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Monica Fei Liu, PhD

University of Pittsburgh, 2021

Sensory feedback is a vital component of behavior. Oftentimes we use sensory feedback

to learn new motor skills, such as riding a bike. Other times we passively consume sen-

sory information for our own enjoyment or to support cognitive processes such as learning.

We occasionally even move to acquire certain sensory experiences or achieve sensory states.

When sensory feedback is impaired, movement is also impaired. However, deficiencies of

sensory feedback do not necessarily prohibit movement—motor tasks can be accomplished

with limited or noisy sensory feedback, even if slowly and with reduced accuracy. This sug-

gests that there are interactions between sensory modalities as well as interactions between

sensation and movement at every level of the nervous system and raises the question of how

sensory feedback interacts with motor commands along the neuraxis, from the periphery to

the cerebral cortex. Here we studied the neural mechanisms of interactions and integration

between sensation and movement in the periphery, in spinal circuits, and finally in volitional

control of a brain-computer interface using signals extracted from motor cortex. We found

that contact force influences the neural encoding of tactile stimuli in primary afferents, that

spinal circuits encode sterotyped motor output to sensory stimulation, and that sensory

feedback interacts with movement intent in motor cortex. Together, these studies suggest

that sensation and movement are intertwined at every level of the nervous system, and that

sensory signals must be demultiplexed and contextualized in terms of the movements used

to acquire them, and motor commands must take into account the evolving sensory state.
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1.0 Introduction

Consider a person writing with a pen or pencil. In this relatively common task, the

person is using small movements to control the pencil while receiving multiple modalities of

sensory feedback. Tactile feedback provides information on pencil grip and texture, whereas

proprioceptive feedback in their fingers provides information on the shape and size of the

pencil. Visual feedback provides the writer with feedback on whether they have achieved

their goal. All of these signals combine to produce a sensory state that the writer can use

to continuously control their movement. Understanding the many ways in which differ-

ent sensory modalities influence movement will enable us to build better therapeutics and

technologies to restore movement and sensation to people with paralysis or amputation.

Sensory information in the periphery arrives in cortex in three synapses. Along the way,

sensory feedback is incorporated in pathways in the spinal cord and other brain areas, en-

abling multiple levels of sensorimotor integration from the periphery to cortex. Cortical and

subcortical motor pathways influence motor output through direct and indirect projections

to alpha motor neurons in the spinal cord. These motor neurons synapse onto muscle fibers

to enable movement. At each level of sensorimotor processing, sensation needs to be contex-

tualized in terms of the movement used to acquire it, and movement must be contextualized

in the context of the sensory feedback provided.

The goal of this dissertation is to address the codependence of motor action and sensory

feedback signals during motor control and perception. We first study peripheral neural

mechanisms of action-dependent tactile coding of object texture by examining how variations

in contact force influence neural coding in cutaneous mechanoreceptors of the hand. Then,

we will examine how spinal circuits implement sensorimotor integration through reflexive

motor output in response to sensory input. Finally, we will examine the interactions between

proprioceptive feedback and volitional motor output in motor cortex. We find that at each

of these stages, sensation and movement are tightly coupled and need to be demultiplexed

and processed for context and information.
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Figure 1.1: Mechanoreceptors in the skin and muscles detect skin deformation or muscle

stretch, transducing these mechanical events into neural activity. These neural signals arrive

in sensory cortex in three synapses: from the periphery, they enter the spinal cord via the

central projections of primary afferent neurons, whose cell bodies are located in the dorsal

root ganglia. From there, ascending brances of DRG neurons synapse upon the cuneate

nucleus. As sensory fibers leave the cuneate nucleus, they project contralaterally to thalamus

and cortex via the medial lemniscus pathway.
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1.1 Sensorimotor integration in the periphery

In the periphery, mechanoreceptors in the skin and proprioceptors in the muscles trans-

duce skin deformations and muscle stretch into a neural signal. While sensory and motor

fibers are bundled together in the periphery, they are separated when they arrive at the

dorsal and ventral roots—sensory fibers localize to the DRG, while motor fibers localize to

the ventral roots. This separation of sensory and motor fibers makes the DRG a lucrative

target for electrical stimulation—sensory percepts can be elicited solely through stimulation

of the sensory fibers or movement solely through stimulation of the motor fibers. Since these

neural signals carry information about mechanical deformations in the skin and muscles, one

might expect that the type, direction, and intensity of the deformation influences the evoked

neural responses.

1.1.1 Cutaneous Encoding in the Periphery

In human behavior, studies have shown that movement affects the perception of cuta-

neous feedback, and that the perception of cutaneous feedback influences movement. When

participants were asked to freely move to sample various textures, they sampled smoother

textures with higher speeds [20]. Conversely, when textures were passively scanned over par-

ticipants’ fingers, rougher textures were rated as moving slower [33]. Similarly, tactile stimuli

of larger amplitude or larger contact forces are rated as more intense [134, 20, 93]. Together,

these studies represent the role of movement on human perception of texture. Other stud-

ies have also found that the physiological parameters of the nervous system can influence

texture perception. One study showed that the perception of roughness is an inverted U-

curve—textures with either very low granuality or very high granularity are rated as more

smooth because very smooth textures and very rough textures activate peripheral afferents

with many overlapping receptive fields [27]. Thus, the perception of texture is influenced by

both the movements used to sample the texture as well as the physiological properties of the

nervous system.
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While perception itself is largely cortically-driven, we can examine how peripheral af-

ferents (PAs) in the skin encode tactile feedback across variable surface characteristics and

contact parameters. Textures come into contact with the skin and cause deformations.

These deformations open ion channels of cutaneous nerve endings in the skin, giving rise to

a temporally patterned sequence of action potentials that propagate centrally. Cutaneous

receptors are divided into two broad classes: rapidly-adapting (RA) neurons and slowly-

adapting (SA) neurons. RA neurons respond to the onset and offset of a contact with a

tactile stimulus and SA neurons respond during the entire duration of a tactile stimulus.

Together, these afferents convey information about both surface characteristics such as the

roughness, smoothness, and stickiness of a texture, as well as contact parameters such as the

force of contact and speed of contact. Previous studies have found that SA afferents in gen-

eral respond to contact force and the broad features of textures [15, 13, 178, 14], whereas RA

neurons, and in particular Pacinian corpuscles, respond to vibrations in the skin [10, 15, 59].

These vibration-driven responses suggest that the texture code in peripheral afferents de-

pends on how tactile stimuli can elicit different vibrations in the skin. This depends not

only on the stimulus itself, but also the biomechanical properties of the skin, down to the

fingerprints of the person involved [146]. Overall, however, it seems that neurons in the pe-

riphery respond to both the dynamics of contact as well as immutable surface characteristics,

suggesting that at the very entry point into the nervous system, sensation and movement

are already tightly coupled.

1.1.2 Proprioceptive Encoding in the Periphery

Mechanoreceptors in the periphery also detect deformations in muscle and tendon length,

forming the basis for the proprioceptive sense. Proprioception is a combination of the sen-

sation of static body position and “kinaesthetic sense”, the sense of motion. Thus, proprio-

ception is very tightly coupled to movement because movement will change body positioning

in space, and deficiencies in proprioception manifest as “ataxia”, or incoordination [154].

Not only does proprioception influence movement trajectories, proprioceptive biases can be

introduced depending on the initial state of the arm [1]. Proprioception is further coupled to
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motor learning in that training passive proprioception improves motor learning. In several

studies, subjects who were trained on a joint angle discrimination task before performing a

force field adaptation task learned the force field adaptation task faster than subjects who

had not undergone perceptual training [29, 117, 184]. Conversely, motor learning has been

shown to improve passive proprioceptive acuity [185] and induce proprioceptive perceptual

shifts [123, 124], even when subjects are simply passively observing movement [11]. Fur-

thermore, in visuomotor adaptation tasks, participants exhibit proprioceptive recalibration

[83]—thus, different sensory modalities are integrated in different ways. This is particularly

evident in object manipulation. Grip force is better regulated with proprioceptive feedback,

because proprioceptors in the fingers encode object shape and is integrated with cutaneous

feedback of the object’s surface properties to enable good control [89]. Additionally, in the

lower limb, proprioceptive feedback directly contributes to the length of different stages of

walking [57, 44, 43, 150, 177, 186]. Finally, degeneration of proprioceptive afferents in the

periphery results in a sense of disembodiment [25]. Taken together, these studies suggest that

proprioception is intrinsically coupled to movement in the sense that it provides information

on body position and body movement.

Proprioceptive sense primarily arises from Golgi tendon organs and muscle spindles that

detect stretch in muscles and joints. Golgi tendon organs primarily contribute to sensations of

load, such as force and weight. Muscle spindles respond to muscle stretch, taking into account

not only the level of stretch, but also the starting length of the muscle and the speed of the

stretch. Thus, the baseline activity of a muscle spindle can signal general body position, while

the change in muscle spindle firing can indicate velocity of muscle contraction or relaxation

[137, 77]. Previous studies have shown that vibrating muscles can induce proprioceptive

illusions, and that motor illusions can influence proprioceptive sense [6, 28]. Thus, one key

transformation the nervous system must perform is the conversion of muscle and tendon

lengths into an estimate of limb position. Such estimates of individual joint angles and

walking speed can be decoded from proprioceptive neurons in the DRG [176], muscle and

tendon lengths are fairly easily mapped to limb position. From the periphery, proprioceptive

afferents project into cortex as well as the cerebellum via the dorsal spinocerebellar tract

(DSCT). Many proprioceptive afferents project into the DSCT, and studies have shown that
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neurons in the DSCT respond to overall limb position and movement rather than muscle

length or stretch [17]. Thus, proprioceptive feedback can be encoded in terms of muscle

and tendon lengths as well as in limb positions and joint angles. Together, this raises the

question of how upstream cortical structures integrate these perspectives of proprioceptive

feedback for motor control and perception.

Whether we are examining cutaneous feedback, proprioceptive feedback, or some combi-

nation of the two, the way we move influences the way we sense. Thus, rather than viewing

sensory feedback as a corrective signal or goal signal in motor planning and control, we need

to contextualize sensory feedback with the movements that were used to acquire that sensory

state.

1.2 Sensorimotor Integration in the Spinal Cord

Spinal circuits and subcortical circuits enable fast motor responses to sensory feedback.

These circuits link sensory neurons in the dorsal roots with motor neurons in the ventral

roots either via spinal interneurons or via longer, sub-cortical circuitry through the brainstem

or the thalamus. Many sensorimotor loops couple sensation to movement within and across

multiple levels of the nervous system. Such circuitry is a key component of gait and postural

balance, with sensory input directly driving coordinated muscle responses that allow an

animal to maintain balance and posture.

1.2.1 Spinally-Mediated Reflexive Motor Output

Spinal circuits transform sensory input into motor output via monosynaptic circuits.

Such reflexive motor output produces muscle contractions that occur within 20-50ms of a

sensory input. These short-latency reflexes (SLRs) are implemented via relay neurons in

the spinal cord. One of the most common examples of a spinally-mediated reflexive motor

output is the knee tendon-tap reflex, where a stretch of the patellar tendon causes a reflexive

knee extension [63, 76, 138]. In the lower limb, these reflexive movements are thought to
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assist in maintaining balance and posture. Such reflexive movement is subconscious and is

a direct example of sensorimotor integration in that sensation can drive stereotyped motor

responses.

Reflexive movements can be generated by cutaneous or proprioceptive input. Studies

have shown that anesthetizing mechanoreceptors in the thumb and fingers with a local anes-

thetic during a weight-lifting task results in participants perceiving that the task requires

greater effort [62]. Furthermore, altering the excitability of motoneurons in the hand can in-

fluence the perceived heaviness of objects [5]. Combined, these studies suggest that not only

do reflexes enable sensorimotor integration at the spinal cord, but that the presence of these

reflexes influences perception of sensory feedback. Thus, spinal reflexes are already taken

into account when cortex processes sensory feedback, suggesting that any neural technologies

aimed at restoring sensation must take into account the role of such reflexive pathways.

1.2.2 Task-Dependent Reflexive Motor Output

Beyond SLRs, there has also been evidence for long-latency reflexes (LLRs), which occur

on the range of 50-100ms after a sensory stimulus and are thought to involve subcortical

structures [30, 68]. Interestingly, LLRs have been found to be tuned to task-relevant vari-

ables. In one study, participants were asked to maintain the position of a robotic arm and felt

either a perturbation outwards or inwards. Researchers found that the LLR was differentially

tuned depending on whether the perturbation was outward or inward. However, the LLR

response was too fast to pass through cortical structures. Thus, the LLR is a sensory-driven

motor output that is not thought to involve cognitive processes [139, 107]. Additionally,

the LLR can not be entirely spinally-driven as spinal circuitry does not appear to be able

to encode different motor responses for the same sensory input [56, 140]. Together, these

findings suggest that descending cortical control can prime subcortical circuits to produce

stereotyped motor responses to sensory feedback.

Both short- and long-latency reflexes suggest that sensorimotor integration is not purely

at the level of cortical control. In particular, SLRs suggest that some types of sensory

feedback are so common that the motor output is hardwired into spinal circuitry, and that

7



the presence of various SLRs can influence sensory perception. LLRs suggest that subcortical

structures integrate sensory feedback into motor output by priming spinal circuitry. Thus,

sensory processing in cortex accounts for spinal reflexes, and cortical structures can influence

and prime spinal reflexes to accomplish a motor task.

1.3 Sensorimotor Integration in Cortex

Generating accurate and precise movements requires predicting the sensory outcome of

the movement [115, 70, 183, 35, 58, 181, 105]. Correcting erroneous movements occurs

over time through progressive minimization of sensory prediction errors. As such, noisy

sensory estimates can result in inaccurate movements. Studies have shown that changes

in both sensory and motor cortices occur during sensorimotor integration tasks, and that

primary somatosensory cortex (S1) possesses the ability to drive responses in primary motor

cortex (M1). Furthermore, S1 appears to encode representations of the stimulus during

perceptual decision-making tasks, but sensorimotor and motor areas are implicated as the

neural basis for improved perception when movement is required to indicate the comparison

decision. Taken together, these studies indicate that movement-relevant sensory information

is represented in M1 during sensorimotor integration tasks.

1.3.1 Impact of Sensory Feedback on Motor Cortical Areas

Motor cortical areas have been shown to respond to sensory feedback, including vi-

sual feedback, proprioceptive feedback [162], and tactile feedback [82]. Visually responsive

neurons in M1 respond to observed movement [38, 61, 141] and visual reach targets [165],

whereas M1 neurons that respond to tactile stimuli, but not in a somatotopic way [148]. Pro-

prioceptive feedback, however, drives large changes in M1 activity that are different across

active and passive conditions [163]. Diving further into encoding of task-relevant sensory

cues in M1, studies have shown that changes in both sensory and motor cortices occur dur-

ing sensorimotor integration tasks [50, 122], and that primary somatosensory cortex (S1)
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possesses the ability to drive responses in primary motor cortex (M1) [132]. Furthermore, S1

appears to encode representations of the stimulus during perceptual decision-making tasks

[84, 142], but sensorimotor and motor areas are implicated as the neural basis for improved

perception when movement is required to indicate the comparison decision [84, 109]. Taken

together, these studies indicate that movement-relevant sensory information is represented

in M1 during sensorimotor integration tasks [163]. Similarly, when humans were asked to

perform a thumb vibration frequency discrimination task before performing a thumb ab-

duction task, performance at the task was better and M1 responses to proprioceptive input

changed [143]. These studies suggest that M1 responds to sensory feedback, and does so in

a context-dependent way.

Sensory feedback further shapes motor cortical responses over the course of learning.

In a study where mice were trained to lick upon detection of objects, researchers found

that learned mice had consistent activation of subpopulations of M1 neurons in response to

specific sensory stimuli [90]. This suggests that over the course of sensorimotor learning,

subpopulations of M1 neurons become more strongly associated with environmental stimuli.

Brain-wide imaging studies over the course of sensorimotor learning have shown that learning

results in the development of autonomous sensorimotor dynamics that are decoupled from

cognitive control [9]. In more complex tasks where animals are trained to indicate the timing

of a flashing visual cue via a motor response, frontal cortex corrects error based on the

predicted timing of the motor command [47]. Thus, motor commands in cortex are used to

generate sensory estimates that are then used for error correction and motor learning results

in greater coupling between sensory systems and motor systems. Across these studies, it is

evident that M1 control of movement flexibly uses and interacts with sensory feedback.

1.3.2 Role of Sensory Feedback in Models of Motor Control

Many models of motor control focus on the role of sensory feedback as an error correc-

tion signal. These models first transform sensory goals into a motor command. Then, the

motor command is used to generate an estimate of the expected sensory feedback (efference

copy). Finally, the sensory feedback resulting from the actual movement is compared to
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the estimated sensory feedback from the efference copy, and the error is used to correct the

movement or to plan for a corrective movement. Forward models of motor control simulate

the effects of a motor command to generate an estimate of sensory state [182]. In contrast,

inverse models identify the movement needed to achieve a certain sensory state [105]. These

models combined can form an internal model—an understanding of the the environmental

changes that will result from a certain motor action [181]. Together, these models indicate

that sensory feedback and estimation are crucial for motor control. Combined with previ-

ous studies that show that sensation and movement are integrated at every level along the

neuraxis, these notions of motor control suggest that in order to build better therapies and

technology to restore movement and sensation, we must develop an understanding of how

cortical control and processing of movement and sensation leverages spinal circuitry and

peripheral sensory encoding.

From the periphery to cortex, across many models of motor control, sensation and move-

ment are tightly integrated, and one cannot be understood without the other. Thus, if we

are to develop novel therapies and technologies that interface with the nervous system at

various levels, we will need to be able to extract and contextualize sensory information in the

context of movement and vice versa. Since it is clear that these two systems interact at every

level of the neuraxis, the goal of this dissertation is to understand how those interactions

influence neural coding in the periphery, spinal cord, and cortex.
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1.4 Structure of this Dissertation

I will examine the integrations between sensation and movement at major levels of the

neuraxis. In chapter 2, I will examine how contact force and texture interact to influence

the neural coding of tactile stimuli in the periphery. Chapter 3 examines the sensorimotor

circuits in the spinal cord and how these circuits enable stereotyped reflexive motor outputs to

sensory inputs. Chapter 4 will examine how movement intent interacts with sensory feedback

in motor cortex during brain-computer interface control. I conclude the dissertation with an

examination of how these studies fit into the existing literature and the future experiments

that could be done in Chapter 5.
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2.0 Information About Contact Force and Surface Texture is Mixed in the

Firing Rates of Cutaneous Afferent Neurons

This work was published in Liu MF, Batista, AP, Bensmaia, SJ, Weber DJ. “Information

about contact force and surface texture is mixed in the firing rates of cutaneous afferent

neurons”, Journal of Neurophysiology, 125(2):496-508, 2021. doi:10.1152/jn.00725.2019

Cutaneous mechanoreceptors in our hands gather information about the objects we handle.

Tactile fibers encode mixed information about contact events and object properties. Neural

coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli,

avoiding the confounds of real-world haptic interactions. We instead record responses of

small populations of DRG neurons to variable tactile stimuli and find that neurons primarily

respond to force, though some texture information can be detected.

2.1 Abstract

Tactile nerve fibers convey information about many features of haptic interactions, in-

cluding the force and speed of contact, as well as the texture and shape of the objects being

handled. How we perceive these object features is relatively unaffected by the forces and

movements we use when interacting with the object. Since signals related to contact events

and object properties are mixed in the responses of tactile fibers, our ability to disentangle

these different components of our tactile experience implies that they are demultiplexed as

they propagate along the neuraxis. To understand how texture and contact mechanics are

encoded together by tactile fibers, we studied the activity of multiple neurons recorded si-

multaneously in the cervical dorsal root ganglia (DRG) of two anesthetized Rhesus monkeys

while textured surfaces were applied to the glabrous skin of the fingers and palm using a

handheld probe. A transducer at the tip of the textured probe measured contact forces as

tactile stimuli were applied at different locations on the finger-pads and palm. We examined
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how a sample population of DRG neurons encode force and texture and found that firing

rates of individual neurons are modulated by both force and texture. In particular, slowly-

adapting (SA) neurons were more responsive to force than texture, and rapidly-adapting

(RA) neurons were more responsive to texture than force. While force could be decoded

accurately throughout the entire contact interval, texture signals were most salient during

onset and offset phases of the contact interval.

2.2 Introduction

Tactile nerve fibers that innervate the glabrous skin on the palmar surface of the hand

encode information about object interactions, such as the location of contacts with the object

and the force exerted at each point of contact. The afferent fibers from these mechanore-

ceptors (“tactile afferents”) also carry information about the objects themselves–their size,

shape, and texture. These signals are necessary not only for identifying objects but also

for dexterous manipulation [98, 157] as evidenced by the impairments that result from the

loss of tactile sensation [7, 22, 31, 37, 168]. Information about contact events and objects

is mixed in the responses of nerve fibers and is extracted by downstream structures to give

rise to interpretable tactile percepts.

Primary tactile afferents (PA) comprise two distinct classes–rapidly-adapting (RA) and

slowly-adapting (SA) neurons that respond differently to aspects of a tactile stimulus [101].

Studies of neural coding in the nerve have typically varied only a single aspect of the sensory

stimulus, whether it be force, speed, or texture [12, 13, 27, 72, 121, 133, 134, 178]. The

overarching theme of these studies is that primary afferents (PAs) encode different stimulus

features in distinct yet overlapping ways: scanning speed [33, 46] and contact force are

encoded primarily in firing rates [12, 13, 121, 134, 178], whereas texture is encoded in the

spatial distribution of the activated fibers [27, 72, 100, 133, 175], and in precisely-timed

spiking sequences [114]. When multiple aspects of tactile stimuli vary at the same time,

these different neural codes allow for information to be multiplexed in the responses of single

neurons and populations of neurons. For example, the strength and frequency composition
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of vibratory stimuli are encoded in firing rates and temporal patterning respectively [81].

Sometimes, the same neural code can carry information about multiple aspects of a tactile

stimulus. For example, shear force direction and object curvatures are encoded in the latency

of the first action potential in a sensory response [71, 99].

The objective of the present study was to further investigate the multiplexing of tactile

information in the spiking activity of simultaneously recorded RA and SA afferent neurons.

To this end, we varied the scanning speed, contact force, and texture of the stimuli applied

to the skin and assessed whether we could decode the force and the texture from the spiking

activity of PA neurons recorded simultaneously with penetrating microelectrode arrays in

the cervical dorsal root ganglia (DRG) of anesthetized Rhesus monkeys [159, 173]. Sensory

nerves from the arm converge at the DRG, which provides a focal point for accessing these

signals The DRG offers the additional advantage that, while the peripheral nerve includes

both motor and sensory nerve fibers, the DRG contains only sensory neurons. In the present

study, we examine how different aspects of a tactile event are encoded in the responses of a

population of DRG neurons. Specifically, we record the activity evoked in tactile afferents

when we manually apply textured surfaces to the skin at different speeds and contact forces.

We then assess the degree to which we can read out information about time-varying contact

force and about texture from these neural signals.

2.3 Methods

Two adult male Rhesus monkeys (Macaca mulatta) (monkey M, 14 years old; monkey

B, 10 years old) were used in this study. All procedures were approved by the University

of Pittsburgh Institutional Animal Care and Use Committee (IACUC) and are in keeping

with the guidelines of the National Institutes of Health for the care and use of laboratory

animals.
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Figure 2.1: Experimental setup (A) Three 4x8-electrode Blackrock arrays (photograph) were

implanted into the C6, C7, and C8 DRG of monkey M, and four 8-contact Modular Bionics

probes (not pictured) were implanted in the C7 and C8 DRG of monkey B. (B) Seven textures

were used as tactile stimuli: three natural textures (sandpaper, cotton, and silicone) and four

synthetic textures (evenly spaced raised dots). The colored dots next to the name of each

texture is the color that will be used to represent that texture in all of the figures. (C)

Each texture was attached to a force probe containing motion tracking markers and a force

transducer. The force probe was brushed over different regions of the finger-pads and palm

while neural responses were recorded.
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2.3.1 Surgery

Experiments were conducted under general anesthesia. Anesthesia was induced with

ketamine and maintained with isoflurane for the duration of the surgery. With the monkey

lying in a prone position and head elevated, laminectomies on C6, C7, and C8 were done to

expose the spinal cord, spinal nerve roots and dorsal root ganglia in the caudal cervical spine

on the right side. Three 4x8 penetrating microelectrode Blackrock “Utah” arrays (Blackrock

Microsystems, Salt Lake City, UT) were implanted into the C6, C7, and C8 DRG in monkey

M, and two Modular Bionics probes (Modular Bionics Inc., Berkeley, CA) were implanted

into the C7 and C8 DRGs of monkey B (Figure 2.1A). Each Modular Bionics probe consisted

of four separate shanks with eight electrodes on each shank. The animals used in this study

had reached the end of their participation in other research projects, so this was a terminal

procedure. We studied anesthetized monkeys because to our knowledge, no system currently

exists to perform chronic multi-electrode recordings of individual-neuron action potentials

from the dorsal root ganglia of awake and behaving Rhesus monkeys.

2.3.2 Neural Recordings

Neural recordings were conducted with a Ripple Grapevine Neural Interface Processor

(Ripple Neuron, Salt Lake City, UT) and recorded continuously at 30kHz. The raw neural

signals were bandpass filtered at 250-7500 Hz and candidate action potentials were saved

for offline sorting by setting a threshold at four times the root-mean-square (RMS) value of

the baseline activity on each channel. Individual neural waveforms from well-isolated units

were detected using Offline Sorter software (Plexon, Inc., Dallas, TX). Raw spike times were

aligned with force traces for analysis.

2.3.3 Force and Velocity Measurements

Force signals were recorded as analog inputs (30kHz) on the Grapevine system so that

they were synchronized to neural events and low-pass filtered with a cutoff frequency of

150Hz. The magnitude of the forces parallel with the skin were combined into a scalar shear
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force measurement. The motion of the force probe was measured with an optical motion cap-

ture system at 120Hz (V120:Trio, NaturalPoint, Inc., Corvallis, OR), synchronized digitally

with the Grapevine system.

2.3.4 Unit Identification

Receptive fields (RFs) of units across the arrays were mapped via manual palpation of

various regions of the animal’s arm and hand. Each tactile afferent was labeled as rapidly-

adapting (RA) or slowly-adapting (SA) based on its response to brushes and indentations

with a cotton swab during the experiment [156]. These labels were additionally verified using

the firing rate profiles of the trial-averaged neural activity. Units that responded to joint

motion movement of the joints but not tactile stimulation were labeled as proprioceptive

units and not considered further.

2.3.5 Stimuli

After units had been mapped, a cutaneous region with the highest density of mapped

receptive fields was selected as the target for tactile stimulation (Figure 2.2A, B). A force

transducer was attached to a handheld probe with a magnetic attachment for different tex-

tured surfaces (Figure 2.1B). Natural textures (silicone, cotton, sandpaper) were attached

to a 3D-printed half cylinder. Synthetic surfaces were also used. They were 3D-printed

half cylinders with a series of evenly spaced raised dots (diameter = 0.75 mm, height = 1

mm, spacing = 2, 3, and 4 mm). Five textures were used in monkey M (silicone, cotton,

sandpaper, 2 and 4mm spaced dots), and seven textures were used in monkey B (silicone,

cotton, sandpaper, no dots, 2, 3, and 4mm spaced dots). To perform the experiment, a

region of the glabrous skin containing the receptive field of many of the units across the

electrode arrays was identified–the hypothenar pad for monkey M and the fourth digit for

monkey B (region indicated by the dashed red box in Figure 2.2A, B). The force transducer

with attached texture was brushed by the experimenter back and forth over this region of

the skin at one-second intervals with varying force. The application of each texture was

recorded continuously in two blocks, with 25 to 35 trials of contact with a texture per block,
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Figure 2.2: Receptive fields of individual units were identified through manual palpation of

the monkey’s arm and hand. Unit identification for the hand regions in (A) monkey M and

(B) monkey B. The dashed red boxes indicate the location of where the tactile stimuli were

applied. (C) Rasters and force traces for 60 applications of each of three textures in monkey

M and (D) 50 applications for monkey B. Time = 0 is the peak of the normal force.
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each approximately one second in duration. Force traces were segmented into individual

trials for each contact and temporally aligned on the peak normal force (Figure 2.2C, D).

Sixty trials for each texture were segmented in the hypothenar pad of monkey M, and fifty

trials per texture were segmented in monkey B for data analysis.

2.3.6 Rate-Based Encoding of Force

Each trial consisted of a sweep of a texture across the hand (Figure 2.4B, C). Instan-

taneous firing rates were estimated by binning spikes into 10ms bins and smoothing with a

Gaussian kernel with a width of 20ms (Figure 2.4A). Linear regression models were used to

estimate the relationship between contact force and firing rate for both individual neurons

and the population of neurons in the recordings. We created these regression models by fit-

ting a linear relationship between neural activity and force using the equation F = βN + ε,

where F is a matrix of the normal and shear force at each time point, with one column per

time point, and N is a matrix of neural firing rates at each time point (one column per time

point). The model was fitted by estimating a matrix of coefficients β (two coefficients per

neuron: one for shear force and one for normal force), and constants ε (one for shear force

and one for normal force). To test the generalizability of a linear model for force across

textures, a leave-one-texture-out approach was used. In this approach, the linear model was

fitted to the firing rates and forces of all trials for all textures except one, then tested by using

the firing rates from the held-out texture to predict the corresponding force. Comparisons

were made to evaluate how well this predicted force matched the actual force.

2.3.7 Rate-Based Encoding of Texture

We used a classification procedure to quantify how much information about texture was

present in neural activity. We were specifically interested in signals carried by individual

neurons, by all neurons, and by neurons of each submodality (SA vs. RA). To measure

the texture information in neural activity, we built multinomial logistic regression models

(Böhning, 1992) to model the relationship between neural activity and texture, then used

these models to predict texture from neural activity for each type of neural signal. The higher
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the model’s accuracy, the more texture information is present in the neural activity. To

build these models, neuronal responses were binned into 10 ms bins. Each model performed

a classification at each time bin to assess the evolution of the texture signal over time.

To train the model, the vector of neural activity across the population (or, for individual

neurons, the scalar firing rate) was labeled with the corresponding texture and the model

parameters were fit by finding the parameter values that would best reconstruct the texture

labels. A leave-one-out cross-validation scheme was used, so that the classifiers were trained

on all but one trial for each texture, then tested on the set of held-out trials. To test the

decoding accuracy of the model, we classified texture from the neural activity on the held-

out trials. The logistic regression models approximated the probability distribution across

all textures from neural activity at each 10 ms time bin. The accuracy of the decoder, and

thus the strength of the texture information present in the neural signal, was reported as

the model’s probability assigned to the true texture given the observed firing rates. These

decoder accuracies are shown in Figure 2.6.

2.3.8 Contact-Phase Variations in Texture Encoding

The normal and shear force profiles were segmented into three 50 ms epochs, representing

sequential phases of the contact event corresponding to the onset, peak, and offset of the

normal or shear force. The middle of the onset epoch was found by finding the time of

the maximum rate of increase in force (i.e. maximum of the first derivative of the force

with respect to time). Similarly, the middle of the offset epoch was identified as the time

of maximum rate of decrease in force, and the peak was identified as the time at which the

derivative of force with respect to time was zero. Average firing rates were measured in each

50 ms epoch. A logistic regression classifier was trained on each epoch separately to measure

texture information encoded in the average firing rates in each epoch. To demultiplex force

and texture, a logistic regression was then trained on the onset and offset epochs combined.

These classifiers were trained with the same leave-one-set-out approach as described in the

previous section.
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2.3.9 Temporal Encoding of Texture

To assess the degree to which PAs covaried in their responses, we computed the cross-

correlation functions for pairwise combinations of the instantaneous firing rates for every

pair or neurons across two textures (synthetic 2 and synthetic 4). To mitigate the effects

of variations in contact force on the texture-specific response of neurons and thus highlight

the temporal pattern, we computed cross-correlations on a set of force-matched trials. To

establish the role of temporal patterning across neurons in texture encoding, we repeated

the classification analysis, but this time based not only on firing rates but also joint firing

rates for every pairwise combination of neurons. The joint firing rate is the product of the

instantaneous firing rates of a pair of neurons in each 10-ms bin, which emphasizes responses

that covary. As a control for the contribution of timing, we repeated the classification

analysis after shuffling the time bins on each trial. We reasoned that if information about

texture was present in the joint activity of neurons, then by including pairwise correlations

as an additional neural signal, classification accuracy should improve.

2.4 Results

We recorded simultaneously from small groups of primary afferent neurons in the DRG

of two anesthetized Rhesus monkeys. In monkey M, 55 neurons were identified across the

three arrays. In monkey B, 18 cutaneous neurons with receptive fields (RFs) on the palmar

surface of the hand were identified. Although we did not thoroughly explore units with RFs

in other parts of the limb in monkey B, we found approximately 12 additional units that

were proprioceptive or were cutaneous with RFs on the arm.

We limited delivery of the tactile stimuli to the receptive field locations of well-isolated

units (Figure 2.3, 0% of interspike intervals < 1ms) on the glabrous skin of the hand. Our

analysis focused on eight neurons in monkey M that innervated the palm, and nine neurons

in monkey B that innervated the fourth finger. Five of the eight neurons in monkey M

were classified as RA, and the other three were classified as SA. Five out of nine neurons in
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monkey B were determined to be RA, and the remaining four were SA. Textured surfaces

were brushed across the hypothenar eminence of monkey M and the fourth finger (D4) of

monkey B (Figure 2.2A, B). The normal and shear forces measured during application of

the tactile stimulus as well as the responses of each neuron are shown for a subset of the

textures in Figure 2.2C and D.

2.4.1 Interactive Effects of Force and Texture

We first examined how the skin responded to our stimuli. Over the course of a tactile

stimulus, skin deformations reflect both contact force and texture, and these stimulus fea-

tures are unlikely to be independent. We determined if differences in texture influence the

relationship between shear and normal force. To do this, we examined how the covariation

between shear and normal forces varied with the texture. The average force traces for two

textures, synthetic 4 and sandpaper, are shown in Figure 2.4A and B. The normal forces

were similar for different textures (top) but the shear forces (bottom) were more texture-

dependent. This phenomenon was observed across all textures (Figure 2.4C, D). As might

be expected, smoother textures such as synthetic smooth and synthetic 2 exhibited smaller

shear forces than rougher textures such as sandpaper. Importantly, the fact that shear force

depends on both normal force and texture creates a challenge for the nervous system to

separately encode these aspects of tactile stimuli.

2.4.2 Force Encoding

Figure 2.5 shows the trial-averaged firing rates of a representative RA and SA neuron to

two textures (Figure 2.5A), as well as trial-averaged normal (Figure 2.5B) and shear force

(Figure 2.5C) profiles. Comparing the forces on the skin elicited by two textures (synthetic

4 and sandpaper), normal force is more similar than shear force. The peak normal force

differs by 7% between synthetic 4 higher and sandpaper, but peak shear force for synthetic

4 is 18% lower than the peak shear force for sandpaper. Examining neural responses, peak

SA activity was 50% greater for synthetic 4 than sandpaper, but peak RA activity was more

similar between the two textures (12% greater for synthetic 4 than sandpaper). Furthermore,
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Figure 2.3: Spike sorting metrics. ISI distributions for each monkey are shown on the left.

No unit in either monkey had an ISI of < 1ms. Below the ISI histograms are the waveforms

for each neuron. Units were sorted by clustering in the first two principal components of

each waveform. Waveforms and spike times for each unit on each electrode were compared

to ensure that units from different electrodes do not fire in similar patterns, as this indicates

that the same unit may be present across several electrodes. This was more of a concern

with the modular bionics probes used for monkey B than for the Blackrock utah arrays used

for monkey M.
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Figure 2.4: Normal and shear forces vary with texture. Normal and shear force of the skin for

two textures in (A) monkey M and (B) monkey B. The relationship between the normal force

(measured at its peak) and shear force depends on texture. (C) shows all such relationships

for each texture for monkey M and (D) is for monkey B.
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the SA neuron responds over the entire duration of stimulus application (Figure 2.5A, top),

reaching its peak within 10ms of the normal force. In contrast, the RA neuron responds

maximally 70-100ms ms after the peak normal force, which coincides with the time interval

during which the normal and shear forces are decreasing (Figure 2.5A, bottom). Taken

together, these results show that neurons respond to variations in force and textures in

different ways, and that SA and RA neurons respond during different phases of the contact

interval.

A function achieved by touch receptors is to accurately relay information about object

properties such as texture despite variability in contact forces. To understand how this

might be achieved, we began by assessing the degree to which these neuronal populations

conveyed information about applied force. Since texture influences the relationship between

normal and shear force, we determined whether the relationship between contact force and

firing rate generalized across textures. To do so, we fitted a linear model to the forces and

firing rates of all textures except for one, then used this model to decode normal and shear

force from neural activity on the held-out texture. Force traces decoded from the entire

population of neurons for two textures are shown in Figure 2.6A and B. Overall, the neural

population provided better force predictions (monkey M adjusted R2 for normal force =

0.35, shear = 0.47; monkey B adjusted R2 for normal force = 0.67, shear = 0.69) than did

single neurons (median adjusted R2 for both monkeys for normal and shear force = 0.2),

suggesting that the population firing rate of neurons encodes force magnitude, as has been

shown previously [12, 13, 134, 178]. Interestingly, while the neural population provided for

accurate predictions of the normal and shear forces during the onset and offset of contact, the

model systematically underestimated peak force. One explanation for this is that the model

is biased towards lower forces because the peak force tends to be more variable across trials

and account for only a small fraction of the trial duration, while force levels during onset

and offset of the tactile stimuli are lower in magnitude but are a larger fraction of the trial

duration. Since lower force levels are more frequent in the data and force levels are more

variable at peak, the model is more likely to underestimate the actual force, particularly

when the neural activity is also encoding other aspects of the tactile stimulus. An alternate

explanation is that RA afferents exhibit their peak firing rate during the onset and offset of
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Figure 2.5: Firing rate during stimulus contact. (A) The responses of a representative SA

neuron (top) and RA neuron (bottom) from monkey B. (B) Trial-averaged normal and (C)

shear force for the two textures, sandpaper and synthetic 4. The vertical dashed line at Time

= 0 indicates the peak of the normal force.
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the stimulus, resulting in underestimation of force at the peak and slight overestimates of

force during stimulus onset (Figure 2.6A, B). Regardless, a population firing rate code for

both normal and shear force generalized well across textures (Figure 2.6C).

We further compared the relative contributions of SA and RA neurons in predicting

contact-force from the ensemble firing rates of neurons grouped by submodality. Within the

sample of neurons in each monkey, SAs outperformed RAs at decoding the time-varying

normal and shear forces (p < 0.001, Mann-Whitney U-test with Bonferroni correction).

Moreover, force decoding accuracy for SA neurons (monkey M adjusted R2 for normal force

= 0.32, shear = 0.44; monkey B normal = 0.67, shear = 0.68), but not RA neurons (monkey

M adjusted R2 for normal force = 0.10, shear = 0.10; monkey B normal = 0.44, shear =

0.45), was as good as the entire population of neurons (average difference between adjusted

R2 for SA neurons only and all neurons for both forces = 0.01±0.01, between RA and all

= 0.27±0.05). Note that while the force decoding accuracy of neurons in monkey M was

lower than in monkey B, monkey M had a lower proportion of SA neurons (3 out of 8) than

monkey B (4 out of 9). Taken together, these results suggest that SA afferents encode more

force information than RA afferents.

2.4.3 Texture Encoding

Next, we examined the degree to which neuronal responses carry information about

texture across time-varying levels of contact force. To this end, we trained a multinomial

logistic regression classifier to identify the applied texture from the instantaneous firing rate

at each time point over the contact interval. For this analysis, we restricted the texture

classification to the set of five textures (synthetic 2, synthetic 4, sandpaper, cotton, silicone)

that was used in both monkeys.

The 5-class texture classification accuracy of the population instantaneous firing rate at

each time point over the contact interval are shown in Figure 2.6A and B. Instantaneous clas-

sification accuracies begin at chance level at the start of contact and increase to peak levels

(all neurons, monkey M = 0.25; monkey B = 0.37; chance = 0.2) before and after the mid-

point of the stimulus delivery window, which corresponds to the peak in normal force. As the
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Figure 2.6: Estimating forces from neural activity. Actual force traces compared to forces

estimated using a linear model for (A) synthetic 4 and (B) sandpaper from all neurons (5

RA, 4 SA) in monkey B. (C) Estimates of normal (top) and shear (bottom) force from neural

activity. Four estimations were performed, using different neural signals: individual neurons

(yellow dots), all RA neurons, all SA neurons, and all neurons together.
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contact interval ends, texture classification accuracies return to chance levels. Additionally,

while SA afferents appeared to provide the dominant contribution to force encoding (Fig-

ure 2.5C), RA afferents provided the strongest contribution to texture-classification (peak

accuracy for monkey M = 0.23 (RA-only), 0.24 (all); monkey B = 0.32 (RA-only), 0.37

(all)).

Since shear force varies across textures (Figure 2.4), and neurons encode shear force

through population firing rates (Figure 2.6), correlations between contact force and neural

activity may be sufficient to explain the time-varying texture-classification profiles shown

in Figure 2.7A and B. To determine if this was the case, we attempted to classify the five

textures based on the ratio of shear to normal force, which yielded a texture-classification

accuracy of 0.24 for both monkeys (versus neural accuracy of 0.25 for monkey M, 0.37 for

monkey B). The similarity in texture classification accuracy between contact force and neural

activity suggest that force signals may dominate the neural response across the range of forces

and textures represented in these data. This indicates that the texture-specific information

conveyed by this small population of neurons was relatively weak and likely confounded by

variations in force.

Another possibility as to why neurons in our population encode contact force across

textures but not texture across variable forces is that neurons receive texture information

entirely through normal and shear forces on the skin. If this is the case, then we would expect

that neural activity would fail to discriminate between textures when force conditions are

matched. Conversely, if texture discrimination accuracy in the force-matched condition is

above chance, then we can conclude that the neural signals convey information for identifying

textures.

To test these possibilities, we analyzed the responses evoked by two textures for which

the normal and shear force relationship was similar. The following pairs of textures were

selected based on the high degree of overlap exhibited in the relationship between normal and

shear force shown in Figure 2.4C and D: synthetic 4 and cotton in monkey M, and synthetic

2 and silicone in monkey B. Using these paired textures, we first trained a binomial logistic

regression classifier to predict texture using the relationship between shear and normal force

(as described above). This established a baseline of how much texture information could
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be extracted if neurons were purely encoding normal force and shear force. This baseline

accuracy is represented by the red dotted line in Figure 2.7B (monkey M = 0.47, monkey

B = 0.6). If texture classification with neural activity exceeds this baseline accuracy, then

neurons encode texture information separately from force information. Thus, we trained a

binary logistic regression classifier to classify the texture from the firing rates of all neurons,

RA neurons only, and SA neurons only. With force-matching, binomial texture classification

accuracy improved (monkey M peak accuracy = 0.63, baseline = 0.47; monkey B = 0.88,

baseline = 0.6), suggesting that neural responses carry a texture signal that is independent of

normal and shear force signals (Figure 2.7B). Interestingly, the peak in texture-classification

accuracy for RA neurons (peak accuracy: monkey M = 0.6; monkey B = 0.78) occurred

during the offset phase of the contact-interval (Figure 2.7B: monkey M = 0.07s and monkey

B = 0.06s after peak normal force), whereas the peak in classification accuracy for SA neurons

(monkey M = 0.56; monkey B = 0.7) occurred during the the onset phase of the normal

force (0.04s before peak normal force for both monkeys). Taken together, these results show

that texture-specific signals can be isolated when contact forces are similar, and that RA

and SA neurons encode texture information at different timepoints over the duration of the

contact interval.

2.4.4 Decoding Texture Across Variable Forces

Although the texture signals are confounded by variations in contact force, the strongest

texture signals appear during the rising and falling phases of the contact force (Figure 2.7),

which may represent particularly opportune time intervals for extracting texture signals,

demultiplexing them from force signals.

Given that the texture signal is strongly confounded by force, we next attempted to

identify whether texture information could be demultiplexed from the firing rates of the

small sample of neurons at all. Based on the peaks in texture classification accuracy for RA

and SA neurons in Figure 2.7C and D, we examined whether we could discriminate texture

across variable normal and shear forces by focusing on specific phases of the contact interval.

To do so, we computed the average firing rate in 50ms windows centered on the onset, peak,
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and offset of the shear and normal forces. Using a logistic regression classifier, we predicted

texture from the average firing rate in each of these epochs for the same five textures used

in the previous section. We found that the firing rates of both individual neurons and the

entire population of neurons during the offset times of shear force were significantly more

informative about texture than were the responses during peak force application (mixed

ANOVA with Tukey multiple comparisons post-hoc test, p = 0.001), but this relationship

was not observed when response epochs were identified from the onset, peak, and offset of

the normal force (Figure 2.8A, B). Based on these findings, we attempted to classify texture

using the neural activity during onset and offset of the shear force. This resulted in better

texture classification accuracy (monkey M RA = 0.5, SA = 0.32, all = 0.32; monkey B RA =

0.57, SA = 0.73, all = 0.83; chance = 0.2), even across all textures and forces (Figure 2.8C,

D). Thus, for this small set of neurons, signals at force onset and offset are more informative

about texture than are those at peak force.

2.4.5 Temporal Encoding of Texture

As temporal spiking patterns in tactile nerve fibers–on the order of milliseconds–have

been shown to carry information about texture [175], we assessed whether we could improve

texture classification performance by taking spike timing into account. In particular, we

assessed spike timing codes that involve the joint firing of pairs of neurons.

First, we examined whether neuronal responses under our stimulus conditions exhib-

ited temporal patterning, as had been previously shown under tightly controlled stimulus

presentations [27, 59, 114, 175]. To do so, we computed the cross-correlation between the

(time-varying) responses of pairs of neurons to each of two textures. For this analysis, we

used two periodic textures, synthetic 2 (2 mm spaced dots) and synthetic 4 (4 mm spaced

dots), because these are likely to evoke easily discernible periodic responses. We found that

for both SA and RA neurons, the cross-correlation exhibited a peak at zero lags (Figure

2.9A-C). Note that the periodicity of the textures is not observed in the cross-correlations

presumably because the scanning speed was not constant over the trial. Nonetheless, the

results suggest that neural responses covaried in time with neighboring neurons.
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Figure 2.7: Texture decoding from neural activity. (A) Average texture classification ac-

curacy over time for RA, SA, and all neurons across five textures for monkey M (left) and

monkey B (right). All trials were used, and thus a wide range of contact forces. (B) Texture

decoding for two textures that have similar normal and shear force profiles for monkey M

(left) and monkey B (right). Time = 0 is the peak of the normal force. The dashed red lines

represent the baseline texture classification accuracy using only the relationship between the

shear and normal force.
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Next, we assessed whether this temporal patterning contained texture information and

could thus be used to improve texture classification performance. To do so, we computed a

joint firing rate for each pair of neurons by taking the product of their firing rates in 10 ms

bins over each trial. Joint firing rates amplify coincident neural activity and thus enhance

any temporal patterning in the response that is common across neurons. As expected from

the cross-correlation analysis, we found that including joint firing rates in the classification

analysis improved performance compared to when only individual-neuron firing rates were

used (62% vs 51% for monkey M and and 93% vs. 72% for monkey B) (Figure 2.9D,

E). Thus, temporal patterning across neurons contains information that can contribute to

texture identification, even under stimulation conditions that vary.

2.5 Discussion

During everyday manual interactions with objects, exploratory parameters–contact force,

location, and scanning speed–vary constantly. Despite changes in these parameters, we can

still extract the stable features of the objects we interact with–their shape, size, texture, and

weight. How is it that information about object features can be extracted independently

from information about contact mechanics? To help understand this remarkable processing,

we examined how small populations of cutaneous afferent neurons encode contact parameters

and object features. Specifically, we asked whether contact force and surface textures can

be extracted from the activity of a small population of DRG neurons when the contact force

and contact speed varied.

2.5.1 Force Encoding

While shear force was more dependent on variations in texture than was the normal

force, both could be decoded accurately from population neuronal firing rates of peripheral

afferents (PAs) using a simple linear regression model (Figure 2.6). The monotonic relation-

ship between force and firing rate is consistent with previous studies, showing that firing
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rate increases systematically with indentation depth [20, 93, 134] and, more generally, with

stimulus amplitude, regardless of the stimulus type (sinusoidal vibrations, mechanical noise,

etc.) [121]. Previous studies have shown that RA neurons are more sensitive to transient

changes in contact force, whereas SA neurons, at a first approximation, track time-varying

force levels [13, 178] as well as the direction of shear forces [14]. In agreement with these

studies, we found that SA neurons were better predictors of both normal and shear force,

but the time-varying force could be reconstructed fairly accurately from the combined firing

rates of RA and SA neurons.

2.5.2 Texture Encoding

The large neural signal of force suggests that when object-contact forces are varying, ex-

tracting texture information from the instantaneous firing rate of neurons is difficult. Other

studies have shown that spike timing carries important information about the vibrations in

the skin elicited by surface characteristics of a stimulus [81, 114]. We found some evidence

that temporal patterning in terms of synchronicity between pairs of neurons contained infor-

mation about texture (Figure 2.9). However, the role of temporal codes in texture encoding

needs to be further studied because temporal patterning in our small population of neurons

can be obscured by fluctuations in speed and temporal variations in the region of the tac-

tile stimuli contacting the skin. Additionally, these variations are more easily accounted for

in large populations of neurons where many of the neurons exhibit similar texture-specific

temporal responses. Therefore, perhaps in part as a result of a small number of neurons and

the temporal information in our recordings, our ability to decode texture-specific features

from the neuronal signals was relatively poor. Such variations in force, scanning speed, and

texture are also present during naturally-occurring object manipulations. Nonetheless, we

were able to decode texture when normal and shear forces were matched across textures,

indicating that PAs do convey information about texture. Previous studies have shown that

RAs encode detailed texture information [10, 15, 59] while SAs encode courses stimulus fea-

tures [15]. Our results agreed with these studies, with RAs encoding texture information

at the onset and offset of the contact interval, while SAs encode texture information best
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at the peak of the contact force (Figure 2.8). However, this information is confounded by

force. Texture signals were strongest during shear force transients, consistent with studies

showing that people increase the shear forces they apply to objects during tactile exploration

[20]. Similarly, studies in rodent whisking have found that mechanoreceptors also respond

strongly to shear deformations, and that information about object properties is most salient

in small temporal windows around object contact [19, 151]. Thus, shear force modulation

appears to be a crucial aspect of tactile perception. More specifically, previous studies have

shown that mechanical deformations resulting from vibratory stimuli propagate throughout

the skin in object-specific ways [152]. Combined, these studies suggest that the interaction

between shear forces and texture deforms the skin by inducing vibrations that depend upon

contact mechanics, object surface characteristics, and the mechanical properties of skin [32].

Since cutaneous RA afferents have been shown to respond primarily to vibratory stimuli

[60, 97, 167], and transient, impulse-like stimuli best enable vibrations to propagate through

the skin without damping, it is perhaps unsurprising that texture discrimination is best at

transients of shear force. Given the small number of neurons and variable nature of the

tactile stimuli in the experiments presented here, however, the responses of RA afferents to

transients in shear force warrants further study.

In general, while texture classification accuracy in our study was far below human per-

formance levels [116], the results reported here were obtained with only a small sample of

neurons. We presume that performance would increase substantially with larger numbers of

neurons. While taking temporal patterns in the spiking response that were common across

neurons improved texture classification, we anticipate that the boost in performance would

be enhanced when temporal patterns are shared across a larger PA population.

2.6 Conclusion

Across all sensory modalities, the nervous system faces the challenge of extracting infor-

mation from a highly variable, multi-factored stimulus. In the skin, populations of peripheral

afferents (PAs) combine information about exploratory parameters and about various fea-
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tures of contacted objects. This mixing occurs at the single-cell level, as the responses of

most PAs depend on both texture and force information. Here we showed that force informa-

tion can be extracted reliably from the responses of a small population of PAs, and that SA

fibers are more informative about force than are RA fibers. In contrast, information about

texture occupies a high-dimensional perceptual space [111] and could not be determined un-

ambiguously from the responses of our small population of PAs when force is also varying.

Our results suggest that texture signals are most prominent when shear force is changing,

perhaps due to the increased RA response during these epochs, and are carried in part in

temporal spiking patterns common across neurons. We propose that demultiplexing texture

signals from contact mechanics requires the implementation of sophisticated computations

[112] on the responses of a larger population of nerve fibers. Whatever the mechanism for

extracting texture information in the face of real-world changing forces might be, the present

results highlight the challenge the nervous system faces in extracting texture signals in the

somatosensory nerves during natural texture exploration.
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Figure 2.8: Texture classification from neural response epochs. Texture classification accu-

racy using neural activity in a 50ms window around the onset only, peak only, offset only,

or onset and offset of (A) normal force and (B) shear force by afferent type. (C) Confusion

matrices for texture classification using average firing rates in 50ms windows centered around

the onset and offset of shear force across the entire range of forces and five textures.
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Figure 2.9: Temporal patterning of neural responses. Example cross-correlation of neural

responses to a set of force-matched trials for two textures between (A) two SA neurons, (B)

two RA neurons, and (C) a RA and a SA neuron. This shows that pairs of neurons are

correlated, and that correlation depends on texture. Texture decoding using all pairwise

joint firing rates, all single unit activity in the population, and both single unit and joint

firing rate activity for (D) monkey M and (E) monkey B. Dashed black lines indicate chance,

computed as average classification accuracy using firing rates with shuffled time bins.
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3.0 Hindlimb Motor Responses Evoked by Microstimulation of the Lumbar

Dorsal Root Ganglia During Quiet Standing

We have established that contact force influences the encoding of tactile stimuli in the pe-

riphery. This leads us to the question of whether sensory feedback in the periphery can elicit

coordinated motor responses.

This work is adapted from Urbin, M.A., Liu, M., Bottorff, E.C., Gaunt, R.A., Fisher, L.E.,

Weber, D.J. “Hindlimb motor responses evoked by microstimulation of the lumbar dorsal

root ganglia during quiet standing”, Journal of Neural Engineering, 17(1):1-17, 2020. doi:

10.1088/1741-2552/ab4c6c

The introduction has been re-written to focus on the contributions to our understanding of

sensorimotor integration in the spinal cord. A subset of the results and discussion have been

selected and adapted toward this end as well. Descriptions of methods and results are taken

verbatim as published.

3.1 Abstract

Spinal circuits that implement motor responses to sensory feedback can be modulated

by top-down cortical control. Conversely, inhibition of spinal reflexes influences sensory per-

ception. Epidural stimulation of the dorsal roots can elicit motor responses, indicating that

stimulation of sensory afferents is one of the major approaches for restoring sensory feedback

to prosthetic users. Understanding the role of sensorimotor pathways in the spinal cord can

allow such stimulation therapies to leverage the spinal circuits already present to improve

prosthetic control. Microstimulation of the dorsal root ganglia (DRG) is a viable option for

restoring sensory feedback to prosthetic users, but more information is needed to understand

how and if this sensory stimulation can drive coordinated motor responses that can be used

to maintain balance. We implanted the lumbar DRG of cats and delivered electrical stimu-

lation while the cats were trained to balance on a platform. DRG microstimulation evoked
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coordinated muscle responses that lead to kinematic changes, such as an unloading of the

hindlimb, measured by change in ground reaction force. Thus, microstimulation in the DRG

can evoke sensation that drives motor responses through spinal circuitry.

3.2 Introduction

Reflexes have been shown to play an important role in motor control and learning. In the

upper limb, inhibition of spinal reflexes cause participants to perceive weights as heavier [62].

Conversely, excitation of motor neuron pools in the hand can cause objects to feel lighter

[5]. Such spinal reflex circuitry in the lower limb is essential for balance and gait control,

and motor reflexes in the lower limb respond to both cutaneous [16, 170] and proprioceptive

input [2, 158, 104]. These reflexes influence the length of the stance and swing phases of

walking, as well as the transitions between these two phases [57, 44, 43, 150, 177, 186]. Thus,

sensory feedback in the spinal cord can drive muscle activation patterns, even in the absence

of cortical control [87]. These spinal reflexes are coordinated to enable smooth walking

and response to perturbations during volitional control of movement [187]. Together, these

studies suggest that successful restoration of sensation via spinal stimulation will need to

take into account the reflexive motor output that results from spinal stimulation.

Stimulation of sensory afferents has been used to partially restore sensation in individuals

with prosthetic limbs or spinal cord injury [37, 168, 21, 174, 23]. Such epidural stimulation

of the dorsal roots can activate muscles in the lower limb [174]. Thus, an important consid-

eration of the electrical stimulation of sensory afferents is the potential for such stimulation

to recruit motor responses via interneuron pathways in spinal circuits. Such motor responses

can be beneficial in that they can elicit coordinated motor responses that assist in postural

and balance control, but they can also be detrimental in that they generate off-target move-

ments when the goal of electrical stimulation is to elicit a sensory percept. Potentially useful

coordinated motor responses are patterns of muscle activation or inhibition that generate

a kinematic output that enhances balance control or response to perturbation. Previous

studies have identified a reduction in neural computation load in that neural commands that
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specify the endpoint force of a limb rely on networks of motorneuron pools and the muscle

fibers they synapse upon to generate coordinated muscle synergies [171]. Together, these

studies raise the question of whether electrical stimulation can elicit coordinated motor re-

sponses for balance and postural control. Thus, understanding how stimulation in the dorsal

root ganglia (DRG) can drive coordinated motor responses is crucial to our understanding

of how to develop technologies for prosthetic users.

To characterize the sensorimotor effets of DRG microstimuation, we implanted the 6th

and 7th lumbar DRG of cats and delivered microstimulation pulses while the cats were

standing quietly. We recorded EMG activity as well as ground reaction force (GRF) of the

hindlimb over the course of quiet standing, stimulation, and response. We hypothesized that

electrical stimulation of the DRG would evoke coordinated muscle responses that contribute

to postural and balance control.

3.3 Methods

The goal of this study was to characterize the patterns of muscle activation elicited by

microstimulation in the DRG. Stimulation was delivered on single channels across two 8x4

microelectrode Utah arrays in L6 and L7 of quietly standing cats. To determine which

channels to stimulate on, we recorded the conduction velocities of each channel on the two

electrode arrays and determined that channels with the highest conduction velocities were

likely to be stimulating proprioceptive afferents. Electromyographic signals and ground

reaction force were recorded from the left hindlimb of the cat.

3.3.1 Surgery

Ketamine and acepromezine was used to induce anesthesia, which was then maintained

with 1-2% isoflurane. Throughout the procedure, we monitored the heart rate, oxygen satu-

ration, temperature, respiration rate, and CO2 of the animal. A laminectomy was performed

to expose the left L6 and L7 DRG. Floating microelectrode arrays (FMAs, MicroProbes for
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Figure 3.1: Experimental setup. (A) Adapted from King et al., 2009 [106]; Cats were

implanted with microelectrode arrays and trained to stand on a platform. EMG signals were

recorded from the left hindlimb. (B) Some cats were implanted with Utah arrays, and others

with (C) floating microelectrode arrays (FMA).

Life Science, Gaithersburg, MD) were implanted in three cats (cats F, G, H), and 4x8 Utah

Electrode arrays (UEA, Blackrock Microsystems, Inc., Salt Lake City, UT) were implanted

into the L6 DRG of cat I. Each FMA consisted of 32 stimulating electrodes, two reference

electrodes, and two ground electrodes. The Utah electrode arrays similarly consisted of 32

electrodes (Figure 3.1). A secondary ground and return electrode were implanted via a stain-

less steel wire that was inserted into a hole in the iliac crest. To measure the conduction

velocity of the stimulated afferents, a five-contact nerve cuff electrode array (Ardiem Medi-

cal, Indiana, PA, 4mm inter-electrode spacing) was placed on the left sciatic nerve. The first,

third, and fifth contacts of the cuff were shorted together and used as a common reference in

a virtual tripole configuration [64]. ENG signals were recorded from the second and fourth

contacts which were spaced 8 mm apart. Evoked responses were isolated via stimulation-

triggered averaging (STA) and the conduction velocity was computed as the propagation

time between the second and fourth contacts on the nerve cuff [64]. EMG electrodes were

inserted into the muscle bellies of ten muscles in the left hindlimb: tensor fascia latae (TF),
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gluteus medius (GM), semimembranosus (SM), semitendinosus (ST), biceps femoris (BF),

sartorius (SA), vastus lateralis (VL), tibialis anterior (TA), medial gastrocnemius (MG),

and lateral gastrocnemius (LG). Each electrode comprised of insulated stainless steel wires

(Cooner 636, 2 mm inter-electrode spacing along de-insulated segment). Leads for all ENG

and EMG electrodes were fixed to a percutaneous titanium base sutured to the dorsal fascia

and iliac crests and passed through the skin into an external backpack. Leads were attached

to a custom circuit board within the backpack. Recording and stimulating devices interfaced

with electrodes through a header on the circuit board.

3.3.2 Threshold and Conduction Velocity Testing

One week after implantation, anesthetized experiments were performed to measure re-

cruitment thresholds and conduction velocities on each microelectrode channel on the im-

planted arrays. Cats were sedated with 0.04mg/kg doses of Dexdomitor, and this sedation

was reversed with 0.4mg/kg doses of Antisedan at the end of the experiment. DRG micros-

timulation pulses were delivered (200µs cathodal phase followed by a 400µs anodal phase)

on each channel sequentially. Stimulation was administered using two IZ2 16-channel stim-

ulus isolators (TDT, Alachua, FL) and custom LabVIEW software in cats F, G, and H,

or nano2+stim 32-channel headstages (Ripple, LLC) for cat I. A pulse amplitude sweep of

30-40 µA was used to identify electrodes that evoked ENG responses. ENG signals were

recorded via a Grapevine Neural Interface Processor (Ripple, Salt Lake City, Utah), using

a differential headstage (Surf-D) with an input range of 5 mV and a resolution of 0.2 µV.

Digitization was performed directly on the headstage at 30 kHz. Recruitment thresholds for

each microelectrode that evoked an ENG response were found via a binary search procedure

as described in Ayers et al. (2016) [8]. One microelectrode channel with a conduction ve-

locity faster than 80m/s and a recruitment threshold lower than 20 µA was selected as the

stimulation channel for behavioral experiments each week.
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3.3.3 Behavioral Testing

Animals were trained to balance on four pegs prior to implantation. Load cells in each peg

measured the ground-reaction force (GRF). GRF was sampled at 1 kHz (USB-6251, National

Instruments, Austin, TX) and digitally filtered with a second-order low-pass Butterworth

filter (Figure 3.1). Throughout the behavioral experiments, EMG signals were recorded

at either 20 or 40 kHz using the OmniPlex neural data acquisition system (Plexon, Dallas,

TX). During the behavioral task, microstimulation to the DRG was delivered on the electrode

selected during the anesthetized experiments when the cat was standing quietly. A cat was

considered to be quietly standing when it maintained an even weight distribution (50±30%)

across all limbs for 1-3s. A one-second-long stimulation train consisting of ten stimulation

pulses spaced 100ms apart was delivered to the single DRG microelectrode selected from

the anesthetized experiments. Cats received a food reward after each trial. Stimulation

amplitude was set to either 0.9-2.5x (low) or 1.1-3x (high) the recruitment threshold found

during the anesthetized experiments. Microstimulation pulses were asymmetric, charge-

balanced waveforms as used in anesthetized experiments. Testing days with fewer than five

trials were discarded from analyses.

3.4 Results

Microstimulation of the DRG differentially inhibited and excited muscles in the hindlimb

of a quietly standing cat. These responses tended to occur within 20-45ms of the stimula-

tion train, suggesting that this muscle activation was the result of sensory-mediated reflex

pathways in the spinal cord. Furthermore, evoked muscle activity led to decreases in ground-

reaction force, suggesting that sensory stimulation of proprioceptive afferents within the DRG

induced kinematic changes that contribute to postural balance.

44



3.4.1 Electrical Stimulation of the DRG Evokes Muscle Activity

On 77 of 139 days (62.5% of testing weeks), DRG microstimulation evoked motor re-

sponses in one or more muscles. Some muscles, such as the semitendinosus (ST) muscle,

was activated in response to DRG stimulation, whereas other muscles such as the vastus

lateralis (VL) were inhibited (Figure 3.2). For the excitatory response in the ST, response

onset latency was 8.5±2.4 ms, with peak EMG occurring at 43.2±8.8 ms and then returning

to near baseline levels by the time the stimulation train ended. Similarly, inhibition of the

VL had a latency of 4.7±2.4 ms with maximal EMG suppression occurring at 28.0±1.1 ms

before returning to near baseline levels 50 ms into the response epoch.

Stacked bar plots in figure 3.4 summarize cumulative response rates for each muscle

during low- (Figure 3.4A) and high-amplitude (Figure 3.4B) microstimulation on the L6 and

L7 array. The breakdown of excitatory and inhibitory response rates for each muscle are

shown in different colors, and microstimulation array (i.e. L6 and L7) is shown in the bars

to the left and right of each tick, respectively, on the horizontal axis.

A microelectrode on the L6 array was selected 35 total weeks (low amplitude = 77

testing days; high amplitude = 78 testing days) and on the L7 array 21 total weeks (low

amplitude = 61 testing days; high amplitude = 61 testing days). Despite a disproportionate

number of testing weeks that a microelectrode on the L6 or L7 array was selected, differ-

ences in cumulative response rates are evident. On the L6 array, cumulative response rates

across muscles and response type ranged as high as 19.5% and 21.8% with low- and high-

microstimulation amplitudes, respectively. Maximum response rates on the L7 array were

39.3% and 52.5%, respectively. L7 microstimulation produced higher rates of excitation in

nine of the ten muscles when averaged across microstimulation amplitudes. Conversely, L6

microstimulation produced higher cumulative rates of inhibition in seven of the ten muscles

when averaged across amplitudes. Differences are also noted in the composition of responses

evoked by microelectrodes on each array. L6 microstimulation produced an approximately

equal distribution of excitatory and inhibitory responses for most muscles (except SA and

VL) with low- and high-amplitude microstimulation. However, microstimulation on the L7

array evoked mainly excitatory responses in most muscles with few exceptions: equal rates
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Figure 3.2: Excitatory muscle responses. Representative testing days with excitatory evoked

responses detected in the ST muscle for all trials administered with (A) low- and (B) high-

amplitude microstimulation from a single testing week (H06). Horizontal dashed lines corre-

spond to detection thresholds and vertical lines correspond to stimulation onset. Blue circles

(undetected) and red arrows (detected) correspond to RMS of the pre-stimulus and response

epochs, respectively. Placement of circles and arrows along horizontal axis is situated in the

middle of each epoch
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Figure 3.3: Inhibitory muscle responses. Representative testing days with inhibitory evoked

responses detected in the VL muscle for all trials administered with (A) low- and (B) high-

amplitude microstimulation from a single testing week (F10). Horizontal dashed lines cor-

respond to detection thresholds and vertical lines correspond to stimulation onset. Blue

circles (undetected) and red arrows (detected) correspond to RMS of the response epochs.

Placement of circles and arrows along horizontal axis is situated in the middle of each epoch.
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Figure 3.4: Survey of excitatory and inhibitory responses. Stacked bar graphs illustrating

cumulative response rates of detected motor responses from (A) low- and (B) high-amplitude

microstimulation. Bars to the left (stippled) and right (solid) of each tick correspond to rates

from microstimulation on L6 and L7 arrays. Black (excitatory) and grey (inhibitory) bars

provide a breakdown of the composition of responses.
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of excitatory and inhibitory responses were observed in TA, while VL and MG exhibited

mainly inhibitory responses.

Bimodal responses consisting of distinct phases of excitation and inhibition were observed

in some muscles during some testing days (low amplitude: n = 19 cases; high amplitude n

= 29 cases). The vast majority (85%) of bimodal responses were characterized by excitation

following inhibition. TA had the highest rate of bimodal responses, comprising 63% and

41% of all TA responses driven by low- and high-amplitude microstimulation, respectively.

Most bimodal responses occurred in two of the animals (F: n = 1, G: n = 1, H: n = 33, I: n

= 13) and from microstimulation on the L7 (n = 34) versus L6 (n = 14) array.

3.4.2 Muscle Responses Create a Coordinated Reflexive Motor Response to

Stimulation

Box plots illustrating the distribution of evoked response latencies in each muscle are

shown in Figure 3.5A. Wilcoxon signed ranked tests revealed no differences in latencies for

either response type by microstimulation amplitude in any muscle. Therefore, latencies were

collapsed across amplitudes. Box plots show variability in response latencies within and

between muscles. However, histograms revealed that 53% of all responses occurred within

20 ms of microstimulation train onset (Figure 3.5B). While 73% of inhibitory responses

occurred within 20 ms of train onset (Figure 3.5D), 38% of excitatory responses had onsets

in this window (Figure 3.5C). Another 37% of excitatory responses occurred between 20 and

40 ms after microstimulation onset (Figure 3.5C).

Modulations in hindlimb GRF were detected on 17 total weeks: F: weeks 1 and 10; G:

weeks 12 and 13; H: weeks 4, 5, 6, 8, 9, 10, 11, 13, and 16; I: weeks 4, 6, 8 and 10. The

direction of the GRF was the same in each case with an unloading response exhibited on all

17 weeks. Wilcoxon signed rank tests indicated that hindlimb unloading was significantly

greater (Z = -3.34, p = 0.001) when elicited by high-amplitude microstimulation (-1.99±1.14

N) relative to low-amplitude microstimulation (-1.46±0.91 N).

All trials from the 17 weeks with a hindlimb unloading response were entered into sepa-

rate mixed models for low-amplitude (321 total trials, 18.9±7.7 per cat) and high-amplitude
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Figure 3.5: Muscle response latencies. (A) Box plots showing the distribution of response

onset latencies for excitatory (green) and inhibitory (red) evoked responses in each muscle.

Histograms showing the frequency of response onsets (5 ms bins) for (B) all evoked responses

combined, (C) excitatory responses only, and (D) inhibitory responses only.
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(281 total trials, 16.5±7.0 per cat) microstimulation. Results of the likelihood ratio tests for

the mixed model procedure indicated the importance of modeling the covariance structure

for both low- (χ2=69.2, p < 0.001) and high-amplitude (χ2=112.19, p < 0.001) models. In-

terclass correlation coefficients for both models (ICCLow = 0.34, ICCHigh = 0.46) indicated

a large cluster-level effect. TF (F = 11.28, p < 0.001), knee flexors (F = 8.01, p = 0.005),

VL (F = 11.09, p = 0.001) and TA (F = 7.75, p = 0.006) contributed significantly to the

low stimulation model and predicted hindlimb unloading. For every unit increase in TF,

knee flexor, and TA EMG power, GRF magnitude decreased by 0.75 N (95% CI: [-1.7, -0.9]),

0.94 N (95% CI: [-1.6, -0.3]), and 0.44 N (95% CI: [-0.7, -0.1]), respectively. For every unit

increase in VL EMG power, GRF magnitude increased by 0.94 N (95% CI: [0.4, 1.5]). In the

high stimulation model, three of the same muscles contributed to hindlimb unloading: knee

flexors (F = 23.54, p < 0.001), VL (F = 13.74, p < 0.001), and TA (F = 12.36, p < 0.001).

For every unit increase in knee flexor and TA EMG power, GRF magnitude decreased by

1.76 N (95% CI: [-2.5, -1.1]) and 0.62 N (95% CI: [-1.0, -0.3]). For every unit increase in VL

EMG power, GRF magnitude increased by 1.24 N (95% CI: [0.6, 1.9]). Trends in predicted

GRF and corresponding EMG power in flexor muscles are shown in Figure 3.6.

3.5 Discussion

We delivered electrical stimulation to the L6 and L7 DRG of cats standing on a platform

via chronically implanted electrode arrays. This electrical stimulation evoked patterned

motor responses in the hindlimb muscles of the cat. The most commonly evoked motor

pattern was an excitation of the ST and inhibition of the VL. Combined, this muscle pattern

forms a knee flexion response, suggesting that the cat was unloading its left hindlimb in

response to sensory stimulation. Thus, microstimulation of the DRG can activate sensory

afferents in such a way as to elicit stereotyped motor responses.
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Figure 3.6: Predicted change in GRF magnitude versus EMG power for (A) and (B) knee

flexors and the (C) and (D) TA muscle in low-amplitude and high-amplitude microstimula-

tion models. Data points correspond to individual trials from each of the 17 weeks included

in models. Data points are color coded with lines of best fit to illustrate trends within each

week.
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3.5.1 Sensory Stimulation Drives Reflexive Motor Outputs

Postural control, even under static conditions, likely involves some degree of polymodal

convergence with limb state conveyed by various afferent inputs and the net motor output

resulting from summation of these as well as descending inputs. Indeed, there is evidence of

convergence of specialized load receptors onto the same pathways. For example, cutaneous

and Ib afferent inputs converge onto common interneurons [113], and Ia afferent input can

produce autogenic inhibition [52, 95]. Moreover, interneurons that receive input from Ia and

Ib fibers can be activated by cutaneous input [94]. There is also evidence that group I affer-

ents influence hindlimb motor neurons of heteronymous muscles [80]. Notwithstanding these

factors, ongoing presynaptic inhibition of afferent terminals in an awake, behaving animal

makes it difficult to fully dissociate the pathways depolarizing motor neurons. Although

we cannot identify the neural pathways mediating evoked responses observed in the current

study definitively, we offer the following observations.

Nearly half of excitatory responses occurred on the order of 20 ms or less, suggesting

transmission through spinally-mediated reflex circuits [136, 73]. A majority of inhibitory

responses were also detected in this window. Detection of evoked responses at this latency

coupled with a relatively high incidence of reciprocal inhibition at the knee suggests that

microstimulation engaged monosynaptic and disynaptic Ia pathways. However, inhibition of

motor fibers can also be the result of post-activation depression [79] and recurrent inhibition

[3]. Previous studies have shown that delivering electrical stimulation to the DRG recruits

sensory afferents [64, 53]. Sensory afferents arriving in the DRG synapse upon many motor

neurons that engage muscle synergies in meaningful ways [41]. Furthermore, epidural stim-

ulation of the lumbar segments in the decerebrate cat spinal cord has been shown to amplify

knee movement during the swing and stance phases of the gait cycle [119]. The findings

suggest that the sensory pathways in the lumbar DRG of the cat synapse onto networks of

motor neurons that enable knee flexion. However, spinal circuitry involves not just senso-

rimotor reflex loops, but also cortically-driven circuitry, locally recurrent connections, and

lateral connections between various levels of the spinal cord. Thus, top-down cortical control

can inhibit afferent terminals in behaving animals. In this study, the relative contributions
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of spinal circuits and cortical circuits can be difficult to disentangle. However, the short la-

tencies of the evoked motor responses in this study suggest that the motor evoked responses

we observed are spinally-mediated [136, 73].

3.5.2 Stimulation-Evoked Muscle Responses Lead to Changes in Hindlimb Be-

havior

In general, animals responded well to stimulation, suggesting that hindlimb unloading

responses were not withdrawal reflexes [110]. Microelectrode channels that recruited fast-

conducting afferents were selected on the basis of conduction velocities that are incompatible

with transmission along thin-diameter, unmyelinated fibers. The consistent direction of the

behavioral response across all weeks with a modulation in GRF was unexpected, given the

different DRG locations targeted within an animal and variability of array placement across

animals. Previous work has shown a nominal number of muscle synergies can account for

force control during postural perturbations in different directions [170]. Our results show

consistent patterns of within-week covariation between the extent of hindlimb unloading and

response patterns in a specific subset of muscles. The same subset of muscles was involved

regardless of microstimulation intensity, implying the involvement of a particular synergy

driving behavior. High rates of co-excitation between the TA and knee flexors coupled with

reciprocal inhibition of knee extensors across testing days render further support for this

interpretation. Afferent projections from this nerve converge on the DRG of the lumbar

spine and, therefore, may have contributed to the unloading response observed here.

3.6 Conclusion

Our novel findings demonstrate that brief microstimulation trains delivered to focal re-

gions of the L6 and L7 DRG evoke motor responses, resulting in stereotyped muscle response

patterns that elicit transient unloading of the hindlimb. Translating this pre-clinical animal

work into humans is a necessary step, but there are also several points that require careful
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consideration. For example, experiments reported here involve administration of microstim-

ulation under static conditions, but the resulting somatosensory inputs are likely integrated

differently during dynamic behaviors, such as gait. Indeed, decades of human and animal

work highlights the context-dependency of somatosensory integration in local spinal circuits.

For instance, stimulation of Ia inhibitory pathways to extensor motor neurons elicits the

highest IPSPs in their hyperpolarized phase during locomotion [135], and disynaptic Ia in-

hibition from ankle flexors to extensors is also highest during the swing phase of the human

gait cycle [131]. There is a reversal of disynaptic inhibition to disynaptic excitation dur-

ing locomotion in the decerebrate cat mediated by activation of group Ib afferents [128].

A similar reflex reversal in the group I disynaptic pathway has been reported in humans

[160]. Load-sensitive afferents are considered essential for generating patterns of muscle ac-

tivation during locomotion [40, 127] with Ib input from extensor muscles inhibiting flexors

and exciting extensors during locomotion in the cat [42, 128, 74]. Thus, activation of DRG

neurons will recruit one or more of these reflex circuits, promoting state-dependent changes

in muscle activity that could support or impede dynamic behavior. Further work is needed

to determine how microstimulation of the DRG can be administered to modulate muscle

response patterns that promote postural control and enable gait transitions.

55



4.0 Volitional Control of Movement Interacts with Proprioceptive Feedback

in Motor Cortex During Brain-Computer Interface Control

At the time of this dissertation, this work has not yet been submitted for peer review.

Up to this point, the role of volitional control in sensorimotor integration has not been

explicitly examined. The purpose of this chapter is to examine how motor intent interacts

with sensory feedback in M1.

4.1 Abstract

Incorporating sensory feedback into neurorehabilitative devices has the potential to re-

store a greater degree of motor function to brain-computer interface (BCI) users. Under-

standing how sensory feedback influences M1 activity and BCI performance can offer new

insight into sensory restoration. A participant who was paralyzed below the neck but re-

tained intact somatosensation was implanted with microelectrode arrays in the hand and

arm region of motor cortex. Firing rates across the arrays were used to control the velocity

of a robotic arm. The participant was asked to use the BCI decoder to move the robotic

arm over a pair of centerlines as many times as possible in one minute while receiving dif-

ferent combinations of visual and proprioceptive feedback. Task performance with vision

or proprioception alone was better than when neither were provided. However, providing

proprioceptive feedback impaired performance relative to visual feedback alone, unless the

decoder was trained with both modalities. These results raise the question of how different

sensory feedback modalities influence M1 activity and ultimately BCI performance. We ex-

amined the kinematics of the robotic arm across different feedback conditions and found that

both positional variance and average speed were highest when proprioceptive feedback alone

was provided. This suggests that the participant’s control strategy changes to account for

lower precision in proprioceptive sensation. We then examined population-level responses by
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identifying the dimensions of neural activity that best captured variance for different combi-

nations of visual and proprioceptive feedback. We computed the principal angle between the

neural activity during performance and the decoder, and found that the overlap between neu-

ral activity and the decode axis was largest when sensory feedback during the task matched

the modalities present during decoder training. Overall performance also improved as the

overlap between the decoder and the neural activity during the task increased. Combined,

these results suggest that proprioceptive feedback may have a uniquely large impact on M1

activity relative to other sensory modalities, and that training a decoder with proprioceptive

feedback allows the decoder to take advantage of proprioception-driven variability in M1.

4.2 Introduction

Sensory feedback is crucial for regulating motor output during reaching, and brain com-

puter interfaces (BCIs) offer a unique opportunity to study the effects of sensory feedback

on neurons in motor cortex (M1). Sensation and movement are tightly linked, and restor-

ing sensory feedback to BCI users is a primary goal of neurorehabilitative research today.

Many promising mechanisms for sensory restoration have been developed [54, 55, 91], and

understanding how sensory feedback influences M1 activity can offer greater insight into

sensory restoration paradigms. Studies have found that M1 neurons respond to the velocity

and direction of movement, as well as limb position [66, 120]. However, neurons in M1 also

respond to sensory feedback, including proprioceptive [49, 162], visual [65, 130, 188, 129],

and tactile [148] feedback. Furthermore, these studies found that sensory responses in M1

vary depending on whether movements are active or passive [82, 163], the phase or temporal

period of motor planning or motor control [165, 169, 172], and the type of sensory feedback

provided [148]. Taken together, these studies indicate that sensory in encoding in M1 is vari-

able across different feedback modalities, time, and task. In particular, studies have shown

that responses of subpopulations of neurons lag movement, suggesting a proprioceptive or

kinesthetic response in M1 [82]. These findings raise the question of how proprioceptive

feedback influences M1 activity, and more specifically, how proprioceptive feedback interacts

with motor intent for BCI control.
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Neurons in M1 have been found to respond to proprioceptive feedback in a variety of

ways. Evidence for two populations of neurons have been found in M1, where some neurons

lead movement and some neurons lag movement. Most neurons in M1 were active preceding

movement by 100-150ms [51, 163], suggesting that they encode motor output. However, a

small population of neurons in M1 lagged movement, which is suggestive of a sensory response

[51, 163]. Additionally, neurons in M1 also changed their tuning depending on whether they

were responding to an active or passive movement [163]. These neurons are likely to encode

sensory responses, or kinesthetic information about the extent and direction of movement

[48, 51]. Taken together, these results suggest that proprioceptive feedback influences M1

activity, and that this influence can be leveraged to improve BCI decoder performance.

Indeed, in a previous study by Suminski et al. (2010) [162], training a position-based BCI

decoder showed that proprioception improved BCI control, and incongruent proprioception

did not impair BCI control. This improvement in performance occurred regardless of whether

the decoder was trained with vision or with vision and proprioception. Moreover, a decoder

trained with vision and proprioception resulted in a greater sensory response in M1 after

movement compared with a decoder that was trained with vision alone. Thus, it is apparent

that proprioceptive feedback can interact with movement intent to drive M1 responses in

BCI control [162]. In the present study, we examined the role of proprioceptive feedback

in BCI control with a velocity-based decoder to understand the interactions between motor

intent and proprioceptive feedback in M1.

During a clinical BCI trial, we implanted two 96-channel microelectrode arrays into M1

of a person who was completely paralyzed below the neck but retained intact somatosensa-

tion. Neural firing rates were transformed into a 2-dimensional velocity control signal for a

robotic arm using an optimal linear estimator. We examined how visual and proprioceptive

feedback were incorporated into BCI control by having the participant move this arm left

and right over a centerline as many times as possible in one minute. During this task, the

participant was provided with either visual or proprioceptive feedback, both, or neither. Pro-

prioceptive feedback was provided by moving the participant’s arm to match the movement

of the robotic arm.
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These experiments were performed as part of a larger study on BCI decoder performance.

Described here is a brief overview of the relevant components of the experiment. Further

details on surgical procedures, array implantation, and decoder training are published in

Collinger et al. (2013) [26].

4.2.1 Neural Recordings

Two 96-channel intracortical microelectrode arrays (4mm x 4mm, Blackrock Microsys-

tems, Salt Lake City, UT, USA) were implanted in the hand and arm region of the left

motor cortex (M1) of a 52-year-old woman who was paralyzed below the neck but retained

intact somatosensation as a result of spinocerebellar degeneration. During each recording

session, neural signals were recorded with a NeuroPort data acquisition system (Blackrock

Micro systems), and single- and multi-unit activity was identified via threshold crossings.

Threshold crossings where converted to firing rates in 30ms bins and low pass-filtered using

an exponential smoothing function with a 450 ms window [26].

4.2.2 Decoder Training

Neural firing rates were transformed into a 2-dimensional end-point velocity control signal

of a robotic arm using an optimal linear estimator. The participant watched a MuJoCo model

of a moving arm and was asked to imagine moving along with the visual cue. The decoder

was fit by estimating coefficients for each channel that best predicted the velocity of the

visual cue. These decoders that were trained with visual cues alone represented five out

of nine days during which this experiment was conducted. On four out of the nine days,

proprioceptive feedback corresponding to the visual cue was also provided to the participant

during decoder training. For both decoder types, a two-step calibration paradigm was used.

The first phase was observation-only, in which the participant observed the visual cue with

or without proprioceptive feedback, and imagined moving to the visual cue. In the second

phase, the participant’s neural signals were used to control the velocity of the robotic arm in

a reaching paradigm, and any neural activity that caused the robotic arm to move orthogonal

to the optimal reaching direction was removed from the decoder [26].
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4.2.3 Zero-Crossing Task

The participant was asked to move the robotic arm over a pair of centerlines as many

times as possible in one minute using the BCI decoder. During this task, the participant

was provided with either visual feedback, proprioceptive feedback, both, or neither. On

some trials, the participant was also provided with incongruent proprioceptive feedback,

where the proprioceptive feedback was in the opposite direction relative to the movement

of the robot arm. Additional trials were included in which the participant received passive

proprioceptive feedback—her arm was moved back and forth over the pair of centerlines,

but she was not attempting the task. Proprioceptive feedback was provided via manual

movement of the participant’s arm in accordance with the robotic arm during the task.

Across nine days, neural activity across 192 channels were recorded during this task, as well

as robot velocity and position, and the position of the participant’s arm on trials where

proprioceptive feedback was provided.

4.2.4 Time-Normalization of Kinematics and Neural Data

The robot kinematics over the course of a one-minute attempt at the task were segmented

into left-to-right as well as right-to-left crossings. Each crossing was identified as the segment

in which the robotic arm started from one extrema (left or right), and moved to the other

extrema (right or left). Each crossing was then either compressed or stretched so that

the time course of the crossing corresponded to the median amount of time for crossings

of that sensory feedback modality. In the condition where the participant was receiving no

sensory feedback or incongruent sensory feedback, each crossing was identified as the segment

between one extrema to the time point corresponding to the median length across all trials.

Neural firing rates were smoothed with a 100 ms Gaussian kernel and segmented into the

time segments that correspond to kinematic segments and similarly time-warped.
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Figure 4.1: Experimental setup (A) Figure adapted from Collinger et al. [26]. Two 96-

channel arrays were implanted in the hand and arm region of M1 in a quadraplegic partici-

pant. Firing rates were transformed into 2-D endpoint velocity control of a robot arm using

an ordinary linear estimator. (B) The participant performed a task in which she used BCI

control to move the robotic arm back and forth over a pair of center lines as many times

as possible in one minute (C) Two types of decoders were trained: one on vision only, and

one with vision and proprioception (D) During the task, the participant received various

combinations of visual and proprioceptive feedback.
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4.2.5 Principal Components Analysis Within and Between Sensory Feedback

Conditions

Neural activity at each time point during the task can be thought of as a single point

in a high-dimensional neural space. Sensory feedback provided during the task shifts this

cloud of neural activity, but the interaction between the neural cloud and the decoder should

explain BCI performance. Thus, we used principal components analysis (PCA) was used to

find axes of neural activity that captured 1) variance within each sensory feedback condition,

and 2) across all sensory feedback conditions. The first method is geared toward capturing

the variance of neural activity within each condition, and the goal of the second method is

to identify the axis that best explain variance across sensory feedback conditions.

4.2.5.1 Within-Condition PCA

PCA was used to find the axes of neural activity that best captured the variance in neural

activity for each sensory feedback condition. Time-normalized neural activity was used to

identify the axes that best explained the variance in neural activity for each trial condition.

To ensure that movement direction contributed equal variance to the training data, trials for

each sensory feedback modality were subsampled so that each crossing direction was equally

represented in the training data. This was done ten times with non-overlapping training sets

each time to provide a 10-fold cross-validated estimate of the PC space that captured the

most variance in neural activity for each condition.

4.2.6 Neural Gradient Analysis

To examine the time evolution of neural activity in PC space, the PC space that explained

90% of the variance of the overall neural activity across all conditions was divided into a

number of bins with axes that explain more variance digitized into smaller bin sizes. For each

bin, the derivative of the neural activity as it moves through that point in neural space was

computed to create a flow field of neural activity across the task. The gradient at each point

in neural space was independent of time and was informative in its length and direction.
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4.3 Results

The participant was able to use the BCI decoder to move the robotic arm over the center

lines when visual or proprioceptive feedback were provided during the task. Proprioceptive

feedback had differential effects on task performance when provided in combination with

vision depending on the sensory feedback provided during decoder training. Thus, the par-

ticipant’s movement intent interacted with the sensory feedback provided during the task.

4.3.1 Performance is Best When Task Feedback Matches Decoder Training

Feedback

Kinematic traces on day 6 (vision and proprioception decoder) for a representative trial of

each sensory feedback type are shown in Figure 4.2A. Without sensory feedback, the robotic

arm drifted to the right side of the workspace and continued to move left and right. When

either visual or proprioceptive feedback was provided, however, the participant was able to

move the robotic arm over the two center lines. Whenever visual feedback was provided,

regardless of whether proprioceptive feedback was provided, the BCI-controlled movements

were more precise, with each crossing passing just over the two centerlines before changing

direction. In contrast, when proprioceptive feedback was the only sensory feedback provided,

the crossings were longer in length and movements were faster. One potential explanation for

this is that proprioceptive feedback is less precise than visual feedback, and so the participant

changes strategy to make larger movements more quickly to complete the task. Indeed, across

all trials, the average speed used in the proprioceptive condition were larger than for other

conditions (Figure 4.2C, Average Speed: Eyes Closed, No Proprioception = 0.15m/s; Eyes

Open, No Proprioception = 0.12m/s; Eyes Closed, Proprioception = 0.18m/s; Eyes Open,

Proprioception = 0.15m/s). The proprioceptive only condition was also more periodic as

indicated by the Fourier transform of the position and velocity of the robotic arm (Ratio of

peak to width at half peak: position = 0.44, velocity = 0.02; Table 4.1). Interestingly, the

position traces of the robotic arm in the no sensory feedback and incongruent proprioceptive

feedback conditions were largely not periodic (Figure 4.3A). These differences were not due
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to overall decoder performance, as control in the X and Y dimensions are close to orthogonal

(Figure 4.2B).

Interestingly, across all days, providing proprioceptive feedback when the decoder is

trained with vision alone impaired performance (eyes open, no proprioception crossings =

28.6 ± 5.6, eyes open, proprioception crossings = 21.6 ± 7.3), whereas training the de-

coder with vision and proprioception made the decoder robust to the removal of visual or

proprioceptive feedback (eyes open, no proprioception crossings = 22.7 ± 8.6, eyes open,

proprioception crossings = 26.2 ± 6.2) (Figure 4.2C). However, proprioceptive feedback is

still usable when the decoder is trained with vision only, as the number of crossings in the

eyes closed, proprioception condition (crossings = 18.8 ± 4.3) was higher than the number

of crossings in the no sensory feedback condition (crossings = 5.9 ± 3.4). Furthermore,

incongruent proprioceptive feedback inhibited performance as much as no sensory feedback

(V decoder = 5.0 ± 3.4; VP decoder = 6.9 ± 3.9). Taken together, these results indicate

that proprioceptive feedback influences BCI decoder control. Our goal for the remainder of

the analyses is to understand how sensory feedback can influence neural activity in M1 such

that decoder performance reflects the behavioral results we identified here.

4.3.2 Neurons in M1 Respond Differently to Proprioception Depending on Vi-

sual Feedback

We first examined how the population of neurons responded to proprioceptive feedback

across days. We found that neurons in M1 are modulated by proprioception in both active

and passive conditions. Each neuron that fired above 5sp/s during the passive proprioception

condition was designated as a “proprioceptive neuron”. The response of these propriocep-

tive neurons during active movement (BCI control) conditions (Figure 4B-D) are marked

with an x. We found that neurons that responded to proprioception in the passive con-

dition did not necessarily respond to proprioception in the active condition (Figure 4.4A),

reinforcing studies that have shown that M1 neural responses change depending on whether

movement is active or passive [82]. Responses of neurons to proprioceptive feedback also

differed depending on whether eyes were open or closed, with many neurons that increased
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Figure 4.2: Kinematics of robotic arm. (A) Sample traces for one trial with a VP decoder

(Day 6). (B) 2D position for all trials on day 6; (C) Horizontal position vs. velocity for all

trials on day 6
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Figure 4.3: BCI performance across days. (A) Fourier transform of position (top) and

velocity (bottom) across all days. Darker traces are the mean, lighter traces are individual

days (B) Number of crossings across days. Individual days are shown in diamonds, bars

represent the mean across days

Table 4.1: Q10 (height of peak/width of peak at half height) for the power spectral density

of position and velocity traces for each sensory feedback condition. Higher number means

that the peak is sharper and the kinematics are more periodic.

Sensory Feedback Type Position Velocity

Eyes Closed, No Proprioception N/A 0.004

Eyes Open, No Proprioception 0.24 0.021

Eyes Closed, Proprioception 0.76 0.026

Eyes Open, Proprioception 0.25 0.01

Eyes Open, Incongruent N/A 0.002
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firing rate in response to propioception when eyes are closed decreasing firing rate when eyes

are open (Figure 4.4B-D). This shift in firing rate across channels was similar for both de-

coders trained with vision only and decoders trained with vision and proprioception. Some

proprioceptive-modulated neurons contributed to decoded velocity (Figure 4.4C, D), while

others did not. However, the contribution of proprioceptive-driven neurons to the decode

axis did not appear to be significantly different between decoder training modalities (Figure

4.4C, D). Taken together, these findings suggest that proprioceptive feedback has variable

impacts on M1 neurons depending on the presence of other sensory feedback modalities such

as vision.

4.3.3 Training the Decoder With Vision and Proprioception Allows the De-

coder to Take Advantage of Proprioceptive-Driven Variability in M1

Since the shifts in firing rates did not explain the performance changes between the vision

and vision and proprioception decoders, we next examined overall population activity. To

do so, we used principal components analysis (PCA) to identify a set of axes that explained

90% of the variance of overall neural activity for each sensory feedback condition. We then

measured the overlap between this low-dimensional neural space for each sensory feedback

condition and the horizontal decode axis. A smaller angle would mean that there is greater

overlap between the neural activity in a given sensory feedback condition and the decoder,

indicating that changes in neural activity also influence decoded velocity. We found that

in conditions where proprioceptive feedback was provided and the decoder was trained with

proprioception, the overlap between the PC space and the decode axis was larger (eyes open,

proprioception: V Decoder angle = 40.26◦± 3.98, VP Decoder angle = 29.76◦± 5.61; eyes

closed, proprioception: V Decoder angle = 43.90◦± 4.91, VP Decoder angle = 29.91◦± 5.94;

incongruent proprioception: V Decoder angle = 61.45◦± 7.92, VP Decoder angle = 37.47◦±

5.46) (Figure 4.5A). Furthermore, the greater the overlap between neural activity and the

decoder, the better performance was. Across all conditions, the number of crossings on each

day exhibited a correlation between the overlap in the PC space and the decoder and the

number of crossings (R = −0.64) (Figure 4.5B). This suggests that when the decoder is
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Figure 4.4: Proprioceptive responses across neurons. (A) Decoder weight vs. average firing

rate during the passive proprioception condition. (B) Change in firing rate between propri-

oception and no proprioception in the eyes closed (x-axis) vs. eyes open (y-axis) conditions

for all neurons. Neurons that respond to passive proprioception are marked with xs. (C)

Change in firing rate in response to proprioception when eyes are closed plotted against

decoder weight (D) Change in firing rate in response to proprioception when eyes are open

plotted against decoder weight.
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trained with vision and proprioception, it is better able to take into account variability in

M1 that is driven by proprioception.

Greater overlap between neural activity and the decode axis does not necessarily mean

that performance will be better. For example, it is possible that the overlap impairs perfor-

mance because the proprioception-driven variability in M1 does not align with the decoder.

In order to determine if the increase in overlap between the proprioceptive neural activity

and the decoder in the vision and proprioception decoder is actually useful, we re-projected

the top n components that explained 90% of the neural variance back into high-dimensional

neural space. Using this re-projected neural activity, we computed the decoded velocity and

compared this to the actual control velocity. We found that the correlation between the

actual control velocity and the PC-decoded velocity was above 0.8 in all conditions except

the incongruent proprioception condition (Figure 4.5C, Table 4.2). Additionally, the ampli-

tude of the actual control velocity and the velocity decoded from the PC components was

comparable. Thus, the overlap between the decoder and the neural activity contributes to

decoder performance in useful ways.

4.3.4 Smooth Neural Trajectories Correlate With Good Control

After establishing that overlap between the decode axis and neural activity in each sen-

sory feedback condition was correlated with task performance, we next examined how neural

trajectories correlate with the quality of control. To do so, we examined how neural activ-

ity evolves over time in the PC space that explains at least 90% of the variance of neural

activity in each sensory feedback condition. Example neural trajectories for single trials

and the corresponding robot position are shown in Figure 4.6. When the participant was

provided with visual feedback (Figure 4.6A), or visual and proprioceptive feedback (Figure

4.6B) during the task, robot kinematics are smooth (right), as are neural trajectories (left).

In contrast, without sensory feedback (Figure 4.6C), robot kinematics are noisier and neural

trajectories are similarly more raveled (Figure 4.6C, left). Thus, sensory feedback enables

neural trajectories to move more smoothly over time, and this corresponds to instances when

control is also smooth.
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Figure 4.5: Overlap between decoder and neural space. (A) Principal angle between de-

coder axis and PC space for each condition across all days. Individual diamonds represent

individual days, with the number in the diamond corresponding to the day of the experi-

ment. (B) Overlap between decoder and PC space is correlated with the number of crossings

across days. (C) Actual control velocity plotted against re-decoded velocity from the high-

dimensional projections of PC components that explain 90% of the overall neural variance

in each condition.
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Table 4.2: Mean R2 of control velocity and decoded velocity

Sensory Feedback Type V Decoder VP Decoder

Eyes Closed, No Proprioception 0.82 ± 0.06 0.85 ± 0.05

Eyes Open, No Proprioception 0.82 ± 0.06 0.86 ± 0.05

Eyes Closed, Proprioception 0.88 ± 0.05 0.92 ± 0.02

Eyes Open, Proprioception 0.84 ± 0.05 0.87 ± 0.02

Eyes Open, Incongruent 0.75 ± 0.07 0.87 ± 0.02

We next examined the link between the smoothness of the neural trajectories and robot

kinematics. To get a better sense for how well neural state predicts the time evolution of

neural activity, we divided the PC space for the top n components that explains 90% of

the variance into small bins. We graded bin sizes so that axes that explained more variance

were divided into smaller bins and axes that explained less variance were divided into larger

bins. At each time point during which neural activity passed through a particular bin, we

computed the derivative of the neural activity with respect to time. We then averaged the

derivative of the neural activity in each neural state bin to estimate a flow field of neural

activity for each condition (Figure 4.7). We found that neural gradients were consistent

relative to neural state when sensory feedback was provided (Figure 4.7A,B). We estimated

the consistency of the gradient at each point by computing the length of the average each

unique neural state. A longer average gradient would mean that the gradients are very strong

or very consistent, and a shorter average gradient would mean that gradients are small or

very variable in a given neural state. We found that when sensory feedback was provided,

gradient length was longer, suggesting that neural state is more predictive of where neural

activity will go when sensory feedback is provided (Figure 4.7C). A decoder trained with

vision and proprioception, however, had longer gradients than a decoder trained with vision

only, suggesting that volitional control of movement via a BCI may be influenced by sensory

feedback provided during decoder training. Together, these results suggest when sensory

feedback is provided, neural trajectories evolve more smoothly over time.
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Figure 4.6: Neural trajectories during BCI control. (A) Neural trajectories (left) and corre-

sponding robot position (right) for a single trial of eyes open, no proprioception, (B) Eyes

open, proprioception, and (C) Eyes closed, no proprioception.
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Figure 4.7: Gradient of neural activity. (A) Gradient arrows for the condition when the

participant is attempting the BCI task and receiving visual feedback without proprioceptive

feedback. Day 3 (V Decoder) is shown. (B) Gradient of neural activity when the participant

is provided with visual and proprioceptive feedback during the task. Day 6 (VP Decoder)

is shown. (C) Length of the average gradient vector across all unique neural state positions

across sensory feedback conditions and decoders.
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4.4 Discussion

Sensory information is incorporated into many stages of motor planning and control. In

M1, this sensory feedback interacts with motor intent. Understanding this interaction can

offer insight into both sensory restoration for BCI users as well as decoder training paradigms

that take into account sensory feedback. In this study, we found that proprioceptive feedback

influences neural activity in M1 and provides useful feedback to the BCI user, but that

training a decoder with vision and proprioception allows the decoder to further utilize the

proprioceptive-driven neural activity in M1.

4.4.1 Proprioceptive Feedback Influences Decoder Performance

Accurate sensory feedback is essential for accurate movement and control. However,

different sensory modalities can be more or less informative about movement and therefore

influence movement accuracy. Indeed, we found that proprioceptive feedback in the absence

of visual feedback led to larger amplitude movements at higher speed. Such movements were

in general more periodic than movements when visual feedback was provided, regardless of

whether this visual feedback was provided in conjunction with proprioceptive feedback. Since

this increase in velocity occurred only in the condition where proprioceptive feedback was

provided without vision but not in the condition where both types of feedback were provided,

it is likely that this effect is due to a shift in participant strategy rather than an result of

proprioceptive feedback on M1. Previous studies have shown that removal of visual feedback

during reaching tasks induces accumulating drift in arm position from the optimal trajectory

[36, 67], although the direction and distance of movement remains relatively constant [18].

The strategy shift we saw is in line with these studies in that without a visual cue to guide

robot arm position, an effective way to maximize line crossings is to move quickly over longer

distances.

From these results, one might expect that when no sensory feedback was provided, the

participant might adopt a strategy similar to her strategy in the proprioceptive feedback-

only condition. However, when no sensory feedback is provided, the robotic arm drifts
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to one side and continues to make leftward and rightward movements that are small in

amplitude and slower in velocity. Thus, in accordance with previous literature that shows

that proprioceptive feedback is essential for generating motor commands and movement

extent [155, 18, 147], the movements in the no sensory feedback condition were neither

positionally centered nor large in amplitude.

While proprioceptive feedback alone always led to better performance on the task than

when no sensory feedback was provided, we observed that providing proprioceptive feedback

during the task impaired performance relative to providing visual feedback alone, but only

when the decoder was trained on visual feedback only. This contrasts with a previous study

by Suminski et al. [162], which found that when congruent visual and proprioceptive feedback

were provided, performance in a random target pursuit task improved. Additionally, when

incongruent sensory feedback is provided in our task, not only is performance as poor as when

the participant is provided with no sensory feedback, the kinematics of the robot arm are

much less smooth and change direction more frequently after short distances. This muddling

effect on robot kinematics matches the kinematic results observed by Suminski et al. [162],

where reach times and path lengths when vision and noisy proprioceptive feedback were

provided were slower and longer than when congruent proprioceptive and visual feedback

were provided during the task. In contrast, we observed that when proprioceptive feedback

was incongruent, the participant performed as poorly on the task as when she was receiving

no sensory feedback at all. Several differences in experimental design may explain these

differences in results. First, the decoder in Suminski et al. [162] is trained to generate a

position signal from neural activity, whereas the decoder used here generates velocity from

neural signals. Since previous studies have shown that proprioceptive feedback is essential

for generating motor commands for movement velocity and joint torques [155], it is possible

that proprioceptive feedback, and in particular errors or incongruency in proprioceptive

feedback, have a greater effect on velocity decoders than position decoders. Second, the

noisy proprioceptive feedback provided in Suminski et al. [162] was random, in that it was

uncorrelated with movement. In contrast, the proprioceptive feedback we provided in our

incongruent condition was exactly anti-correlated with movement. It is therefore likely that,

on average, the proprioceptive error in our experiment was greater than the average error
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in Suminski et al. [162], suggesting that there may be some error threshold below which a

BCI user can account for. Taken together, these findings raise interesting questions as to

the coordinates by which M1 encodes movement and proprioceptive feedback—if differences

between Suminski et al. [162] and our results are primarily due to the decoded kinematic

parameter (position or velocity), this suggests that proprioceptive feedback in M1 is largely

informative about arm velocity, but that M1 can transform velocity feedback into a positional

command. Further experiments are needed to examine the neural coding of velocity or

position in M1, as well as a BCI user’s ability to transform velocity information into position

commands and vice versa.

4.4.2 Impact of Proprioception on M1 Activity

The finding that proprioceptive feedback influences BCI performance is unsurprising

given that M1 has been shown to respond to proprioception and other forms of sensory

feedback [82, 49]. In accordance with many of these studies, we found that proprioceptive

responses in M1 vary depending on whether such sensations arise from active or passive

movements. Additionally, our results showed that proprioceptive feedback during the task

differentially influenced M1 activity depending on whether the participant’s eyes were open

or closed. More specifically, proprioceptive neurons appeared to increase firing in the absence

of visual feedback and decrease firing in the presence of visual feedback. Such differential

activation can be the result of several possibilities: 1) the participant is able to, via gating or

other methods, volitionally “turn off” proprioceptive neurons when visual feedback is pro-

vided, because visual feedback is more reliable for movement direction and arm positioning

[149, 143]; 2) M1 neurons encode errors in sensory estimation, and when congruent visual

and proprioceptive feedback are provided, error cancellation between visual and proprio-

ceptive feedback reduces firing [92]; and 3) sensory state representations in are integrated

across sensory feedback modalities to generate a motor command, and when congruent vi-

sual and proprioceptive feedback are provided, the participant forms a smoother movement

and therefore less noisy motor plan [183]. Option 1 does not seem likely—BCI performance

is impaired when proprioceptive feedback is provided in addition to vision and the decoder

76



is trained with vision only, suggesting that proprioception is influencing performance and

cannot be volitionally downmodulated. Additionally, the participant is unable to perform

the task when incongruent proprioceptive feedback is provided, suggesting that erroneous

proprioceptive feedback is not ignorable.

The contribution of proprioceptive neurons to the decoder does not differ between de-

coders trained with vision only and decoders trained with vision and proprioception. This

suggests that the influence of proprioceptive feedback on M1 does not depend on sensory

feedback provided during decoder training. However, training the decoder with vision and

proprioception increased the overlap between neural activity and the decode axis. In other

words, proprioceptive feedback influences M1 activity, and a decoder trained with congru-

ent proprioceptive feedback is better able to use that M1 activity. In some regards, this

result is intuitive in that the proprioceptive feedback is well-correlated with velocity dur-

ing decoder training, and therefore the a straightforward linear estimation will capture the

variance resulting from proprioceptive-modulated neurons in M1. However, we would like to

note that if this were the case, we might expect to see that performance in the incongruent

proprioceptive feedback condition could be as good as in the proprioception-only condition

if the participant simply lets the proprioceptive signal dominate control. In contrast, we see

that incongruent proprioceptive feedback significantly impairs performance, suggesting that

proprioceptive feedback is not simply driving neural activity along the decode axis, but that

proprioceptive feedback interacts with the participant’s volitional control of the BCI in some

way.

Finally, we examined the relationship between neural activity and kinematic control.

Many recent studies have examined dynamics in M1, and the role of sensory feedback in

these dynamics [24, 108, 144, 153, 164]. We found that neural trajectories appeared smooth

and dynamical when control was good, and similarly, neural trajectories were raveled and

not dynamical when control was poor. In this study, we cannot say whether the dynamics we

see are driven by sensory feedback or intrinsic to M1. While we did not see clear dynamical

trajectories when no sensory feedback was provided, there are a number of reasons why this

might be the case. One possibility is that sensory feedback is required to drive dynamics

in M1—particular in the context of a task. Another possibility is that BCI control is very
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different from natural arm control. In particular, in many of the tasks which examine

dynamics, monkeys are using natural arm movements in reaching tasks [24, 108, 144]. Thus,

it may be that when the monkey is using natural arm movements that they are already

familiar with, dynamical activity in M1 can help drive motor control. In contrast, control

of a BCI decoder may be slightly less natural and require more sensory feedback to drive

dynamics for control in M1.

4.4.3 Implications for BCI Control

One of the major goals of examining the impact of sensory feedback in M1 is sensory

restoration for BCI users. Different forms of sensory restoration have been tested, including

intracortical microstimulation (ICMS) [54, 91] and tactile feedback [55]. All of these studies

have shown the benefits of sensory restoration on BCI control. In contrast to proprioceptive

feedback, providing tactile feedback when a decoder is trained with vision only still improves

BCI performance [55]. One explanation for this is that proprioceptive feedback has uniquely

large impacts on M1 activity. This is perhaps not surprising in that proprioceptors encode

limb position as well as movement direction and velocity [176, 17] variables that definitionally

change with movement.

The results presented here, when combined with results by Suminski et al. [162] that show

that providing proprioceptive feedback to a position decoder trained with visual feedback

only, indicate that more works needs to be done both in understanding how different sensory

feedback modalities impact neural activity in M1, as well as the coordinates by which BCI

decoders should control movement. For example, one might imagine that M1 is highly

sensitive to velocity signals of the proprioceptors, but that training the decoder to output

position rather than velocity requires the BCI user to transform positional signals to velocity

signals and therefore reduces the direct impact of velocity-based proprioceptive signals on

M1 activity. Conversely, it is also possible that velocity decoders are more intuitive to use

and should be trained with more feedback modalities to ensure that sensory restoration of

different types of sensory feedback does not interfere with BCI control.
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4.5 Conclusion

We provided proprioceptive feedback to a person using a BCI decoder to perform a

reaching task. We found that proprioceptive feedback impaired performance when the de-

coder was trained with visual cues alone compared to when the decoder was trained with

visual and proprioceptive feedback. This impairment seemed to arise because neurons in

M1 respond to proprioceptive feedback. Moreover, training the decoder with visual cues

and proprioception recovered decoder performance because the decoder was better able to

account for the activity of proprioception-driven neurons in M1. Not only was the overlap

between the decoder and the neural activity for each sensory feedback condition correlated

with performance, the smoothness of the neural trajectory also correlated with the smooth-

ness of the robot kinematics. Taken together with previous studies, these results suggest that

proprioceptive feedback interacts with volitional control in M1 by impacting neural activity,

which impacts decoder performance. In particular, this may be specific to proprioceptive

feedback as the performance with other forms of sensory feedback does not impair decoder

performance. However, restoring sensory feedback to BCI may require taking into account

the interactions between sensory feedback and volitional control in M1.
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5.0 Conclusions and Future Directions

The sensorimotor system is highly complex and plays a role in nearly every aspect of be-

havior. The ways in which sensation and movement interact varies across sensory modalities,

movement parameters, and locations in the nervous system. Neurotechnologies targeted at

restoring sensation or movement must take into account the specific context of each sensa-

tion and movement, suggesting that leveraging any residual or existing sensorimotor circuits

is highly valuable. The goal of this dissertation was to examine how neurons demultiplex

sensory processes and movement at multiple levels along the neuraxis, from periphery to

cortex. We first established that cutaneous mechanoreceptors encode both contact force and

texture, suggesting that movement and contact parameters influence sensory coding. Next,

we examined the role of spinal circuitry in implementing reflexive motor responses to sensory

input. Finally, we found that sensory feedback interacts with volitional motor control in M1,

and that BCI decoders must take these interactions into account. Together, these studies

highlight the challenge of separating sensory signals from motor signals and the importance

of understanding the interactions between the two when we engineer technologies for people

with spinal cord injury or amputation. In the sections below, we will discuss future exper-

iments that may be informative in understanding how the nervous system processes and

integrates sensory feedback and movement, as well as the potential considerations for the

development of neurotechnologies for sensorimotor restoration.

5.1 Sensation and Movement are Coupled in the Periphery

In chapter 2, we examined how peripheral afferents (PAs) encode interactions between

texture and contact force. We found that contact force influenced the encoding of texture,

suggesting that neurons in the periphery encode both contact parameters and surface char-

acteristics of tactile stimuli. In particular, texture signals were strongest when the shear

force was changing, and the relative timing between spikes of PAs also carried texture in-
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formation. Many previous studies have shown that movement parameters influence texture

perception [20, 33], and other studies have examined neural codes for contact force [40, 145]

and texture [10, 12] independently. In the context of these studies, the results discussed in

chapter 2 indicate that the interactions between movement affect not only perception but

also the responses of neurons in the periphery.

One limitation of the studies used in this dissertation are that DRG implants in monkeys

are necessarily anesthetized experiments. However, in a behaving animal, one can imagine

that the animal can choose contact forces and speeds that better allow them to garner

information about tactile stimuli. Such volitional control of movement to acquire sensory

feedback would not only allow for control of contact forces and speeds that demultiplex

texture at a the peripheral level, but also would allow the nervous system to leverage other

aspects of the sensorimotor system such as efference copy to make textural judgments. Thus,

a useful future experiment would be to have animals or able-bodied human participants

sample textures with volitional movements while recording the neural responses of peripheral

afferents. We hypothesize that texture would be more accurately classified from the neural

activity, and that the chosen shear forces may be more similar.

Many neurotechnologies aimed at restoring sensory feedback to prosthetic users utilize

electrical stimulation of the dorsal roots or peripheral afferents [23]. Our results showed that

PAs will respond differently to sensory stimuli depending on the contact parameters used to

acquire those stimuli. Thus, one can imagine a closed-loop system in which prosthetic sensors

detect both the kinematic parameters of contact as well as object characteristics. These

features are then used to generate stimulation paradigms that mimic afferent responses to

the interactions between contact parameters and object characteristics.

5.2 Spinal Circuits Implement Reflexive Movements in Response to Sensory

Input

We further found that stimulation of large diameter fibers in the dorsal root ganglia

elicited coordinated motor responses. In the context of previous literature, these results
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are perhaps not surprising because previous studies have shown that epidural stimulation

can prolong certain phases of walking [57, 44] and elicit motor outputs [174]. Here, we

further show that electrical stimulation in the DRG can elicit a knee-flexion response via

monosynaptic reflex circuits in the spinal cord. These results have implications both for

neurotechnological developments as well as our understanding of the role of reflexes in sen-

sorimotor integration at upstream levels in the nervous system.

More broadly, reflexive motor output appears to play a crucial role in motor learning

and control. Inhibition of short-latency reflexes has been shown to change the perception of

movement effort [5, 63], suggesting that cortical structures in the brain monitor and incor-

porate the presence of such reflexes into computations of sensory perception. Furthermore,

descending cortical inputs can change the gain of reflex loops wired in the spinal cord [2].

Long-latency reflexes are even more sophisticated, displaying task-specific tuning in response

to perturbations [140]. Studies have also shown that cortical structures modulate the gain of

spinal and subcortical reflex loops in task-dependent ways [39]. In our results, we observed

that while the vast majority of motor responses occurred on the order of 20ms following

stimulation, some responses also occurred 100ms after stimulation. Since the cat was awake

and behaving when electrical stimulation was delivered, these slower responses may be the

result of subcortical and even cortical processing. Understanding the role of these later re-

sponses would provide further information on the effect of motor cortical outputs on the gain

and function of subcortical reflex loops, and the contributions of reflex arcs in motor control.

One such experiment that could offer new insight would be recordings of sensorimotor cortex

during the same behavioral paradigm. This would allow us to observe how neural responses

in M1 drive later behavioral responses or conversely how M1 state influences the elicited

reflexive output.

Given the bidirectional nature of interactions between spinal circuits and cortical struc-

tures, such reflex loops can be both advantageous and detrimental to sensorimotor restoration

technologies. It is advantageous in that sensory stimulation can trigger patterns of coordi-

nated motor responses without directly engineering interventions that coordinate muscle

activation for each sensory stimulus. However, such stimulation does not take into account

the role of cortical, subcortical, and lateral inputs to the gain modulation of spinal circuits
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[39]. While neurotechnologies geared towards restoring sensation for prosthetic users may

be able to simply leverage intact circuitry, neurotechnologies for spinal cord injury patients,

such as BCI decoders, may benefit from taking into account the integration of reflex circuitry

into the brain’s estimate of sensory state and motor command generation. As an example,

a BCI decoder that delivers continuous low-level stimulation either cortically or subcorti-

cally to mimic the ascending spinal inputs from spinal circuitry may improve the BCI user’s

sensory estimation for motor command generation. Conversely, BCI decoding algorithms

that utilize our understanding of stabilization reflexes in the upper limb to process motor

commands may enable smoother and more accurate BCI control.

5.3 Sensory Feedback and Movement Intent Interact in M1

In the penultimate chapter, we discuss the interactions between volitional control of a

BCI and sensory feedback in M1. We found that neurons in M1 respond to proprioceptive

feedback and that a decoder trained with proprioceptive feedback can take advantage of this

variability. This result suggests that proprioceptive feedback interacts with the volitional

control of movement in motor cortex. Many previous studies have shown that proprioceptive

feedback influences M1 activity [82, 163, 51] and that proprioceptive feedback can be used

to enhance BCI performance [162]. In the context of these studies, our results reinforce the

notion that proprioceptive feedback influences M1 activity, and that proprioceptive feedback

can be used during BCI control. However, not only does it raise many more questions about

how sensory feedback influences M1 activity, but it also calls into consideration what makes

an effective strategy for training a BCI decoder.

We found that proprioceptive feedback differentially impaired or enhanced BCI perfor-

mance depending on the sensory modalities provided during decoder training. We further

found that without sensory feedback, M1 did not exhibit clear dynamics. Together, these

results contribute to existing studies that examine the role of sensory feedback on driving

dynamical activity in M1 during motor control [24, 144, 164, 108]. Many of these studies

raise the question of how the observed dynamics in M1 arise—are they a result of recurrent
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connections within M1, recurrent connections within a larger sensorimotor network, or purely

the result of cyclical sensory input? First, to establish the effect of training a BCI decoder

with different sensory modalities, we can perform a future experiment where the decoder

is trained with proprioceptive feedback alone. Further studies examining the differences in

M1 dynamics between BCI control and arm control would be able to provide insight as to

the role of ascending sensory input in driving dynamical activity in M1. Alternatively, BCI

studies that examine dynamics in M1 without sensory feedback can offer insight into the

question of whether dynamical activity in M1 is intrinsically-driven. Finally, studies that

examine dynamical activity in M1 over the course of learning may provide information on

whether such dynamics are an inherent part of M1 or whether sensory feedback plays a role

in shaping dynamical activity. Together, these studies can further reveal how population

activity in M1 interacts with sensory feedback to enable motor control. Such insight may

allow for the development of more intuitive BCI controllers or other sensorimotor restoration

technologies.

Many approaches to building BCI decoders attempt to take into account the most “nat-

ural” form of control—a reflection of the neural populations the BCI user may have used

for arm control. Since neural recording technologies are limited and our understanding of

how the nervous system enables movement is incomplete, many BCI controllers also utilize

engineering approaches that optimize performance but may not be the most physiologically

accurate readout of neural activity [86, 125, 96]. Based on our results, it seems that train-

ing a decoder with multiple sensory feedback modalities makes the decoder more robust to

variation in sensory feedback. Thus, one straightforward experiment to establish the impact

of sensory feedback during decoder training is to train BCI decoders with various combi-

nations of visual, proprioceptive, and tactile feedback. It is possible that proprioceptive

feedback has a larger impact on M1 than other sensory modalities because proprioception

is intrinsically tied to movement. In particular, proprioception-driven variability in M1 may

be linked to the velocity of movement. Suminski et al. [162] showed proprioceptive feedback

enhanced performance with a decoder that transformed neural signals into position signals

for a robotic arm. The differences in the effect of proprioceptive feedback on a BCI decoder

that outputs position signals and a decoder that outputs velocity signals is unknown but may
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contribute to the differences between our results and Suminski et al.’s [162]. One potential

explanation for this may be that M1 largely encodes movements through velocity signals,

and proprioceptive feedback influences velocity-based signals in M1. A decoder trained to

output position signals may be more robust to changes in proprioceptive feedback because

the BCI user is generating velocity signals based on movement intent and proprioceptive

feedback and then integrating these signals to control the decoder. Essentially, it is possible

that position decoders readout a later stage of sensorimotor integration and so are more ro-

bust to the particular signals that are integrated. If this is the case, then building BCIs that

allow the user to integrate sensory signals and velocity commands into a position command

may lessen the impact of noisy sensory feedback at the cost of extra processing on the part

of the BCI user. To better understand the implications of position vs. velocity decoders

on M1 activity, studies that compare the impact of sensory feedback on these two types of

signals is needed.

Together, the main theme in this dissertation is that sensation and movement are very

tightly integrated, not just within each level, but across the entire nervous system. With the

development of neural technologies that enable simultaneous recordings from larger popula-

tions of neurons and harder to access neural structures [103], experiments that track neural

activity along the neuraxis during sensorimotor tasks have great potential for offering new

insight. Additionally, many experimental tasks focus on simple sensory cues and relatively

simple movements—while this may be informative for understanding basic computations in

sensorimotor systems, the real world is incredibly high-dimensional. Thus, neural recordings

during complex tasks or during natural behavior, combined with novel computational meth-

ods that can account for trial-to-trial variability [126], also serve as a lucrative paradigm for

garnering new insight into sensorimotor integration. Finally, engineering neurotechnologies

that restore sensation or movement need to take into account the bidirectional interactions

between sensory and motor systems as well as ascending and descending interactions along

the neuraxis. Future studies that seek to understand how sensorimotor integration in the

periphery can influence perception and how perception can influence spinal mechanisms of

sensorimotor integration can serve to bridge this gap.
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Appendix A Demultiplexing Contact Force and Texture Using Tensor

Components Analysis

One limitation of PCA is that it yields a single weight matrix that varies across either a

single dimension of time, neurons, conditions, or a mix of these experimental characteristics.

However, since we expect that the force and texture variables will interact in driving the

neural response, we considered an alternative method. TCA is a dimensionality reduction

method that yields separate weight matrices for different experimental factors. Electro-

physiological recordings of neural populations are typically three-dimensional: Neurons ×

Timepoints × Trials. PCA is used to extract variation across experimental conditions or

neurons and reduce the dimensionality of the data. However, PCA operates in only two

dimensions, requiring data be trial-averaged or concatenated. This means that PCA will be

either unable to capture the trial-to-trial variability in the dataset or will find reductions

that are a “mixture” of two of the dimensions and are difficult to interpret. In contrast,

TCA allows for decomposition of the three-dimensional Neurons × Timepoints × Trials

data into components with interpretable weights along each dimension. This allows us to

examine the separability of textures through trial-to-trial variability, and the separability of

forces through variation over time [179].

A.1 Tensor Components Analysis

In both PCA and TCA, low-dimensional representations are found by minimizing the

reconstruction error of the dataset. As explained by Williams et al.[179], PCA decomposes

the data into R components via the equation:

xnt =
R∑

r=1

wr
nb

r
t

This decomposition is usually done on the trial-averaged or trial-concatenated data. If the

data are trial-averaged, wr represents the contributions of each neuron and br represents
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the contributions of time points. If data are trial-concatenated, br then represents mixed

contributions of time points and trials, while wr is still a weight for each neuron. If data are

trial-averaged, PCA will not be able to capture trial-to-trial variability. In contrast, TCA

performs the decomposition on the original three-dimensional data rather than trial-averaged

or trial-concatenated data, which allows it to capture variability across neurons, trials, and

time separately without the need for trial-averaging or trial-concatenation:

xntk =
R∑

r=1

wr
nb

r
ta

r
k

As with PCA, wr represents overall structure across neurons while br reflects temporal

dynamics within trials. In TCA, ar is an additional set of factors that reflects trial-to-trial

fluctuations. [179]

In these experiments, the movement of the texture stimulus was intentionally varied

across trials. Thus, speed, force, and texture varied across timepoints and across trials. Since

the goal of the experiments was to determine if this diverse set of stimulus features could be

determined from neural activity, we needed an unsupervised method of identifying structure

in neural data that resulted in interpretable features. TCA, as a dimensionality reduction

method that takes into account variability across neurons, time, and trials serves exactly this

purpose. Since TCA is not guaranteed to find the single optimal solution each time, it must

be run several times with different initializations. In accordance with the TCA processing

pipeline laid out by Williams et al. [179], we chose the number of components for TCA by

plotting the reconstruction error over multiple runs of TCA for one to N components, where

N is the number of neurons for each monkey. In both monkeys, reconstruction error dropped

and plateaued at 2 components. We further verified that we should use 2 components for

TCA by plotting the similarity between random initializations of the TCA model using

one to N components. As with the reconstruction error, model similarity decreased after 2

components, suggesting that 2 components was the correct choice.
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A.2 Demultiplexing Force and Texture with TCA

In an effort to further examine how force and texture can be demultiplexed from popu-

lation activity, we used tensor components analysis (TCA) to determine if subspaces in the

neural population activity across trials could differentiate force and texture components of

the tactile stimulus at the same time. Techniques such as trial-averaged or trial-concatenated

PCA do not explicitly account for variation across trials. Since we varied the force and tex-

ture of the stimulus on each trial, we wanted a method that could explicitly account for

trial-to-trial variation. Thus, we used TCA because it finds a single low-dimensional pro-

jection of neural activity while also preserving variance across trials. Much like PCA, TCA

identifies a weight for each neuron that contributes to the overall variance of neural activity.

These weights are used to transform the full-dimensional Neurons × Timepoints space to the

lower dimensional Tensor Components × Timepoints space. In addition to finding weights

for each neuron, TCA also estimates a weight for each trial based on these time-varying

tensor components (TCs). Since force and texture varied on a trial-by-trial basis, differences

in trial weights of the TCs indicate different neural responses to force and texture.

In both monkeys, reconstruction error improvement decreased after two TCs. The

weights for each TC across trials were well separated across textures, but not for force

in monkey B. This is unsurprising, since the magnitude of the contact forces in monkey

B was less variable, and more variation in the neural data was captured by differences in

texture. Figure A1-A shows plots of the first two tensor components (TC1 and TC2) for the

8 neurons in Monkey M. The relative weights representing the contribution of each neuron

to the TC are shown in the bar plots in Figure A1-B. Interestingly, TC1 appeared to be

dominated by a single RA neuron, while TC2 received the strongest contribution from an

SA neuron. Since TCA computes a weight for each trial, we can compare the trial weights for

each tensor component across textures. Figure A1-C shows the trial weights averaged across

textures for TC1 (blue) and TC2 (orange), grouped by texture. Note that the averaged trial

weights for TC1 vary widely across the five textures, while the weights for TC2 are fairly

similar across textures. This indicates that TC1 is more sensitive to variations in texture

than TC2. We also examined how the trial weights for each tensor component vary with
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shear force. Figure A1-D shows the peak shear force plotted against the trial weight for TC1

and TC2 on every trial. A linear regression was performed for each TC, revealing that the

peak shear force was correlated more strongly with the trial weights for TC2 (R2 = 0.89)

than TC1 (R2 = 0.55) (Figure A1-D). Taken together, these results support the notion that

SA neurons primarily encode force while RA neurons primarily encode texture.

Thus, TC2 appears to encode force information better than TC1, while the preceding

analysis suggested that TC1 encodes more texture information than TC2. Since TC1 ap-

pears to be dominated by activity of RA neurons, while SA neurons provide the strongest

contribution to TC2, this analysis provides further evidence that RA neurons convey more

information about texture while SA neurons encode force.
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Figure A1: Tensor components analysis extracts components that vary with force and texture

across trials. (A) The 8 neurons in monkey M were reduced to two tensor components (TCs).

The traces represent the trial-independent variation of TC1 (blue) and TC2 (orange) over

time. (B) Contribution of neurons to each TC. (C) The trial-independent, time-varying TCs

were given a weight for each trial to maximize the differences across trials. Dots are the

trial-averaged weights for all trials of a given texture for TC1 (blue) and TC2 (orange). (D)

The same trial weights for each TC from panel C are plotted against the peak shear force.

Linear regression was used to compute the correlation of the peak shear force of the tactile

stimulus with TC1 and TC2.
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Appendix B Fast Networked Message Framework for Experimental Data

Collection

Experimental data collection often involves coordination and time-syncing across many

recording systems and types of data. These data can include high-frequency neural sig-

nals, EMG, kinematics, and other continuous data. Other data are discrete, such as trial

start/stop markers and the timing of stimulus cues. Typically, such experimental sessions re-

quires syncing across multiple machines involved in data acquisition. Time-aligning discrete

events and continuous signals can be an involved process in which all modules of an experi-

mental data collection system are manually wired together and digital events are sent across

systems. This typically requires re-alignment of multiple simultaneously-recorded signals

offline. Such systems can be unwieldy and involved to set up. To make this data collection

process easier, some experimental systems utilize networked message passing systems such as

Dragonfly (Dragonfly BSD) as a way to centralize data streams. However, these networked

message passing systems can be limited by network latency because they are synchronous.

In particular, Dragonfly can be unwieldy to use as it must be separately compiled and built

for each programming language and operating system. To address some of these issues,

I built MessageHandler, a networked message passing system that is based on Dragonfly

(Dragonfly BSD). In this system, each data recording system sends packets of data via a

UDP message passing system to a centralized message handler. The centralized message

handler then broadcasts these messages to all modules that subscribe to that message type.

The two main contributions of the framework of MessageHandler are that 1) it is built on

libuv, a network library that interacts with the operating system to enable asynchronous

handling of events, and 2) it utilizes msgpack to serialize packet structure so that messages

do not need to be separately built for each programming language used for data collection.

Code: https://github.com/mfliu/networkedMessaging

91

https://github.com/mfliu/networkedMessaging


B.1 Asynchronous Message Passing

In networked message passing, synchronous and asynchronous typically refers to the way

messages are passed and processed. Synchronous message passing means that the sending

and receiving of messages blocks other processes. Messages arriving at the MessageHandler

are added to a queue and processed one at a time. This tends to be slow, because each

message blocks the messages after it. Some workarounds that enable parallel processing of

messages utilize multi-threading, but this can be resource intensive for the operating system.

In contrast, with an asynchronous framework, the message handler keeps an event loop of

messages that needs to be processed. It hands off a message to the CPU for processing.

When the CPU has partially processed it and is waiting for further input, the next message

is passed to the CPU for processing. This maximizes CPU utilization and allows for the

CPU to process multiple messages in parallel. libuv handles this portion of interfacing with

the operating system and CPU to enable MessageHandler to be an asynchronous system.

Essentially, MessageHandler keeps a list of messages in the event loop (akin to a to-do list),

and the CPU processes the first message until it can be passed off to the operating system,

upon which it is removed from the event loop. This allows the CPU to begin processing the

second message while the operating system is processing the first message. In a synchronous

message handler, the CPU would wait until the operating system is done processing the first

message rather than starting on the second message. Once the operating system has finished

processing the first message, it places it back on the event loop to allow the CPU to finish

processing it. Thus, the asynchronous functionality provided by libuv speeds up messaging

by enabling parallel processing of messages by the CPU and the operating system.

B.2 Serialization of Messages

The second contribution of MessageHandler is that it uses msgpack to serialize messages,

allowing messages written in MATLAB, Python, or C++ to be processed the same way.

msgpack is a cross-language serialization format that is akin to JSON. It allows for the
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Figure B1: Synchronous vs. Asynchronous message processing. In synchronous message

processing, all messages are stored on a single thread and the CPU processes one message at

a time. In asynchronous processing, messages are kept in an event loop. The CPU processes

small parts of each message as resources are available, allowing multiple messages to be

processed in parallel.
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Figure B2: Message serialization is when a message packet is converted into a binary format

and sent to another networked module. This second networked module must deserialize the

data, or convert it from the binary format into a usable object

serialization and de-serialization of data packets that are streamed over the network. For

example, a MATLAB struct is serialized into a binary format that can be read by a Python

module that uses msgpack to de-serialize the binary data into a dict. Essentially, by speci-

fying the way certain types of data are converted into binary formats, msgpack ensures that

each data collection module can parse incoming data packets regardless of the programming

language used to create that data packet. This avoids the intermediate steps involved in

Dragonfly where users must manually build conversions between data packets serialized in

Python, C++, and MATLAB.

In summary, MessageHandler is a fairly straightforward networked message passing

framework. It utilizes libuv to enable asynchronous message passing, and it utilizes msgpack

to enable message serialization and de-serialization across languages. Compared to Drag-

onfly, it is much easier to maintain, as it is approximately 200 lines of code (compared to

Dragonfly’s 1000+), and it relies on existing libraries that are used in commercial products.

This means that much of the operating system infrastructure does not need to be written

by researchers and will be kept up-to-date. Finally, MessageHandler can pass messges at a

much faster rate. MessageHandler could stream and handle messages consisting of 64 64-bit
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integers with metadata, for a total of 110 bytes per packet, at over 30kHz. This corresponds

to over 15MB of data streamed per second. Commercial applications that utilize libuv can

stream at 33GB/s, suggesting that using asynchronous message passing can enable faster

processing of data in real-time experimental systems.
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Figure B3: MessageHandler consists of two main components: libuv, which handles asyn-

chronous message processing, and msgpack, which handles message serialization and de-

serialization. Combined, these two features enable high-speed message passing across lan-

guages.
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Appendix C Justice, Equity, Diversity, and Inclusion in STEM

In 2011, Ginther et al. [69] found that Black scientists were funded at half the rate of

white scientists at the National Institutes of Health (NIH). Since then, there has been 0%

change in funding disparities, despite measures taken by the NIH [161, 166]. This funding

disparity arises from systemic racism in the entire academic system [45], and is a combi-

nation of underrepresentation of Black scientists in academia [161] and the devaluation of

Black lives in healthcare [88]. Underrepresentation of Black scientists results in underrepre-

sentation on funding review panels. Underrepresentation on funding review panels leads to

underfunding of Black scientists, which enables underrepresentation of Black scientists. To

make academia truly equitable, we must make changes in our individual actions, our labs,

and our institutions.

Members of science and engineering labs within academic institutions, are uniquely poised

to address the institutional racism that keeps underrepresented minorities out of STEM and

higher education. It is our responsibility to create an inclusive and diverse environment

within the lab, to fight injustice wherever we encounter it, and to engage with local Black and

underrepresented communities to ensure that we are contributing back to the communities

around us rather than passively benefiting from their resources. As scientists, we must be

proactive in dismantling the structures of institutionalized racism within the lab and within

the University. In the following sections, I will detail some of the work I have contributed

to and future developments that are aimed at improving diversity, equity, and inclusion in

STEM academia:

C.1 Educate Ourselves and Others in Our Environment

Many institutional attempts at diversity and inclusion focus on implicit bias training in

the workplace. These trainings focus on the implicit biases and associations that we hold

by centering the way individuals manifest and express stereotypes in interpersonal inter-
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actions [75, 180]. While such training is important, it addresses only interpersonal racism

whereas racism exists across institutional and internalized levels [102]. Interpersonal bi-

ases and stereotypes arise from associations between group membership cues and social

categorization [4]. Such associations can arise from a perceived patterns in interpersonal

experiences [85]. However, focusing on stereotypes without addressing the historical ori-

gins of stereotypes can make implicit bias training ineffective or worse [78]. Stereotypes

often have their origins in historical systemic racism. Racist policies enacted by institutions

influence outcomes for marginalized populations. Outcomes for marginalized populations in-

fluence perceptions of those populations by majority, non-marginalized populations. These

perceptions become stereotypes that are further reinforced with institutional policies and

interpersonal microaggressions. Thus, systemic and interpersonal racism mutually reinforce

each other, and addressing only interpersonal racism in workplace training is insufficient.

Desmond and Emirbayer [34] identify 5 fallacies of racism. Workplace anti-racism training

must be comprehensive to avoid all 5 fallacies. In the following section, I will provide a brief

overview of each fallacy and how we designed training and discussion sessions for the Rehab

and Neural Engineering Labs at Pitt to address and avoid each fallacy:

1. Individualistic fallacy : One of the most common racial fallacy is that racism is enacted

only at an interpersonal level. Workplace trainings that focus on interpersonal racism

without addressing historical context or systemic sources of racism fall into this fallacy.

Training needs to contextualize interpersonal microaggressions and racism in the his-

tory of racism in the United States and in academic institutions. In our training and

discussion sections, we began with one session on microaggressions and the interper-

sonal damage that such manifestations of racism can cause. This introductory session

grounded further training sessions on the historical sources of racism that led to the

expressed microaggresions as well as the neural basis of stereotypes.

2. Legalistic fallacy : This fallacy is the assumption that abolishing racist laws and policies

will end racist practices. Anti-racist education in the workplace emphasize that racism

can be perpetrated through both institutional policies and individual actions despite legal

frameworks that attempt to guarantee equity. For example, Brown v. Board of Education

in theory abolished segregation in schools, but Pittsburgh Public Schools continues to be
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one of the most segregated school districts in the country (Reid, 2018). As part of our

training session on the history of race and racism in America, we provided case studies

of Civil Rights laws that had been passed with the goal of increasing equity, and how

these laws failed to take hold because of biases entrenched in society.

3. Tokenistic fallacy : The tokenistic fallacy assumes that the successes of a few success-

ful marginalized individuals mean that racism is no longer an issue. Within academic

institutions, this can manifest as the notion that because a department chair, profes-

sor, or certain number of students are from underrepresented populations, that the

department, school, or lab is necessarily inclusive and equitable. Workplace trainings

must make the distinction between representation and inclusion—just because individ-

uals from marginalized populations are present, does not mean that they are included.

In training and discussion sessions within the lab, we focused on the distinction between

representation and inclusion, and how interpersonal stereotypes can contribute to a lack

of inclusivity although there may be people from underrepresented minorities within the

lab and within STEM.

4. Ahistorical fallacy : Historical events in both distant history and recent history have ram-

ifications for society today. The ahistorical fallacy assumes that history does not affect

society today, or that racism is “solved”. This fallacy leads to a lack of understand-

ing in why marginalized populations are underrepresented in STEM, and the sources of

the interpersonal stereotypes that manifest in day-to-day interactions. DEI trainings in

academia and the lab must provide historical context for the systemic racism today, and

institutions should require history courses on the origins of race and racial constructs in

America. To address this fallacy, we delivered a series of training and discussion sessions

focused on the history of race and racism in America, as well as the historical origins of

racism in academia and STEM funding.

5. Fixed fallacy : The fixed fallacy is the notion that racism does not change. A person

expressing this fallacy may say that because slavery was ended, racism is no longer a

problem in America. DEI trainings within departments must also emphasize the way

racism has adapted to societal norms over the course of history. As with the ahistorical

fallacy, we emphasized the existing racial disparities in society today and tied them back
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to laws and policies that are either inequitably enforced, or are written to be racially

unjust without explicitly saying so.

Training and discussion sessions in STEM academia cannot be one-off training sessions.

Without knowing the history of race and racism in America or being aware of the many

ways in which racist policies can be veiled as “not racist”, it is easy for individuals to

be complacent. We have a responsibility to educate ourselves and to work across labs,

departments, and institutions to understand the historical, societal, and institutional sources

of racism. Training and discussion programs therefore should be comprehensive, should occur

more frequently than once or twice annually, and should reinforce that everyone works to

educate themselves on racism in America.

Furthermore, the responsibility of organizing and delivering such training sessions should

not fall to students, faculty, and staff from underrepresented and marginalized populations.

If institutions are genuinely committed to building equitable, inclusive, and diverse work

environments, they should devote resources to hiring experts in DEI issues to give training

sessions, examine institutional policies for bias, and require universal engagement from all

members of the institutions.

C.2 Provide Equitable Access to Training

In academia, meritocracy is a myth and success is largely relegated to the individuals

who are privileged enough to have the wealth, time, and resources to devote to academic

study. Because wealth inequities in America fall along racial lines [118], this contributes to

underrepresentation of Black Americans in higher education and STEM. In an attempt to

patch this “leaky pipeline”, many scientists and scientific organizations have developed out-

reach programs geared towards getting younger students involved in science. Such outreach

efforts can target several stages: 1) Elementary and middle school education that exposes

younger children to scientific principles and possible careers as scientists, 2) High school stu-

dents who may become interested in science but do not have the resources to pursue a STEM

career at a university, and 3) Undergraduate students who are interested in pursuing STEM
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as a graduate career. Many exciting and interesting programs have been developed for each

of these stages. However, without further institutional change, such outreach programs are

limited in their effectiveness. As part of the youth outreach efforts at the Rehab Neural

Engineering Labs, I collaboratively worked to develop an 8-week program for ninth grade

students at a Pittsburgh public school. Here, I will focus on the considerations we faced,

lessons we learned, and the next steps that can increase the effectiveness of such outreach

programs.

One of the first decisions we made was on the content of our 8-week session. Since

the class we were developing this content for was a Life Skills and College Prep class, we

chose to focus on the role of scientists and engineers in society. Our motivation behind

this decision was to emphasize that science and engineering is not a lofty goal to be put

on a pedestal, but an achievable career for any student. To do so, we first emphasized the

many roles involved in science and engineering—such as the doctors, engineers, and public

health educators involved in a pandemic response. We then asked students to come up with

engineering solutions to a problems or inconveniences in their life that they would like to fix,

and to present this solution. The goal was to emphasize that careers in engineering could

largely stem from a desire to improve people’s lives and that a career in STEM does not

necessitate addressing the largest and most challenging problems. Thus, one key step in

engaging students in STEM is to change the perception that a career in STEM is difficult

and inaccessible.

Another challenge that we faced is the continuity of STEM exposure for the students we

worked with. It is unlikely that one 8-week session, has a significant impact on any student’s

life. Increasing diversity in STEM requires commitment to keeping students engaged in

STEM and guiding them through the process of pursuing a STEM career at every step.

Thus, we are currently working on curriculum development and planning in the higher-level

science and engineering classes at the high school to ensure that students will have continued

exposure to professional STEM environments and research labs. This will help maintain

students’ interest in STEM and encourage them to view STEM careers as achievable. Our

takeaway at this stage is that it is more impactful to have a long-lasting, well-integrated

collaboration with a single school than to run the same program once at different schools.
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Finally, even if students are interested and enthusiastic about pursuing a career in STEM,

barriers to undergraduate education can prevent such careers from actualizing. This can be

a severe limitation to any outreach efforts succeeding in increasing representation in STEM

fields. To address this, we recommend that outreach programs partner with undergraduate

institutions to reserve spots in each class for students who are committed to pursuing STEM

degrees, but would not otherwise have the opportunity to attend a university. Without this

institutional partnership, outreach efforts at best inspire students to pursue careers in STEM

without providing them with any resources to remove the obstacles in their way.

In summary, as scientists in academia, we are a microcosm of society and cannot operate

as if we are not influenced by the systemic injustices present in society. As such, we have a

responsibility to educate ourselves, to educate our communities, and to work for the inclusion

and betterment of others. Since we are already part of academic institutions we should use

our collective power to influence institutional policies to be more equitable, more inclusive,

and more just.
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	2.9. Temporal patterning of neural responses. Example cross-correlation of neural responses to a set of force-matched trials for two textures between (A) two SA neurons, (B) two RA neurons, and (C) a RA and a SA neuron. This shows that pairs of neurons are correlated, and that correlation depends on texture. Texture decoding using all pairwise joint firing rates, all single unit activity in the population, and both single unit and joint firing rate activity for (D) monkey M and (E) monkey B. Dashed black lines indicate chance, computed as average classification accuracy using firing rates with shuffled time bins.
	3.1. Experimental setup. (A) Adapted from King et al., 2009 kingdrg2019; Cats were implanted with microelectrode arrays and trained to stand on a platform. EMG signals were recorded from the left hindlimb. (B) Some cats were implanted with Utah arrays, and others with (C) floating microelectrode arrays (FMA).
	3.2. Excitatory muscle responses. Representative testing days with excitatory evoked responses detected in the ST muscle for all trials administered with (A) low- and (B) high-amplitude microstimulation from a single testing week (H06). Horizontal dashed lines correspond to detection thresholds and vertical lines correspond to stimulation onset. Blue circles (undetected) and red arrows (detected) correspond to RMS of the pre-stimulus and response epochs, respectively. Placement of circles and arrows along horizontal axis is situated in the middle of each epoch
	3.3. Inhibitory muscle responses. Representative testing days with inhibitory evoked responses detected in the VL muscle for all trials administered with (A) low- and (B) high-amplitude microstimulation from a single testing week (F10). Horizontal dashed lines correspond to detection thresholds and vertical lines correspond to stimulation onset. Blue circles (undetected) and red arrows (detected) correspond to RMS of the response epochs. Placement of circles and arrows along horizontal axis is situated in the middle of each epoch.
	3.4. Survey of excitatory and inhibitory responses. Stacked bar graphs illustrating cumulative response rates of detected motor responses from (A) low- and (B) high-amplitude microstimulation. Bars to the left (stippled) and right (solid) of each tick correspond to rates from microstimulation on L6 and L7 arrays. Black (excitatory) and grey (inhibitory) bars provide a breakdown of the composition of responses.
	3.5. Muscle response latencies. (A) Box plots showing the distribution of response onset latencies for excitatory (green) and inhibitory (red) evoked responses in each muscle. Histograms showing the frequency of response onsets (5 ms bins) for (B) all evoked responses combined, (C) excitatory responses only, and (D) inhibitory responses only.
	3.6. Predicted change in GRF magnitude versus EMG power for (A) and (B) knee flexors and the (C) and (D) TA muscle in low-amplitude and high-amplitude microstimulation models. Data points correspond to individual trials from each of the 17 weeks included in models. Data points are color coded with lines of best fit to illustrate trends within each week.
	4.1. Experimental setup (A) Figure adapted from Collinger et al. collingerhigh-performance2013. Two 96-channel arrays were implanted in the hand and arm region of M1 in a quadraplegic participant. Firing rates were transformed into 2-D endpoint velocity control of a robot arm using an ordinary linear estimator. (B) The participant performed a task in which she used BCI control to move the robotic arm back and forth over a pair of center lines as many times as possible in one minute (C) Two types of decoders were trained: one on vision only, and one with vision and proprioception (D) During the task, the participant received various combinations of visual and proprioceptive feedback.
	4.2. Kinematics of robotic arm. (A) Sample traces for one trial with a VP decoder (Day 6). (B) 2D position for all trials on day 6; (C) Horizontal position vs. velocity for all trials on day 6
	4.3. BCI performance across days. (A) Fourier transform of position (top) and velocity (bottom) across all days. Darker traces are the mean, lighter traces are individual days (B) Number of crossings across days. Individual days are shown in diamonds, bars represent the mean across days
	4.4. Proprioceptive responses across neurons. (A) Decoder weight vs. average firing rate during the passive proprioception condition. (B) Change in firing rate between proprioception and no proprioception in the eyes closed (x-axis) vs. eyes open (y-axis) conditions for all neurons. Neurons that respond to passive proprioception are marked with xs. (C) Change in firing rate in response to proprioception when eyes are closed plotted against decoder weight (D) Change in firing rate in response to proprioception when eyes are open plotted against decoder weight.
	4.5. Overlap between decoder and neural space. (A) Principal angle between decoder axis and PC space for each condition across all days. Individual diamonds represent individual days, with the number in the diamond corresponding to the day of the experiment. (B) Overlap between decoder and PC space is correlated with the number of crossings across days. (C) Actual control velocity plotted against re-decoded velocity from the high-dimensional projections of PC components that explain 90% of the overall neural variance in each condition.
	4.6. Neural trajectories during BCI control. (A) Neural trajectories (left) and corresponding robot position (right) for a single trial of eyes open, no proprioception, (B) Eyes open, proprioception, and (C) Eyes closed, no proprioception.
	4.7. Gradient of neural activity. (A) Gradient arrows for the condition when the participant is attempting the BCI task and receiving visual feedback without proprioceptive feedback. Day 3 (V Decoder) is shown. (B) Gradient of neural activity when the participant is provided with visual and proprioceptive feedback during the task. Day 6 (VP Decoder) is shown. (C) Length of the average gradient vector across all unique neural state positions across sensory feedback conditions and decoders.
	A1. Tensor components analysis extracts components that vary with force and texture across trials. (A) The 8 neurons in monkey M were reduced to two tensor components (TCs). The traces represent the trial-independent variation of TC1 (blue) and TC2 (orange) over time. (B) Contribution of neurons to each TC. (C) The trial-independent, time-varying TCs were given a weight for each trial to maximize the differences across trials. Dots are the trial-averaged weights for all trials of a given texture for TC1 (blue) and TC2 (orange). (D) The same trial weights for each TC from panel C are plotted against the peak shear force. Linear regression was used to compute the correlation of the peak shear force of the tactile stimulus with TC1 and TC2. 
	B1. Synchronous vs. Asynchronous message processing. In synchronous message processing, all messages are stored on a single thread and the CPU processes one message at a time. In asynchronous processing, messages are kept in an event loop. The CPU processes small parts of each message as resources are available, allowing multiple messages to be processed in parallel.
	B2. Message serialization is when a message packet is converted into a binary format and sent to another networked module. This second networked module must deserialize the data, or convert it from the binary format into a usable object
	B3. MessageHandler consists of two main components: libuv, which handles asynchronous message processing, and msgpack, which handles message serialization and de-serialization. Combined, these two features enable high-speed message passing across languages.
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