
LUDWIG-MAXIMILIANS-UNIVERSITY MUNICH

DEPARTMENT OF STATISTICS
FACULTY OF MATHEMATICS, INFORMATICS AND STATISTICS

in Cooperation with

Neural Architecture Search for Genomic Sequence Data

Master Thesis

Author Amadeu Scheppach
Supervisor Prof. Dr. Bernd Bischl, Dr. Mina Rezaei, Martin Binder
Date Munich, December 6, 2021

Contents

1 Introduction 1

2 Related Work 3
2.1 Deep learning . 3

2.2 Optimization . 8

2.3 NAS algorithms . 9

2.3.1 DARTS . 9

2.3.2 P-DARTS . 12

2.3.3 BONAS . 14

3 Method 18
3.1 Baseline models . 18

3.1.1 DeepSEA . 18

3.1.2 DanQ . 19

3.1.3 NCNet . 20

3.2 Search space for genomeNAS Algorithms . 22

3.2.1 Convolutional part . 23

3.2.2 Recurrent part . 24

3.2.3 Further settings . 25

3.3 NAS algorithms for Genomic Sequence Data 26

3.3.1 Random Search . 26

3.3.2 Hyperband-NAS . 26

3.3.3 genomeDARTS . 26

3.3.4 genomeP-DARTS . 27

3.3.5 genomeBONAS . 27

3.4 Novel Neural Architecture Search algorithms for Genomic Sequence Data . . . 30

3.4.1 genomeOSP-NAS . 30

3.4.2 genomeCWP-DARTS . 32

3.4.3 genomeDEP-DARTS . 32

4 Experiments 35
4.1 Data and Application . 35

4.2 Preliminary Study . 36

4.3 Benchmark NAS Algorithms on DeepSEA task 38

4.3.1 Experimental Design . 38

4.3.2 Experimental Results . 40

5 Conclusion and future work 46

List of Figures

1 Fully connected neural network . 3

2 Activation functions . 4

3 Forward propagation of an RNN . 6

4 Visualization of an LSTM cell and their gates 7

5 Visualization of DARTS . 11

6 P-DARTS vs. DARTS . 13

7 Visualization of P-DARTS . 13

8 BONAS procedure . 14

9 Representation of an example architecture . 15

10 Typical deep learning model for genomic sequence data 18

11 DeepSEA architecture . 19

12 DanQ architecture . 20

13 Skip-connection . 21

14 Bottleneck block . 21

15 Search space of genomeNAS algorithms . 23

16 GenomeBONAS GCN . 28

17 Genome Discarding Operation-Sets Neural Architecture Search (genomeOSP-NAS)

example . 31

18 Process of discarding edges from a node . 33

19 Benchmark of different hyperparameter configurations 37

20 Benchmark of the selection phase . 41

21 Benchmark of all models . 43

22 Training and validation process . 45

List of Algorithms

1 DARTS - Differentiable Architecture Search 12

2 BONAS . 17

3 GenomeP-DARTS . 27

4 OSP-NAS . 31

5 GenomeDEP-DARTS . 34

List of Tables

1 Performance comparison of all used models on DeepSEA task. 42

List of symbols and abbreviations

DNA Deoxyribonucleic Acid

NAS Neural Architecture Search

genomeNAS Genome Neural Architecture Search

OSP-NAS Operation Set Pruning - Neural Architecture Search

DARTS Differentiable Architecture Search

ENAS Efficient Neural Architecture Search via Parameter Sharing

BONAS Bayesian Optimized Neural Architecture Search

P-DARTS Progressive Differentiable Architecture Search

CWP-DARTS Continuous Weight Sharing Progressive Differentiable Architecture Search

DEP-DARTS Discarding Edges Progressive Differentiable Architecture Search

genomeDARTS Genome Differentiable Architecture Search

genomeP-DARTS Genome Progressive Differentiable Architecture Search

genomeDEP-DARTS Genome Discarding Edges Progressive Differentiable Architecture Search

genomeCWP-DARTS Genome Continuous Weight Sharing Progressive Differentiable Archi-

tecture Search

genomeBONAS Genome Bayesian Optimized Neural Architecture Search

genomeOSP-NAS Genome Discarding Operation-Sets Neural Architecture Search

BSR Bayesian sigmoid regressor

GCN Graph Convolutional Network

UCB upper confidence bound

EI expected improvement

MPI maximum probability of improvement

AutoML Automated Machine Learning

CNN Convolutional Neural Network

RNN Recurrent Neural Network

DAG directed acyclic graph

LSTM Long Short Term Memory

RHN Recurrent Highway Networks

Abstract

The topic of this thesis is Neural Architecture Search (NAS) for genomic sequence

data. We present the application of NAS algorithms to design high-performing deep

learning architectures for genomic sequences. Based on popular NAS approaches, we

implement new NAS algorithms for genomic data, which we call Genome Differentiable

Architecture Search (genomeDARTS), Genome Progressive Differentiable Architecture

Search (genomeP-DARTS), and Genome Bayesian Optimized Neural Architecture Search

(genomeBONAS). Furthermore, we build novel NAS methods such as Continuous Weight

Sharing Progressive Differentiable Architecture Search (CWP-DARTS), Discarding Edges

Progressive Differentiable Architecture Search (DEP-DARTS), and Operation Set Pruning

- Neural Architecture Search (OSP-NAS). The novel feature of our provided work is the

unique combination of a convolutional architecture with a recurrent architecture, which

showed superior performance compared to pure convolution neural network architectures.

We benchmark these Genome Neural Architecture Search (genomeNAS) algorithms, by

searching for the best architectures and comparing them against the current state-of-the-art

genomic deep learning models. All NAS algorithms are applied to the DeepSEA data set.

The proposed NAS algorithms show state-of-the-art performance on the DeepSEA task and

outperform all baseline models as well as randomly sampled models. The self-designed

algorithm genomeOSP-NAS achieves state-of-the-art performance and is among the best

performing genomeNAS algorithms.

7

1 Introduction

1 Introduction

Deep Learning is an attractive solution for a variety of tasks, including autonomous driving,

image object recognition, or machine translation (Huang and Y. Chen, 2020; Zhao et al., 2019;

Young et al., 2018). In the field of bioinformatics deep learning algorithms also gained popularity

(Eraslan et al., 2019). In genomics for example, deep learning models can be used to model the

properties and functions of Deoxyribonucleic Acid (DNA) sequences (Jian Zhou, 2015; Quang

and Xie, 2015; H. Zhang et al., 2019). Especially, the prediction of the function of non-coding

DNA is an interesting field, as 98 percent of the human genome is non-coding and 93 percent

of disease-associated variants lie in these regions (H. Zhang et al., 2019). While in the past

human experts developed and configured these deep learning models and their architectures

based on literature or based on experience, Automated Machine Learning (AutoML) approaches

are nowadays able to achieve better results than human experts by automatically searching for

the appropriate settings of a deep learning model (Elsken, J. H. Metzen, and Hutter, 2019).

NAS is a sub-field of AutoML, which aims to automatically find the optimal architecture of

a deep learning model (Hutter, Kotthoff, and Vanschoren, 2019). Recently there has been

a rapid development of new NAS algorithms. While earlier methods needed a vast amount

of computational resources, new algorithms such as Efficient Neural Architecture Search via

Parameter Sharing (ENAS) or Differentiable Architecture Search (DARTS) focused on speeding

up NAS algorithms (Pham et al., 2018; H. Liu, Simonyan, and Yang, 2019). For example, a

popular RL based NAS approach required 2000 GPU days (Zoph, Vasudevan, et al., 2018) and

an evolution based NAS algorithm (Real et al., 2019) required 3150 GPU days. On the other

side, DARTS lasts 4 GPU days and ENAS 0.5 GPU days (Pham et al., 2018; H. Liu, Simonyan,

and Yang, 2019).

Main Contribution. NAS algorithms showed competitive performance on image classification

tasks (H. Liu, Simonyan, and Yang, 2019; Pham et al., 2018). However, there is little research on

how NAS algorithms perform on genomic sequences, because most of the algorithms are applied

on image classification (Zoph, Vasudevan, et al., 2018; Real et al., 2019), object detection (Zoph,

Vasudevan, et al., 2018) or semantic segmentation (L.-C. Chen et al., 2018).

Due to this lack of research, we investigate how state-of-the art NAS algorithms, such as DARTS,

Progressive Differentiable Architecture Search (P-DARTS) and Bayesian Optimized Neural

Architecture Search (BONAS) can be used to find high-performance deep learning architectures

in the field of genomics. Amber, a recently published concurrent work, focused also on the

application of NAS for genome data (Z. Zhang, Park, et al., 2020). Our provided framework

has some advantages over Amber: unlike the search space of Amber, which only consists of

Convolutional Neural Network (CNN) operations, our search space combines convolutional and

recurrent layers. Popular genome models such as DanQ or NCNet also used hybrid models,

which consist of convolutional layers together with recurrent layers. These hybrid models showed

1

1 Introduction

superior performance compared to pure convolution neural network architectures (Quang and

Xie, 2015; H. Zhang et al., 2019). We implement new NAS approaches with a new search space

which includes CNN and Recurrent Neural Network (RNN) operations. We call these algorithms

genomeDARTS, genomeP-DARTS, and genomeBONAS. Furthermore, we build novel DARTS

algorithms such as CWP-DARTS, which enables continuous weight sharing across different

P-DARTS stages by transferring the neural network weights and architecture weights between

P-DARTS iterations. In another P-DARTS extension, we discard not only bad performing

operations but also bad performing edges. Additionally, we implement an algorithm, which

we call OSP-NAS. OSP-NAS starts with a super-network model which includes all randomly

sampled operations and edges and then gradually discards randomly sampled operations based on

the validation accuracy of the remaining super-network. Moreover, we benchmark all presented

genomeNAS algorithms against state-of-the-art genome deep learning models, as well as against

randomly searched models, using the DeepSEA data.

Structure. We first present the theoretical fundamentals of the methods used within this

work. Then, an overview of the related work is provided, with a detailed formulation of the

NAS algorithms, DARTS, P-DARTS and BONAS. Aside from that, our novel implementa-

tions genomeDARTS, genomeP-DARTS, genomeBONAS, genomeCWP-DARTS, genomeDEP-

DARTS and genomeOSP-NAS are introduced. In the next chapter some important hyper-

paramters of the NAS framework are compared. Afterwards, the benchmark section provides

a deep investigation of the results and compares genomeNAS algorithms with state-of-the-art

baseline architectures.

2

2 Related Work

2 Related Work

2.1 Deep learning

Deep Learning is a machine learning approach that uses neural networks to transform an input

x to an output y (Goodfellow, Bengio, and Courville, 2016). The transformation y = f (x,θ)

learns and adjusts the parameter values θ to reach the most accurate prediction. θ represents the

weights of the deep learning model.

Figure 1: Fully connected neural network (from Sun, Wu, and Hwang, 2020). A typical fully

connected neural network usually contains sequential layers and each of these layers consist of

multiple neurons which are connected to the neurons from previous layers via weight matrices.

Figure 1 depicts a neural network, which starts with an input layer and is followed by some

hidden layers and the final output layer which gives us the predictions of the input. A layer l

transforms their input, by multiplying the output from the previous layer xl−1 with a weight

matrix Wl and applying a nonlinear transformation F(ol) on the result with an activation function.

More formally, each layer executes the following computation:

ol =Wlxl−1 (2.1)

xl = F(ol) (2.2)

Doing this procedure for each layer results in a transformation from input features to output

predictions, the so-called forward propagation (Lecun et al., 1998).

Activation functions Activation functions execute a nonlinear transformation on the input

(Jian Zhou, 2015). The provided framework uses ReLU and sigmoid as activation functions,

which are shortly introduced. The equation (2.3) uses a rectified linear function, which performs

following computation:

3

2 Related Work

ReLU(x) =

x if x≥ 0

0 if x < 0
(2.3)

Another popular activation function is the sigmoid activation function. The sigmoid function

squashes its inputs to values between 0 and 1 by applying the following function:

sigmoid(x) =
1

1+ e−x (2.4)

Since the output ranges between 0 and 1, the sigmoid activation function is especially used for

the prediction of probabilities. Figure 2 depicts the sigmoid and ReLU activation function.

(a) ReLU activation (b) Sigmoid activation

Figure 2: Activation functions. The figure illustrates two activation functions, which are used

within this work. The x-axes represent the input and the y-axes the transformed input.

Loss function A so-called loss function quantifies the ability of the model to generate accurate

predictions (Z. Zhang and Sabuncu, 2018). A common loss function for multiclass classification

is the cross-entropy loss, which is defined as follows:

CE =−∑
s

∑
t

ys
t log(ft(xs,θ)) (2.5)

where s represents the index of a training sample and t represents the index of the target feature.

ys
t ∈ {0,1} is the true label for a specific sample s, where the value 1 indicates that a specific

target feature is true and 0 indicates that a specific target feature is false. For a given input xs,

ft(xs,θ) ∈ (0,1) with ∑
t

ft(xs,θ) = 1 ∀s, t indicates the corresponding prediction of the deep

learning model, which is the probability for a specific target feature t.

The binary cross-entropy loss is used by Jian Zhou (2015):

BCE =−∑
s

yslog(f (xs,θ))+(1− ys)log(1− f (xs,θ)) (2.6)

4

2 Related Work

Back-propagation and Gradient Descent During back-propagation, the weights get adjusted

via gradient descent, with the purpose to minimize the error terms of the output predictions

(Lecun et al., 1998). The gradient descent algorithm iteratively uses the partial derivatives

to modify the weights W . The partial derivatives of equation (2.5) and (2.6) are obtained by

executing the chain rule:

∂Ls

∂ol
= F ′(ol)

∂Ls

∂xl
(2.7)

∂Ls

∂Wl
= xl−1

∂Ls

∂ol
(2.8)

∂Ls

∂xl−1
=W T

l
∂Ls

∂ol
(2.9)

where Ls defines the loss of sample s. By executing the above equations for all layers l = 1,2, ...,L,

all partial derivatives of the loss function with respect to all the weights are obtained. The weights

get then adjusted with the gradient descent formula:

W (p) =W (p−1)−ν
∂L
∂W

(2.10)

with p being the iteration index and ν being the learning rate. The learning rate ν determines the

size of the training step.

Convolution network layers Convolutional neural networks are a subclass of deep neural

networks, which are specially used for image or audio data (Goodfellow, Bengio, and Courville,

2016). Usually, the structure of a convolutional neural network consists of repetitive convolutional

layers and pooling layers. While in fully connected layers all neurons are connected to each

other and each neuron processes all neurons from the previous layer, in a convolutional operation

each neuron only uses the information of a spatial receptive field of the previous layer.

A so-called kernel moves along the input, to extract features, which are then summarized in the

created feature maps. The kernel moves along the input with a specific step size, the so-called

stride. A convolution layer with ReLU activation function can be described by the following

equation (Jian Zhou, 2015):

convolution(X)ik = ReLU(
M−1

∑
m=0

N−1

∑
n=0

W k
mnXi+m,n) (2.11)

where X defines the input, k the kernel index and i the index of the output. Each weight matrix

W k is a matrix of dimension M×N, where M is the size of the receptive field which moves along

the input and N defines the number of input channels. In the field of genomics, convolution filters

aim to identify local, recurring patterns that are assumed to have a specific biological function.

5

2 Related Work

Pooling layer A typical convolutional neural network uses a pooling layer after a convolution

operation (Goodfellow, Bengio, and Courville, 2016). A popular choice might be a max pooling

layer which computes the maximum value over a receptive field. The layer reduces the dimension,

by removing unnecessary information. This leads to higher receptive fields for subsequent layers.

Another approach would be average pooling, where the average of the receptive field is computed.

Recurrent network layers Another variant of neural networks is the so-called recurrent neural

networks (RNNs), which processes input values x1, ...,xT with t = 1, ...,T being the time steps

of a sequence (ibid.). Due to their ability to capture sequential dependencies in internal states,

they are usually used for sequential data, such as time series or DNA sequences.

Figure 3: Forward propagation of an RNN (from Goodfellow, Bengio, and Courville, 2016). At

time step t, hidden state ht processes the output from previous hidden state ht−1 with weight

matrix W and the current input xt is processed with weight matrix U . Output ot is calculated

with the weight matrix V and hidden state ht .

Figure 3 illustrates the forward propagation of an RNN that transforms an input sequence to an

output sequence. More formally, at each time step following equations are executed:

h(t) = tanh(b+Wh(t−1)+Ux(t)) (2.12)

o(t) = c+V h(t) (2.13)

y(t) = so f tmax(o(t)) (2.14)

with b and c being the bias vectors. The equations show that a hidden state h(t) contains

information about all past time steps. This may lead to vanishing or exploding gradients

6

2 Related Work

when the depth through time of recurrent neural network increases since long-term interactions

lead to exponentially smaller weights and the multiplication of many Jacobians. Multiple

multiplications of small values result in values close to 0. This leads to an inability to learn long-

term dependencies. Long Short Term Memory (LSTM) addresses the exploding and vanishing

gradient problem for recurrent networks by using gates, which memorize past information and

control the gradient information which passes the gates. Instead of processing the previous state

h(t−1) and input x(t) in a fixed manner, the gates control which information flows into the LSTM

cell.

Figure 4: Visualization of an LSTM cell and its gates (from Goodfellow, Bengio, and Courville,

2016). In each LSTM cell an input gate controls the amount of input information entering the

cell. The state unit si(t) has a linear self-loop. The weight of the linear self-loop is controlled by

the forget gate, allowing it to accumulate past information or to forget past information. The

output gate controls the value which gets passed to the next cell.

Figure 4 shows a single LSTM cell. As in standard RNN, the cells are recurrently stacked

together. In each LSTM cell, an input gate controls the amount of input information entering the

cell.

7

2 Related Work

2.2 Optimization

In our provided framework two optimization approaches are used - SMBO and differential

optimization. Differentiable optimization is used for the inner optimization of neural network

weights w, as well as for the outer optimization of the NAS algorithms. As the gradient descent

method was already presented in section 2.1 in the backpropagation paragraph, this section gives

only a brief introduction to the SMBO approach. In this work, SMBO is also called BO.

Sequential Model-Based Optimization Given a d-dimensional input domain X = X1×X2×
...×Xd and an output y = f (x), SMBO searches input parameter x∗, which yields global maxi-

mum (or minimum): x∗ = argmaxx∈X f (x) (Bischl et al., 2018). Usually, Bayesian optimization

uses so-called surrogate models to get cheap estimations of the black-box function f . A common

choice for a surrogate model is the so-called Gaussian process (GP). Recently also random

forests and deep feedforward neural networks have been widely used by researches. During the

optimization procedure, new points are added through an acquisition function, which balances

exploitation and exploration. In BO-based NAS, the algorithm proposes new architectures, which

should be evaluated next. The selected architectures are then used to improve and update the

surrogate f̂ .

The individual steps of the SMBO approach can be summarized as follows:

1. Sample ninit points x(j) (j = 1, ...,ninit) from X and evaluate these points on the black-box

function to compute outputs y(j) = f (x(j)). Create an initial design with these points

2. Fit a surrogate model f̂ on the tuples (x(j),y(j))

3. The acquisition function selects m new points x j+k (k = 1, ...,m), which are assumed to be

most promising for the optimization.

4. The selected points are evaluated using f and the new tuples (x(j+1),y(j+1)) are added to

the design

5. If the stopping criterion is not met, go to step 2

6. If the stopping criterion is met, return the proposed solution

8

2 Related Work

2.3 NAS algorithms

In general, NAS algorithms attempt to automate the process of finding an appropriate deep

learning model for a specific task (Elsken, J. H. Metzen, and Hutter, 2019). NAS remains

a challenging task, since the search space can have billions of network architectures (Shi et

al., 2020). Moreover, it is computationally expensive to obtain the performance of a specific

architecture. Several recent approaches attempt to speed up NAS algorithms, such as weights

or performance prediction for architectures (Baker et al., 2017; Brock et al., 2017) or weight

sharing and inheritance among individual architectures (Elsken, J.-H. Metzen, and Hutter, 2017;

Pham et al., 2018). There exist mainly two NAS approaches - sample-based algorithms and

one-shot NAS algorithms (Shi et al., 2020).

Sample-based NAS Sample-based NAS approaches usually contain an optimization algorithm

that proposes candidate architectures with a promising performance. The selected architectures

are then evaluated to obtain their actual performance. The main advantage of sample-based

approaches is good reproducibility. Furthermore, a sample-based approach may lead to a better

exploration of candidate architectures, since the search space has usually fewer constraints.

However, the main disadvantage is the need for heavy computation for training each candidate

architecture from scratch.

One-shot NAS In one-shot NAS, all architectures are merged together, to build a large one-shot

model architecture. The main advantage of one-shot NAS is, that it allows weight sharing among

sub-architectures, which accelerates the training of those. The main disadvantage is the lack of

reproducibility since the obtained results are sensitive to initialization. Moreover, one-shot NAS

introduces constraints on the search space especially on the size of the one-shot model to fit in

the memory. This leads to a smaller number of possible architectures.

To compare different NAS approaches, the provided genomeNAS framework uses sample-based

and one-shot NAS. In this section the popular NAS algorithms DARTS, P-DARTS and BONAS

are presented. While DARTS and P-DARTS use the one-shot method (H. Liu, Simonyan, and

Yang, 2019; X. Chen et al., 2019), BONAS combines one-shot NAS with sample-based NAS to

benefit from both approaches (Shi et al., 2020).

2.3.1 DARTS

The following section refers to H. Liu, Simonyan, and Yang (2019). An important source

of computational inefficiency is that conventional NAS approaches optimize over a discrete

search space, which leads to billions of possible architectures. Moreover, many sample-efficient

optimization algorithms can not be used with a discrete search space such as BO with Gaussian

processes or differentiable optimization. H. Liu, Simonyan, and Yang (ibid.) propose a continuous

relaxation of the architecture representation, to transform a discrete search space into a continuous

9

2 Related Work

search space. The continuous search space enables gradient-based optimization, which is

presumed to be more data-efficient and less computationally demanding.

Search space Many researchers propose to search for repetitive building blocks to build the

final architecture (Zoph, Vasudevan, et al., 2018; Real et al., 2019; C. Liu et al., 2018). These

building blocks are computation cells, which are stacked together to form a convolutional network

or recursively connected to form a recurrent network. Each cell is a directed acyclic graph and

consists of N ordered nodes that are connected to each other via directed edges (i, j). A node x(i)

defines a latent representation, such as feature maps in convolutional networks. The edges are

specific operations o(i, j), which transform an input node x(i), such as a dilated convolution layer

or a separable convolution layer in a convolutional network. As visualized in figure 5 the edges

connect each node to all its previous nodes. An intermediate node processes all previous nodes

by taking the sum over all previous nodes, which were transformed by a set of operations:

x(j) = ∑
i< j

o(i, j)(x(i)) (2.15)

.

The output node concatenates all previous nodes along the channel dimension. The so-called

directed acyclic graph (DAG), enables weight sharing among individual architectures, as multiple

architectures are trained simultaneously.

The discrete choice of a certain operation is transformed into a continuous search space by

applying a softmax over all possible operations:

õ(i, j) = ∑
o∈O

exp(α(i, j)
o)

∑o′∈O exp(α(i, j)
o′)

o(x) (2.16)

where O defines a set of operations (e.g., separable convolutions, dilated convolutions, average

pooling) and each operation defines some function o(.) which processes x(i). The vector α(i, j)

parameterizes the operation mixing weights for a pair of nodes (i, j) and is of dimension |O|.
exp(α(i, j)

o)

∑o′∈O exp(α(i, j)
o′)

o(x) determines the strength of an operation, and to get the final architecture, each

mixed operation õ(i, j) is replaced with the operation which yields the highest α value:

o(i, j) = argmaxo∈Oα
(i, j)
o (2.17)

.

A node in a convolutional cell retains the top-2 operations from the previous node, and for the

recurrent cells, each node uses the top-1 operation.

10

2 Related Work

Figure 5: Visualitzation of DARTS (from X. Chen et al., 2019). The figure illustrates how a

final architecture is built by stacking repetitive computation cells together. Each cell is a directed

acyclic graph and consists of four ordered nodes that are connected to each other via directed

edges (i,j). Each colored line defines a specific operation, which transforms an input node. As

can be seen, each operation has a weight, which represents the operation strength.

Optimization As visualized in Figure 5 the task of the DARTS algorithm reduces to learning

the encoding of the architecture. By optimizing the architecture encoding weights α and deep

learning weights w jointly, DARTS aims to find architecture α∗ that minimizes the validation loss

Lval(w∗,α∗) with corresponding weights w∗. The weights w∗ are determined by minimizing the

training loss w∗ = argminwLtrain(w,α∗). This results in a bilevel optimization problem, which

can be described as follows:

min
α

Lval(w∗(α),α) (2.18)

s.t. w∗(α) = argminwLtrain(w,α) (2.19)

with α being the upper-level variable and w as the lower-level variable. Due to the expensive

inner optimization, DARTS uses a simple approximation:

∇αLval(w∗(α),α)≈ ∇αLval(w− ε∇wLtrain(w,α),α) (2.20)

Algorithm 1 describes the whole procedure of the DARTS algorithm, where the bilevel optimiza-

tion is applied for a certain amount of epochs.

11

2 Related Work

Algorithm 1 DARTS - Differentiable Architecture Search

1: create a mixed operation õ(i, j) parametrized by α(i, j) for each edge (i, j);

2: for each epoch do
3: Update architecture α by descending ∇α Lval(w− ε∇wLtrain(w,α),α);

4: Update weights w by descending ∇w Ltrain(w,α);

5: end for
6: Derive the final architecture based on the learned α

2.3.2 P-DARTS

In this framework, P-DARTS is used, because the approach achieved significant improvements

over the original DARTS algorithm (X. Chen et al., 2019). P-DARTS converges much faster

while additionally achieving a better test error. While DARTS requires four GPU days for the

training of the CIFAR10 dataset, P-DARTS only requires 0.3 GPU days. Furthermore, the test

error improved from 2.76 percent to 2.5 percent.

As described in the previous section, the DARTS algorithm trains the whole one-shot model in

the search phase for a certain amount of epochs. The one-shot model is also called super-network

and consists of all operations and sub-architectures. Afterwards, the final architecture is derived

by taking the k-best operations from the super-network and increasing the number of stacked

cells (H. Liu, Simonyan, and Yang, 2019). According to X. Chen et al. (2019), this leads to the

so-called depth gap because there is a large difference between the behaviour of a shallower

one-shot model and the deeper final architecture. Normal cells of the final architectures tend

to keep shallow connections because their errors decay faster compared to the errors of deeper

connections. To address this problem, P-DARTS divides the DARTS procedure into multiple

stages and in each stage the number of stacked cells is increased. Therefore, in each stage of the

P-DARTS search, the super-network gets gradually closer to the final architecture and resolves

the large gap between the search phase and the re-training of the final architecture. Figure 6

depicts the differences between DARTS and P-DARTS.

Training deeper networks causes longer runtime of the algorithms and a larger GPU memory

usage. Moreover, the one-shot model is trained with all parameters, and therefore the parameters

of the final architecture over-fits the one-shot model. This results in poor performance, especially

when the architecture is transferred to a different task. Therefore, search space approximation

is applied, where bad performing operations are gradually removed. As illustrated in figure 7

P-DARTS does not prune the super-network in a single step to obtain the sub-network, instead,

P-DARTS gradually converge to the sub-network during the search process. While DARTS

uses a constant operation space O, constant architecture encoding α , and constant L stacked

cells, P-DARTS has operation space O(i, j)
k , α

(i, j)
k , and Lk for each stage Ψk. After each stage,

the learned architecture α
(i, j)
k−1 is used to rank the operations. Operations with lower weights

in the previous stage are assigned with lower scores and are dropped. Based on the remaining

12

2 Related Work

Figure 6: P-DARTS vs. DARTS (from X. Chen et al., 2019). While the original DARTS

approach uses eight cells in the search phase, and 20 for evaluation of the final architecture,

P-DARTS gradually increases the number of cells during the search phase.

operations, new operation space O(i, j)
k is build, i.e O(i, j)

k < O(i, j)
k−1 . Additionally, the depth of the

super-network is increased, i.e. Lk > Lk−1. As several operations are dropped in each stage,

the super-network is trained from scratch and all network weights and architecture weights are

initialized.

Figure 7: Visualitzation of P-DARTS (from X. Chen et al., 2019). DARTS search is split into

multiple stages, and in each stage some operations with low α values are discarded. Additionally,

the number of normal cells are increased in each stage.

Furthermore, training a deep one-shot model may lead to unstable gradients, and the super-

network would be biased towards skip-connect operations because their corresponding errors

decay faster than the error rates of convolutional layers. However, parametrized operations

would have a stronger ability to learn representations when trained for longer epochs in the

evaluation stage. Therefore a search space regularization is proposed, which uses operation-level

dropout (Srivastava et al., 2014). Each skip-connect operation is enhanced by a dropout layer,

where a specific number of neurons are set to 0. This leads to lower weights for skip-connect

operations and ensures the better exploration of other operations, as the straightforward path of

13

2 Related Work

skip-connection operation is disturbed. Each stage has a different dropout rate and after each

epoch the dropout rate decreases.

When determining the final architecture, the appearance of skip-connect is further regularized

by simply restricting the final architecture to only keep a certain amount M of skip-connect

operations after the final stage.

2.3.3 BONAS

Main contribution of BONAS The main contribution of the BONAS algorithm is the com-

bination of sample-based and one-shot NAS (Shi et al., 2020). The main advantage over other

sample-based NAS algorithms such as BANANAS is that BONAS can train multiple related sub-

architectures at the same time using weight-sharing. This accelerates the training of architectures.

Standard one-shot approaches use weight sharing among the whole search space, including very

different ones, which may be misleading. To solve this problem, BONAS performs the weight

sharing approach only among similarly-performing sub-architectures. Figure 8 illustrates the

BONAS procedure.

Figure 8: BONAS algorithm (from Shi et al., 2020). BONAS starts with a search phase, where

N architectures are selected. Graph Convolutional Network (GCN) embedding extractor and

Bayesian sigmoid regressor (BSR) are used as a surrogate model. The acquisition function

selects the most promising architectures and merges them to a one-shot model, the so-called

super-network. While training the super-network weights, the weights of all sub-networks are

trained simultaneously by weight sharing. These trained weights are then used in the query phase

to obtain the validation accuracy of the individual sub-networks.

Representation of architectures A main challenge of BO for NAS is the representation of the

architectures. As shown in section 2.3.1 neural networks can be represented as directed acyclic

graphs. An adjacency matrix is naturally able to encode the graph connectivity and is therefore

used to represent the edges between the nodes of the search space (ibid.). The operations of each

edge are represented as one-hot vectors, which are merged together to build the feature matrix

X . Figure 9 illustrates how an adjacency matrix A and feature matrix X gets pre-processed by

14

2 Related Work

connecting all nodes of the directed acyclic graph to an additional "global" node to enable the

GCN to produce embeddings for the whole graph.

Figure 9: Representation of an example architecture (from Shi et al., 2020). On the left side of

the figure, an example architecture with its nodes and connections is illustrated. The right side

shows the corresponding adjacency matrix A and feature matrix X .

Surrogate model Using Gaussian process (GP) as a surrogate model is a popular choice for

Bayesian optimization. However, graph convolutional networks are naturally able to preserve

the structural information of graphs (Kipf and Welling, 2017) and are therefore a proper choice

as a surrogate model. The surrogate model consists of several parts, including a GCN predictor

and a BSR.

The GCN predictor aims to produce embeddings φ(A,X), which are then used by the BSR

to determine the predictive mean and predictive variance. The learned embeddings φ(A,X) of

the GCN are feed to a regressor, which computes the accuracy prediction. The regressor is a

single-hidden-layer network. In order to ensure that the predictions lie in ranges between [0,1]

a sigmoid function is used. Thus, the GCN predictor consists of multiple graph convolutional

layers and a fully connected layer, which is followed by a sigmoid activation function. The GCN

predictor is trained with the exponentially weighted loss:

Lexp =
1
N

N

∑
i=1

(exp(ti)−1)(ti− t̃i) (2.21)

with ti being the ground truth and t̃i being the prediction of the GCN predictor (Shi et al., 2020).

The purpose of the BSR is to determine the mean and variance of the architecture’s accu-

racy. Since the GCN predictor uses a sigmoid function to predict t̃, the target y of the bayesian

sigmoid regressor is modeled as follows

15

2 Related Work

y = logit(t) = log(
t

(1− t)
) (2.22)

in order to use a bayesian linear regression model. In linear regression, model parameters w are

used together with a feature matrix to compute a prediction. From a bayesian perspective, w is

treated as a random variable with some distribution (Bishop, 2006). The prior is described as

follows:

p(w) = N (w|m0,S0) (2.23)

with mean m0 and covariance S0. The posterior will also be Gaussian since a conjugate Gaussian

prior distribution is used. The posterior distribution is then defined as:

p(w|t) = N (w|mN ,SN) (2.24)

and following Bishop (ibid.), leads to the predictive mean µ of logit(t):

µ(A,X ;D ,α,β) = mT
Nφ(A,X) (2.25)

with

mT
N = βSNΦ

T y (2.26)

SN = (αI +βΦ
T

Φ)−1 (2.27)

The precision parameters (α,β) are estimated by maximizing the marginal likelihood (Snoek

and Adams, 2012), I is the identity matrix, and Φ defines the design matrix. The equation for the

predictive variance of logit(t) is:

σ
2(A,X ;D ,α,β) = φ(A,X)T SNφ(A,X)+

1
β

(2.28)

Afterwards, the predictive mean and variance of logit(t) is converted to the predictive mean and

variance of t, which results in the following equations (Shi et al., 2020):

E[t]' (
µ√

1+λ 2σ2
), (2.29)

and

var[t]' sigmoid(
α(µ +β)√
1+λ 2α2σ2

)− sigmoid(
µ√

1+λ 2σ2
)2 (2.30)

Aquisition function An acquisition function selects new points by balancing the exploration

and exploitation (Shahriari et al., 2016). Common acquisition functions are the maximum

probability of improvement (MPI) (Kushner, 1964), expected improvement (EI) (Mockus, Tiesis,

and Zilinskas, 1978), or upper confidence bound (UCB) (Srinivas et al., 2012). Shi et al. (2020)

uses the UCB, whose exploitation exploration tradeoff is straightforward to implement. With Θ

16

2 Related Work

being the hyperparameters of BO’s surrogate model, and D being the observed data, the UCB

for a new sample x is calculated by the following equation:

aUCB(x;D ,Θ) = µ(x;D ,Θ)+ γσ(x;D ,Θ) (2.31)

µ(x;D ,Θ) represents the predictive mean of the output of the surrogate model which was defined

in equation (2.25) and σ2(x;D ,Θ) defines the corresponding predictive variance defined in

equation (2.28). γ > 0 is a hyperparameter, which balances the exploitation exploration tradeoff.

Larger γ values result in higher exploration and vice versa. The final BONAS framework is

depicted in algorithm 2.

Algorithm 2 BONAS
1: randomly select m0 architectures D from search space A for weight-sharing training;

2: initialize GCN and BSR usng D ;

3: for each BONAS iteration do
4: sample candidate pool C from A by EA;

5: for each candidate m in C do
6: embed m using GCN;

7: compute mean and variance using BSR;

8: compute UCB;

9: end for
10: M← candidates with the top-k scored;

11: (query); train M with weight-sharing;

12: add M and their performances to D ;

13: update GCN and BSR with the enlarged D ;

14: end for

17

3 Method

3 Method

3.1 Baseline models

In this chapter, a brief introduction to some popular state-of-the-art architectures for genomic

sequence data is presented.

Figure 10: Typical deep learning model for genomic sequence data (from Wang et al., 2018).

A typical DNA sequence consists of nucleobases adenine (A), cytosine (C), guanine (G), and

thymine (T). The DNA sequences are usually one-hot encoded which leads to a sequence-length

× 4 binary matrix. The figure shows how a kernel moves along an input matrix to create several

feature maps. The feature maps are then fed to a recurrent layer. The recurrent layer is then

followed by a fully connected layer and an output layer.

Figure 10 illustrates a typical deep learning model for genomic sequence data. In our frame-

work, all architectures are designed for the DeepSEA task and attempt to predict the effects

of non-coding variants on chromatin profiles, including transcription factor binding, DNA ac-

cessibility, and histone marks of sequences. The presented architectures are used within the

provided genomeNAS framework and are compared with the architectures found by genomeNAS

algorithms. All baseline models were re-implemented with the Pytorch library.

3.1.1 DeepSEA

The deep learning architecture of DeepSEA consists of three convolutional network layers

with max pooling layers in between each convolution, followed by two fully connected layers

(Jian Zhou, 2015). After each convolutional layer, a ReLU activation is applied. To regularize

the model, the first two layers use a dropout rate of 0.2 and the third layer has a dropout rate of

0.5. Figure 11 illustrates the DeepSEA architecture and its hyperparameters.

18

3 Method

Figure 11: DeepSEA architecture (Jian Zhou, 2015). The architecture consists of three convo-

lutional layers with a kernel size of eight. The first convolutional layer has channel size 320,

the second 480 and the third has channel size 960. Between the convolutional layers, the max

pooling layers downsample the sequences. The pooling layers have a kernel size four and stride

four. The first fully connected layer has 925 neurons, and the last fully connected layer has 919

neurons.

3.1.2 DanQ

Quang and Xie (2015) presented a novel hybrid convolutional and bi-directional long short-term

memory recurrent neural (BLSTM) network framework to predict non-coding functions from

genomic sequences. The convolution layer aims to learn regulatory motifs, while the recurrent

layer learns long-term dependencies between the motifs. The DanQ architecture consists of

a single convolutional layer, followed by a max pooling layer, a BLSTM layer, and two fully

connected layers. The output of the CNN part is processed by a forward and backward LSTM.

The output is flattened and passed to a fully connected layer. After max pooling a dropout layer

with dropout rate 0.2 is applied, and after the BLSTM layer, 50 percent of neurons are set to 0 to

regularize the model. The fully connected layers and the convolutional layer are followed by a

ReLU activation function. Figure 12 gives a detailed description of the DanQ architecture and its

hyperparameters.

19

3 Method

Figure 12: DanQ architecture (Quang and Xie, 2015). The single convolutional layer is of

dimension 320 and has a kernel size of 26 with stride one. The max pooling layer has kernel size

13 and stride 13. Each directional LSTM has 320 channels, which results in 640 total channels.

The first fully connected layers has 925 units and the second fully connected layer has 919 units.

3.1.3 NCNet

H. Zhang et al. (2019) propose several extensions for the convolutional network part of the DanQ

model by using deep residual CNNs, that were already applied in many domains, such as image

classification and object detections. The new convolution layers attempt to improve the learning

of the local patterns from the sequences. These recurring patterns in DNA are presumed to have

a biological function.

NCNet-RR Model (Residual Then Recurrent Network Model) Deeper networks tend to

learn more local spatial information (ibid.). However, this comes with an increased risk of

the so-called degradation (accuracy saturation) problem, where deeper models tend to have

higher training errors (He et al., 2015). This problem can be overcome with an identity shortcut

connection. Figure 13 illustrates a residual block. The residual block is used to enhance the

convolutional part of the DanQ architecture by replacing the single convolutional layer with two

of such blocks. Each residual block consists of a 1D convolution layer, a batch normalization

layer, a ReLU activation layer, and then another 1D convolution layer with batch normalization

layer.

20

3 Method

Figure 13: Skip-connection (from H. Zhang et al., 2019). The beginning of the block is directly

linked to the end of the block with an identity mapping. Afterwards, both information flows are

concatenated and flow to the next block.

NCNet-bRR Model (Bottleneck Residual then Recurrent Network Model) In order to use

more layers while keeping the training time and number of weights low, H. Zhang et al. (2019)

propose so-called "bottleneck" blocks. These blocks aim to cut down weights in order to use

more layers. Figure 14 shows the bottleneck design, where the first and the last layers have

a kernel of size one, in order to reduce and restore the channels for the middle convolution.

H. Zhang et al. (ibid.) propose a deeper network with eight bottleneck residual blocks for the

CNN part, which is connected to the recurrent part.

Figure 14: Bottleneck block (from H. Zhang et al., 2019). As can be seen, the middle layers

have smaller channel sizes than the first and the last layer. The beginning of the block is directly

connected to the end of the block with an identity mapping.

21

3 Method

3.2 Search space for genomeNAS Algorithms

In research, NAS algorithms are usually applied on image classification tasks (H. Liu, Simonyan,

and Yang, 2019; Pham et al., 2018), and therefore their search space only consists of convolutional

layers. However, DARTS and ENAS also perform NAS on language modeling tasks in order

to search for recurrent architectures (H. Liu, Simonyan, and Yang, 2019; Pham et al., 2018).

So far, Amber is the only framework that also focuses on the application of NAS for genome

data (Z. Zhang, Park, et al., 2020). However, Amber only uses a convolutional search space,

although a lot of deep learning models for genomic sequence tasks consist of convolutional

layers and recurrent layers (Quang and Xie, 2015; H. Zhang et al., 2019; Lanchantin et al., 2016;

Wang et al., 2018). Therefore, we claim that our framework provides a few advantages over

the concurrent work Amber. First, we implemented more genomeNAS algorithms in order to

compare a wider range of NAS algorithms as it is still unclear how NAS can be applied in the

field of genomics and how different NAS approaches perform with genomic sequence data. But

the outstanding feature of our provided work is the unique combination of the convolutional

DAG with recurrent DAG. We combine convolutional DAG with recurrent DAG because hybrid

models showed superior performance compared to pure convolution neural network architectures

(Quang and Xie, 2015; H. Zhang et al., 2019). Briefly, unlike the search space of Amber, which

only consists of CNN operations, our search space combines convolutional and recurrent layers.

22

3 Method

Figure 15: Search-space of genomeNAS algorithms. The input sequence of size 1000 is processed

by the convolutional DAG, which consists of three reduction cells, one high reduction cell, and

two normal cells. While the reduction cells downsample the input sequences by using a stride of

size two, the "high reduction cell" further downsample the input by using a stride of size three.

As can be seen, this results in a sequence of length 42, which is then processed by 42 recurrent

cells.

3.2.1 Convolutional part

As explained in section 2.3, a promising approach in NAS is the one-shot model approach, where

multiple sub-architectures are trained all together through weight sharing (H. Liu, Simonyan,

and Yang, 2019; X. Chen et al., 2019; Pham et al., 2018). The one-shot model is usually

defined through multiple cells that are stacked together (Zoph, Vasudevan, et al., 2018). For each

convolutional cell, the cell outputs of the previous two layers are used as input. We follow H. Liu,

Simonyan, and Yang (2019) and also use four nodes to represent a convolutional cell. While

the original DARTS algorithm stacks eight convolutions cells together, P-DARTS gradually

increases the number of stacked cells from five cells up to 17 cells (X. Chen et al., 2019). Both

approaches only use two reduction cells, while the rest of the cells are so-called normal cells.

Normal cells always use stride one, in order to keep the same dimension between the cells.

Reduction cells on the other side, use stride two for the two cell inputs to halve the dimension.

Using two reduction cells, as proposed by multiple NAS approaches, would result in halving

the input dimension two times. Given an input sequence of length 1000 for the DeepSEA task,

the output of the convolutional part would be a sequence of size 250 which is then fed to the

recurrent cells. As illustrated in figure 15 each of the 250 time steps would be processed by a

23

3 Method

recurrent DAG, which would lead to computational overhead. Moreover, popular deep learning

architectures, such as the DanQ model, reduce the input sequence from length 1000 to 75, which

is then fed to a LSTM layer (Quang and Xie, 2015). To avoid computational overhead and to

stay close to state-of-the-art genomic deep learning architectures, our convolutional search space

consists of four reduction cells and only two normal cells. Moreover, we introduce a so-called

"high reduction cell", where a stride of size three is used to further downsample the input. As

depicted in figure 15 this results in a sequence of length 42, which is then processed by the

recurrent DAG, in order to learn dependencies between the features. In total, we only stack six

cells together in the search phase and evaluation phase in order to avoid the so-called depth

gap, which was explained in section 2.3.2 (X. Chen et al., 2019). Moreover, we attempt to stay

comparable to genomic deep learning architectures such as NCNet in terms of model complexity.

As described in previous sections, the search space consists of N ordered nodes that are connected

to each other via directed edges (i, j) (H. Liu, Simonyan, and Yang, 2019). The edges are

specific operations o(i, j) which transforms an input node x(i). As genomic sequences are usually

represented through one dimensional sequences, all convolutional layers are defined through

1D convolutional layers. We consider the same operations as in DARTS, namely zero, dilated

convolutions, separable convolutions, skip-connections, max pooling, and average pooling. Both

pooling operations have filter size five, while dilated convolutions and separable convolutions

can have filter sizes nine or 15. Since most of the genomic deep learning models use normal

convolutional layers, we add normal convolution operation to our operation space, which results

in nine possible operations. The operation-space was chosen based on previous works (Jian Zhou,

2015; Quang and Xie, 2015; H. Zhang et al., 2019). The feature maps are padded to ensure

that the output dimensions of all operations are the same and can be concatenated in each node.

Each convolutional operation uses the ReLU-Conv-BN order, and each separable convolution

and normal convolution is always repeated two times (H. Liu, Simonyan, and Yang, 2019). A

convolutional cell includes two input nodes and four intermediate nodes which process the inputs.

The last node is an output node, which concatenates all the intermediate nodes. This results in

seven nodes for the convolutional part.

The convolutional network is then formed by stacking six convolutional cells together. The first

and fourth cell are normal cells and the rest are reduction cells. Moreover, the last cell is a high

reduction cell, because stride three is applied to the inputs of this cell. This results in a sequence

of size 42, which is then processed by 42 recurrent cells.

3.2.2 Recurrent part

Recurrent Highway Networks (RHN) can be described as an extension of classical LSTM by

allowing deeper step-to-step transitions (Zilly et al., 2017). While an LSTM cell has only a

transition depth of one, RHN can be defined with deeper transitions.

In our NAS framework, each time step of an RHN cell is represented as a DAG with N nodes,

24

3 Method

where N defines the transition depth. We followed the approach from H. Liu, Simonyan, and

Yang (2019) and Pham et al. (2018) using a transition depth of N = 9. Following Pham et al.

(2018), at time step t the computations for the first node are defined as follows:

c(t)1 ← sigmoid(x(t) ·W (x,c)+h(t−1)
N ·W (c)

0) (3.1)

h(t)1 ← c(t)1 ⊗ f1(x(t) ·W (x,h)+h(t−1)
N ·W (h)

1)+(1− c(t)1)⊗h(t−1)
N (3.2)

ht−1
N describes the last node from the previous time step and x(t) the input at time step t. Thus,

each recurrent cell processes the input at the current step and the state from the previous step

(H. Liu, Simonyan, and Yang, 2019). The rest of the nodes l = 2,3, ..,9 are specified as:

c(t)l ← sigmoid(h(t)jl ·W
(c)
l, jl

) (3.3)

h(t)l ← c(t)l ⊗ fl(h
(t)
jl ·W

(h)
l, jl

)+(1− c(t)l)⊗h(t)jl (3.4)

with f1 being an activation function, which the NAS algorithm searches for. In the framework

provided by DARTS and ENAS the weight matrix w is shared among the recurrent cells and

consists of W (x,c), W (x,h) and W (c)
l, j (Pham et al., 2018). The operation-space for the recurrent

part follows previous works (Pham et al., 2018; Zoph and Le, 2017) and consist of tanh, relu,

sigmoid and identity activations, as well as the zero operation. Each recurrent cell includes 12

nodes. The first two nodes are the inputs nodes and the first intermediate node processes the

input nodes as described in equations (3.1) and (3.2). For the next eight intermediate nodes, fl is

learned and the output node of a cell is defined as the average over all intermediate nodes.

3.2.3 Further settings

Identical to DanQ, the output of the recurrent part is then flattened and processed by a fully

connected layer with output size 925 (Quang and Xie, 2015). Another fully connected layer

ensures that the output size corresponds to the number of classes and finally a sigmoid layer is

applied to the output of the last layer. All genomeNAS algorithms start with an initial channel

size of eight in the first convolutional cell, which gets gradually increased in each convolutional

cell until channel size 512 is reached. The channel size of the recurrent highway networks

is then set to 512. The numbers were chosen to ensure that our model size is comparable to

state-of-the-art genomic deep learning models. While DanQ and NCNet have a channel size

of 320, DeepSEA increases its channel dimension up to 960 channels (Quang and Xie, 2015;

H. Zhang et al., 2019; Jian Zhou, 2015). As in DARTS, batches of size 64 are used during the

search phase (training and validation sets). To ensure comparability between all genomeNAS

algorithms, the batch size of all genomeNAS algorithms is set to 64.

25

3 Method

3.3 NAS algorithms for Genomic Sequence Data

3.3.1 Random Search

To analyze if the superior performance of genomeNAS algorithms (over baseline-models) results

from the well-designed search space, or the optimization, we also include random sampling in

our framework. Therefore, we compare the genomeNAS algorithms against state-of-the-art deep

learning models and also against randomly sampled architectures. We randomly sample several

architectures from the search space described in section 3.2 and train them for a specific amount

of epochs. The architecture that achieves the lowest validation loss defines the final architecture.

3.3.2 Hyperband-NAS

Moreover, we also include Hyperband-NAS in our framework. The Hyperband-NAS algorithm

starts by randomly sampling a specific number of final architectures. Then, each architecture

is trained for some epochs. The algorithm consists of several iterations. In each iteration, the

number of architectures is halved by keeping only the best performing architectures. After

halving the number of architectures, the remaining architectures are trained for some budget.

These steps are repeated for a pre-defined number of iterations. This procedure is presumed to

achieve good results, as we are directly optimizing with the final architectures instead of using a

super-network as in the one-shot approach. Moreover, the optimization uses the F1-Score instead

of validation loss, which may better handle the class imbalance.

3.3.3 genomeDARTS

Unlike the original DARTS algorithm, the operation-space of genomeDARTS now consists

of O = (Ocr,Ocn,Or), with Ocr being the operation-space of the reduction and high reduction

cells, Ocn being the operation-space of the normal cells, and Or being the operation-space of the

recurrent cells. We use the search space described in section 3.2, which results in a super-network

that consists of six convolutional cells, and the output of the convolutional cells is then fed to the

42 recurrent cells. (Ocr,Ocn) includes nine convolutional operations, which were introduced in

chapter 3.2.1 and Or includes the five activation functions which were introduced in chapter 3.2.2.

During the whole search process, the operation space O = (Ocr,Ocn,Or) is constant, which

means that the operations of the super-network stay the same during the architecture search

process. Moreover, architecture parameter α now includes (αcr,αcn,αr). Zero initialization for

architecture parameters α (for normal, reduction, and recurrent cells) ensures equal strength of

all possible operations and leads to more exploration during the beginning of the search (H. Liu,

Simonyan, and Yang, 2019). Other settings remain the same as the ones used for DARTS, where

parameters w and architecture paramters α are trained jointly during architecture search. After

training the super-network (including all operations) for a specific amount of epochs, the final

architecture is obtained by choosing the operations and edges with high alpha values.

26

3 Method

3.3.4 genomeP-DARTS

As in genomeDARTS, the operation-space O is defined through (Ocr,Ocn,Or). Identical to the

original P-DARTS algorithm, the search process of genomeP-DARTS consists of K = 3 stages

(X. Chen et al., 2019). As we add one operation to the operation space of the convolutional part,

the size of operation spaces (O(i, j)
cr,0 ,O

(i, j)
cn,0) is set to be nine in the initial stage. After the initial

stage three operations are removed from (O(i, j)
cr,0 ,O

(i, j)
cn,0) and after the second stage another three

operations are removed from (O(i, j)
cr,1 ,O

(i, j)
cn,1). Unlike original P-DARTS, we additionally need to

remove the operations from the recurrent highway network cells. In the first stage O(i, j)
r,0 consists

of five operations, which gets then decreased to three operations for Or,1, and two operations for

Or,2. To ensure the same layer size during the search and the evaluation of the final architecture

and to additionally reduce computational overhead, we use a constant layer size of six across

all stages. Other settings are similar to P-DARTS, where dropout on skip-connect operations

is applied. In each stage, the remaining one-shot model is trained for a specific amount of

epochs. While in the first epochs, only network weights wk−1 are trained to ensure well-learned

operations, in the last epochs of a stage the network weights wk−1 and architecture weights αk−1

are trained jointly as previously described. The genomeP-DARTS procedure can be described by

algorithm 3.

Algorithm 3 GenomeP-DARTS

1: initialize w0 and a mixed operation õ0
(i, j) parametrized by α

(i, j)
0 for each edge (i, j);

2: for each stage Ψk do
3: for each epoch of this stage do
4: update αk−1 by descending ∇αk−1 Lval(wk−1− ε∇wk−1Ltrain(wk−1,αk−1),αk−1);

5: update weights wk−1 by descending ∇wk−1 Ltrain(wk−1,αk−1);

6: end for
7: discard operations from O(i, j)

k−1 based on the learned α
(i, j)
k−1 to build new O(i, j)

k

8: initialize wk and a mixed operation õk
(i, j) parametrized by α

(i, j)
k , based on the new O(i, j)

k ;

9: end for
10: derive the final architecture based on the learned α

(i, j)
K

3.3.5 genomeBONAS

We follow Shi et al. (2020) and reduce the operation-space (Ocr,Ocn) to four convolutional

operations, namely identity, max pooling, separable convolutions, and dilated convolutions.

While the kernel size for max pooling is five, separable and dilated convolutions have a kernel

size 15. Having a smaller operation-space result in similar child models and ease training the

child models jointly. For the recurrent part, we include tanh, relu, sigmoid activations, as well as

the identity mapping and the zero operation as choices. As presented in section 2.3.3, BONAS

27

3 Method

uses adjacency matrices and feature matrices to represent architectures. Since genomeBONAS

now consists of a convolutional and a recurrent part, an architecture is now represented through

a convolutional adjacency matrix Ac, a recurrent adjacency matrix Ar, a convolutional feature

matrix Xc and a recurrent feature matrix Xr.

Figure 16: GenomeBONAS GCN. On the upper left part of the figure, the convolutional

architecture is shown, and on the upper right side, the recurrent architecture is illustrated. Both

architectures are encoded by an adjacency matrix and a feature matrix. While the first branch

of genomBONAS GCN processes the CNN adjacency matrix and the CNN feature matrix, the

second branch of the genomeBONAS GCN processes the RNN adjacency matrix and the RNN

feature matrix. Both feature maps are then concatenated to build the architecture embedding.

Figure 16 illustrates how an architecture is represented through four matrices. genomeBONAS

starts with an initial design D of m0 randomly sampled architectures, which are merged together,

to form a super-network (Âc, Âr, X̂c, X̂r) with adjacency matrices Âc = Ac,1||Ac,2||...||Ac,m0 and

Âr =Ar,1||Ar,2||...||Ar,m0 and feature matrices X̂c =Xc,1||Xc,2||...||Xc,m0 and X̂r =Xr,1||Xr,2||...||Xr,m0 .

Instead of training all architectures until convergence, we follow the BONAS approach and

jointly train the architectures. In each step of an epoch, one architecture is randomly sampled

from D , and only the corresponding paths in the super-network are activated (Shi et al., 2020).

After training the super-network for some epochs, each child model of the super-network is

evaluated individually with the weights of the super-network. The GCN embedding extractor

and BSR are then initialized and trained with D and the corresponding performance values ti.

28

3 Method

While BONAS uses a GCN with four graph convolutional layers to produce embeddings for

an architecture, the GCN in genomeBONAS includes two branches and each of them consists

of four graph convolutional layers. One branch processes the convolutional part and the other

the recurrent part. Both parts are then concatenated to produce embeddings for the whole

architecture. Unlike BONAS which uses accuracy as metric for its predictor, genomeBONAS

uses the F1-Score to address the class imbalance of DeepSEA data.

In each genomeBONAS iteration, new architectures are generated based on local permutations

of the current best architecture. Local permutations are applied by changing one value of the

adjacency matrix or feature matrix. This ensures better exploitation of promising architectures

and that the generated architectures are similar to each other, which eases the training of the super-

network. A sampled architecture is then fed to the GCN to produce the embedding, which is

used by the BSR to determine the predictive mean and variance of the predicted F1-Score. After

that, the UCB scores for the architectures are calculated. We then select the top-k architectures

with the best UCB scores to build new D and train them together by weight-sharing to obtain

their actual performance ti. The surrogate is then updated, using D and ti.

29

3 Method

3.4 Novel Neural Architecture Search algorithms for Genomic Sequence
Data

3.4.1 genomeOSP-NAS

As explained in section 2.3.1, DARTS jointly optimizes architecture weights α and neural

network weights w with gradient descent (H. Liu, Simonyan, and Yang, 2019). Various extensions

of the original DARTS propose to gradually prune the search space of the super-network (Li

et al., 2020; C. Liu et al., 2018; X. Chen et al., 2019). OSP-NAS is based on the same idea, as

the super-network is also pruned. Unlike P-DARTS where the architecture weights α reflect

the strength of an operation, we propose to measure the strength of an operation by its impact

on the validation performance, when being removed from a super-network. Briefly, OSP-NAS

iteratively prunes the super-network by removing operations with low operation strength in terms

of its contribution to the super-network’s validation loss. In each iteration, child models are built

by removing an operation-set from the previous super-network. As the child models only differ

in some operations from the super-network, the child models are called "supersubnetwork" in

the following work.

Figure 17 illustrates an example iteration of the genomeOSP-NAS algorithm, where three

different supersubnets are built from a super-network. These steps are executed multiple times

until the final architecture is reached.

Algorithm 4 describes the OSP-NAS procedure in more detail. The algorithm starts with an

initialized super-network S0. To build S0, we randomly sample operations from O0 to form a

super-network. At iteration 0, O0 includes all convolution and recurrent operations and edges.

S0 is then trained for a specific amount of epochs, the so-called budget. Given a pre-trained

super-network Sk−1 with an operations space Ok−1, we randomly sample n operation-sets ol

∈ Ok−1. Each operation-set includes one operation of the normal cell, one of the reduction cell,

and one of the recurrent cell. These operation-sets are removed from Sk−1 to form supersubnets

s1, ...,sn. The super-network Sk−1 is then updated by retaining the operation-set which was

discarded in worst performing supersubnet s∗l . Therefore, only the corresponding operation-set

o∗l is retained in the operation-space and all other operations-sets are discarded. The supersubnet

stays close to the previous supersubnet since only some operation-sets are discarded. Therefore,

the weights from the previous super-network can be used, which enables weight sharing across

the OSP-NAS iterations. However, to recover from the perturbation of the super-network caused

by removing the operation-sets, the updated Sk is trained for a specific budget. These steps are

applied iteratively until the final architecture is reached. While the convolution part of the final

architecture consists of four nodes and each of them has two edges, the recurrent part has eight

nodes with one edge per node. The edges of the convolutional and the recurrent part consist of

one operation per edge.

30

3 Method

Figure 17: GenomeOSP-NAS example. Three supersubnetworks are build by removing three

different operations-sets from the previous super-network. As supersubnet 1 achieves the worst

validation performance, it is presumed to exclude important operations and therefore its operation-

set is remained for the next iteration. The operation-sets from supersubnet 2 and 3 are discarded

to build the new super-network.

Algorithm 4 OSP-NAS
1: sample m random operations from O0 to build supernet S0;

2: pretrain supernet S0 with some budget (epochs);

3: while not converged do
4: sample randomly n operation-sets from Ok−1;

5: remove these operation-sets from supernet Sk−1 to build supersubnets s1, ...,sn;

6: for each candidate l do
7: validate the supersubnet sl using weights from pretrained supernet Sk−1;

8: end for
9: rank all candidates s1, ...,sn, based on the validation loss;

10: keep the operation-set o∗l of the worst performing supersubnet to build Sk;

11: update Ok, by removing all other operation-sets;

12: train supernet Sk for some budget (epochs) with weight sharing;

13: end while

31

3 Method

The computation time of the algorithm is mainly affected by the budget, which is defined as the

number of epochs. Also parameter n plays an important role, because a high n value, leads to a

better exploration of the search space of the remaining super-network, as more operation-sets are

evaluated. On the other side, this would also result in a high number of discarded operations per

iteration, and the algorithm would also need a higher budget to recover.

3.4.2 genomeCWP-DARTS

To speed up the genomeP-DARTS algorithm, we designed Genome Continuous Weight Shar-

ing Progressive Differentiable Architecture Search (genomeCWP-DARTS), where the weights

of the inner optimization wk as well as the architecture weights α
(i, j)
k are shared between

stages. Identical to the already presented genomeP-DARTS algorithm, the search process

of genomeCWP-DARTS consists of several stages. But instead of reinitializing the weights

(wk,α(i, j)
k) at each stage, the weights from the previous stage (wk−1,α(i, j)

k−1) are transferred to the

current stage. Same as in genomeP-DARTS, genomeCWP-DARTS starts with nine convolutional

operations and five recurrent operations. To enable a fluent transition from one stage to the

next stage, we use again K = 3 number of stages. By only discarding a few operations, the

remaining super-network Sk stays close to the super-network Sk−1 from the previous stage. This

procedure is presumed to ease weight sharing across stages because the small perturbation on

the super-network results in a small performance drop between stages. Therefore the algorithm

also needs fewer epochs to recover from the perturbation of the super-network.

The number of operations, which are discarded in each stage, remains the same as in genomeP-DARTS.

The new super-network Sk is then built with the remaining convolutional and recurrent op-

erations and is initialized with the weights (wk−1, α
(i, j)
k−1) that matches the operations from

(Ocr,k,Ocn,k,Or,k). With the weight sharing approach, we attempt to reduce the number of epochs

and to speed up the genomeP-DARTS algorithm. Other settings are similar to genomeP-DARTS.

3.4.3 genomeDEP-DARTS

To obtain the final architecture, we first have to determine the best operation from each edge (i, j),

and then, the top edges are selected (H. Liu, Simonyan, and Yang, 2019; X. Chen et al., 2019;

Shi et al., 2020; Pham et al., 2018). In a final architecture, each node of a convolutional cell

keeps the top-2 edges, while the recurrent cells only retain the top-1 edge. As the recurrent cells

include nine intermediate nodes, the last node always processes all eight previous nodes during

architecture search. After retaining only the best edge of a node, the final architecture is only

trained with one edge per node. Therefore we claim, that there is a large gap between the search

and the evaluation, as already described in previous works (X. Chen et al., 2019). To overcome

this issue, we propose a P-DARTS approach, where not only bad performing operations are

discarded, but also bad performing edges.

In the following, we describe how an optimal edge is determined. As described in the previous

32

3 Method

section, the best operation of an edge (i, j) is obtained by choosing the operation with the highest

α value:

o(i, j) = argmaxo∈Oα
(i, j)
o (3.5)

Now, the maximum α(i, j) value of each edge (i, j) can be determined with

α
∗(i, j) = argmax

α∈α(i, j)α
(i, j)
α . (3.6)

The best edge of a node i can be determined, by selecting o∗(i, j), which has the highest α∗(i, j)

value of a given node i:

o∗(i, j) = argmaxo∈Oα
∗(i, j)
o (3.7)

Figure 18: Process of discarding edges from a node. Node three receives two edges - one from

node one and one from node two. In the first step, the best α value of each edge has to be

determined, which is α∗(1,3) = 0.53 and α∗(2,3) = 0.42. In the second step, the operation with

the highest α∗(i, j) is selected, which is the corresponding operation to α∗(1,3).

Figure 18 illustrates, how an edge from node three is discarded. After each stage, the Genome

Discarding Edges Progressive Differentiable Architecture Search (genomeDEP-DARTS) proce-

dure includes two steps. In the first step, the candidate operations of O(i, j)
k−1 for each edge (i, j)

are ranked based on the learned α
(i, j)
k−1 . O(i, j)

k is then built by retaining only the top-candidate

operations. In the next step, all edges (i, j) of a node i are ranked according to the size of

α∗(i, j) for an edge (i, j). After ranking all edges, the edges (i, j) with the lowest α∗(i, j) scores

are removed from the super-network Sk−1. The detailed procedure of genomeDEP-DARTS is

illustrated in algorithm 5.

33

3 Method

Algorithm 5 GenomeDEP-DARTS

1: initialize w0 and a mixed operation õ0
(i, j) parametrized by α

(i, j)
0 for each edge (i, j);

2: for each stage Ψk do
3: for each epoch of this stage do
4: update αk−1 by descending ∇αk−1 Lval(wk−1− ε∇wk−1Ltrain(wk−1,αk−1),αk−1);

5: update weights wk−1 by descending ∇wk−1 Ltrain(wk−1,αk−1);

6: end for
7: discard operations from O(i, j)

k−1 based on the learned α
(i, j)
k−1 to build new O(i, j)

k

8: determine α∗(i, j), which is highest α value of an edge (i, j)

9: rank each edge (i, j) based on the magnitude of α∗(i, j)

10: discard bad performing edges (i, j) according to the ranks

11: initialize wk and a mixed operation õk
(i, j) parametrized by α

(i, j)
k for each edge;

12: end for
13: derive the final architecture based on the learned α

(i, j)
K

Identical to P-DARTS and genomeP-DARTS, genomeDEP-DARTS includes K = 3 stages. After

the first stage the top-6 candidate operations of the convolutional cells, and top-3 candidate

operations of the recurrent cells are retained. Additionally, we limit each node of a convolutional

cell to receive a maximum of four connections. As the convolutional cells have four nodes,

the 4th and last node can receive an edge from the two previous convolutional cells as well as

from the three previous nodes, which results in five connections in the initial stage. Forcing the

nodes to have a maximum of four connections, results in discarding the worst-performing edge

of the last node of the convolutional cells. For the recurrent cells, we choose a maximum size

of five connections after the initial stage. Therefore the 8th node of a recurrent cell removes

three edges, the 7th node two edges, and so on. After the second stage, we keep the top-3

candidate operations of the convolutional cells, and top-2 candidate operations of the recurrent

cells to build a new operation-space Ok. To further decrease the number of edges, the upper limit

for connections is set to be three for the convolutional cells and the recurrent cells. To obtain

the final architecture after the last stage K, we follow the same procedure as all previous NAS

algorithms by determining the best operation for each edge and then using the top-2 edges for

the convolutional cell and the top-1 edge for the recurrent cell.

34

4 Experiments

4 Experiments

4.1 Data and Application

The main functionalities of the genomic NAS algorithms are demonstrated with the DeepSEA

genome task.

Non-coding DNA sequences play an important role in the human genome, as the majority of

disease-associated variants lie in these sequences (H. Zhang et al., 2019). While 98.5 percent

of the human genome consists of non-coding DNA sequences, most of them have an unknown

function. Thus, the prediction of the function of non-coding DNA has gained increasing interest in

the bioinformatics research community (H. Zhang et al., 2019; Quang and Xie, 2015; Jian Zhou,

2015; Z. Zhang, Park, et al., 2020). The DeepSEA task is a popular non-coding DNA sequence

dataset. The labels of DeepSEA data were determined through high-throughput sequencing of

public available ChIP-seq data and quantifies genome-wide molecular profiles, such as protein

bindings or chemical modifications (Jian Zhou, 2015). DeepSEA, DanQ, and NCNet are popular

deep learning architectures for the prediction of non-coding DNA. They provide a framework to

predict the effects of non-coding variants on chromatin profiles, including transcription factor

(TF) binding, DNA accessibility, and histone marks of sequences. Both - the DanQ and NCNet

framework - use the same features and data provided by Jian Zhou (ibid.). Furthermore, Amber

attempts to perform NAS on the DeepSEA data.

Our provided framework also uses the training, validation, and testing data sets from the

DeepSEA website to investigate how NAS algorithms can be applied for the prediction of

non-coding functions. The data can be downloaded from http://deepsea.princeton.edu/help/. The

input is represented by a one-hot encoded 1000-bp DNA sequence, which leads to a 1000×4

binary matrix, where the columns correspond to A, G, C, and T. Each input sequence has a

corresponding target which is a vector of length 919, where each element stands for a chromatin

feature which is labeled as 1, if it is active, or 0 otherwise. The 919 chromatin features consist of

125 DNase features, 690 TF features, and 104 histone features. The DeepSEA task attempts to

solve a multi-label classification task, as multiple chromatin features can be active at the same

time. Each of them executes a binary classification for the corresponding target. The dataset is

split into three non-overlapping datasets. The training data has 4,400,000 samples, the validation

data 8,000 samples, and the testing data 455,024 samples. The genomeNAS algorithms use

the training and validation set in the training phase. While the training data is used for the

optimization of the neural network weights, the validation data is needed to update the alpha

weights. The test data is only used for the evaluation of the final architectures.

35

4 Experiments

4.2 Preliminary Study

DARTS and ENAS run experiments on image classification and language modeling tasks (H. Liu,

Simonyan, and Yang, 2019; Pham et al., 2018). For image classification, an initial learning rate

of 0.025 is used and for language modeling tasks an initial learning rate of 20 is used. Due to

the high difference between the learning rate for the image classification tasks and the language

modeling tasks, we decide to use different learning rates for the convolutional and recurrent

part of the search space. Obviously, the learning rate of the recurrent highway network has

to be larger than the learning rate of the convolutional part. As first experiments showed high

sensitivity to the learning rate of the recurrent part, we decide to run a preliminary study, which

is presented in this section. Moreover, DARTS applies variational dropout (Gal and Ghahramani,

2016) of 0.2 to word embeddings, 0.75 to the cell input, and 0.25 to all the hidden nodes (H. Liu,

Simonyan, and Yang, 2019). As first experiments indicated poor performance with these settings,

we also include different variational dropout rates for the cell input and the hidden nodes in the

preliminary study section. GenomeDARTS is used as NAS algorithm to compare the different

configurations. In order to reduce computational runtime, genomeDARTS is only run for 10

epochs. The batches are of size 64 and the rest of the settings are the same as described in

section 2.3. For each configuration, genomeDARTS is run four times, which results in four

final architectures per configuration. We then run each of these final architectures for 20 epochs

and report its validation performance. As our genomeNAS algorithms make decisions based on

validation loss (DARTS algorithms) and F1-Score (genomeBONAS), we report the results for

both metrics. Other settings are the same as described in section 4.3.1.

Figure 19 summarizes the different learning rates and variational dropout rates for the recurrent

cells. The figure outlines that there is a big impact of the chosen initial learning rate on the final

result for the DeepSEA task. Learning rate two leads to a bad validation loss (and F1-Score)

for all three dropout rates, which indicates poor performance of the learning rate two. But one

can observe that there is no big difference between the configurations of learning rate eight and

learning rate 12, as the medians for the configurations of both learning rates are close to each

other. However, it can be observed, that using a dropout rate of 0.1 for the cell input and 0.05

for hidden nodes shows the best results for all three learning rates (blue boxes). Unsurprisingly,

configurations with a low validation loss tend to yield a high F1-score. As the median of the

configuration with learning rate eight and variational dropout 0.1 for the cell input and 0.05 for

the hidden nodes yield the lowest validation loss, as well as the highest F1-Score, we decided to

use this hyperparameter configuration in this work.

36

4 Experiments

Figure 19: Benchmark of different hyperparameter configurations. Brown boxes are configura-

tions with zero dropout, blue boxes are always with variational dropout rate 0.1 for cell input

and 0.05 for hidden node and green boxes show the result of variational dropout rate 0.3 for

cell input and 0.1 for hidden nodes. While the figure on top shows the validation loss of the

configurations, the figure on the bottom shows the F1-Score of the configurations.

37

4 Experiments

4.3 Benchmark NAS Algorithms on DeepSEA task

4.3.1 Experimental Design

We follow the NAS procedure suggested by H. Liu, Simonyan, and Yang (2019), where the NAS

procedure is defined through three steps, namely architecture search, architecture selection, and

architecture evaluation. In architecture search, we aim to learn the optimal architecture (encoding

α in DARTS approaches) by training the genomeNAS algorithms for a pre-defined number of

epochs. After the search phase is completed, we obtain the final architecture. Each model is

then run for a defined amount of replications on the test set and the results are averaged. The

genomeNAS procedure can be explained with the following steps:

1. Search phase: Run each NAS algorithm four times to obtain four different final architec-

tures.

2. Selection phase: Run each of those four final architectures for 50 epochs and report the

validation performance of each algorithm. The architecture that achieves the highest

F1-Score on the validation data is chosen as the final architecture of the NAS algorithm.

3. Evaluation phase: To obtain the final performance of the final architecture of a NAS

algorithm, we train it from scratch for 50 epochs and report its F1-Score on the test data.

It is important to note that the test set is only used for the evaluation phase and not in the

search phase or the selection phase. Since our results show some variance, even with the

same setting, we do four replications of the final architecture run and average over the

obtained results.

genomeDARTS As explained in the previous section, we use two different learning rates for

the inner optimization of the weights w. In the convolutional part, the inner optimization of the

weights is done with momentum SGD and an initial learning rate νw = 0.025, which is annealed

down to zero based on a cosine schedule without restart (Loshchilov and Hutter, 2017). We use

an SGD optimizer to ensure that our optimizer is similar to DARTS. Momentum is set to 0.9,

and weight decay to 3 ×10−4 (H. Liu, Simonyan, and Yang, 2019). For the recurrent part we

use the same SGD optimizer but without momentum, and weight decay 5 ×10−7. Based on the

preliminary study results, the initial learning rate of the recurrent part is set to eight. Except

the initial learning rate of the recurrent part and the fact that our SGD optimizer consists of two

parts, the hyperparameters are identical to those in DARTS.

Also for the optimization of the architecture parameters α the settings remain the same as the

ones used for DARTS. Similarly to DARTS, the architecture variables α are optimized with

Adam (Kingma and Ba, 2017) with an initial learning rate of να = 3 ×10−3, weight decay 10−3

and momentum β = (0.9, 0.999). The stability of the network training can be ensured through a

gradient clipping of size 0.25. Through this specification the gradients are not able to leave a

pre-defined range. As in DARTS, the search is running for 50 epochs.

38

4 Experiments

Random search and Hyperband For the Random search, 20 architectures are randomly

sampled and trained for 7 epochs. This procedure ensures a similar runtime to other genomeNAS

algorithms. In our experiments, the Hyperband-NAS algorithm consists of four iterations. In the

first iteration, 20 architectures are randomly sampled and trained for three epochs. In the second

iteration, the remaining 12 architectures continue their training with epochs three to six. As

described in section 3.2, the final architectures always include three reduction cells, two normal

cells, one high reduction cell, and 42 recurrent cells. The convolutional cells consist of four

intermediate nodes, where each node receives two connections with one operation. The recurrent

cells are defined through eight intermediate nodes, and each node receives one connection. The

connections and the corresponding operations or activation functions are then randomly sampled.

Other settings remain the same as for the other search algorithms, where a final channel-size of

size 512, and a batch size of 64 are used. The hyperparameters for the inner optimization are the

same as already described in the genomeDARTS paragraph.

genomeP-DARTS Most of the settings are similar to P-DARTS (X. Chen et al., 2019), where

the initial dropout probability on skip-connect is set to 0.1 for the first stage, 0.2 for the second

stage, and 0.3 for the third and last stage. In each stage, the one-shot model is trained for 25

epochs. To ensure well-learned inner weights, in the first 10 epochs, only network weights are

trained. In the last 15 epochs of a stage, the network weights and architecture weights α are

trained jointly. As in P-DARTS, we use Adam optimizer with learning rate ν = 0.0006, weight

decay 0.001 and momentum β = (0.5,0.999) for optimizing architecture parameters α . The

optimizer for network parameters wk is the same as for genomeDARTS.

genomeCWP-DARTS The initial stage of the genomeCWP-DARTS is the same as of P-

DARTS, where the super-network is trained for 25 epochs, and in the first 10 epochs, only the

super-network weights are trained. In stage two and three, the super-network is trained for 15

epochs and in the first three epochs, only the super-network weights are updated. Therefore

the number of epochs is reduced from 75 to 55. The hyperparameters for the inner and outer

optimization are the same as in genomeP-DARTS.

genomeDEP-DARTS As in P-DARTS, the super-network Sk is always trained for 25 epochs.

While in the first 10 epochs only network weights wk are trained, in epoch 10 to 25 the net-

work weights wk and architecture weights αk are trained in a joint fashion. The rest of the

settings, such as the learning rates for the inner optimization as well as the learning rate for

updating the architecture parameters are the same as already used for genomeP-DARTS and

genomeCWP-DARTS.

genomeOSP-NAS GenomeOSP-NAS starts with 108 randomly sampled operations for the

normal cells, reduction cells and recurrent cells to build the initial super-network. The super-

39

4 Experiments

network is then pre-trained for 10 epochs to ensure well-learned weights before discarding the

first operations. The number of sampled operations n is set to seven for each iteration. As we only

retain the best performing supersubnet, six operations are discarded in each iteration. To recover

from the perturbation of the super-network, we use a budget of size five, which means that the

remaining super-network is trained for five epochs in each iteration. The inner optimization

of network weights w follows the same procedure as already described in the genomeDARTS

paragraph.

genomeBONAS GenomeBONAS starts with an initial design by randomly sampling 60 archi-

tectures, which are trained for 60 epochs. Afterwards, the genomeBONAS procedure described

in section 3.3.5 is repeated for two additional iterations. In each iteration, 1000 candidate archi-

tectures are sampled and the candidates with top-60 UCB scores are trained for 60 epochs. We

follow the BONAS method and use a batch size of 128 to update neural network weights. The

hyperparameters for the inner optimization of neural network weights are the same as previously

described.

Selection and evaluation phase For the evaluation of the final architectures, we use batch

size 100, which is the same as already used in DanQ, DeepSEA and NCNet (Quang and Xie,

2015; Jian Zhou, 2015; H. Zhang et al., 2019). The final architectures of the NAS algorithms

include six convolutional cells and 42 recurrent cells. The channel-size and the settings for the

optimization of w remain the same as previously described. The convolutional cells consist of

four intermediate nodes, and each of them has two connections. The recurrent cells include eight

intermediate nodes, and each of the nodes has one connection.

4.3.2 Experimental Results

In this section, we study the search efficiency of the proposed genomeNAS algorithms and

compare them against state-of-the-art baseline models. To compare the deep learning models

different performance metrics, such as the F1-Score, the macro-averaged PR-AUC score, and the

macro-averaged ROC-AUC score are used. We use the same settings as previously described,

where the final architectures are obtained by running each NAS algorithm four times and only

using the best performing architecture. Then, the best architecture is running four times.

Selection phase First experiments indicated big differences between different NAS runs. Some

NAS runs result in a good performing final architecture and some do not. As we are interested in

genomeNAS algorithms which provide stable results and good performing architectures across

different runs, the results of all genomeNAS runs will be compared. Instead of only using the

best performing architecture, which was chosen in the selection stage as described in section

4.3.1, the boxplots now summarize the results of all four genomeNAS runs from the selection

phase.

40

4 Experiments

Figure 20: Benchmark of the selection phase. A box summarizes all four runs of the corre-

sponding genomeNAS algorithm by training the final architecture of each run for 50 epochs and

reporting its F1-Score on the validation data.

Figure 20 depicts the performance of the genomeNAS algorithms. It can be seen, that Hyperband

and genomeDEP-DARTS provide the best results, as the boxplots have the highest medians and

the highest upper whiskers. The upper whisker is important because only the best performing

architecture is used for the evaluation phase. Moreover, figure 20 illustrates that the Hyper-

band search yields strong performing architectures across various runs because the algorithm

achieves the highest median, the highest lower whisker, and the highest upper whisker. The

median of the genomeBONAS algorithm is higher than the medians of genomeCWP-DARTS,

genomeDARTS, genomeOSP-NAS, and Random search. In addition, genomeBONAS also has

the lowest variance, which results in equally well performing architectures. Nevertheless, despite

Random search, genomeBONAS has the lowest upper whisker, hence the algorithm is not able

to find a very good performing final architecture for the evaluation phase. The corresponding

boxes of the genomeCWP-DARTS and genomeDARTS algorithms show the highest variance,

which indicates that both algorithms yield more inconsistent final results.

Evaluation phase In the following paragraph, the results of the evaluation phase are summa-

rized. Table 1 and figure 21 illustrate the results of the final architectures, which were found by

NAS algorithms. The optimization approaches of the genomeNAS algorithms seem to work well

because except genomeBONAS, all genomeNAS algorithms perform better than the baseline

Random search. Moreover, except genomeBONAS, all genomeNAS algorithms also consistently

outperform the baseline algorithms. Even Random search achieves an average PR-AUC score

41

4 Experiments

of 21.90 and an average ROC-AUC score of 84.56, which is comparable to the results from

NCNet-RR and NCNet-bRR and better than the results of the DeepSEA and the DanQ algorithm.

This indicates a strong performance of our unique designed search space, where a convolutional

DAG is combined with a recurrent DAG.

Table 1: #params defines the number of parameters of a final architecture or a baseline model.

The GPU days column depicts the average amount of GPU days of the genomeNAS search

process, averaged over all four runs of the genomeNAS algorithm. For baseline models, there is

no architecture search process, and the number of GPU days is marked "-"

Algorithms #params PR-AUC ROC-AUC GPU days

DeepSEA 52.84 M 6.44 71.22 -
DanQ 46.93 M 17.27 81.5 -

NCNet-RR 57.58 M 22.15 84.01 -
NCNet-bRR 47.69 M 22.05 84.31 -

Random search 27.01 M 21.90 84.56 10.22
Hyperband-NAS 26.86 M 23.44 85.23 9.91
genomeDARTS 29.22 M 23.90 85.47 10.21

genomeP-DARTS 27.08 M 22.24 84.68 11.61
genomeBONAS 26.25 M 21.20 84.19 24.03

genomeOSP-NAS 26.91 M 23.40 85.28 9.93
genomeCWP-DARTS 26.54 M 22.97 84.98 8.62
genomeDEP-DARTS 26.73 M 22.87 84.95 10.45

Hyperband-NAS, genomeDARTS, and genomeOSP-NAS achieve the best results. Hyperband-

NAS has an average PR-AUC score of 23.44 and an average ROC-AUC score of 85.23,

genomeDARTS has an average PR-AUC score of 23.90 and an average ROC-AUC score of

85.47, and genomeOSP-NAS has an average PR-AUC score of 23.40 and an average ROC-AUC

score of 85.28. The performance of these three NAS algorithms are mostly comparable, perhaps

with a slight advantage for the genomeDARTS due to the slightly higher PR-AUC and ROC-

AUC score. The own designed algorithm genomeDEP-DARTS performs better than the original

genomeP-DARTS, which indicates that we achieved to further decrease the gap between search

and evaluation (X. Chen et al., 2019).

Hyperband-NAS shows strong performance because the algorithm has some advantages over the

NAS algorithms. We assume that the good performance of Hyperband results from directly using

the final architecture performance. The DARTS algorithms (DARTS, P-DARTS, CWP-DARTS

and DEP-DARTS) for example use a one-shot model, where all sub-architectures are trained and

evaluated in a joint fashion to learn the operation strength α (H. Liu, Simonyan, and Yang, 2019).

As the learned α values only reflect the operation strength of an operation of the super-network, it

does not directly quantify the performance of a sub-architecture. With an average PR-AUC score

42

4 Experiments

Figure 21: Benchmark NAS algorithms against baseline models. The figure shows the test

F1-Scores of all genomeNAS algorithms and baseline models. For the genomeNAS algorithms,

the boxes summarize the results of the best performing run, which is replicated four times.

of 21.20 and an average ROC-AUC score of 84.19, the final architecture of the genomeBONAS

algorithm is the worst performing architecture. Although BONAS uses the validation perfor-

mance of individual architectures, the weights of the individual architectures are determined by

training multiple sub-architectures jointly. Therefore we claim that the validation performance

of an individual architecture may be misleading because of the so-called gap between training

and evaluation (X. Chen et al., 2019). For Hyperband on the other side, there is not such a gap

between training and evaluation. The architecture which is used for training is also used for

validation. As the boxplots from figure 21 indicate little variance in the results, obviously, a good

performing architecture usually performs equally well over various runs. Figure 21 shows that

the genomeDARTS algorithm produces a very good performing final architecture, but as can be

seen in figure 20, it turns out that the genomeDARTS runs have some variance. GenomeDARTS

produces some very good performing architectures, but also some bad performing architectures.

We also include the run-time and number of parameters in our analysis. As can be seen in

table 1, the final architectures of the genomeNAS algorithms have fewer parameters than the

baseline models. While the genomeNAS architectures include 26.25-29.22 million parameters,

the baseline models include 46.69-57.58 million parameters. The baseline models consist of

more parameters because the convolutional part of the baseline models downsamples the input to

a sequence of size 75, which is then fed to the recurrent layer and then to the fully connected

layer. On the other hand, a final architecture of a genomeNAS algorithm downsamples the input

to a sequence of size 42, which results in fewer units for the fully connected layer. Among

43

4 Experiments

the genomeNAS algorithms, genomeDARTS produces the most complex architectures with on

average 29.22 million parameters. On the other side, genomeBONAS produces the less complex

models with on average only 26.25 million parameters.

The run-time of Random search, genomeDARTS, Hyperband, genomeOSP-NAS, and genomeDEP-DARTS

are comparable and the algorithms approximately last 10 GPU days. The own designed algorithm

genomeCWP-DARTS is the fastest algorithm and only needs 8.62 GPU days to complete the

search process. GenomeBONAS is the slowest algorithm and lasts on average 24.03 GPU days.

Training process Figure 22 illustrates the training and validation process of the final architec-

tures of the genomeNAS algorithms. The lines represent the average validation F1-Scores for

the individual epochs and the shadows represent the 95 percent confidence interval over the four

replications of the final architecture. In contrast to the validation process, the training process

does not have a lot of variance. The plots show that all architectures tend to converge at the

same point. Between the first and the 40th epoch, the validation F1-Scores are not smooth and

the lines have a lot of spikes. After approximately 40 epochs, the model starts to converge and

the validation F1-Scores stabilize. DeepSEA takes 7.18 minutes, DanQ 13.7, NCNet-RR 51.83

minutes, and NCNet-bRR 33.58 minutes to complete one epoch. The final architectures of the

genomeNAS algorithms take on average 156 minutes (2.6 hours) to finish an epoch.

44

4 Experiments

(a) genomeDARTS (b) genomeP-DARTS

(c) genomeDEP-DARTS (d) genomeBONAS

(e) genomeOSP-NAS (f) Hyperband

(g) genomeCWP-DARTS (h) Random search

Figure 22: Training and validation process. The plots show the training and validation F1-Scores

of all genomeNAS Algorithms.

45

5 Conclusion and future work

5 Conclusion and future work

It can be summarized that our unique designed search space works very well, as all genomeNAS

algorithms showed strong performance on the DeepSEA task and outperformed current state-

of-the-art baseline models as well as randomly sampled models. Even randomly sampled

architectures from the search space outperform state-of-the-art models, such as DanQ. Therefore

we conclude, that the unique combination of two directed acyclic graphs, as well as the usage of

two different learning rates for the convolutional and the recurrent part, has great potential for

further research.

However, it still remains a challenging task to adopt state-of-the-art NAS algorithms for genomic

sequence data because algorithms such as P-DARTS consist of a lot of hyperparameters, and

it is unclear which one works best for genomic sequence data. For instance, the appropriate

number of stages or the best dropout rate of skip-connections can vary across different tasks or

applications. The preliminary study results indicated high sensitivity to the hyperparameters

of the genomeNAS algorithms. Especially the learning rate and the variational dropout rates

of the recurrent highway network seem to have a big impact on model performance. While

DARTS and ENAS use a learning rate of 20, we achieve good results with a learning rate of eight.

It still remains unclear if there exists a general hyperparameter configuration for genomeNAS

algorithms that works well over several genome tasks. Referring to the preliminary study results,

a learning rate of eight seems to be a good choice as the initial learning rate for the recurrent part.

We showed that the common NAS approach, where only the best performing architecture from

the selection phase is selected, may be misleading. While genomeDARTS achieved the best

performance in the evaluation phase, we showed that the selection phase of the genomeDARTS

algorithm is affected by some variance. Another drawback is the computational demanding

search process, as we have to search over two directed acyclic graphs instead of one as in

common NAS algorithms. This leads to much longer run-times of the genomeNAS algorithms

compared to common NAS approaches. In this work, we mainly focused on the DeepSEA task

due to computational constraints.

46

5 Conclusion and future work

Acknowledgement

I would like to thank my supervisors Dr. Mina Rezaei and Martin Binder for the inspiring weekly

discussions. Also, the assistance provided by Prof. Dr. Bernd Bischl, Philipp C. Münch and

Anil Gunduz was greatly appreciated. In addition, I would like to thank the Munich Center for

Machine Learning and Helmholtz Centre for Infection Research for providing computational

resources.

47

References

References

Baker, B. et al. Accelerating Neural Architecture Search using Performance Prediction. 2017.

arXiv: 1705.10823 [cs.LG].

Bischl, B. et al. mlrMBO: A Modular Framework for Model-Based Optimization of Expensive

Black-Box Functions. 2018. arXiv: 1703.03373 [stat.ML].

Bishop, C. M. Pattern Recognition and Machine Learning. Springer New York, 2006.

Brock, A. et al. SMASH: One-Shot Model Architecture Search through HyperNetworks. 2017.

arXiv: 1708.05344 [cs.LG].

Chen, L.-C. et al. Searching for Efficient Multi-Scale Architectures for Dense Image Prediction.

2018. arXiv: 1809.04184 [cs.CV].

Chen, X. et al. Progressive Differentiable Architecture Search: Bridging the Depth Gap between

Search and Evaluation. 2019. arXiv: 1904.12760 [cs.CV].

Elsken, T., J. H. Metzen, and F. Hutter. Neural Architecture Search: A Survey. 2019. arXiv:

1808.05377 [stat.ML].

Elsken, T., J.-H. Metzen, and F. Hutter. Simple And Efficient Architecture Search for Convolu-

tional Neural Networks. 2017. arXiv: 1711.04528 [stat.ML].

Eraslan, G. et al. “Deep learning: new computational modelling techniques for genomics”. In:

Nat Rev Genet 20 (2019). eprint: 389âĂŞ403. URL: https://doi.org/10.1038/s41576-
019-0122-6.

Gal, Y. and Z. Ghahramani. A Theoretically Grounded Application of Dropout in Recurrent

Neural Networks. 2016. arXiv: 1512.05287 [stat.ML].

Goodfellow, I., Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

He, K. et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV].

Huang, Y. and Y. Chen. Autonomous Driving with Deep Learning: A Survey of State-of-Art

Technologies. 2020. arXiv: 2006.06091 [cs.CV].

Hutter, F., L. Kotthoff, and J. Vanschoren. Automatic Machine Learning: Methods, Systems,

Challenges. http://automl.org/book. Springer, 2019.

Jian Zhou, O. T. “Predicting effects of noncoding variants with deep learning–based sequence

model”. In: Nat Methods 12 (2015). eprint: 931-934. URL: https://doi.org/10.1038/
nmeth.3547.

Kingma, D. P. and J. Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980
[cs.LG].

Kipf, T. N. and M. Welling. Semi-Supervised Classification with Graph Convolutional Networks.

2017. arXiv: 1609.02907 [cs.LG].

Kushner, H. J. “A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve

in the Presence of Noise”. In: 86.1 (Mar. 1964), pp. 97–106. DOI: 10.1115/1.3653121.

URL: https://doi.org/10.1115%2F1.3653121.

48

https://arxiv.org/abs/1705.10823
https://arxiv.org/abs/1703.03373
https://arxiv.org/abs/1708.05344
https://arxiv.org/abs/1809.04184
https://arxiv.org/abs/1904.12760
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1711.04528
389–403
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/s41576-019-0122-6
https://arxiv.org/abs/1512.05287
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2006.06091
http://automl.org/book
931-934
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1038/nmeth.3547
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://doi.org/10.1115/1.3653121
https://doi.org/10.1115%2F1.3653121

References

Lanchantin, J. et al. Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences

Using Deep Neural Networks. 2016. arXiv: 1608.03644 [cs.LG].

Lecun, Y. et al. Efficient BackProp. 1998.

Li, G. et al. SGAS: Sequential Greedy Architecture Search. 2020. arXiv: 1912.00195 [cs.LG].

Liu, C. et al. Progressive Neural Architecture Search. 2018. arXiv: 1712.00559 [cs.CV].

Liu, H., K. Simonyan, and Y. Yang. DARTS: Differentiable Architecture Search. 2019. arXiv:

1806.09055 [cs.LG].

Loshchilov, I. and F. Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. 2017.

arXiv: 1608.03983 [cs.LG].

Mockus, J., V. Tiesis, and A. Zilinskas. “The Application of Bayesian Methods for Seeking the

Extremum”. In: Towards Global Optimization 2.117-129 (1978), p. 2.

Pham, H. et al. Efficient Neural Architecture Search via Parameter Sharing. 2018. arXiv: 1802.
03268 [cs.LG].

Quang, D. and X. Xie. “DanQ: a hybrid convolutional and recurrent deep neural network for

quantifying the function of DNA sequences”. In: bioRxiv (2015). DOI: 10.1101/032821.

eprint: https://www.biorxiv.org/content/early/2015/12/20/032821.full.pdf.

URL: https://www.biorxiv.org/content/early/2015/12/20/032821.

Real, E. et al. Regularized Evolution for Image Classifier Architecture Search. 2019. arXiv:

1802.01548 [cs.NE].

Shahriari, B. et al. “Taking the Human Out of the Loop: A Review of Bayesian Optimization”. In:

Proceedings of the IEEE 104.1 (2016), pp. 148–175. DOI: 10.1109/JPROC.2015.2494218.

Shi, H. et al. Bridging the Gap between Sample-based and One-shot Neural Architecture Search

with BONAS. 2020. arXiv: 1911.09336 [cs.LG].

Snoek Jasper, H. L. and R. P. Adams. Practical Bayesian optimization of machine learning

algorithms. 2012. arXiv: 1206.2944 [cs.LG].

Srinivas, N. et al. “Information-Theoretic Regret Bounds for Gaussian Process Optimization

in the Bandit Setting”. In: IEEE Transactions on Information Theory 58.5 (May 2012),

pp. 3250–3265. ISSN: 1557-9654. DOI: 10.1109/tit.2011.2182033. URL: http://dx.
doi.org/10.1109/TIT.2011.2182033.

Srivastava, N. et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:

Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958. URL: http://jmlr.
org/papers/v15/srivastava14a.html.

Sun, C.-Y., A. C. .-H. Wu, and T. Hwang. A Novel Privacy-Preserving Deep Learning Scheme

without Using Cryptography Component. 2020. arXiv: 1908.07701 [cs.CR].

Wang, R. et al. “DeepDNA: a hybrid convolutional and recurrent neural network for compressing

human mitochondrial genomes”. In: 2018 IEEE International Conference on Bioinformatics

and Biomedicine (BIBM). 2018, pp. 270–274. DOI: 10.1109/BIBM.2018.8621140.

Young, T. et al. Recent Trends in Deep Learning Based Natural Language Processing. 2018.

arXiv: 1708.02709 [cs.CL].

49

https://arxiv.org/abs/1608.03644
https://arxiv.org/abs/1912.00195
https://arxiv.org/abs/1712.00559
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1802.03268
https://doi.org/10.1101/032821
https://www.biorxiv.org/content/early/2015/12/20/032821.full.pdf
https://www.biorxiv.org/content/early/2015/12/20/032821
https://arxiv.org/abs/1802.01548
https://doi.org/10.1109/JPROC.2015.2494218
https://arxiv.org/abs/1911.09336
https://arxiv.org/abs/1206.2944
https://doi.org/10.1109/tit.2011.2182033
http://dx.doi.org/10.1109/TIT.2011.2182033
http://dx.doi.org/10.1109/TIT.2011.2182033
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1908.07701
https://doi.org/10.1109/BIBM.2018.8621140
https://arxiv.org/abs/1708.02709

References

Zhang, H. et al. “NCNet: Deep Learning Network Models for Predicting Function of Non-coding

DNA”. In: Frontiers in Genetics 10 (2019), p. 432. ISSN: 1664-8021. DOI: 10.3389/fgene.
2019.00432. URL: https://www.frontiersin.org/article/10.3389/fgene.2019.
00432.

Zhang, Z. and M. R. Sabuncu. Generalized Cross Entropy Loss for Training Deep Neural

Networks with Noisy Labels. 2018. arXiv: 1805.07836 [cs.LG].

Zhang, Z., C. Y. Park, et al. “An automated framework for efficiently designing deep convo-

lutional neural networks in genomics”. In: bioRxiv (2020). DOI: 10.1101/2020.08.18.
251561. eprint: https://www.biorxiv.org/content/early/2020/08/19/2020.08.
18.251561.full.pdf. URL: https://www.biorxiv.org/content/early/2020/08/
19/2020.08.18.251561.

Zhao, Z.-Q. et al. Object Detection with Deep Learning: A Review. 2019. arXiv: 1807.05511
[cs.CV].

Zilly, J. G. et al. Recurrent Highway Networks. 2017. arXiv: 1607.03474 [cs.LG].

Zoph, B. and Q. V. Le. Neural Architecture Search with Reinforcement Learning. 2017. arXiv:

1611.01578 [cs.LG].

Zoph, B., V. Vasudevan, et al. Learning Transferable Architectures for Scalable Image Recogni-

tion. 2018. arXiv: 1707.07012 [cs.CV].

50

https://doi.org/10.3389/fgene.2019.00432
https://doi.org/10.3389/fgene.2019.00432
https://www.frontiersin.org/article/10.3389/fgene.2019.00432
https://www.frontiersin.org/article/10.3389/fgene.2019.00432
https://arxiv.org/abs/1805.07836
https://doi.org/10.1101/2020.08.18.251561
https://doi.org/10.1101/2020.08.18.251561
https://www.biorxiv.org/content/early/2020/08/19/2020.08.18.251561.full.pdf
https://www.biorxiv.org/content/early/2020/08/19/2020.08.18.251561.full.pdf
https://www.biorxiv.org/content/early/2020/08/19/2020.08.18.251561
https://www.biorxiv.org/content/early/2020/08/19/2020.08.18.251561
https://arxiv.org/abs/1807.05511
https://arxiv.org/abs/1807.05511
https://arxiv.org/abs/1607.03474
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1707.07012

References

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig verfasst, keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt und Zitate und gedankliche Übernahmen kenntlich

gemacht habe.

51

	Introduction
	Related Work
	Deep learning
	Optimization
	NAS algorithms
	DARTS
	P-DARTS
	BONAS

	Method
	Baseline models
	DeepSEA
	DanQ
	NCNet

	Search space for genomeNAS Algorithms
	Convolutional part
	Recurrent part
	Further settings

	NAS algorithms for Genomic Sequence Data
	Random Search
	Hyperband-NAS
	genomeDARTS
	genomeP-DARTS
	genomeBONAS

	Novel Neural Architecture Search algorithms for Genomic Sequence Data
	genomeOSP-NAS
	genomeCWP-DARTS
	genomeDEP-DARTS

	Experiments
	Data and Application
	Preliminary Study
	Benchmark NAS Algorithms on DeepSEA task
	Experimental Design
	Experimental Results

	Conclusion and future work

