. This indicates that the data generated

using TBAM and the data collected from Twitter have patterns that are very close to each

other. We also observe that (visually) GAN generated data is much more scattered. This is

because GAN data is generated by minimizing the RMSE. However, this might not be ideal

48

as low RMSE can also have low ccf which indicates less similarity between the generated

data and the real data. This observation is also made in Figure 15(b) where GAN has low

RMSE but very low ccf at lag = 0. This shows that GAN might not always be

able to capture the trends and patterns of data collected from Twitter. Ideally,

in Figure 15(b), the data points must lie at the top left; i.e., have low RMSE and high ccf

at lag = 0. Most of the data generated using TBAM is in the top left which is a good

result. The same result is obtained when the simulations are repeated for the VIRG data set

(Figures 16(a) and 16(b)). It should be noted that for the VIRG data set, the standard +

event Tweets simulation was not run as the STEM simulation showed that the other three

simulations were able to cover the parameters of this simulation.

Figures 17(a), 17(b) and 17(c) show the boxplots for the ccf at lag=0, maximum ccf

and RMSE and how these values vary for the different simulations for the STEM data set.

It can be seen that RMSE value for GAN has very low variance. The ccf for GAN is low.

On the other hand, agent-based modelling generates data independent of RMSE and CCF

value. Hence, it is more likely that GAN may generate data that is very close in value to

the actual data but may not be able to capture the trends and patterns found in the real

data. Therefore, we might conclude that agent-based modelling might be a better option

for learning event signatures and patterns for localization. The same observation is made

when we look at the boxplots for VIRG (Figures 18(a), 18(b) and 18(c)). However, in this

case the RMSE is higher and maximum CCF is lower for GAN generated data making it

less suitable than TBAM data.

By looking at the different parameters that give the maximum value of maximum ccf or

ccf at lag = 0 or the minimum value of RMSE, the optimum set of parameters to generate

data using TBAM can be determined. Figures 19(a), 19(b) and 19(c) show the highest values

of ccf at lag = 0 for the different simulations. From our simulations, we have observed

that the parameters determined using heuristics were in the set of parameters that had the

best value of ccf at lag = 0 (highlighted in the tables). Hence, heuristics can also be used

to generate data that best matches real world data.

49

4.2 TBAM Model Validation

In order to measure the accuracy of the TBAM generated with the data collected from

TBAM we use the cross-correlation function (ccf) [57]. Other works have focused on using

root mean square (RMSE) to compare data generated through models and real data set.

However, the focus of our work is to observe microblogging behavioral changes and to capture

the trends and patterns in the data. Hence, ccf will be a better metric and give an overview

of the similarity between the two data sets.

Figures 20(a), 20(b) and 20(c) shows the ccf between VIRG, STEM and GAR data sets

and the TBAM generated data respectively. It can be seen that the TBAM generated data

and the real data have a very similar pattern as the ccf is higher than the threshold for most

lags. Another important observation is that the correlation is also high at lag = 0. High

correlation at lag = 0 indicates a strong statistically significance.

For comparison to show that our method does generate accurate data, we measure the ccf

between data from Twitter and uniformly randomly generated data. The random numbers

were generated between 1 and the maximum value in the number of tweets of the specific

data set. Figures 21(a), 21(b) and 21(c) shows the ccf between VIRG, STEM and GAR

data sets and uniformly randomly generated data. It is clearly seen from the plots that

there is very low correlation at all lags. This shows that the data generated using TBAM is

significantly better.

As shown above, TBAM reasonably reproduces microblogging behavior. Unlike real

tweets, here we can (a) identify, control, and tune parameters which impact the tweet counts

and microblogging behavioral patterns (b) separate event related tweets from standard tweets

without looking at semantics (c) create aggregates in space or time (which we have not done

here, but it is straightforward) which can reflect real world settings and provides different

space and time granularity (d) intentionally, randomly, or using other models, introduce gaps

or noise (e) add additional demographics - groups that tweet more or less (f) add system-wide

or regional variations - all in a controlled manner. In this way, there is more control over

the delivery slate and reliability of the microblogging data for the purpose of understanding

localization of events.

50

4.2.1 A Comparison of the Affect of Filters on TBAM and Data from Twitter

In Section 3.2.1.1 we considered using low pass filters to remove peaks not related to

an event. In this section, we explore different low pass filters to remove peaks not related

to events and compare the peaks in the actual and filtered data for the data obtained from

Twitter and TBAM generated data and see how well we can recover significant peaks. Figures

22(a), 22(b) and 22(c) shows the comparison between the real and TBAM data after it is

passed through a simple low pass filter and how the peaks change. The corresponding ccf

are shown in Figures 23(a), 23(b) and 23(c). It can be observed that the ccf after filtering is

much better than ccf before filtering. Hence, a major potential application for TBAM data

can be for training and validation of event detection models, especially that use the notion

of peaks as manifestation of events.

To further investigate the effect of filter threshold on peaks in both data collected from

Twitter and TBAM generated data, we look at how the different metrics and average ccf

changes with different filter threshold values for different types of filters. We look at low pass

filter, butterworth filter and moving average filter. In addition to filter threshold, the peaks

detected are also effected by the peak threshold. Peak threshold is how much a value is above

its adjacent values. We look at peak threshold value of 0.5 and 0.02. At low peaks threshold,

there would be more peaks detected. Hence, as threshold increases ccf decreases as there are

more peaks generated and more likelihood of mismatch. After a certain threshold value, the

ccf becomes constant. The butterworth filter with the sharp cut-off frequencies produces

a more smoother plot with less variation in ccf values as compared to the low pass-pass

filter. The moving average filter works opposite to the butterworth and low pass filter and

has an increase in average ccf values with increasing filter threshold. Figures 24(a), 24(b)

and 24(c) shows the variation of average ccf with changing filter threshold.

Figures 25(a), 25(b) and 25(c) shows changing acc, pen and qual for changing filter

threshold for butterworth filter at a peak threshold of 0.5. Similarly, we also look at changing

filter threshold at a different filter threshold of 0.02 as seen in Figures 26(a), 26(b) and 26(c).

At low peak threshold, there are more peaks that are detected and hence, the acc is generally

lower as there is more likelihood of mismatch in detected peaks. Another point to note is

51

that at specific threshold value, the accuracy drops drastically. This is might be because the

filters remove the event related peaks. This is also the same point after which ccf becomes

constant and does not change too much.

It is also observed from the results that as the threshold is increased the value of acc

becomes constant after a certain threshold value and does not vary too much. This means

that after a specific filter threshold, the peaks in both TBAM generated data and data

from Twitter will match. However, pen keeps on increasing with increasing filter threshold.

Consequently, this results in qual decreasing with increasing filter threshold.

This information can allow us to choose the best filter threshold value. We could choose

the point at which qual drops the most. That point will give us a threshold value that best

preserves the peaks between the TBAM generated data and data from Twitter.

The same observation is made when we look at Figures 27(a), 27(b) and 27(c) which

show changing acc, pen and qual for different filter thresholds for low pass filter at a peak

threshold of 0.5.

For moving average filter, the affect is the opposite. Again we see a sharp drop in acc

value at the same point after which ccf starts to become constant. Figures 28(a), 28(b) and

28(c) shows changing acc, pen and qual for different filter thresholds for moving average

filter at a peak threshold of 0.5.

52

Table 6: Summary of Metrics

Metric Ref Description

Distance d distance of peak in the TBAM data to

the nearest peak in data collected from

Twitter

No. of mis-

matches

m difference in the number of peaks in

the data collected from Twitter and the

TBAM generated data

Accuracy acc acc = 1− d
ts−1

Penalty pen m
ts

Quality qual 1− (d+m)
(2ts−1)

Cross-

correlation

function

ccf dependence between two points on time

series

Table 7: Summary of Simulations for determining optimum TBAM Parameters

Simulation Name Parameters Changed

standard + event

Tweets

people, event-tweet-chance,

tweet-chance

standard Tweets people, tweet-chance,

user-interest

night Tweets people, night-tweet-chance,

night-duration

event Tweets people, ndist, event-tweet-chance,

event-duration, event-interest

53

(a) CCF at lag=0 & max CCF (b) CCF at lag=0 & RMSE

Figure 15: Effect of changing TBAM parameters & GAN on metrics using STEM data set

(a) CCF at lag=0 & max CCF (b) CCF at lag=0 & RMSE

Figure 16: Effect of changing TBAM parameters & GAN on metrics using VIRG data set

54

(a) Maximum CCF (b) CCF at lag=0

(c) RMSE

Figure 17: Boxplots for different simulations using STEM data set

55

(a) Maximum CCF (b) CCF at lag=0

(c) RMSE

Figure 18: Boxplots for different simulations using VIRG data set

56

(a) Event Tweet Parameters (b) Standard Tweet Parameters (c) Night Tweet Parameters

Figure 19: Top values of parameters by ccf at lag = 0 for STEM

(a) Cross Correlation between
VIRG Twitter Data and TBAM
data

(b) Cross Correlation between
STEM Twitter Data and TBAM
data

(c) Cross Correlation between
GAR Twitter Data and TBAM
data

Figure 20: CCF of Real Twitter data with TBAM generated data

(a) Cross Correlation between
VIRG Twitter Data and Uni-
form Random Data

(b) Cross Correlation between
STEM Twitter Data and Uni-
form Random Data

(c) Cross Correlation between
GAR Twitter Data and Uniform
Random Data

Figure 21: CCF of Real Twitter data with randomly generated data

57

(a) Plot of VIRG Twitter
Data vs TBAM generated
data

(b) Plot of STEM Twitter
Data vs TBAM generated
data

(c) Plot of Garlic Festival Twitter Data
vs TBAM generated data

Figure 22: Comparison of Filtered and Unfiltered Real Twitter data with TBAM data

(a) Cross Correlation between
VIRG Twitter Data and TBAM
data

(b) Cross Correlation between
STEM Twitter Data and TBAM
data

(c) Cross Correlation between
GAR Twitter Data and TBAM
data

Figure 23: CCF of Filtered Real Twitter data with TBAM generated data

58

(a) Average ccf for Butterworth Filter (b) Average ccf for Low Pass Filter

(c) Average ccf for Moving Average Filter

Figure 24: Average ccf for Different Filters (Peak Threshold=0.5)

59

(a) Butterworth Filter Accuracy (b) Butterworth Filter Penalty

(c) Butterworth Filter Quality

Figure 25: Changing Filter Threshold for Butterworth Filter (Peak Threshold=0.5)

60

(a) Butterworth Filter Accuracy (b) Butterworth Filter Penalty

(c) Butterworth Filter Quality

Figure 26: Changing Filter Threshold for Butterworth Filter (Peak Threshold=0.02)

61

(a) Low Pass Filter Accuracy (b) Low Pass Filter Penalty

(c) Low Pass Filter Quality

Figure 27: Changing Filter Threshold for Low Pass Filter (Peak Threshold=0.5)

62

(a) Moving Average Filter Accuracy (b) Moving Average Filter Penalty

(c) Moving Average Filter Quality

Figure 28: Changing Filter Threshold for Moving Average Filter (Peak Threshold=0.5)

63

5.0 Event Pattern Detection

In this chapter we aim to answer research question 2, i.e. we show how the enriched data

can be used to find patterns that can be used for event localization.

5.1 Using Explicit Patterns

The focus of this section is to find events using explicit patterns in a sequence of number

of tweets. We use our definition of peaks to localize an event. We define metrics to measure

how well events are detected using explicit signatures.

5.1.1 Measuring disaggregation (reconstruction) quality

The Root Mean Square Error (RMSE) has been used as a metric in previous literature

to measure reconstruction quality [38]. Since we define a peak as an event, then RMSE

as a metric might not be best able to capture how well reconstructed data is able to best

determine the information about an event. Consequently, we introduce area under the curve

(AUC) as a metric measuring how well events were identified from disaggregated data (here

we know the fine-grained sequence – ground truth – and use an aggregated sequence to test

our approach). AUC is obtained from receiver operating characteristic (ROC) curve which

is a plot of true positive rate and the false positive rate.

If the position of the peaks in actual and reconstructed data match then AUC = 1,

which is desirable. As the position of the peaks in actual and reconstructed data changes

then AUC would decrease. An AUC of 0.5 indicates random guess.

In some cases people are slow to respond to an event and there might be delay in tweets

being sent out regarding an event. To improve AUC in such cases, we introduce a parameter

that we call tolerance (tol). It is used in the comparison of the peaks in the original data

and predicted peaks which are the peaks in the reconstructed data. When tolerance > 0

64

Fine-grained
ground truth

Low-pass
Filter

Ag
gr

eg
at

io
n

Approximations

Fi
lte

re
d

Se
qu

en
ce

s

Figure 29: Complete filter/unfiltered framework

then there is more acceptance to errors in peak position in the predicted peaks. If the peaks

in the predicted peaks lie within the tolerance value then they are considered to correspond

to the actual peak.

5.1.2 Data with ground truth and effect on parameters

In this section we aim to show how the parameters of step, filter threshold and tolerance

effect AUC. Our main aim here is to see how well we can reconstruct the peaks in the original

data after it is disaggregated and filtered using the different parameters and we use AUC as

the metric to measure of how well peaks in the disaggregated data match the original data.

Figure 29 explains our approach in using Tycho data and how we use the reconstructed

data to calculate AUC. Here, x is the fine-grained input sequence which is the ground truth.

The fine-grained data is passed through a low-pass filter H to obtain fx. The input signal

is aggregated using A to obtain ax based on Equation 3.4, which is similar in nature to the

data obtained from Twitter. ax is disaggregated using LSQ DLSQ or LSQ with smoothness

constraint DSM to obtain daxLSQ and daxSM respectively. daxLSQ and daxSM are the

approximations of the original input series x. fdaxLSQ and fdaxSM are the filtered versions of

65

daxLSQ and daxSM respectively. This information is summarized in Table 8. The parameters

are varied to construct different approximates of x and the corresponding AUC values are

calculated. A comparison in position of the peaks is made for x and daxLSQ denoted as

unFiltered LSQ and x and daxSM denoted as unFiltered SM in the experiments. We also

compare peak position fx and fdaxLSQ to indicate Filtered LSQ and fx and fdaxSM to

indicate Filtered SM in the experiments. Figure 30 shows the effect of changing tolerance,

filter threshold and step on AUC.

From the figures we can make the following observations.

• As tolerance increases, AUC also increases. This behavior is predictable as the peak

position in the reconstructed data has more allowance and would be considered equal to

the actual data peak position even if the exact positions do not match.

• At low filter threshold values, tolerance has no effect on the AUC value (since peaks are

removed).

• If we compare LSQ and LSQ with smoothness constraint, then it is observed that LSQ

in general is better able to match the peak positions. This can be observed through the

high tolerance value required for unFiltered SM to have AUC = 1.

• Increasing filter threshold decreases AUC. This happens because as the filter threshold

increases, then more peaks are generated in the data due to filtering errors. Hence, there

are more chances of mismatch in the position of the peaks. Here again LSQ has generally

higher AUC values compared to smoothness which means that disaggregation using LSQ

with smoothness constraint results in more mismatch of peak position.

• There is a filtering threshold range within which Filtered LSQ has an AUC value less

than that with unFiltered LSQ. This could be because of peaks being generated due to

filtering errors. But in case of LSQ with smoothness, AUC never drops below AUC of

unFiltered SM which means that LSQ with smoothness is less susceptible to filtering

errors.

• Increasing “step” results in a lot of variation in the value of AUC. This is because if

a row corresponding to a peak is removed, then there will be a high mismatch in the

position of the peaks and a large drop in AUC occurs. In this case LSQ with smoothness

has more variation in the AUC values but in some cases has better AUC than LSQ.

66

Figure 30: Effect of changing tolerance, filter threshold and step on AUC

These experiments give a good general idea on what effect the different parameters

have on the position of the peaks and show that AUC can be a good measure for the

quality of disaggregation. The results also give a comparison between LSQ and LSQ with

smoothness constraint. Even though LSQ generally has higher AUC value, there may be

certain conditions under which LSQ with smoothness performs better. Understanding these

conditions and what combination of parameters to choose to get the most accurate results

are part of future research. For the dissertation, we simply examine both approaches.

67

Table 8: Experimental Setup Summary

Term Description

x input series (spatial or temporal)

H filter

fx Aggregation

ax Aggregated input series x

DLSQ Disaggregation using LSQ

DSM Disaggregation using LSQ with

smoothness constraint

daxLSQ Disaggregated fx after passing

through DLSQ

daxSM Disaggregated fx after passing

through DSM

fdaxLSQ daxLSQ after applying H

fdaxSM daxSM after applying H

68

5.1.3 AUC as an pattern detection metric

The previous section show how the parameters effect the AUC value. In this section

we look at how AUC can be used to detect an event related peak when the parameters are

varied. For this purpose we use the FIFA Twitter data. This data set is aggregated and

hence, there is no ground truth. The number of tweets are collected for different radii. It

should be noted that the FIFA event would be considered as a known event as there is prior

knowledge about event information. Figure 4 shows the disaggregated data set obtained

with LSQ. The fine-grained granularity is obtained with step = 2 and coarse-grained with

step = 7. The reference point Ci is at a point 2-miles from the actual event. Hence, our

ground-truth is an assumed vector where there is a peak at 2-miles point.

From Figure 4 we observe that the event can be seen at the 2.1 mile mark. With a higher

step size which equates to coarser granularity the uncertainty in detecting the location of an

event is higher. Furthermore, there is another smaller peak at the 2.5 mile marker, which

is not indicative of an event. Hence, this peak should be removed for an accurate event

detection. The objective here is to see if the smaller peak can be removed by changing

the parameters and what effect does the changing parameters have on the AUC. First we

change the step and keep filter threshold constant. This allows us to observe how changing

granularity effects event detection. Next we change filter threshold and keep step at the

finest granularity. The filter threshold is varied to see if the smaller peak is removed and

only the significant peak corresponding to an event is left. The corresponding AUC values

are then calculated by comparing how close we are able to get to the peak at 2-miles.

Figure 31 shows how step and filter threshold affects AUC. For LSQ, AUC remains at a

high value until after a certain step size when it drops to AUC = 0.5 which indicates random

behavior. This may be because there are no more peaks at high granularity. However, in case

of smoothness there is more fluctuation in the AUC value with changing step value. This

shows that AUC is very sensitive to changing step value in case of smoothness. Furthermore,

as before, high tolerance value have on average higher AUC then at low tolerance values.

69

Figure 31: Effect of changing tolerance, filter threshold and step on AUC for FIFA

In case of changing filter threshold, the trend is straight-forward. As filter threshold

increases, AUC decreases. This is because at low filter threshold the non-event related peak

is removed and only the event-related peak (or the significant peak) remains. As filter

threshold is increased, AUC decreases as filtering error is introduced. At a certain filter

threshold, the filtered signal no longer changes and that is why there is a constant AUC

value. As before from Section 5.1.2 smoothness has higher AUC compared to LSQ which

means that the smoothness constraint may improve event detection from disaggregated data.

5.1.4 Using SDF for event-related patterns

The SDF was introduced in Section 3.2.1.2 as a way to improve upon low pass filter in

removing peaks not related to an event. It is based on the idea that tweets in event-related

peaks are more similar than in non-event related peaks.

The first objective of this section is to verify the first hypothesis enounced in Section

3.2.1.2; namely to confirm if the decay in the aggregated number of similarities (Equation

3.12) in an event-related peak is lower than the decay in non-event peaks. To do so, we

compare such decay on three different events described in the data subsection. We used the

STEM, VIRG and LON data sets. At each location, we compare the decay obtained on the

70

Table 9: Decay in number of similarity

Data λ pre-event λ post-event

STEM 8.45 1.97

LON 3.91 3.21

VIRG 4.63 2.52

cluster of tweets shared in the 11 hours before the event and the 11 hours following the event

for STEM, in the 16 hours before the event and the 16 hours following the event for the

VIRG, and in the 11 hours before the event and the 11 hours following the event for LON.

The duration over which we made the measurements was predicated by the duration of the

event peak i.e., the time frames correspond to the length of the event-related peaks.

Figures 32(a) to 32(c) show the aggregated number of similar tweets (Equation 3.11)

for each event at each location for a similarity threshold ak going from 0 to 0.9. The

aggregated number of similar tweets was normalized to values between 0 and 1 for the sake

of presentability and comparability. For example, at the first location in the STEM (Figure

32(a)), the number of aggregated similar tweets went down before the event from 1558 for

a threshold of 0 to 0 for a threshold of 0.9. After the event, it went down for 33656 for a

threshold of 0 to 226 for a threshold of 0.9. During the Virginia shooting, the number of

aggregated similar tweets went down before the event from 338028 for a threshold of 0 to

8 for a threshold of 0.9. After the event, it went down for 993755 for a threshold of 0 to

1437 for a threshold of 0.9. On average, the number of aggregated similar tweets at the 0.9

threshold is at 23.66 before the event, and at 478.75 after the event. This result indicated

that the number of nearly identical tweets is 20 fold higher in an event-related

peak.

Table 9 compares the decay (Equation 3.12) in the number of aggregated similar tweets

as the threshold increases pre and post-event (The decay of the curves in Figures 32(a) to

32(c)). As the table shows, for all the data we tested, the decay is, for all but one location

in the London attacks, lower during event-related peaks. On average, the decay is 3.02 for

71

Table 10: Event time according to the significant peak and the peak in SDF

Event Event time Significant peak time SDF peak time Difference between peaks

STEM 13h53 2h03 2h03 0h00

LON 22h06 19h40 22h40 21h00

VIRG 16h04 23h31 23h31 0h00

event-related peaks and 4,99 pre-event, which represents a 1.65 fold decrease. This result

confirms our hypotheses that decay in the aggregated number of similarities in an event-

related peak is lower than the decay in non-event related peaks.

Figures 33(a) to 33(c) divide the time over which the data collection was made into

windows t of length 1 hours (Figure 33(c) and 33(b)), and 5 hours (Figure 33(a)). We

choose those windows for each data set based on the limitation of the required minimum

number of tweets (no less than 2) present in each time window. The figures show the number

of tweets (blue line) together with the decay (Equation 3.12) in the number of similar tweets

(orange line) in each time window. The figures show a depression of the decay coinciding

with an event-related peak. It is important to note that this depression in the decay does not

occur around other peaks in the number of tweets outside the event-related peak. However,

the figures show regular depressions in the decay occur every day in the early morning

(between 5 and 7 am). This depression coincides with a low traffic time on Twitter at which

a minimum amount of tweets is shared in the areas of data collection (less than ten tweets).

Upon examination of those tweets, we noticed that the majority are automated and identical

weather reports, thus the low decay. We mentioned the drawback of only using the decay as

a filter at the end of the Section 3.2.1.2 which led us to define the function SDF .

Figures 34(a), 34(b) and 34(c) show the function SDF as a function of time for the

considered event. For all figures, we chose the parameters α = 1 and β = −1 in Equation

3.13. Those parameters grantee that SDF peaks around the event-related peak. As the

Figures show, SDF reaches a value higher than zero only around the event-related peak for

all the events and thus can be viewed as an indicator. Table 10 compares the real-time of

72

the event with the time at which the significant peaks occur (see significant peak detection

section) and SDF peaks. Note that, since we use a 5 hour time window for STEM, for

example, the time of the peaks is the end of the time window (2h03 for STEM). However,

the tweets were taken between 21h33 and 2h03. The Table 10 also shows, in the case of LON

where the event-related peak is submerged by other peak, if we follow the significant peak

approach, the event-related peak would be located 12h after the event. However, the SDF

can accurately detect the cluster of tweets related to the event, and peaks 36 minutes after

the event.

73

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ag
gr

ag
at

ed
 n

um
be

r o
f s

im
ila

r t
w

ee
ts

Threshold

Tweets' set during the 11
hours preceding the event

Tweets' set during the 11
hours fllowing the event

(a) STEM

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ag
gr

eg
at

ed
 n

um
be

r o
f s

im
ila

r t
w

ee
ts

Threshold

Tweets' set during the 16
hours preceding the event

Tweets' set during the 16
hours following the event

(b) VIRG

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ag
gr

ag
et

ed
 n

um
be

r o
f s

im
ila

r t
w

ee
ts

Threshold

Tweets' set during the 8 hours
preceding the event

Tweets' set during the 8 hours
fol lowing the event

(c) LON

Figure 32: Normalized aggregated number of similar tweets as a function of the threshold

74

0

1

2

3

4

5

6

0

50

100

150

200

250

05:03 15:03 01:03 11:03 21:03 07:03 17:03 03:03 13:03

De
ca

y

Nu
m

be
r

of
 tw

ee
ts

Time

Number of
Tweets

Decay

Ev
en

t
ti

m
e

(a) STEM

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0

20

40

60

80

100

120

140

160

180

200

10:3
1

13:3
1

16:3
1

19:3
1

22:3
1

01:3
1

04:3
1

07:3
1

10:3
1

13:3
1

16:3
1

19:3
1

22:3
1

01:3
1

04:3
1

07:3
1

10:3
1

13:3
1

16:3
1

19:3
1

22:3
1

01:3
1

04:3
1

07:3
1

10:3
1

13:3
1

16:3
1

19:3
1

22:3
1

De
ca

y

Nu
m

ne
r

of
 tw

ee
ts

Time

Number of
Tweets

Decay

Ev
en

t
ti

m
e

(b) VIRG

0

1

2

3

4

5

6

7

0

50

100

150

200

250

300

350

400

13:4
0

15:4
0

17:4
0

19:4
0

21:4
0

23:4
0

01:4
0

03:4
0

05:4
0

07:4
0

09:4
0

11:4
0

13:4
0

15:4
0

17:4
0

19:4
0

21:4
0

23:4
0

01:4
0

03:4
0

05:4
0

07:4
0

09:4
0

11:4
0

13:4
0

15:4
0

17:4
0

19:4
0

21:4
0

23:4
0

De
ca

y

Nu
m

be
r

of
 tw

ee
ts

Time

Number of
Tweets

Decay

Ev
en

t
ti

m
e

(c) LON

Figure 33: Decay as a function of time for STEM, VIRG and LON

75

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

05:03 10:03 15:03 20:03 01:03 06:03 11:03 16:03 21:03 02:03 07:03 12:03 17:03 22:03 03:03 08:03 13:03 20:00

SD
F

Time

Ev
en

t t
im

e
Peak tim

e

(a) STEM

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

10
:3

1
13

:3
1

16
:3

1
19

:3
1

22
:3

1
01

:3
1

04
:3

1
07

:3
1

10
:3

1
13

:3
1

16
:3

1
19

:3
1

22
:3

1
01

:3
1

04
:3

1
07

:3
1

10
:3

1
13

:3
1

16
:3

1
19

:3
1

22
:3

1
01

:3
1

04
:3

1
07

:3
1

10
:3

1
13

:3
1

16
:3

1
19

:3
1

22
:3

1

SD
F

Time
Ev

en
tt

im
e

Peak tim
e

(b) VIRG

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

13:4
0

15:4
0

17:4
0

19:4
0

21:4
0

23:4
0

01:4
0

03:4
0

05:4
0

07:4
0

09:4
0

11:4
0

13:4
0

15:4
0

17:4
0

19:4
0

21:4
0

23:4
0

01:4
0

03:4
0

05:4
0

07:4
0

09:4
0

11:4
0

13:4
0

15:4
0

17:4
0

19:4
0

21:4
0

23:4
0

DI

Time

Peak
tim

eEv
en

t
ti

m
e

(c) LON

Figure 34: SDF as a function of time for STEM, VIRG and LON

76

5.2 Using Latent Patterns

In this section we use GAN to generate data and describe our methodology for finding

event signatures using LSTM from GAN generated data. In order to effectively discover

latent patterns, we create a spatial-temporal grid (STG). The STG is shown in Equation

5.1. STG represents the disaggregated number of tweets in each layer, along the column,

within a specific time window, represented along each row.

STG =

s11 · · · s1j
...

. . .
...

si1 · · · sij

 (5.1)

Each element sij represents the number of tweets within a time window in a specific

layer.

5.2.1 Latent pattern methodology

The inspiration for our methodology comes from image processing where images are

presented as 2-dimensional matrices and then augmented using GAN. The augmented images

are then used to train machine learning methods so the trained models can be used for image

recognition [26].

Our methodology to learn latent patterns can be summarized in Figure 35. The Twitter

data is converted into an STG. Then GAN is used to augment the original data which is

then used to train Bi-LSTM. The STG copies generated using GAN are denoted ˆSTGi where

i is from 1 to n and n are the total number of copies generated.

The augmented data is then used to train the Bi-LSTM model. But before training

the augmented data needs to be assigned a label. Since the data collected from Twitter is

unlabeled, many strategies can be adopted to assign labels, like assign label by manually

inspecting every Tweet and assigning a label based on its content.

For this paper, we develop a strategy called Pre-Post Labeling (PPL) which is shown

in Figure 36. PPl is a simple labelling strategy that would not depend on the content of the

Tweets. According to PPL each ˆSTGi is first divided into pre-event and post-event matrices.

77

Figure 35: Finding Event Patterns

Figure 36: Methodology for Assigning Training Labels - Pre-Post Labeling (PPL)

78

Figure 37: AND Combine (AC) Example with 2 different δ

Then we extract δ time slice before the event and δ time slice after the event for each ˆSTGi.

Each time slice before event is denoted (ˆSTGi)
pre
δ and time slice after the event is denoted

(ˆSTGi)
post
δ . The time slice before event is given a label of 0 and time slice after event is

given a label of 1. We repeat the above method for multiple δ values. The Bi-LSTM model

is trained on data for different δ values.

The trained Bi-LSTM model can then be used to find patterns and signatures in the

STG from real Twitter data. For testing, the STG is divided into sliding windows of size δ.

These δ values represent time slices (in hours) before and after the event. Figure 39 shows

how the STG is divided into time slice of size δ. For each time slice of size δ, the model

assigns a label of 1 if an event signature is detected or 0 is no event signatures are detected.

In this way a label vector v̂δ is obtained. We use different δ values to divide the STG and

tested on Bi-LSTM trained using different values of δ to obtain different v̂δ label vectors.

The different v̂δ are combined to obtain. a more accurate label vector. We use the

following techniques for combining v̂δ:

• The first method, called AND Combine (AC), takes the logical AND of all v̂δ to obtain

a label vector ~vk, where k are the number of δ values to generate v̂δ. For example if

k = 2, then the label vector v2 was created using two different v̂δ. If there is a difference

in length, then the length is matched by taking AND of all the elements that are in the

longer length vector. Figure 37 shows an example of how AC is implemented when k = 2.

79

Figure 38: Matrix Combine (MC) Example with 2 different δ

We implement AC for different combinations of v̂δ. These methods are denoted AC-2WINS

for combining 2 different v̂δ, AC-5WINS for 5 different v̂δ and AC-7WINS for 7 different v̂δ.

• In the second method, called Matrix Combine (MC), a new matrix ,Vδ is created by

taking δ repetitions of each element in v̂δ shifted by 1. Figure 38 shows an example for

the MC method using two δ values. It should be noted that the number of rows of Vδ

is equal to the length of v̂δ. Depending on how we combine v̂δ, MC splits in the following

two methods:

– MC-AND: AND of each element in column in Vδ to generate ~vδ−AND. The method is

repeated for different δ values to generate multiple ~vδ−AND. We take the logical AND

of all the ~vδ−AND to obtain ~vAND.

– MC-MAJ: In this method we first count the number of 0s and 1s in the columns of Vδ

to create a label vector ~vδ−MAJ . If there are more 0s than 1s in the column then a

0 is assigned and if there are more 1s than 0s then a 1 is assigned to that position

in ~vδ−MAJ . The method is repeated for different δ values to obtain multiple ~vδ−MAJ .

We implement majority voting again on all the ~vδ−MAJ to obtain ~vMAJ .

80

Figure 39: Dividing STG into time slice (window) of size δ

In this way there are three different binary label vectors ~vk, ~vAND and ~vMAJ . Next we

introduce different metrics to asses how effective the Bi-LSTM is in assigning event labels

to the test data.

5.2.2 Latent pattern analysis

In this section, we look at the efficacy of our framework in finding event signatures by

conducting different experiments. We follow the methodology shown in Figure 35. We first

augment the data collected from Twitter by using GAN to generate multiple copies of the

data. Next the augmented data is divided into different time slices of size δ as shown in

Figure 36. We use 7 different δ values which are 1, 5, 7, 10, 13, 15 & 20. The data serves as

training data for the Bi-LSTM model. In addition, we use different training data sizes to train

the Bi-LSTM model. The training data sizes are 1 dataset, 2 data set, 3 dataset and

complete data set. 1 dataset refers to using GAN augmented Twitter data collected

from a single reference point for a single event only to train the Bi-LSTM model. Complete

datas et refers to using the GAN augmented Twitter data collected for all the events in

Table 4 for training the Bi-LSTM model. Next we find the event or non-event signatures in

the STG generated from Twitter data.

81

Figure 40: Using Metrics for Latent Pattern Analysis

The STG for each reference coordinate in the event is divided into δ slices as described

before. The data serves as testing data for the LSTM model. In this way we generate

multiple v̂δ.

We use the two different methods with different variations that are described in Section

5.2.1 to combine the different v̂δ and analyze how effectively the events are identified using

Bi-LSTM. The different methods are summarized in Table 11.

In AC-2WINS, AC method is used to combine two different v̂δ (v̂1 and v̂20) to create

~v2. Similarly, AC-5WINS denoted by ~v5 is generated by combining v̂1, v̂5, v̂10, v̂15 and v̂20.

AC-7WINS denotes vectors ~v7 created by combining v̂1, v̂5, v̂7, v̂10, v̂13, v̂15 and v̂20. MC-AND

and MC-MAJ denote vectors ~vAND and ~vMAJ created by combining all the different values of

δ.

The PKS creates a binary vector by placing a 1 at the position of peak in STG and places

a 0 everywhere else. The PKS method serves as a baseline for assessing performance of our

proposed method. We used peaks as a baseline because a peak driven approach has been

used in previous literature as an indication of event signature ([34], [5]).

The label vectors generated from the above methods are compared with the event vector

(ev) and different values of acc, pen and qual are calculated. However, the definition of these

metrics was slightly modified and the labels are represented as vectors and not matrices. For

this section we define distance (d) is defined as the distance of nearest 1 in ~vk, ~vAND or ~vMAJ

from the 1 in ev and number of mismatches (m) is defined as the number of mismatches

between ev and ~vk, ~vAND or ~vMAJ . Based on these parameters, we measure acc, pen and

82

qual as explained in Table 6. Figure 40 shows how the parameters and the metrics are

calculated. Finally, we calculate the average value of acc, pen and qual across all the

different events.

The results of our experiments for different data sizes are show in Figures 41(a). For

this experiment we use the STEM data set and attempt to find event signature in STEM

data. The results show that increasing data size does not effect accuracy too much but

it does reduce penalty substantially which in turn improves the quality of event detection.

Hence, we might conclude that using a large data size that is collected from a different

set of reference points for multiple events can substantially improve the detection of event

signatures.

We also compare how labels are generated for other machine learning methods which are

log regression (LOG), bayes method (BAYES) and k-nearest neighbor (KNN). For training

the machine learning methods we used the Complete data set, i.e. the model training

is done using the augmented data from all the events. The results of our analysis are

summarized in Figure 41(b). The figure shows that our method is able to achieve high

accuracy which means that we are able to always detect the event signature. The penalty

value indicates how often do we wrongly classify an event as a non-event or a non-event as

an event. For the Bi-LSTM model the penalty value is generally low. The figure reveals

that LOG method performs the worst and PKS method performs the best. Our Bi-LSTM

method is close second with AC-7WINS having the highest quality among Bi-LSTM methods.

Additionally, for improving the result we generate a new event vector (ev1) which places

a 0 for all positions before an event and 1 for all positions after an event. We used this vector

instead of ev for calculating the accuracy, penalty and quality. The result of this event vector

is shown in Figures 42(a) and 42(b). The results may seem to be slightly different than for

ev. For Complete data set the quality is generally high. For the rest of the data set sizes

the quality varies from low to high. This again verifies that large data set size can lead

to better identification of event signatures. In case of comparing different machine learning

methods, MC −MAJ method has the highest quality indicating that this method is best

at identifying at event signatures.

We also compare how labels are generated for other machine learning methods which are

83

Table 11: Summary of Experimental Setup

Symbol Description

AC-2WINS 2 δ (v̂1 and v̂20) values used

to create ~v2

AC-5WINS 5 δ (v̂1, v̂5, v̂10, v̂15 and v̂20)

values used to create ~v5

AC-7WINS 7 δ (v̂1, v̂5, v̂7, v̂10, v̂13, v̂15

and v̂20) values used to cre-

ate ~v7

MC-AND ~vAND

MC-MAJ ~vMAJ

PKS Peak value in STG

log regression (LOG), Bayes method (BAYES) and K-Nearest Neighbor (KNN). The results

of our analysis are summarized in Figure 41(b). The figure shows that our method is able

to achieve high accuracy which means that we are able to always detect the event signature.

The penalty value indicates how often is do we wrongly classify an event as a non-event or a

non-event as an event. Finally, quality is a combination of accuracy and penalty. The figure

reveals that LOG method performs the worst and PKS method performs the best. However,

our Bi-LSTM method has high quality indicating that this method can correctly identify

event signatures.

Our method can be easily extended to find the location of an event too. Instead of taking

time windows we can create space window slices for different radii (e.g. by taking transpose

of STG and using that as input for training and testing Bi-LSTM model). Using the same

method but taking slices along the spatial domain, we obtain different labels. The spatial

labels are combined using MC-AND and MC-MAJ methods. The spatial label vectors and the

temporal label vectors are multiplied to create a binary label STGl. In the STGl, the time

and radius or layer at which the event occurred is assigned a 1 and 0 where there are no

84

(a) Different Data sizes (b) Different Machine Learning Methods

Figure 41: Comparison when using event vector ev

(a) Different Data sizes (b) Different Machine Learning Methods

Figure 42: Comparison when using event vector ev1

85

event signatures. To calculate acc, pen and qual a new event matrix is created. This event

matrix (E) is created by vector multiplication of temporal event vector (ev) and spatial

temporal vector (ed). The spatial event vector has 1 at the layer at which event occurred

and 0 everywhere else. We add a tolerance parameter which adds event signature (i.e. 1)

to time window and layer ± tolerance. The results are shown in Figure 48(a). Our results

reveal that MC-MAJ has highest qual.

In summary, we used GAN generated data to train LSTM and other machine learning

models. Our results showed that LSTM performed reasonably well in determining latent

event signatures. It even out-performed KNN (a method used in previous literature). We

looked at different data sizes and observed that increasing data size improves qual by de-

creasing pen. We also observed that MC-MAJ labelling method had the highest qual. It

was also observed that using different event vectors for measuring acc, pen and qual had

a profound affect on these metrics and would require detailed study on how to choose the

event vector.

86

6.0 Localization and Other Applications

Using explicit and latent event signatures we aim to locate an event with greater accuracy.

For this purpose, we combine the location of the peaks from multiple reference points and

use trilateration to localize an event.

6.0.1 Trilateration calculation

Event localization is the task of finding the location of an event. In Section 3.2.1 we

identified a peak as indicative of an event. Let us suppose the peak is located at a distance

ri from Ci. A single Ci will only allow us to estimate the event as being located in a circle of

radius ri, but not the exact latitude and longitude.

Figure 4(b) demonstrates how multiple reference coordinates (Ci) can be used for locating

an event. The reference coordinates are analogous to sensors measuring the number of social

sensors sending out tweets. There are multiple methods, like triangulation and trilateration,

that can be used to find the location of an event [12]. In our methodology we use trilateration

[12] to localize an event with multiple reference coordinates. Trilateration has been used

widely in sensor localization and in GPS systems to find the location of a person from 3 or

more different satellites. We follow the same concepts of GPS location to find the coordinate

of an event. Next we describe how the trilateration calculation is done to find the location

of an event.

There are n reference coordinates, Ci where i = 1....n (also called anchors nodes), whose

coordinates are represented in the 2D Cartesian plane as (xi, yi) where i = 1....n. The

unknown coordinate (which is the possible event location) is represented by coordinates x =

(x, y). The distance between the approximate event location and the reference coordinates

is the layer at which the significant peak lies. It is denoted ri for reference coordinate Ci
respectively. The relationship between sensor nodes, approximate event and distances is

87

represented as a two dimensional matrix:
(x1 − x)2 + (y1 − y)2

(x2 − x)2 + (y1 − y)2

...

(xn − x)2 + (yn − y)2

 =

r1

2

r2
2

...

rn
2

 (6.1)

This can be represented as Ax = b with:

A =

2(xn − x1) 2(yn − y1)
2(xn − x2) 2(yn − y2)

...
...

2(xn − xn−1) 2(yn − yn−1)

b =

r1

2 − rn2 − x12 − y12 + xn
2 + yn

2

r2
2 − rn2 − x22 − y22 + xn

2 + yn
2

...

rn−1
2 − rn2 − xn−1

2 − yn−1
2 + xn

2 + yn
2

Using least square estimation x can then be found using x = (ATA)−1AT b.

6.0.2 Trilateration with TBAM generated data

In this we attempt to find the location of an event. The event location from the FIFA

data set is a radius of 2.1 mile. The error in location of the event location varies from a

minimum of 0.1 to a maximum of 4.1 miles. In order to get a more precise location of the

event (co-ordinates, not just radius), it would require us to perform the trilateration method.

To implement trilateration, it would require multiple Ci. The event location layer from each

Ci is combined to get the event location.

We use TBAM generated data to demonstrate the implementation of the trilateration

methodology. First we used random parameters to generate TBAM data. The data was

generated with 3, 4 and 5 reference coordinates. The plot of aggregated and disaggregated

number of tweets at each layer for 5 reference coordinates is shown in Figure 43(a) and Figure

88

(a) Disaggregated TBAM Data (b) Aggregated TBAM Data

Figure 43: Distribution of tweet count with layers

43(b) respectively. The vertical lines labels layerX where X is from 0 to 5 indicates the layer

where the event occurred, e.g. layer0 indicates the event layer for reference coordinate 0.

An event was injected at a known location of (7,7). The highest number of tweets

recorded was the assumed to be the event peak. The results of the trilateration methodology

are summarized in Table 12 which shows approximate event coordinates obtained through

triangulation. For localization using triangulation, we choose the layer with the highest peak

from Figure 43(a). The results show that localization is effected by number of sensors and

localization error increases as number of sensors increase. Nevertheless, it demonstrates the

use of TBAM generated data in event localization and a potential avenue for future research

for accurate localization of an event.

6.0.3 Trilateration with real data

We focus on the STEM, VIRG and GAR data sets. Figure 4(b) shows how the number

of tweets were collected for the STEM data set when using multiple Ci. The Ci are at known

latitude and longitude around the event. The collected tweets were already aggregated

89

Table 12: Triangulation using TBAM

Number

of sensors

Reference Co-

ordinates

Approximated

Event Coordinates

Relative Error Error (miles)

3 Sensors (25,25),(25,-

25),(-25,25)

(2.56,-1.12) 9.2546 units 0.52535

4 Sensors (25,25),(25,-

25),(-25,25),(-

25,-25)

(3.31,-1.87) 9.6087 units 0.5434

5 Sensors (25,25),(25,-

25),(-25,25),(-

25,-25),(12,12)

(7.64,-6.20) 13.2105 units 0.7473

and were disaggregated in a similar way to previous sections. For simplicity, the step and

tolerance were kept at 1, that is we assume the data is at finest granularity. The filter was

not used as we wanted to see to see the actual disaggregated data. Figure 44, Figure 45 and

Figure 46 are the plots of disaggregated number of tweets for STEM, VIRG and GAR data

sets respectively for 2 different time windows.

The disaggregated data shows multiple peaks which reveals the issue on how to identify

the significant peak corresponding to an event. Compared to the FIFA data set, there was

one peak with a much larger magnitude than the other peak. The smaller peak could easily

be eliminated using filtering leading to higher AUC at low filter thresholds resulting in only

a single significant peak. But for STEM, VIRG and GAR data sets there are peaks with

similar magnitudes which means that filtering would result in multiple significant peaks.

Hence, there is uncertainty in the exact location of the peak corresponding to an event. The

plots also consider the distribution of number of tweets over a time window before and after

the event (in this case the time windows used are 3 hrs and 12 hrs). It can be clearly seen

that before the event and after the event the magnitude of the peaks is much higher. But in

some cases the magnitude of the peak before the event is higher than after the event. This

90

could be because people still have not noticed the event. Nevertheless, these figures clearly

show that an event may be located by finding peaks in a stream of tweets. By comparing

the position of the peaks before the event and position of the peaks after the event, we can

eliminate the peaks to find the significant peak. At this moment we do not delve into how

all the peaks can be removed and only choose the ones that are closest in within the 3 hour

time window and lying closest to the 2 mile radius which is the actual event location. This

problem needs further work.

The parameters used and the results obtained from the trilateration formula are sum-

marized in Table 13. We are indeed able to find the approximate coordinates for the event.

By comparing these with the actual coordinates of the event the error in location estimation

can be found. The estimated error with no trilateration is the minimum and maximum error

when only a single Ci is used for collecting the aggregated numbers of tweets.

We also compared our trilateration method with one of the methods used in literature for

location estimation which is kmeans clustering. We use this method as out baseline method.

We clustered using the coordinates of the tweets that were sent after the event and used the

center of the cluster as the location of the event. Localization of the event using trilateration

was more accurate than clustering method.

Furthermore, we used TBAM to generate data in a similar way to the real data. The

parameters defined in Table 2 and Table 3 were used to generate the data. Figures 47(a),

47(b) and 47(c) shows the plots of the data generated using the VIRG, STEM and GAR

parameters. The plots shows the disaggregated (or the fine-grained) number of tweets in each

layer over a fixed time window. Similar to real data, there are 4 reference coordinates, labeled

C1, C2, C3 and C4 respectively, that collect the number of tweets. The vertical lines show

the event layer with the name of the corresponding reference coordinate, e.g. C1&2 denotes

the event layer for reference coordinate C1 and C2. The estimated event location was the

position of the peak closest to the actual event location. The reference coordinates and the

results of trilateration are summarized in Table 14. It can be observed that the trilateration

error is comparable to the trilateration error from the Table 13.

91

6.0.4 Trilateration with latent patterns

Our method for latent patterns (Section 5.2) can be easily extended to find the location of

an event too. Instead of taking time windows we can create space window slices for different

radii (e.g. by taking transpose of STG and using that as input for training and testing Bi-

LSTM model). Using the same method but taking slices along the spatial domain, we obtain

different labels. The spatial labels are combined using MC-AND and MC-MAJ methods. The

spatial label vectors and the temporal label vectors are multiplied to create a binary label

STGl. In the STGl, the time and radius or layer at which the event occurred is assigned a

1 and 0 where there are no event signatures. To calculate accuracy, penalty and quality a

new event matrix is created. This event matrix (E) is created by vector multiplication of

temporal event vector (ev) and spatial temporal vector (ed). The spatial event vector has 1

at the layer at which event occurred and 0 everywhere else. We add a tolerance parameter

which adds event signature (i.e. 1) to time window and layer ±tolerance. The results are

shown in Figure 48(a). Our results reveal a higher quality for the MC-MAJ than MC-AND.

The reference coordinates, that monitor the counts of tweets to observe changes in event

patterns to identify event signatures, are analogous to sensors measuring the number of

social sensors sending out tweets. The position at which the event signature is identified

in the labels for spatial data would be radius at which the event was detected at a specific

reference coordinate. By combining the positions from multiple reference coordinates, a more

precise location of an event can be obtained. There are multiple methods, like triangulation

and trilateration, that can be used to find the precise location of an event by combining

multiple reference coordinates [12]. Hence, the labels obtained using our method can be used

for localizing an event. This demonstrates another possible application for the Bi-LSTM

model. We use trilateration [12] to localize an event with multiple reference coordinates.

Trilateration has been used widely in sensor localization and in GPS systems to find the

location of a person from 3 or more different satellites. We follow the same concepts of GPS

location to find the coordinate of an event. The results of our analysis are shown in Figure

48(b). The layer at which the event occurred was found using the MC-MAJ. The figure shows

the difference between the actual event geographic coordinate and the geographic coordinate

92

identified using trilateration in miles. The results show that the error results are significantly

low which means that the GAN generated data can be used to train Bi-LSTM model and

eventually find the location of events.

6.1 Potential Applications

Potential application of this research is development of a stream processing infrastructure.

The reference coordinates collect a continuous stream of underdeveloped data that is fed into

a data enrichment box. The box should be scalable and monitors the data to look for event

patterns. The model described in this thesis can also be extended to other domains as part

of the stream processing infrastructure. The methodology can be used with modification

in the sensor domain to monitor for ”events”. This could give rise to exploration of other

definitions of events which are not restricted by spatial or temporal dimensions.

6.1.1 Application to more developed data

In the previous sections, we look at underdeveloped microblogging data. We introduced

strategies that could localize an event using underdeveloped data. In this section, we look at

data that is not completely underdeveloped. We present this data as potential application

where we can use such data for discovering event signatures for event detection. We explore

the data obtained from human rights documents. The placements of the human rights

documents according to the dimensions of underdeveloped data is shown in Figure 48.

The human rights violation documents, unlike microblogging data, is more reliable, se-

mantically more rich and with a more regular delivery schedule. The documents are collected

from local authorities and are less subjective. Even though the humans are still sources, the

documents are reviewed by expert authorities which makes their information more reliable

when compared to microblogging data.

The human rights violation documents contain information about human rights violation

aspects, perpetrators committing the crime and the victims of the human rights violation

93

spanning over various years over different countries. The change in patterns of aspects,

perpetrators and victims can be used to learn about behavior of countries. For example, the

change in aspect, perpetrators and victims can be used to determine how a country behaves

before and after a war. We consider this as part of future work to study these patterns in

greater detail.

Using PULSAR [47], a human rights text parser, structured information is extracted

from the streams of raw textual information authored and published by hundreds of human

rights organizations daily. From these human rights documents, perpetrators and victims,

and the human right violation is identified. Figures 50 and 51 shows the count of the aspect

feature for different years, extracted using PULSAR for two countries Ethiopia and Tanzania

respectively. The aspect feature described the type of human right aspect that was violated.

Consequently, Figure 49 is the frequency bar plot of changing aspect for the two countries

over the span of six years. The plots clearly show a pattern in the data that can be indicative

of an event. For example, in Ethiopia there was a war that lasted from May 1998 to June

2000 and the change in aspect before and after war can be seen.

94

Figure 44: STEM disaggregated with 3 and 12 hr time windows

95

Figure 45: Virginia disaggregated with 3 and 12 hr time windows

96

Figure 46: Garlic Festival disaggregated with 3 and 12 hr time windows

Table 13: Trilateration Parameters and Results

Data Set
Reference Coordinate

(Latitude, Longitude)

Significant Peak

Location (miles)

No Trilateration

Error (miles)

Trilateration

Error (miles)

Baseline

Error (miles)

FIFA World Cup Final 55.73410, 37.57873 2.1 0.1− 4.1 NA NA

STEM School

Shootings

39.58482,−104.99790 2.2 0.2− 4.2

0.63943 1.29801
39.58096,−104.97928 2.2 0.2− 4.2

39.55599,−104.96067 1.7 0.3− 4.3

39.53438,−104.99790 1.6 0.1− 3.0

Virginia Beach

Shootings

36.75089,−76.02167 1.7 0.3− 4.3

0.28902 0.53208
36.75089,−76.02167 2.0 0.0− 4.0

36.72206,−76.05750 2.1 0.1− 4.1

36.75089,−76.09333 1.4 0.6− 4.6

Garlic Festival

Shootings

37.02661,−121.58528 1.6 0.4− 4.4

0.47435 0.84882
36.99777,−121.54933 1.6 0.4− 4.4

36.96894,−121.58528 2.5 0.5− 4.5

36.99777,−121.62123 1.9 0.1− 4.1

97

(a) VIRG parameters (b) STEM parameters

(c) GAR parameters

Figure 47: Plots of TBAM generated data along spatial dimension

Table 14: Triangulation using Parameters from Real Data

Parameter Reference Coordinates Relative Error Error (miles)

STEM (25,1),(-25,1),(1,25),(-1,-25) 1.485 units 0.1187

VIRG (25,1),(-25,1),(1,25),(-1,-25) 1.993 units 0.1593

GAR (25,1),(-25,1),(1,25),(-1,-25) 2.173 units 0.1737

98

(a) Accuracy, Penalty & Quality for STGl (b) Trilateration Error (in miles)

Figure 48: Human Rights Documents as more Developed Data

99

Figure 49: Aspect Change by Year

Figure 50: Ethiopia Aspect Count

100

Figure 51: Tanzania Aspect Count

101

7.0 Conclusion

In this section we discuss our findings and explore some of the future research potential

for our research.

7.1 Primary Conclusions of Result

Table 15: Trilateration Summary

Data Baseline Explicit

Patterns-

Real

Explicit

Patterns-

TBAM

Latent

Patterns-

GAN

STEM 1.29801 0.6394 0.1187 0.42

VIRG 0.53208 0.28902 0.1593 0.34

GAR 0.84882 0.4744 0.1737 0.19

The results of trilateration are summarized in Table 15. Our results show that localization

using explicit patterns found in TBAM data has the lowest trilateration error. Using GAN

generated data to train LSTM and then discover latent event patterns from the LSTM model

for localization has the second lowest trilateration error. Localization with event patterns

discovered from disaggregated real data has the third lowest trilateration error. Finally, our

baseline method of using center of cluster as event location has lowest localization accuracy.

Hence, our enrichment and augmentation methods do improve localization accuracy.

In this dissertation, we only consider a single significant event that occur within a specific

time window and geographic location.

102

7.2 Discussion and Future Work

In this section we explore the different aspects of our work that have not been addressed

and are beyond the scope of the research.

In Section 3.1.2 on spatial disaggregation we presented it as a system of linear equations.

It should be noted that as the step size increases (or we move to lower granularity), the

accuracy of disaggregation decreases. Furthermore, if the step size becomes greater than the

number of tweets, then it is likely that there would be no tweets estimated in each annular

ring. That is not desirable and can be addressed by changing the domain constraint, such

as using a distance-based constraint, which we leave as part of future work.

One question that arises is if there are not enough tweets or what if the event is not “sig-

nificant” enough for people to tweet about. In that case, there might not be deviation from

normal behavior and an event pattern may not manifest itself. Under such circumstances,

latent event patterns might be able to identify an event occurrence. But a more quantitative

approach to under what condition an event signature may not be identified is beyond the

scope of this work.

In the agent-based model described in Section 3.3, we did not consider changing de-

mographics and changing tweeting behavior of a city. Considering these factors could have

resulted in data generating using TBAM matching the actual data from Twitter more closely.

In Section 5.2.2 we looked into the training data used for training machine learning mod-

els. We showed through Figure 41(a) and Figure 42(a) how size of data effects localization

accuracy of event detection. But it would be interesting to see how data from different events

and different locations would effect training of machine learning methods and in turn effect

event pattern detection. We made assumptions about assigning labels, more specifically the

ground truth label. How the different labelling methods compare to each other is left for

future work.

In the thesis we have defined multiple parameters, like AUC and CCF, that can effect the

accuracy of localization. However, we did not focus on the optimization of the parameters

or how to best choose the parameters to obtain the best localization results. Our focus was

more on how the different parameters effect the metrics and localization accuracy.

103

For example in Section 5.1, we looked into how different filter threshold values effects

removal of peaks and the AUC metric. But we did not delve into the details of choosing the

best threshold value for removing non-event related peaks. By determining the optimum

frequency threshold, event patterns (peaks) can be accurately defined, which would in turn

improve the localization accuracy.

We also did not focus on optimizing the GAN and LSTM. The primary thesis objective

was to show the applicability of how data generated from GAN can be used to train machine

learning models so that event patterns may be identified. We did not investigate in depth

the selection of optimum machine learning parameters, like number of layers, etc. The

optimization of machine learning methods will also be considered as part of future work.

In summary the tasks that we would like to have achieved but leave for future are:

• Exploration of other constraint matrices for disaggregation and other graph models in

TBAM

• Optimization of parameters like filter threshold and machine learning parameters

• Understanding the minimum number of tweets that would be required to accurately

localize an event (and hence, population density/tweeting behavior)

• Augment models for microblogging with population demographics and evolution of mi-

croblogging users over time

• Application specific event pattern location in sequences such as fusing data from traffic

(e.g. images) and other microblogging sources (like Flickr, Instagram, etc.)

• Exploration of other labeling techniques and definition of event vector for machine learn-

ing algorithms

• Fusing of multiple data sources, not just microblogging data for event detection

• More detailed implementation of pattern recognition and event detection in the other

data domains such as, like sensors, human rights document, etc.

104

7.3 Conclusion

In this dissertation we envisioned a scenario where there would be multiple reference

coordinates that would monitor the number of tweets. The data collected from these ref-

erence coordinates are underdeveloped. The purpose of this dissertation is to localized an

event using underdeveloped data. We showed how microblogging data is underdeveloped and

implemented different enrichment techniques. These enrichment techniques include disag-

gregation and augmentation by generation of data using GAN and ABM. We created metrics

to measure how well the data was disaggregated.

105

Bibliography

[1] Hamed Abdelhaq, Christian Sengstock, and Michael Gertz. Eventweet: Online local-
ized event detection from twitter. Proceedings of the VLDB Endowment, 6(12):1326–
1329, 2013.

[2] Robert John Allan. Survey of agent based modelling and simulation tools. Science &
Technology Facilities Council, 2010.

[3] Faisal M Almutairi, Fan Yang, Hyun Ah Song, Christos Faloutsos, Nicholas Sidiropou-
los, and Vladimir Zadorozhny. Homerun: scalable sparse-spectrum reconstruction of
aggregated historical data. Proceedings of the VLDB Endowment, 11(11):1496–1508,
2018.

[4] Farzindar Atefeh and Wael Khreich. A survey of techniques for event detection in
twitter. Computational Intelligence, 31(1):132–164, 2015.

[5] Mehdi Ben Lazreg, Usman Anjum, Vladimir Zadorozhny, and Morten Goodwin. Se-
mantic decay filter for event detection. In 17th ISCRAM Conference Proceedings.
Blacksburg, VA (USA): Virginia Tech., pages 14–26. ISCRAM, 2020.

[6] Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul Bentley, Roger Gunn,
Alexander Hammers, David Alexander Dickie, Maria Valdés Hernández, Joanna
Wardlaw, and Daniel Rueckert. Gan augmentation: Augmenting training data us-
ing generative adversarial networks. arXiv preprint arXiv:1810.10863, 2018.

[7] Lars-Erik Cederman, Nils B Weidmann, and Nils-Christian Bormann. Triangulating
horizontal inequality: Toward improved conflict analysis. Journal of Peace Research,
52(6):806–821, 2015.

[8] Carmela Comito, Deborah Falcone, and Domenico Talia. A peak detection method to
uncover events from social media. In Data Science and Advanced Analytics (DSAA),
2017 IEEE International Conference on, pages 459–467. IEEE, 2017.

[9] Mário Cordeiro and João Gama. Online social networks event detection: a survey. In
Solving Large Scale Learning Tasks. Challenges and Algorithms, pages 1–41. Springer,
2016.

106

[10] Kainan Cui, Xiaolong Zheng, Daniel Dajun Zeng, Zhu Zhang, Chuan Luo, and Saike
He. An empirical study of information diffusion in micro-blogging systems during
emergency events. In International Conference on Web-Age Information Management,
pages 140–151. Springer, 2013.

[11] Xiang Dai and Heike Adel. An analysis of simple data augmentation for named entity
recognition. arXiv preprint arXiv:2010.11683, 2020.

[12] Waltenegus Dargie and Christian Poellabauer. Fundamentals of wireless sensor net-
works: theory and practice. John Wiley & Sons, 2010.

[13] Mark A Davenport, Marco F Duarte, Yonina C Eldar, and Gitta Kutyniok. Intro-
duction to compressed sensing. preprint, 93(1):2, 2011.

[14] Xiaowen Dong, Dimitrios Mavroeidis, Francesco Calabrese, and Pascal Frossard.
Multiscale event detection in social media. Data Mining and Knowledge Discovery,
29(5):1374–1405, 2015.

[15] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci, 5(1):17–60, 1960.

[16] Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and
Hayit Greenspan. Gan-based synthetic medical image augmentation for increased cnn
performance in liver lesion classification. Neurocomputing, 321:321–331, 2018.

[17] Jason Gale. Googling for gut symptoms predicts covid hot
spots, study finds. https://www.msn.com/en-us/health/medical/

googling-for-gut-symptoms-predicts-covid-hot-spots-study-finds/

ar-BB18Yw1Y?ocid=uxbndlbing.

[18] Muskan Garg and Mukesh Kumar. Review on event detection techniques in social
multimedia. Online Information Review, 40(3):347–361, 2016.

[19] Máıra Gatti, Paulo Cavalin, Samuel Barbosa Neto, Claudio Pinhanez, Ćıcero dos San-
tos, Daniel Gribel, and Ana Paula Appel. Large-scale multi-agent-based modeling and
simulation of microblogging-based online social network. In International Workshop
on Multi-Agent Systems and Agent-Based Simulation, pages 17–33. Springer, 2013.

[20] Jeff Gentry. twitteR: R Based Twitter Client, 2015. R package version 1.1.9.

107

https://www.msn.com/en-us/health/medical/googling-for-gut-symptoms-predicts-covid-hot-spots-study-finds/ar-BB18Yw1Y?ocid=uxbndlbing
https://www.msn.com/en-us/health/medical/googling-for-gut-symptoms-predicts-covid-hot-spots-study-finds/ar-BB18Yw1Y?ocid=uxbndlbing
https://www.msn.com/en-us/health/medical/googling-for-gut-symptoms-predicts-covid-hot-spots-study-finds/ar-BB18Yw1Y?ocid=uxbndlbing

[21] Prasanna Giridhar, Tarek Abdelzaher, Jemin George, and Lance Kaplan. Event local-
ization and visualization in social networks. In 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 35–36. IEEE, 2015.

[22] Gene H Golub, Per Christian Hansen, and Dianne P O’Leary. Tikhonov regulariza-
tion and total least squares. SIAM Journal on Matrix Analysis and Applications,
21(1):185–194, 1999.

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[24] Mark W Groch. Radioactive decay. Radiographics, 18(5):1247–1256, 1998.

[25] David L Hall and James Llinas. An introduction to multisensor data fusion. Proceed-
ings of the IEEE, 85(1):6–23, 1997.

[26] Changhee Han, Hideaki Hayashi, Leonardo Rundo, Ryosuke Araki, Wataru Shimoda,
Shinichi Muramatsu, Yujiro Furukawa, Giancarlo Mauri, and Hideki Nakayama. Gan-
based synthetic brain mr image generation. In 2018 IEEE 15th International Sympo-
sium on Biomedical Imaging (ISBI 2018), pages 734–738. IEEE, 2018.

[27] David C Harrison, Winston KG Seah, and Ramesh Rayudu. Rare event detection and
propagation in wireless sensor networks. ACM Computing Surveys (CSUR), 48(4):1–
22, 2016.

[28] Mahmud Hasan, Mehmet A Orgun, and Rolf Schwitter. A survey on real-time event
detection from the twitter data stream. Journal of Information Science, 44(4):443–
463, 2018.

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[30] Muhammad Imran, Carlos Castillo, Fernando Diaz, and Sarah Vieweg. Processing so-
cial media messages in mass emergency: A survey. ACM Computing Surveys (CSUR),
47(4):67, 2015.

[31] Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data augmentation
for time series classification with neural networks. arXiv preprint arXiv:2007.15951,
2020.

108

[32] Fang Jin, Edward Dougherty, Parang Saraf, Yang Cao, and Naren Ramakrishnan.
Epidemiological modeling of news and rumors on twitter. In Proceedings of the 7th
Workshop on Social Network Mining and Analysis, page 8. ACM, 2013.

[33] Jaeyoon Kim, Donghyun Tae, and Junhee Seok. A survey of missing data imputation
using generative adversarial networks. In 2020 International Conference on Artifi-
cial Intelligence in Information and Communication (ICAIIC), pages 454–456. IEEE,
2020.

[34] John Krumm and Eric Horvitz. Eyewitness: Identifying local events via space-time
signals in twitter feeds. In Proceedings of the 23rd SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, page 20. ACM, 2015.

[35] Mehdi Ben Lazreg, Morten Goodwin, and Ole-Christoffer Granmo. Combining a
context aware neural network with a denoising autoencoder for measuring string sim-
ilarities. Computer Speech & Language, page 101028, 2019.

[36] Ryong Lee and Kazutoshi Sumiya. Measuring geographical regularities of crowd be-
haviors for twitter-based geo-social event detection. In Proceedings of the 2nd ACM
SIGSPATIAL international workshop on location based social networks, pages 1–10.
ACM, 2010.

[37] Zhengchun Liu, Dolores Rexachs, Francisco Epelde, and Emilio Luque. A simulation
and optimization based method for calibrating agent-based emergency department
models under data scarcity. Computers & Industrial Engineering, 103:300–309, 2017.

[38] Zongge Liu, Hyun Ah Song, Vladimir Zadorozhny, Christos Faloutsos, and Nicholas
Sidiropoulos. H-fuse: Efficient fusion of aggregated historical data. In Proceedings
of the 2017 SIAM International Conference on Data Mining, pages 786–794. SIAM,
2017.

[39] Edgar Alonso Lopez-Rojas, Ahmad Elmir, and Stefan Axelsson. Paysim: A financial
mobile money simulator for fraud detection. 09 2016.

[40] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series
imputation with generative adversarial networks. In Advances in Neural Information
Processing Systems, pages 1596–1607, 2018.

109

[41] Charles M Macal and Michael J North. Tutorial on agent-based modeling and simula-
tion. In Proceedings of the Winter Simulation Conference, 2005., pages 14–pp. IEEE,
2005.

[42] Brian McNair. Fake news: Falsehood, fabrication and fantasy in journalism. Rout-
ledge, 2017.

[43] M Zuhair Nashed. Generalized Inverses and Applications: Proceedings of an Advanced
Seminar Sponsored by the Mathematics Research Center, the University of Wiscon-
sin—Madison, October 8-10, 1973. Number 32. Elsevier, 2014.

[44] Ozer Ozdikis, Halit Oguztuzun, and Pinar Karagoz. Evidential location estimation
for events detected in twitter. In Proceedings of the 7th Workshop on Geographic
Information Retrieval, pages 9–16. ACM, 2013.

[45] Ozer Ozdikis, Halit Oğuztüzün, and Pinar Karagoz. Evidential estimation of event
locations in microblogs using the dempster–shafer theory. Information Processing &
Management, 52(6):1227–1246, 2016.

[46] Ozer Ozdikis, Halit Oğuztüzün, and Pinar Karagoz. A survey on location estima-
tion techniques for events detected in twitter. Knowledge and Information Systems,
52(2):291–339, 2017.

[47] Baekkwan Park, Michael Colaresi, and Kevin Greene. Beyond a bag of words: Using
pulsar to extract judgments on specific human rights at scale. Peace Economics, Peace
Science and Public Policy, 24(4), 2018.

[48] Baekkwan Park, Kevin Greene, and Michael Colaresi. Human rights are (increasingly)
plural: Learning the changing taxonomy of human rights from large-scale text reveals
information effects. American Political Science Review, 114(3):888–910, 2020.

[49] Fabio Pezzoni, Jisun An, Andrea Passarella, Jon Crowcroft, and Marco Conti. Why
do i retweet it? an information propagation model for microblogs. In International
Conference on Social Informatics, pages 360–369. Springer, 2013.

[50] Samira Pouyanfar, Yudong Tao, Saad Sadiq, Haiman Tian, Yuexuan Tu, Tianyi Wang,
Shu-Ching Chen, and Mei-Ling Shyu. Unconstrained flood event detection using
adversarial data augmentation. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 155–159. IEEE, 2019.

110

[51] Adrianna Rodriguez. Trump administration considering ’pool testing’ for coronavirus,
fauci says. here’s what that means. https://www.usatoday.com/story/news/

health/2020/06/26/what-covid-19-pool-testing-faqs-faucis-proposal/

3262870001/.

[52] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter
users: real-time event detection by social sensors. In Proceedings of the 19th interna-
tional conference on World wide web, pages 851–860. ACM, 2010.

[53] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, 45(11):2673–2681, 1997.

[54] Zahra Khodabandeh Shahraki, Afsaneh Fatemi, and Hadi Tabatabaee Malazi. Evi-
dential fine-grained event localization using twitter. Information Processing & Man-
agement, 56(6):102045, 2019.

[55] Minglai Shao, Jianxin Li, Feng Chen, Hongyi Huang, Shuai Zhang, and Xunxun
Chen. An efficient approach to event detection and forecasting in dynamic multivariate
social media networks. In Proceedings of the 26th International Conference on World
Wide Web, pages 1631–1639. International World Wide Web Conferences Steering
Committee, 2017.

[56] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation
for deep learning. Journal of Big Data, 6(1):60, 2019.

[57] Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and
its applications, volume 3. Springer, 2000.

[58] Kelsey Simpkins. How sampling campus wastewater aims to keep
covid-19 in check. https://www.colorado.edu/today/2020/08/27/

how-sampling-campus-wastewater-aims-keep-covid-19-check.

[59] Duncan Smith and Sameer Singh. Approaches to multisensor data fusion in tar-
get tracking: A survey. IEEE transactions on knowledge and data engineering,
18(12):1696–1710, 2006.

[60] Hyun Ah Song, Fan Yang, Zongge Liu, Wilbert van Panhuis, Nicholas Sidiropoulos,
Christos Faloutsos, and Vladimir Zadorozhny. Gb-r: A fast and effective gray-box
reconstruction of cascade time-series. In Data Mining Workshops (ICDMW), 2017
IEEE International Conference on, pages 494–501. IEEE, 2017.

111

https://www.usatoday.com/story/news/health/2020/06/26/what-covid-19-pool-testing-faqs-faucis-proposal/3262870001/
https://www.usatoday.com/story/news/health/2020/06/26/what-covid-19-pool-testing-faqs-faucis-proposal/3262870001/
https://www.usatoday.com/story/news/health/2020/06/26/what-covid-19-pool-testing-faqs-faucis-proposal/3262870001/
https://www.colorado.edu/today/2020/08/27/how-sampling-campus-wastewater-aims-keep-covid-19-check
https://www.colorado.edu/today/2020/08/27/how-sampling-campus-wastewater-aims-keep-covid-19-check

[61] Avinash Srinivasan and Jie Wu. A survey on secure localization in wireless sensor
networks. Encyclopedia of Wireless and Mobile communications, page 126, 2007.

[62] Enrico Steiger, Joao Porto De Albuquerque, and Alexander Zipf. An advanced sys-
tematic literature review on spatiotemporal analyses of t witter data. Transactions
in GIS, 19(6):809–834, 2015.

[63] Tycho. Tycho epidimeological dataset. https://www.tycho.pitt.edu.

[64] Xiang Wang, Kai Wang, and Shiguo Lian. A survey on face data augmentation for
the training of deep neural networks. Neural Computing and Applications, pages 1–29,
2020.

[65] Gary M Weiss and Haym Hirsh. Learning to predict extremely rare events. In AAAI
workshop on learning from imbalanced data sets, pages 64–68. AAAI Press, 2000.

[66] Qingsong Wen, Liang Sun, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan
Xu. Time series data augmentation for deep learning: A survey. arXiv preprint
arXiv:2002.12478, 2020.

[67] U. Wilensky. Netlogo rumor mill model, 1997. http://ccl.northwestern.edu/

netlogo/models/RumorMill.

[68] U. Wilensky. Netlogo, 1999. http://ccl.northwestern.edu/netlogo/.

[69] Uri Wilensky and William Rand. An introduction to agent-based modeling: modeling
natural, social, and engineered complex systems with NetLogo. MIT Press, 2015.

[70] Zack Winn. Real-time data for a better response to disease outbreaks. https://

news.mit.edu/2020/kinsa-health-0821.

[71] Fei Xiong, Yun Liu, Zhen-jiang Zhang, Jiang Zhu, and Ying Zhang. An information
diffusion model based on retweeting mechanism for online social media. Physics Letters
A, 376(30-31):2103–2108, 2012.

[72] Fan Yang, Hyun Ah Song, Zongge Liu, Christos Faloutsos, Vladimir Zadorozhny,
and Nicholas Sidiropoulos. Ares: Automatic disaggregation of historical data. In
2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 65–76.
IEEE, 2018.

112

https://www.tycho.pitt.edu
http://ccl.northwestern.edu/netlogo/models/RumorMill
http://ccl.northwestern.edu/netlogo/models/RumorMill
http://ccl.northwestern.edu/netlogo/.
https://news.mit.edu/2020/kinsa-health-0821
https://news.mit.edu/2020/kinsa-health-0821

[73] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network
survey. Computer networks, 52(12):2292–2330, 2008.

[74] Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Gain: Missing data
imputation using generative adversarial nets. arXiv preprint arXiv:1806.02920, 2018.

[75] Yi Zhang, Zhe Li, Yongchao Zhang, et al. Validation and calibration of an agent-based
model: A surrogate approach. Discrete Dynamics in Nature and Society, 2020:1–9,
2020.

113

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. High/Low Reliability & Regular/Sporadic Delivery Slate Differences
	2. Fixed parameters for all TBAM data generation simulations
	3. Variable parameters for different TBAM data generation simulations
	4. Summary of Real Data
	5. Determining the probabilities from Twitter data for TBAM
	6. Summary of Metrics
	7. Summary of Simulations for determining optimum TBAM Parameters
	8. Experimental Setup Summary
	9. Decay in number of similarity
	10. Event time according to the significant peak and the peak in SDF
	11. Summary of Experimental Setup
	12. Triangulation using TBAM
	13. Trilateration Parameters and Results
	14. Triangulation using Parameters from Real Data
	15. Trilateration Summary

	List of Figures
	1. Dimensions of Data
	2. Dissertation Workflow
	3. SPARE methodology
	(a). Illustration of a sequence of data and peaks
	(b). Steps in SPARE towards localization of event
	4. Data Collection Methodology
	(a). Disaggregated Tweets related to FIFA event
	(b). STEM data collection
	5. Temporal Observation Matrix
	(a). Representation of temporal aggregation
	(b). Report duration and shift on temporal observation matrix
	6. Representation of Spatial Aggregation
	7. Comparison of original and disaggregated data using LSQ and smoothness
	8. Effect of Filter Threshold on Data Collected from Twitter
	(a). Effect of Filtering on STEM event data
	(b). Effect of Filtering on VIRG event data
	9. Effect of filter threshold on data
	10. Long Short-Term Memory (LSTM) Architecture
	11. Representation of the ABM world
	12. Changing qi with changing distance or ticks (with =1 and =20)
	13. Generative Adversarial Network (GAN) Architecture
	14. Comparison of Twitter data with TBAM generated data
	(a). VIRG Twitter Data vs TBAM generated data
	(b). STEM Twitter Data vs TBAM generated data
	(c). GAR Twitter Data vs TBAM generated data
	15. Effect of changing TBAM parameters & GAN on metrics using STEM data set
	(a). CCF at lag=0 & max CCF
	(b). CCF at lag=0 & RMSE
	16. Effect of changing TBAM parameters & GAN on metrics using VIRG data set
	(a). CCF at lag=0 & max CCF
	(b). CCF at lag=0 & RMSE
	17. Boxplots for different simulations using STEM data set
	(a). Maximum CCF
	(b). CCF at lag=0
	(c). RMSE
	18. Boxplots for different simulations using VIRG data set
	(a). Maximum CCF
	(b). CCF at lag=0
	(c). RMSE
	19. Top values of parameters by ccf at lag=0 for STEM
	(a). Event Tweet Parameters
	(b). Standard Tweet Parameters
	(c). Night Tweet Parameters
	20. CCF of Real Twitter data with TBAM generated data
	(a). Cross Correlation between VIRG Twitter Data and TBAM data
	(b). Cross Correlation between STEM Twitter Data and TBAM data
	(c). Cross Correlation between GAR Twitter Data and TBAM data
	21. CCF of Real Twitter data with randomly generated data
	(a). Cross Correlation between VIRG Twitter Data and Uniform Random Data
	(b). Cross Correlation between STEM Twitter Data and Uniform Random Data
	(c). Cross Correlation between GAR Twitter Data and Uniform Random Data
	22. Comparison of Filtered and Unfiltered Real Twitter data with TBAM data
	(a). Plot of VIRG Twitter Data vs TBAM generated data
	(b). Plot of STEM Twitter Data vs TBAM generated data
	(c). Plot of Garlic Festival Twitter Data vs TBAM generated data
	23. CCF of Filtered Real Twitter data with TBAM generated data
	(a). Cross Correlation between VIRG Twitter Data and TBAM data
	(b). Cross Correlation between STEM Twitter Data and TBAM data
	(c). Cross Correlation between GAR Twitter Data and TBAM data
	24. Average ccf for Different Filters (Peak Threshold=0.5)
	(a). Average ccf for Butterworth Filter
	(b). Average ccf for Low Pass Filter
	(c). Average ccf for Moving Average Filter
	25. Changing Filter Threshold for Butterworth Filter (Peak Threshold=0.5)
	(a). Butterworth Filter Accuracy
	(b). Butterworth Filter Penalty
	(c). Butterworth Filter Quality
	26. Changing Filter Threshold for Butterworth Filter (Peak Threshold=0.02)
	(a). Butterworth Filter Accuracy
	(b). Butterworth Filter Penalty
	(c). Butterworth Filter Quality
	27. Changing Filter Threshold for Low Pass Filter (Peak Threshold=0.5)
	(a). Low Pass Filter Accuracy
	(b). Low Pass Filter Penalty
	(c). Low Pass Filter Quality
	28. Changing Filter Threshold for Moving Average Filter (Peak Threshold=0.5)
	(a). Moving Average Filter Accuracy
	(b). Moving Average Filter Penalty
	(c). Moving Average Filter Quality
	29. Complete filter/unfiltered framework
	30. Effect of changing tolerance, filter threshold and step on AUC
	31. Effect of changing tolerance, filter threshold and step on AUC for FIFA
	32. Normalized aggregated number of similar tweets as a function of the threshold
	(a). STEM
	(b). VIRG
	(c). LON
	33. Decay as a function of time for STEM, VIRG and LON
	(a). STEM
	(b). VIRG
	(c). LON
	34. SDF as a function of time for STEM, VIRG and LON
	(a). STEM
	(b). VIRG
	(c). LON
	35. Finding Event Patterns
	36. Methodology for Assigning Training Labels - Pre-Post Labeling (PPL)
	37. AND Combine (AC) Example with 2 different
	38. Matrix Combine (MC) Example with 2 different
	39. Dividing STG into time slice (window) of size
	40. Using Metrics for Latent Pattern Analysis
	41. Comparison when using event vector ev
	(a). Different Data sizes
	(b). Different Machine Learning Methods
	42. Comparison when using event vector ev1
	(a). Different Data sizes
	(b). Different Machine Learning Methods
	43. Distribution of tweet count with layers
	(a). Disaggregated TBAM Data
	(b). Aggregated TBAM Data
	44. STEM disaggregated with 3 and 12 hr time windows
	45. Virginia disaggregated with 3 and 12 hr time windows
	46. Garlic Festival disaggregated with 3 and 12 hr time windows
	47. Plots of TBAM generated data along spatial dimension
	(a). VIRG parameters
	(b). STEM parameters
	(c). GAR parameters
	(a). Accuracy, Penalty & Quality for STGl
	(b). Trilateration Error (in miles)
	48. Human Rights Documents as more Developed Data
	49. Aspect Change by Year
	50. Ethiopia Aspect Count
	51. Tanzania Aspect Count

	1.0 Introduction
	1.1 Dissertation objective
	1.2 Thesis statement
	1.3 Methodology
	1.4 Dissertation Outline

	2.0 Background and Literature Review
	2.1 Data fusion and Disaggregation
	2.2 Data Imputation and Augmentation
	2.3 Event Localization
	2.4 Relationship with this Dissertation

	3.0 Enrichment of Underdeveloped data
	3.1 Data Aggregation & Disaggregation
	3.1.1 Temporal aggregation
	3.1.2 Spatial aggregation
	3.1.3 Information reconstruction via disaggregation

	3.2 Explicit Event Patterns
	3.2.1 Explicit Event Patterns
	3.2.1.1 Refining explicit patterns - low pass filters
	3.2.1.2 Refining explicit patterns - semantic decay filters (SDF)

	3.2.2 Latent Event Patterns

	3.3 Top-down data generation
	3.3.1 TBAM design
	3.3.2 TBAM explanation

	3.4 Bottom-up data generation

	4.0 Data sets Used for Localization
	4.1 Introduction to the data sets
	4.1.1 Performance Metrics for TBAM analysis
	4.1.2 Determining Optimum TBAM Parameters

	4.2 TBAM Model Validation
	4.2.1 A Comparison of the Affect of Filters on TBAM and Data from Twitter

	5.0 Event Pattern Detection
	5.1 Using Explicit Patterns
	5.1.1 Measuring disaggregation (reconstruction) quality
	5.1.2 Data with ground truth and effect on parameters
	5.1.3 AUC as an pattern detection metric
	5.1.4 Using SDF for event-related patterns

	5.2 Using Latent Patterns
	5.2.1 Latent pattern methodology
	5.2.2 Latent pattern analysis

	6.0 Localization and Other Applications
	6.0.1 Trilateration calculation
	6.0.2 Trilateration with TBAM generated data
	6.0.3 Trilateration with real data
	6.0.4 Trilateration with latent patterns

	6.1 Potential Applications
	6.1.1 Application to more developed data

	7.0 Conclusion
	7.1 Primary Conclusions of Result
	7.2 Discussion and Future Work
	7.3 Conclusion

	Bibliography

