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1. Introduction

Motivation. The increasing usage of automated high-stake decision-making by

states, companies, and individuals has a considerable impact on an individual’s life: for

example, on job applications (Schumann et al., 2020), justice (Angwin et al., 2016), credit

scoring (Khandani et al., 2010), and healthcare (Grote & Berens, 2020). Nevertheless,

along with many positive effects like efficiency, automated decisions can unintentionally

influence the real world. By, e.g., replicating stereotypes in selected data sets or ignoring

minorities in the predictions, decisions can be contradictory to an individual’s or societal

interests.

The research field of algorithmic fairness deals with the mitigation of unfair auto-

mated decision-making. Individuals or societies define “unfairness” depending on the

decision-making context and their ethical values: should models treat individuals or

groups equally? Should models have the same predictive performance for everyone? As

a result of divergent answers to these exemplary questions, there are many definitions

of fairness.

In the current research, fairness is primarily measured for groups with one binary sen-

sitive attribute, e.g., different genders (male vs. not male) or races (dark-skinned vs.

light-skinned persons). However, group fairness does not imply so-called subgroups

fairness. Here, we compare overlapping groups with multiple features: even though an

algorithm treats overall gender and ethnicity fairly, it might not mean that dark-skinned

women are treated fairly (Buolamwini, 2018; Foulds et al., 2020).

One important fairness measure is well-calibration within the groups (Kleinberg et al.,

2017). Well-calibration means that the predicted probability of a model for a subject

numerically reflects the actual probability for all groups. In particular, calibration is

beneficial when the result does not constitute an immediate decision but rather serves

to inform decision-making during risk assessment (e.g., health risk assessment, awarding

a loan; Noriega-Campero et al., 2019). In addition, well-calibration ensures that risk

assessments for different (protected) populations are equivalent (Pleiss et al., 2017). For

example, as small groups typically do not affect the average minimized loss over the en-

tire training data, a trained model might be almost perfectly calibrated for the majority

group but not calibrated with respect to minority groups (Chouldechova & Roth, 2020).
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To address the bias in modeling with respect to subgroups, Hébert-Johnson et al. (2018)

and Kim et al. (2019) presented the multicalibration framework. The framework

post-processes an existing model by calibrating or debiasing the prediction for all sub-

groups. So far, this boosting algorithm has only been developed for binary classification.

Survival models predict the probability that an event (e.g., death or illness) takes place

at a specific time based on given features. Thus, survival models are often the basis

of risk assessment (Angwin et al., 2016; Barda et al., 2021). Especially in healthcare,

different risk evaluations for persons belonging to different subgroups might translate

into the false allocation of medical resources (Ferryman & Pitcan, 2018). Therefore, it

is crucial to have equal predictive power across all subgroups in survival analysis.

This thesis extends the multicalibration framework to a survival setting by adapting the

optimized loss function.

Research Question. We answer the following research question (RQ):

Is a multicalibrated survival model fairer than the same survival model without

post-processing?

The desired metric is the mean of the censored version of the Integrated Brier Score

(IBS) with respect to the subgroups (Subgroup-IBS, S-IBS) `CSIBS = 1
nS
·
∑

j∈C `
C
IBS,j ,

where C = {S1,S2, . . . ,SnS} is the set of all evaluated subgroups and nS is the number

of subgroups which are evaluated. `CIBS,S is the IBS (9) evaluated on subgroup x ∈ S.

Subquestions (SQ) in this context are:

• SQ1: How does multicalibration affect the calibration overall? The desired metric

is the IBS with respect to the whole population.

• SQ2: How does multicalibration affect discrimination? The desired metric for

discrimination in survival analysis is Harrell’s C-index.

• SQ3: How does the effect of multicalibration change if the initial survival model is

trained on a data set skewed towards a majority population?

Key Contributions. In this thesis, we present a novel method to mitigate unfairness in

a survival setting. Thus, the key contributions are an interpretation of multicalibration

as gradient boosting and the extension of multicalibration to survival analysis:

• First, we interpret the multicalibration framework as an adjusted version of gradi-

ent boosting that optimizes the Brier Score.
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• Second, we present a possible adaption of the multicalibration framework with a

modified loss function for survival analysis. To the best of our knowledge, there is

no boosting approach that optimizes the censored Integrated Brier Score. Besides

the theoretical framework, we provide an implementation in R and show empirically

how multicalibration can influence the performance of a survival model.

Thesis Structure. The thesis is structured as follows. First, in Chapter 1, we intro-

duce the theoretical problem of interest, motivate the proposed algorithm, and outline

the main theoretical and practical contributions. Chapter 2 provides relevant back-

ground knowledge and notation for fairness in machine learning, performance evaluation

in survival analysis, gradient boosting, and multicalibration for binary classification. In

Chapter 3, we present the adaption of the multicalibration framework to a survival

setting. This modification includes a new notion of fairness, the corresponding boost-

ing algorithm, and the implementation in R. In Chapter 4, we address the research

question based on the implemented algorithm by conducting several experiments. After

that, we show our experimental setup and the results. Finally, Chapter 5 concludes

this thesis with a discussion of the results and motivates future research.
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2. Theoretical Background

First, we provide theoretical background and basic notation on fairness in machine learn-

ing, survival analysis, and gradient boosting. Second, we introduce the multicalibration

framework in the context of boosting.

2.1. Fairness in Machine Learning

Fairness is an ubiquitous and relative term with many subjective and conflicting def-

initions of what it is, for whom, and how it should be achieved. Still, it is necessary

to discuss the unintended impact of machine learning model predictions on society, as

fairness can be defined and strived for within different contexts.

2.1.1. Defining Bias

Before we define fairness, we present the very central concept of biases in machine

learning. The distinction between bias and fairness is ambiguous in the literature, and

many authors use both terms synonymously. Therefore, we present the types and the

sources of biases in the following.

Types of Biases. Mitchell et al. (2021) divide biases concerning data into statistical

and societal biases. We transfer this concept to the whole model (and its prediction), as

bias is introduced in the whole machine learning life cycle (Suresh & Guttag, 2019). As

depicted in Figure 1, models try to represent the “world as it is.” Statistical biases

describe a systematic mismatch between the modeled and the real world. Most machine

learning aims to minimize these biases. However, even if there is no statistical bias,

algorithmic predictions might include societal bias: the decision does not meet the

objectives of the decision-maker or a policy (e.g., equal positive rates between different

ethnicities). These context-dependent objectives correspond to a “world as it should

be.” (Mitchell et al., 2021; Suresh & Guttag, 2019). As many different kinds of biases

within statistical and societal bias exist (e.g., sampling bias, historical bias), we refer to

Mehrabi et al. (2019) and Suresh and Guttag (2019) for an overview.

Sources of Biases. Biases can originate from the different steps of a machine learning

modeling process. In Figure 1, a simplified version of the machine learning loop illus-

trates the four stages where biases are introduced according to Barocas et al. (2020):

measurement, learning, action, and feedback. First, most biases are already included

when gathering and measuring the data from the “world as it is.” A typical bias

in the data is the representation bias: the population in the data does not reflect the

population subjected to the model (Suresh & Guttag, 2019). Second, also within the
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2.1 Fairness in Machine Learning

World as it is

World as it should be

Pre-
diction

Data Model

Societal Bias 

World as it is modeled

Sources of Biases

Learning

Action Feedback

Measurement

Legend:

Statistical 
Bias

Figure 1: Types and sources of biases in machine learning partly based on Mitchell et al.
(2021) and Barocas et al. (2020). Two types of biases exist: statistical and
societal bias. In machine learning, we often focus on reducing the statistical
bias, the systematic mismatch between the modeled and actual world. On the
other hand, societal bias is the systematic mismatch between the modeled and
an optimal world concerning ethical considerations. We can locate the sources
of these biases in every step of the modeling process: measurement, learning,
action, and feedback.

learning process, biases are included. For example, minority groups might be modeled

less accurately or not at all, as the average error is minimized with respect to the whole

population (Chouldechova & Roth, 2020). Third, actions based on automated deci-

sions can also produce biases. For example, Bolukbasi et al. (2016) showed that word

embeddings replicate stereotypes like “man is to computer programmer as a woman is

to housewife.” In automated systems, the application of learned connections may aggra-

vate existing biases. For example, male candidates may be ranked higher than similarly

competent female applicants in job searches that the system detects as male-associated.

Lastly, feedback loops are a concern. Suppose we already have data biased towards a

particular region in the data or model to detect criminal activities. Officers are more

likely to patrol in these locations and confirm these patterns. As a result, predictions

are skewed using data from targeted regions, and criminal behavior in regions is more

likely to be predicted in these regions (Lum & Isaac, 2016).

2.1.2. Defining Fairness

The purpose of fairness metrics is to identify societal bias, or situations when the predic-

tion differs from “the world as it should be” (Mitchell et al., 2021) or even amplifies the
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2.1 Fairness in Machine Learning

difference between “the world as it is” and the “world as it should be” (feedback loops,

action). Across different disciplines, fairness (or how “the world as it should be”) can

be approached from different research areas. However, within these disciplines, there is

no common understanding of the definition of fairness.

Fairness in Machine Learning. Based on the ideas in these research areas, fairness

has emerged as a concern in decisions based on algorithms. The fairness of a machine

learning model is determined by a set of legal or ethical criteria that vary by country

and culture (Fletcher et al., 2021) and aims to mitigate societal bias (Mitchell et al.,

2021). Mehrabi et al. (2019) defined fairness in machine learning as “the absence of

any prejudice or favoritism towards an individual or a group based on their inherent or

acquired characteristics. Thus, an unfair algorithm is one whose decisions are skewed

toward a particular group of people.”

Roots of Fairness. As fairness definitions in machine learning are based on ideas in

other research areas, we present the main ideas about fairness in other disciplines: in

law, fairness means protecting individuals or groups from discrimination and maltreat-

ment based on protected traits or social group categories. Thus, the main focus lies on

some protected attributes defined in the law (e.g., gender or race). In philosophy, by

contrast, the main focus lies on what morally correct decisions are. A field of philoso-

phy, political philosophy, deals with fairness as justice and equity, i.e., how goods should

be distributed. Social science focuses more on how members of particular groups (or

identities) generally benefit from certain conditions (Mulligan et al., 2019). Finally, a

mathematical perspective of fairness is taken by quantitative disciplines (e.g., math-

ematics, statistics, economics). Here fairness is assessed by a mathematically defined

criterion like error rates or equitable allocation (Mulligan et al., 2019).

Fairness for what. Based on philosophical and legal ideas, we can distinguish between

disparate treatment (treating individuals or groups similarly) and disparate outcome

(having fair outcomes or results for individuals or groups; Gajane & Pechenizkiy, 2017).

An example of disparate treatment is “fairness through unawareness” (Dwork et al.,

2012). Due to it, a model is fair if we are not aware of protected attributes during

modeling. However, this technique has proven ineffective in many instances, as protected

variables may be correlated with not-protected factors (Gajane & Pechenizkiy, 2017).

For example, living in a neighborhood within a city can be correlated with a particular

ethnicity or religion. Therefore, we focus on the disparate outcome, including notions

of group, individual, and subgroup fairness (Gajane & Pechenizkiy, 2017). Besides these

central ideas, causal fairness is a considerable concern that urges the causal effect of
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2.1 Fairness in Machine Learning

specific sensitive attributes to be fair (Bonchi et al., 2017; Chiappa, 2019; Kilbertus

et al., 2017; Kusner et al., 2017; Kusner et al., 2019; Zhang & Bareinboim, 2018).

Fairness towards whom. Most research on fairness is conducted using statistical defi-

nitions (group fairness) calculated across a limited number of protected demographic

categories (e.g., racial and gender). The advantage of this notion of fairness is that it

is simple to obtain and easily verifiable. However, group fairness only ensures that the

average members of these groups are protected, not individuals or so-called subgroups

(Chouldechova & Roth, 2020). Furthermore, in contrast to group fairness, individ-

ual fairness requires that constraints be imposed on specific pairs of individuals (e.g.,

Dwork et al., 2012; Joseph et al., 2016). The disadvantage of individual fairness is that

it is unclear whether individual notions of can be realized due to several obstacles (e.g.,

defining a similarity metric between individuals, Chouldechova & Roth, 2020; Dwork

et al., 2012). Subgroup fairness resolves discrimination against overlapping subgroups

and is often seen as ideal, as it combines group and individual fairness (Foulds et al.,

2020). Subgroups are defined on a subset of the sensitive attributes. Nevertheless, it is

associated with severe statistical and computational challenges, including data scarcity

at the intersections of minority groups and an exponentially large number of subgroups

(Yang et al., 2020).

Currently, literature in algorithmic fairness mainly deals with group fairness for a dis-

parate outcome. There are at least over 18 different fairness measures; for an overview,

we refer to current fairness literature (Barocas et al., 2020; Berk et al., 2018; Caton &

Haas, 2020; Mehrabi et al., 2019; Verma & Rubin, 2018). We note that it is impossible

to combine all fairness notions. Most notions are contradictory (e.g., be calibrated and

have equal false positive and negative rates for all groups, Chouldechova, 2017; Klein-

berg et al., 2017). Additionally, there is no single notion of fairness we can apply in

every situation. It is up to the researcher or practitioner to assess their circumstances

and prioritize their criteria (Makhlouf et al., 2020).

2.1.3. Achieving Fairness

As illustrated in Figure 1, there are two possibilities to reduce unfairness: having an

actual world that is closer to the “world as it should be” and a model with low statistical

bias (i.e., social solutions in the real world) or having machine learning models with low

societal bias. In the following, we focus on the latter, technical solutions to the problem.

Technically, we can reduce unfairness by adjusting the data (pre-processing), the model

(in-processing), and the prediction (post-processing).
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2.2 Survival Analysis

Pre-Processing. Usually, a major source of unfairness is the measurement of the data.

Therefore, pre-processing methods alter protected variable sample distributions or per-

form data modifications to remove discrimination from training data (Caton & Haas,

2020; Kamiran & Calders, 2012).

In-Processing. In-processing methods emphasize that modeling techniques often get

skewed by dominating features or other distributional effects. Therefore, these methods

address unfairness by integrating fairness measures into model optimization functions to

optimize performance and fairness. (Caton & Haas, 2020; Zafar et al., 2017)

Post-Processing. Post-processing typically involves modifying model predictions to im-

prove accuracy. We only need access to the prediction and sensitive attribute data in

post-processing, not the underlying machine learning model. Thus, post-processing is

ideal if the whole machine learning process is unavailable and only black-box access to

the model is needed. (Caton & Haas, 2020; Hardt et al., 2016; Hébert-Johnson et al.,

2018)

2.2. Survival Analysis

In fairness, survival analysis has rarely been a concern (Keya et al., 2021), as most

research focuses on binary classification tasks. In this section, we present the notation

and the survival problem we are dealing with in the thesis. Additionally, we present how

we evaluate survival models.

2.2.1. Notation and Survival Problem

In survival analysis, we define the random variable Y that describes the time until an

event occurs, e.g., the time until recidivism or the death of a patient. The random

variable Y is therefore non-negative, as it describes a duration. Survival analysis encom-

passes various tasks, including interval-censored data, time-varying effects, competing

states, and time-varying features (Bender et al., 2020). We focus on a standard setting

with right-censoring, one event of interest, and time-constant features.

Survival Function. The probability that an event has not occurred by a time point

t is given by the survival function S(t). Using the cumulative distribution function

F (t) = P (Y ≤ t), the survival function can be defined as

S(t) := P(Y > t) = 1− F (t). (1)
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2.2 Survival Analysis

time t 

1

2

3

4

Figure 2: Censoring in right-censored data. On the horizontal axis is the time, and on
the vertical axis are the subjects. The bold vertical line is the end of the
study. The white circles mark the censoring time, and the black circles the
true death time. Subject 1 is uncensored and dies within the observed time
frame. Subjects 2-4 are censored: Subjects 2 and 3 drop out during the study
time, and subject 4 drops out after the end of the study.

As the distribution function is monotonically increasing, the survival function is mono-

tonically decreasing. The conditional survival function S is defined as the probability

that the event has not occurred up to time point t given the features x. We define the

conditional distribution function over the survival times:

S(t |X = x) = P(Y > t |X = x) = 1− P(Y ≤ t |X = x). (2)

In a setting without censoring, we observe the random variables of a p-dimensional

feature vector and the survival time (X, Y ) ⊂ X × Y with Y ⊆ R+
0 and X ⊆ Rp.

Censoring. Naturally, the time of an event may be unknown for various reasons, in-

cluding the end of a study project or the drop-out of a subject from the study. As a

consequence, the subject’s data is incomplete (i.e., censored). Among different types

of censoring (e.g., left-censoring or interval-censoring; Kalbfleisch & Prentice, 2002),

most models assume right-censoring (Cox, 1972; Kaplan & Meier, 1958; Wang et al.,

2019). Therefore, we follow this assumption. As illustrated in Figure 2, a subject is

right-censored if a subject drops out of the study before the end of the study (subjects

2 and 3 in Figure 2) or if the event is not observed within the monitored time frame

(subject 4 in Figure 2). Formally, a subject is right-censored if its actual event time Y

is greater than the random variable C ⊂ Y, which denotes the censoring time (i.e., the

time point where the subject is not observed anymore).

Right-Censored Data. One challenge in survival is that we cannot observe the full

data-generating process, as we can never observe both the censoring C and the event

Y , only either-or. Instead we can examine the observed event time Ỹ = min(Y,C)
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2.2 Survival Analysis

and a censoring indicator ∆ = I(Y ≤ C) with the indicator function I. Formally, we

observe the random variables (X, Ỹ ,∆) ⊂ X × Y × {0, 1}. We assume that the actual

survival time Y and the censoring time C are conditionally independent given X (i.e.,

conditionally event-independent).

Survival Task. As a result of the differences between the data generating process (Y

and C) and the observed variables (Ỹ and ∆), there are different survival problems

modeled, as the representation of Y can differ between models. According to Haider

et al. (2020), survival predictions can have the following characteristics:

(1) predicting probabilities p ∈ [0, 1] or real-valued ranking scores s ∈ [−∞,∞]

which are not meaningful themselves,

(2) having a functional response over time or a scalar response where survival models

have a scalar prediction for a particular time point or time-independently, and

(3) making individual predictions (for every feature vector x) or for populations

(e.g., Kaplan-Meier models; Kaplan & Meier, 1958).

For further details on the types of survival models, we refer to Haider et al. (2020). For

effective decision-making, a probability distribution over the remaining time-to-death

for every subject is desirable (individual survival distributions; Avati et al., 2019;

Haider et al., 2020):

h : X → L2(T , [0, 1]), (3)

where T = [t1, t2] with t1, t2 ∈ R. Individual survival distributions map a feature vector

x ∈ X to a probability distribution over T .

2.2.2. Evaluation Measures

In general, we measure how much the predicted value h(x) reflects the observed true label

y evaluating a survival model. As illustrated in Figure 3, performance measurement in

survival includes two concepts: discrimination and calibration (Steyerberg et al., 2004).

Discrimination indicates if a model can distinguish the event of two classes properly.

For example, in the context of survival analysis, a model with good discrimination assigns

lower survival probabilities to subjects where time to the event is low and higher survival

probabilities to a subject where the time to the event is high (D’Agostino & Nam,

2003). Calibration measures how numerically close the predicted probability is to the

true probability (D’Agostino & Nam, 2003). We can achieve both independently of

each other. However, a good performance in discrimination as well as in calibration is

desirable.

10



2.2 Survival Analysis

predicted value predicted value

Good calibration Good discrimination

Figure 3: Calibration and discrimination. On the x-axis is the predicted value and on
the y-axis is the observed value. The black dots illustrate two predictions.
The left figure depicts a model with good calibration (i.e., the predicted value
equals the observed value). The figure on the right side shows the predictions
of a model with good discrimination (i.e., the outcome classes are separated
well and have a good ranking).

Loss Function. Analogous to Brockhaus et al. (2017), we can define a loss function

ρ : (Y × X )×H → L1(T , µ) (4)

mapping the data (y,x) and the model h to a function in the space of integratable

functions L1(T , µ). To formulate it differently, ρ maps the data and the model to a

function that measure the difference between Y (t) and h(x)(t) for each t ∈ T . For

better readability, we omit t in the following.

To obtain a real-valued loss, we define a loss function ` : (Y×X )×H → R by integrating

the loss function ρ

`((y,x), h) =

∫
ρ((y,x), h)dµ, (5)

where µ is the Lebesgue measure for a functional response and the Dirac measure for a

scalar response.

Inverse Probability of Censoring Weights. If the data includes censored observations,

we cannot evaluate the loss `((y,x), h), as we can only observe (X, Ỹ ,∆) and thus

can evaluate the loss just indirectly. One possibility to solve this discrepancy between

modeled and observed data is the application of inverse probability of censoring weights

(IPCW; van der Laan & Robins, 2003):

`((ỹ,x), h | G) = `((ỹ,x), h) · δ

G(ỹ | x)
, (6)
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2.2 Survival Analysis

with

δ

G(ỹ | x)
= w (t) =


1/G(t | x), if t < ỹ

1/G(ỹ | x), if t ≥ ỹ and δ = 1

0, otherwise.

(7)

where G(c | x) = P(C > c | x) is a conditional censoring function. By this weighting,

subjects with a high censoring probability have less influence on an expected loss over

a sample and vice versa. Subjects after their censoring time (i.e., t ≥ ỹ and δ = 0) have

an unknown status, are excluded from the calculation.

Evaluating Calibration. In the survival context, so far, there is no widely accepted

measure to evaluate the calibration of a survival distribution (Avati et al., 2019). Nev-

ertheless, in the literature, the (Integrated) Brier Score is often used to evaluate the

calibration in survival analysis (Kvamme et al., 2019; Lee et al., 2020; Murphy, 1973).

We define the Brier Score (Brier, 1950; Mogensen et al., 2012) in survival analysis as

ρBS((y ≤ t,x), h(t | x)) =
1

2
(h(t | x)− I[y < t])2 ∈ [0, 1]. (8)

The aim is to minimize the Brier Score. The censored Integrated Brier Score (IBS,

Integrated Graf Score; Gerds & Schumacher, 2006; Graf et al., 1999) can evaluate the

Brier Score on all time points and for censored observations (IPCW):

`CBS((ỹ ≤ t,x), h(t | x)) =

∫
w (t) · ρBS((ỹ ≤ t,x), h(t | x))dµ(t) ∈ [0, 1], (9)

where w (t) denotes the censoring weights according to IPCW weighting (7). Recently,

Haider et al. (2020) proposed D-calibration to evaluate the calibration of a survival

distribution. Notwithstanding, we do not focus on D-calibration, as it assumes that the

times after censoring are uniformly distributed. As a result, the assessment can be too

optimistic in a setting with many censored observations (Avati et al., 2019).

Evaluating Discrimination. The most common (discrimination) measure in survival

analysis is the Harrell’s concordance index (C-index or C-statistics; Gerds et al., 2013;

Harrell et al., 1982). It measures the model’s ability to rank the survival times based on

individual survival probability. Hence, it is defined as the proportion of pairs that are

properly ordered (concordant) to pairs that are comparable. A pair (i, j) is concordant

if h (xi) < h (xj) and it is comparable, if ỹi < ỹj and δi = 1. Thus, we can write the

12



2.3 Gradient Boosting

C-index as:

C :=

∑
i 6=j I (ỹi < ỹj , h (xi) < h (xj) , ỹi < τ) δi∑

i 6=j I (ỹi < ỹj , ỹi < τ) δi
∈ [0, 1], (10)

where τ is the cut-off time. The aim is to maximize the C-index. For further details,

we are referring to Harrell et al. (2005) and Penciana and D’Agostino (2004), and Uno

et al. (2011).

2.3. Gradient Boosting

Gradient boosting is a machine learning method that combines multiple weak learners b

into a single strong learner f . Given the connection between multicalibration boosting

and our application to survival analysis, we provide a brief overview of gradient boosting

in classification and survival analysis. Additionally, we present the related boosting

formulation AnyBoost, which serves as the basis for the definition of multicalibration

and the formulation of multicalibration boosting stopping criteria.

Idea. In the gradient boosting (Friedman, 2001), we learn a linear combination of a

class of base learners B:

f(x) :=

(
M∑
m=1

η[m]b[m](x)

)
, (11)

where b[m](x) ∈ B is the base learner and η[m] the corresponding learning rate. The

most popular choice for weak learners are classification and regression trees (CART,

Breiman et al., 1984). We can formulate the optimization problem in boosting with a

loss function ρ as (Brockhaus et al., 2017; Hothorn et al., 2014):

f∗ = arg min
f

EY,Xρ((Y,X), f)

= arg min
f

∫
ρ((y,x), f)dPY,X(y,x).

(12)

We randomly sample N points i.i.d. from a joint distribution of the target Y and the

features X (i.e., (Yi,Xi) ∼ PY,X , i = 1, . . . , N). In boosting, we minimize the empirical

risk where we define P̂Y,X(y,x) as a empirical distribution which puts weight mass

wi = 1
N on an observation i (Hothorn et al., 2014):

f∗ = arg min
f∈lin(B)

∫
ρ((y,x), f)dP̂Y,X(y,x)

= arg min
f∈lin(B)

{
1

N

N∑
i=1

ρ (yi, f (xi))

}
.

(13)

13



2.3 Gradient Boosting

Algorithm. To minimize the empirical risk (13), gradient boosting takes an approxi-

mated steepest descent step: starting with a loss-optimal constant model f̂ [0](x), the

gradient boosting algorithm calculates in every step m the so-called pseudo-residuals

r̃[m] (x), which are the negative gradient of the loss ρ with respect to the model f evalu-

ated at the current model f̂ [m](x). Then the weak learner is fitted to the pseudo-residuals

by minimizing the quadratic loss. The weak learner approximates the steepest steps (the

pseudo-residuals). This weak learner is added via line search or by a very small con-

stant η[m]. We repeat these steps for M repetitions. Usually, we should stop the gradient

boosting algorithm early to achieve good predictive performance (Bühlmann & Hothorn,

2007; Friedman, 2001; Zhang & Yu, 2005).

Algorithm 1 Gradient Boosting Algorithm.

1: Initialize f̂ [0](x) = arg min
b∈B

N∑
i=1

ρ(y(i), b(x(i)))

2: for m = 1→M do

3: Calculate pseudo-residuals: r̃[m] (x) = −
[
∂ρ((y,x), f)

∂f

]
f=f̂ [m−1]

4: Fit a regression base learner b[m](x) to the pseudo-residuals r̃[m]:

5: b[m](x) = arg min
b∈B

(r̃[m] − b[m](x))2

6: Update f̂ [m](x) = f̂ [m−1](x) + η[m] · b[m](x)

7: end for

8: Output f̂(x) = f̂ [M ](x)

Gradient Boosting in Binary Classification. In gradient boosting for classification, we

keep the probabilities π(x) within a range of [0, 1] by passing the unnormalized scores

into a sigmoid function. Taking the y − π(x) as pseudo-residuals equals optimizing the

Log-Loss (Good, 1952):

ρlog((y,x), f) = −yf(x) + ln(1 + exp(f(x))) (14)

r̃ (x) = −
[
∂

∂f
ρlog((y,x), f)

]
f=f̂ [m−1]

=

y − 1

1 + exp(−f(x))︸ ︷︷ ︸
π(x)


f=f̂ [m−1]

(15)

The complete calculation can be found in Appendix A.
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2.3 Gradient Boosting

Gradient Boosting in Survival Analysis. First, Ridgeway (1999) considered modeling

survival data with gradient boosting. In the literature, boosting in survival analysis

is mainly adapted for optimizing specific survival models like a Cox proportional haz-

ards model (Binder & Schumacher, 2008) or accelerated failure time model (Schmid &

Hothorn, 2008; Wang & Wang, 2010), discrimination in survival models (Mayr & Schmid,

2014) or based on component-wise boosting (Hofner et al., 2014). The Integrated Brier

Score has not been considered so far. To the best of our knowledge, boosting in fair-

ness has not been considered for survival analysis nor subgroup fairness, but rather for

binary classification (Iosifidis & Ntoutsi, 2019; Vargo et al., 2021) or in deep learning

approaches (Avati et al., 2019; Kamran & Wiens, 2021).

AnyBoost. Based on the boosting formulation in Mason et al. (2000), lines 2 and 3

in Algorithm 2 can be seen as functional gradient descent. Instead of minimizing

the least-squares error of the base learner b(x) and the pseudo-residuals r̃, Mason et al.

(2000) fit the base learner by maximizing the negative inner product of the base learner

and the gradient (negative pseudo residual) 〈U (x) , b(x)〉 with U (x) = −r̃ (x). It can

be shown that both formulations are equivalent:

arg max
b∈B

−〈U (x) , b(x)〉 = arg min
b∈B

N∑
i=1

(b (xi)− r̃ (xi))
2 .

For further details, we refer to Appendix A. In AnyBoost, we also have additional stop

criteria within the boosting algorithm based on the inner product. If the inner product

of the base learner and the gradient 〈−U(x), b(x)〉 ≤ 0, the algorithms stops. If the

stop criterion holds, both vectors (the gradient and the base learner) are orthogonal in

the functional space, i.e., the base leaner does not explain the gradient. The smaller the

inner product is, the less the base learner has a correct direction in the functional space.

Algorithm 2 AnyBoost.

1: Initialize f̂ [0](x)

2: for m = 1→M do

3: Calculate gradients: U [m] (x) = −
[
∂ρ((y,x), f)

∂f

]
f=f̂ [m−1]

4: Fit a regression base learner b[m](x) to the gradients U [m].

5: b[m](x) = arg max
b∈B

−〈U [m] (x) , b[m](x)〉

6: if −〈U [m] (x) , b[m](x)〉 ≤ 0 then

7: return f̂ [m]

8: end if

9: Update f̂ [m](x) = f̂ [m−1](x) + η[m] · b[m](x)

10: end for

11: Output f̂(x) = f̂ [M ](x)
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2.4 Multicalibration in Binary Classification

2.4. Multicalibration in Binary Classification

Hébert-Johnson et al. (2018) presented the multicalibration framework, which was fol-

lowed by multiaccuracy (Kim et al., 2019). Multicalibration includes a fairness definition

(Section 2.4.2) that urges a model to be α-calibrated (multicalibration) or α-unbiased

(multiaccuracy) for subgroups and provides a post-processing fairness method (Section

2.4.3), i.e., improving a trained model, which aims to achieve this subgroup fairness

definition based on boosting.

2.4.1. Setting and Assumptions

In multicalibration, we evaluate and post-process a binary classification task in order for

it to be calibrated for subgroups S (subgroup fairness). Suppose we have a population

of N individuals in X and want to predict an outcome y ∈ {0, 1}N . p∗i is the probability

that the outcome yi of an individual xi with i ∈ 1, ..., N is 1. A predictor f : X → [0, 1]

estimates the mapping from an in individual x ∈ X to the true parameter. The aim is to

evaluate the fitness of f not only with respect to X , but also with respect to subgroups

S ⊆ X , where C is a collection of all subgroups. We use this notation in the following:

〈x,y〉 = Ei∼D [xi · yi].

2.4.2. Defining Multicalibration in Binary Classification

Multicalibration. Multicalibration (Hébert-Johnson et al., 2018) determines if a binary

classification model is calibrated for all subgroups S of a collection of subgroups C. First,

we define that a model f is α-accurate-in-expectation (α-AE) for a subgroup S, if

| E
i∼S

[f (xi)− p∗i ] |≤ α, (16)

where we relax the expectation with a small α-bound (α > 0) in a scenario with over-

lapping subgroups. α-calibration requires α-AE not in expectation over all predicted,

but for all values v ∈ [0, 1]. A stronger requirement is α-calibration for a subgroup S.

It implies that the average of the actual probabilities of the subjects getting prediction

v is α-close to v for all but an α-fraction of a set S. Multicalibration requires a binary

classifier to be α-calibrated for every subgroup S ∈ C. Therefore, Hébert-Johnson et al.

(2018) defines that a predictor f is (C, α)-multicalibrated if for any v ∈ [0, 1] and

α ∈ [0, 1] ∣∣∣∣ E
i∼Sv∩S′

[f (xi)− p∗i ]
∣∣∣∣ ≤ α ∀ S ∈ C, (17)

if there exists some S ′ ⊆ S with Pi∼D [i ∈ S ′] ≥ (1 − α) · Pi∼D[i ∈ S] and where Sv =

{i : f(xi) = v}. However, the multicalibration definition is not computationally feasible,
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as it requires the predictor f to be (1) α-calibrated for every v ∈ [0, 1], (2) defined on

the true probabilities p∗ which we have no direct access to, (3) measured with respect to

all possible subgroups, which is information-theoretically not feasible for a small Dval.

Empirical Multicalibration. Hébert-Johnson et al. (2018) propose the following modi-

fications to measure multicalibration in a practical setting: (1) introduce discretization

of v (bucketing), (2) redefining the residuals, and (3) optimizing subgroup fairness for

efficiently-identifiable subgroups.

(1) Bucketing: Hébert-Johnson et al. (2018) introduce λ-discretization (buckets),

where we divide v ∈ [0, 1] in λ equally spaced buckets. They define buckets Λ[0, 1]

that are denoted by

Λ[a, b] =

{
a+ (b− a)

λ

2
, a+ (b− a)

3λ

2
, . . . , b− λ

2
(b− a)

}
(18)

and

λ(v) =

[
v − λ

2
(b− a), v +

λ

2
(b− a)

)
(19)

as the λ-interval centered around v (only the last interval is [b− λ(b− a), b]).

(C, α, λ) -multicalibrated predictor f with α ∈ [0, 1] and λ > 0 can therefore be

defined on the corresponding discrete buckets with Sv(f) = {i : f(xi) ∈ λ(v)} ∩ S
for all S ∈ C and v ∈ Λ[0, 1].

(2) Residuals: In practice, we only have access to the true outcome y and not the true

probability p∗. Suppose we assume that the samples in Dval are large enough. In

this case, the empirical expectation of y in a bucket corresponds to the expectation

of the true probability p∗ of a bucket. For each x ∈ X , let the residual be U (x) =

f (x) − y. Later, we show that this residual corresponds to the gradient U (x) in

boosting.

(3) Efficiently-identifiable subpopulations C: Instead of optimizing multicalibra-

tion with respect to all possible definable subgroups, we want to measure mul-

ticalibration with respect to all “efficiently-identifiable subpopulations.” In this

case, C can be any class of regression algorithm fitted on the residuals U (x) (e.g.,

decision tree regression or ridge regression). We now measure multicalibration

with respect to all subgroups, which can be identified by this regression learner

(“efficiently-identifiable”). As a consequence, potentially also subgroups can be

defined on other features than in a fixed setting. If C is a class of weak learners

like in gradient boosting, multiaccuracy is equivalent to the stopping criteria in

AnyBoost (Mason et al., 2000).
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In this case, we can rewrite the definition of multicalibration to

|〈cv (x) , U (x)〉| ≤ α ∀ c ∈ C, v ∈ Λ[0, 1], (20)

where cv (x) ∈ C is a learner fitted on the residuals where i ∈ λ(v). Consequently, a

predictor f is (C, α.λ)-multicalibrated, if the mean residual U (xi) in every “efficiently-

identifiable” subgroup c (x) ∈ C and every bucket v ∈ Λ[0, 1] is smaller than α.

A low scalar product |〈c (x) , U (x)〉| between the learned function c (x) and the resid-

uals U (x) can be interpreted as a low correlation between the subgroup and the bias.

Geometrically, this means that the two vectors c (x) and U (x) are almost orthogonal,

and the subgroups or the learned class cannot explain the residuals.

Multiaccuracy. Kim et al. (2019) defined with (C, α)-multiaccuracy a relaxed version of

multicalibration where the empirical version of multicalibration with only one bucket

(i.e., λ = 1) is optimized (20). Hence, multiaccuracy corresponds to achieving α-AE (16)

in every subgroup. In contrast to other subpopulation post-processing methods (e.g.,

Kearns et al., 2018), multiaccuracy guarantees that the improvement in subgroups does

not lower the performance in the already well-predicted larger subgroups much (i.e.,

“do-no-harm guarantee”). Empirically, Kim et al. (2019) showed that multiaccuracy

could also improve the overall accuracy of a classification model.

Related Group Fairness Metrics. Subgroup fairness metrics can be interpreted as

group fairness metrics applied to subgroups with an α-bound. For example, multicalibra-

tion is a subgroup extension of the group-fairness criteria test fairness (well-calibrated;

Chouldechova, 2017; Kleinberg et al., 2017). Well-calibration requires a learner to be

calibrated in all groups and, consequently, a probability has the same meaning for all

groups. Multiaccuracy can be interpreted as a subgroup version of predictive parity

(Chouldechova, 2017; Simoiu et al., 2017), which measures if the positive predictive

value (i.e., the probability that the prediction of 1 is true) is the same across groups.

2.4.3. Achieving Multicalibration in Binary Classification

To achieve multicalibration, Hébert-Johnson et al. (2018) and Kim et al. (2019) propose a

post-processing boosting algorithm that has black-box access to an existing model

f̂ [0]. To post-process the model, we have access to only a relativity small validation

data set Dval. We assume that the validation data is not biased and has a sufficient

representation of all subgroups. Thus, the multicalibration algorithm performs a variant

of gradient boosting on an existing model to achieve unbiased results. However, a novelty
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2.4 Multicalibration in Binary Classification

about this post-processing approach is that it minimizes the Brier Score (21), introduces

buckets defined on the predictions, and performs a multiplicative update.

Algorithm 3 Multicalibration for Binary Classification.

1: Take the trained model: f̂ [0](x).

2: Create buckets v ∈ Λ[0, 1]

3: for m = 0→M − 1 do

4: Calculate gradients: U [m] (x) = −
[
∂ρ((y,x), f)

∂f

]
f=f̂ [m−1]

5: Fit a regression learner c
[m]
v (x) to the gradients U [m] on every bucket v ∈ Λ[0, 1].

6: Take the bucket with the largest correlation: v∗ = arg max
λ(v)

∣∣∣〈c[m]
v (x) , U [m] (x)

〉∣∣∣
7: Check if f̂ [m] is already (C, α)-multicalibrated:

8: if
∣∣∣〈c[m]

v∗ (x) , U [m] (x)
〉∣∣∣ ≤ α then

9: return f̂ [m]

10: end if

11: Multiplicatively update f̂ [m+1](x) = exp(−η[m] · c[m]
v∗ (x)) · f̂ [m] ∀x ∈ λ(v∗)

12: Project f̂ [m+1](x) onto [0, 1]

13: end for

14: Output f̂(x) = f̂ [M ](x)

Algorithm. In Algorithm 3, the pseudocode of multicalibration is depicted. Instead of

starting with a loss-optimal model, the post-processing method starts with the trained

model f̂ [0]. Before this model can be multicalibrated, the strategy for bucketing must be

set. This strategy includes how many and which buckets are to be used. After initializa-

tion, the initial trained model f̂ [0] is “nudged” in M iterations towards a multicalibrated

model. In every iteration, the gradient (negative pseudo-residual) is calculated. The

gradient is the loss function derived with respect to the the current model f̂ [m] for every

data point (x, y). Afterwards, a regression learner is fitted on the residuals on every

bucket. The correlation between the gradient and the learner is calculated, and the

bucket with the highest correlation v∗ is chosen. The algorithm stops early, if f̂ [m] is

already (C, α)-multicalibrated (corresponds to the stopping criterion in AnyBoost). In

any other case, the model is updated for all values in bucket v∗. The update in multi-

calibration can be additive and multiplicative. They are clipped if the predictions are

out of the desired range of [0, 1].

Bucketing. In multicalibration, we often choose ten buckets or a 1
10 -discretization

(Barda et al., 2021). Multiaccuracy (Kim et al., 2019) is defined on one bucket (1-

discretization). Nonetheless, Kim et al. (2019) propose to choose three buckets in the

algorithm: one bucket over the whole population λ (0.5) = [0, 1] and two buckets with
1
2–discretization (i.e., λ(0.25) = [0, 0.5) and λ(0.75) = [0.5, 1]).
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Gradient. The loss function, which is minimized in multicalibration, is the Brier Score

(Brier, 1950) and not the Log-Loss, as proposed in gradient boosting:

ρBrier((y,x), f) =
1

2
(y − f(x))2. (21)

Usually, we choose the Log-Loss as a loss function for optimizing binary classification

tasks, as we naturally keep the probabilities within a range of [0, 1] with the sigmoid

function. However, by using the Brier Score, multicalibration does not perform boost-

ing on the probabilities p ∈ [0, 1] but on the scores s ∈ [−∞,∞]. As a consequence,

predicted probabilities can be out of the range [0, 1]. Therefore, Hébert-Johnson et al.

(2018) propose to clip the predicted probabilities to [0,1]. We calculate the gradient in

multicalibration (residual) in each iteration as follows:

U [m] (x) = −
[
∂ρ((y,x), f)

∂f

]
f=f̂ [m−1]

=

[
∂ 1

2(y − f(x))2

∂f

]
f=f̂ [m]

= [f(x)− y]f=f̂ [m] .

(22)

In this case, the gradient is equal to the residual.

Implementation. The multicalibration framework is implemented in the R package

mcboost (Pfisterer et al., 2021).
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3. Adapting the Multicalibration Framework to Survival

Analysis

The multicalibration framework has already been adapted to survival tasks: Barda et

al. (2020) perform distribution transfer from a baseline model for respiratory infection

risk to an accurate COVID-19 mortality prediction model by boosting the model with

the death rates in the subpopulations. Barda et al. (2021) analyze two medical risk as-

sessment models for calibration in subpopulations. These models are based on survival

models but only consider a risk for a fixed time point (i.e., the 10-year risk for osteo-

porotic fractures). It shows that post-processing for multicalibration can considerably

enhance calibration metrics. However, to the best of our knowledge, the multicalibration

framework has not been adapted to a survival loss function or a survival distribution.

3.1. Defining Multicalibration in Survival Analysis

Survival Problem. As mentioned before (see page 10), there are several types of survival

problems (Haider et al., 2020). However, in the following, we only consider individual

survival distributions that predict survival probabilities over time (3):

(1) We use probabilities, as risk scores cannot be evaluated concerning their calibra-

tion unless they are transformed to survival probabilities.

(2) Using distributions over time is a generalization of a single prediction per sub-

ject, we have to set T to [t, t] to obtain a prediction for a single time point t.

Barda et al. (2021), Barda et al. (2020) have only used a single time point in their

applications of multicalibration.

(3) Multicalibrating groups instead of individuals contradict the idea of overlapping

subgroups if the model already defines disjoint groups. Nevertheless, groups can

be treated as individuals.

Therefore, we conduct the adaption of the multicalibration framework to individual

survival distributions.

Adaption of the Loss Function. To adapt the multicalibration definition (20) from a

binary classification to a survival task, we have to change the optimized loss function.

For binary classification, the optimized loss is the Brier Score (22). However, if we

deal with right-censored data, we should incorporate in the loss that we cannot observe

the complete data-generating process (IPCW). The censored Brier Score (8) resolves

this as a natural survival equivalent and common calibration measure. Following the

literature, we estimate the censoring distribution Ĝ with a Kaplan-Meier model (Graf
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et al., 1999; Kaplan & Meier, 1958) where we take δcens = 1 − δ. By this change in

the data, we model the probability of being censored up to a time point C and not the

survival probability Y . Additionally, the censored Integrated Brier Score (9) can

measure the calibration for distribution over time.

Adaption of the Gradient. The aim of boosting is to optimize the empirical risk for

function h (13). For individual survival distributions, we can specify the corresponding

empirical risk function defined by the data, which is

ÊY,X`((Y,X), h) =

∫∫
ρ((y ≤ t,x), h(t | x))dµ(t)dP̂Y,X(y,x)

=

∫ ∫
ρC((ỹ ≤ t,x), h(t | x) | G)dµ(t)︸ ︷︷ ︸

`C

dP̂Ỹ ,X,∆(ỹ,x, δ).
(23)

We take a sample of N independent and identically distributed observations from the

joint distribution of the observed event time Ỹ , the features X and the censoring indi-

cator ∆ (i.e., (ỹi,xi, δi) ∼ PỸ ,X,∆, for i ∈ {1, . . . , N}). To approximate the empirical

risk, we define P̂Ỹ ,X,∆ which puts the mass 1
N on every observation. To approximate

the measure µ, we use a discrete uniform distribution µ̂. By this approximation, we put

a mass of 1
L on an equidistant grid t1 < t2... < tL with a sufficiently large quantity of

grid points L on the target space. This approach is analogous to Hothorn et al. (2014).

Consequently, the approximated expected loss can be defined as

ÊY,X`((Y,X), h) =
1

N

N∑
i=1

1

L

L∑
l=1

ρC ((ỹi ≤ tl,xi) , h (tl | xi) | G) . (24)

Now, we can evaluate the loss function ρ at every single observation (ỹi ≤ tl,xi)∀i ∈
{1, . . . , N}, l ∈ {1, . . . , L}.

U [m] (xi) (tl) =

[
∂ρCBS((yi,xi), h)

∂h

]
h=ĥ[m−1]

=

[
∂ 1

2w(tl) · (I [yi ≤ tl]− h(tl | xi))2

∂h

]
h=ĥ[m−1]

= [w(tl) · (h (tl | xi)− I [yi ≤ tl])]h=ĥ[m−1]

∀i ∈ {1, . . . , N}, l ∈ {1, . . . , L}

(25)
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…

……

…

L (time points)

…

1

Figure 4: Comparison of evaluated observations in binary classification h (xi) ∀i =
1, . . . , N and individual survival distributions h (tl | xi) ∀i = 1, . . . , N, l =
1, . . . , L. On the left, we depict the evaluated observations in the binary classi-
fication setting: We have a scalar probability prediction for every subject. On
the right, we illustrate the observed grid in an individual survival distribution:
We have a discrete probability distribution on L time points for every subject.
Thus, we have to evaluate a two-dimensional grid (matrix) of observations in
a survival setting.

with

w(tl) =


1/Ĝ(tl), if tl < ỹ

1/Ĝ(ỹ), if tl ≥ ỹ and δ = 1

0, otherwise.

Theoretical Survival Multicalibration Definition. Consequently, we can rewrite the

multicalibration definition (17) for a survival probability distribution over time [t1, tL]

to ∣∣∣∣∣∣∣ E
i∼Sv∩S′

[w(tl) · (h (tl | xi)− p∗i )]︸ ︷︷ ︸
U(xi)(tl)

∣∣∣∣∣∣∣ ≤ α ∀S ∈ C, l ∈ {1, ..., L}, (26)

where we want a survival model h to be (C, α)-multicalibrated for any predicted value

v ∈ [0, 1], for every single time point tl, and an α ∈ [0, 1]. In accordance with the

original formulation of multicalibration, this formulation is not information-theoretically

possible, as it is the extension of the original definition for every time-point tl.

Buckets in Time. As illustrated in Figure 4, we evaluate multicalibration on a grid

of values in survival analysis. Analogous to the buckets for the subjects based on their
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predicted value, we introduce time buckets. Instead of multicalibrating a model for every

time point tl, we perform it on time intervals. Thus, we can define the time buckets as

denoted in (18) as ΛT [t1, tL] with a λT -discretization (19).

Empirical Survival Multicalibration. By including time buckets, the extension of the

empirical multicalibration definition (20) is∣∣∣∣∣∣
〈
cv,z (x) , λT ·

1

L
·
∑

l∈λT (z)

w(tl) · (h (tl | x)− I [y ≤ tl])

〉∣∣∣∣∣∣ ≤ α ∀ c ∈ C (27)

and for every v ∈ Λ[0, 1], z ∈ ΛT [t1, tL] and cv,z (x) is a learner trained on the residuals

for every value in the time frame ΛT [t1, tL] and prediction value in Λ[0, 1]. For values

outside the buckets cv,z (x) is defined as 0. A survival model satisfying this condition is

(C, α, λ, λT )-multicalibrated. Within every combination of time buckets λt and buckets

over the predicted value λ we require the survival model h to be unbiased with respect

to all efficiently-identifiable subgroups.

IBS-Multicalibration. If we set λT = 1, multicalibration for a single time bucket is

defined as∣∣∣∣∣∣∣∣∣∣
〈
cv (x) ,

1

L
·
L∑
l=0

w(tl) · (h (tl | x)− I [y ≤ tl])︸ ︷︷ ︸
U(x)

〉∣∣∣∣∣∣∣∣∣∣
≤ α ∀ c ∈ C, v ∈ Λ[0, 1], (28)

where cv (x) ∈ C is a learner fitted on the residuals where i ∈ λ(v) and 0 otherwise. This

corresponds to deriving the loss function ` with respect to h evaluated at the current

survival model ĥ[m−1] for the censored Integrated Brier Score (9):

U [m] (x) =

[
∂`CBS((y,x), h)

∂h

]
h=ĥ[m−1]

=

∂
{

1
2 ·

1
L ·
∑L

l=0w(tl) · (I [y ≤ tl]− h(tl | x))2
}

∂h


h=ĥ[m−1]

=

[
1

L
·
L∑
l=0

w(tl) · (h (tl | x)− I [y ≤ tl])

]
h=ĥ[m−1]

.

(29)

Depending on the number of buckets in time and predict values, we can now decide how

exactly we calibrate survival models. The multicalibration definition ranges from cali-

bration for every predicted value at every time point (26) in theory to the mean over time

24



3.2 Achieving Multicalibration in Survival Analysis

and all predicted values (a combination of IBS-multicalibration (29) and multiaccuracy)

3.2. Achieving Multicalibration in Survival Analysis

The main changes in the multicalibration algorithm (Algorithm 4) result from the

adapted multicalibration definition, directly affecting the stopping criterion, the gra-

dient, and the bucketing strategy. However, the algorithmic structure does not change,

as we still perform gradient boosting optimizing the Brier Score. Depending on the num-

ber of time buckets, we adapt the distribution differently. For the IBS-Multicalibration

definition, we obtain one residual (the mean residual over time) per subject U [m] (x). In

this case, the whole distribution is multiplied by one factor. If we have more than one

bucket, the distribution changes within a time bucket λT (z). This can result in a model

h that does not meet the requirement that survival curves are monotonically decreasing.

Then, we have to extend the idea of clipping probabilities to the survival curves.

Obtaining Survival Curves. By introducing bucketing in time, the survival model

h can lose its inherent property: individual survival distributions are monotonically

decreasing and have values in [0, 1]. The latter is solved under the original algorithm

by clipping the value. To keep the survival prediction monotonically decreasing, we

transfer the clipping process to a survival curve defined on a time frame from [t1, tL]

with L time points:

h∗ (x) (tl) =

h∗ (x) (tl), if h∗ (x) (tl−1) ≥ h∗ (x) (tl)

h∗ (x) (tl−1), otherwise.
∀ l ∈ {2, ..., L}. (30)

Alternative Time Buckets. As survival curves are monotonically decreasing, the orig-

inal probability buckets in multicalibration Λ can be redefined. In practice, the survival

probabilities within a smaller time frame are often similar across subjects, and therefore

the idea is to create probability buckets depending on the time bucket. Otherwise, it

could happen, for example, that within the first time steps all survival probabilities are

above 0.9. As a result, some combinations of time and probability buckets are always

empty. Probability buckets in general Λ can be reformulated to probabilities within

the time bucket ΛP (z) = Λ[pz,min, pz,max], where pz,min is the minimal, and pz,max the

maximal predicted probability within the time bucket λT (z).

In this section, we provided a theoretical adaption of the multicalibration framework

by adapting the multicalibration definition, the bucketing strategy, and bucketing to

individual survival distributions. This lays the foundation for practical implementation.

25



3.3 Implementation in R (McBoostSurv)

Algorithm 4 Multicalibration in Survival Analysis.

1: Take the survival model: ĥ[0](t | x).

2: Create buckets v ∈ Λ[0, 1], z ∈ ΛT [t1, tL].

3: for m = 0→M − 1 do

4: Calculate gradients: U [m] (x) (t) = −
[
∂ρ((y,x), h)

∂h

]
h=ĥ[m−1]

5: Fit a regression learner c
[m]
v,z (x) to the gradients U [m] on every bucket [λ(v), λt(z)].

6: Take the bucket with the largest correlation:

7: v∗, z∗ = arg max
v,z

∣∣∣∣∣∣
〈
c[m]
v,z (x) , λT ·

1

L
·
∑

l∈λT (z)

w(tl) · (h (tl | x)− I [y ≤ tl])

〉∣∣∣∣∣∣
8: Check if ĥ[m] is already multicalibrated:

9: if
∣∣∣〈c[m]

v∗,z∗ (x) , λT · 1
L
·
∑
l∈λT (z) w(tl) · (h (tl | x)− I [y ≤ tl])

〉∣∣∣ ≤ α then

10: return ĥ[m]

11: end if

12: Multiplicatively update ĥ[m+1](t | x) = exp(−η[m] ·c[m]
v∗,z∗ (x)) · ĥ[m](t | x) ∀x ∈ λ(v∗), t ∈ λt(z∗)

13: Project ĥ[m+1](t | x) onto [0, 1] and obtain survival curve.

14: end for

15: Output ĥ(t | x) = ĥ[M ](t | x)

3.3. Implementation in R (McBoostSurv)

The R (R Development Core Team, 2020) implementation of McBoostSurv provides a

survival extension to the existing R package mcboost (Pfisterer et al., 2021).

Methods. Figure 5 illustrates the three main methods of the R6 classes (Chang, 2021)

McBoost and McBoostSurv:

1. initialize (new): The R6 object McBoostSurv1 is initialized with different hyper-

parameters. They include the initial survival model that should be multicalibrated,

the auditor algorithm (i.e., the base learner of the boosting algorithm), and other

hyperparameters like the learning rate eta or the stopping criterion alpha.

2. multicalibrate: A initialized McBoostSurv object can be multicalibrated for

every validation data set.

3. predict probs: For new data, a multicalibrated McBoostSurv object can be uti-

lized to predict survival probabilities.

1The implementation and adaptions can be found in the following Pull Request on GitHub:
https://github.com/mlr-org/mcboost/pull/33
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3.3 Implementation in R (McBoostSurv)

Initial Survival 
Model

Validation 
Data + Labels

New Data

mc = McBoostSurv$new() mc$multicalibrate() mc$predict_probs()

Initialized 
Model 

Multicalibrated
Model 

Auditor
Hyper-

parameters

Methods

Input

Object
State mc

Output
Multicalibrated

Predictions

Figure 5: Methods in McBoostSurv based on Pfisterer et al. (2021). With
McBoostSurv$new(), a new model can be initialized. Then, with the method
$multicalibrate(), the object can be multicalibrated for a validation dataset.
Finally, with $predict probs(), the object can be used to predict multicali-
brated survival probabilities.

Hyperparameters. In Table 1, we present the hyperparameters which are currently

implemented in McBoostSurv. We introduced time points, time buckets, bucket -

aggregation, time eval, and loss in our survival extension.

Additionally, we implemented PipeOpMCBoostSurv as a mlr3pipeline (Binder et al.,

2021) in order to integrate multicalibration in survival analysis into the mlr3 universe

(Lang et al., 2019) and thus connect our novel class to all existing functionalities within

a typical machine learning workflow.
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3.3 Implementation in R (McBoostSurv)

max iter Maximum number of boosting iterations (M).

alpha Bound for accuracy of multicalibration (α).

eta Learning rate for boosting algorithm (η).

num buckets Number of buckets in which the subjects are splitted based
on their prediction value (λ).

bucket strategy Type of splitting between the buckets.

rebucket Whether the buckets Λ[0, 1] should be determined in every
iteration.

eval fulldata If the auditor should be evaluated on the whole validation
data or the data in the bucket.

partition Whether there are buckets.

auditor fitter Base learner (c (x))

subpops Subgroups on which the learner is trained instead of a base
learner.

init predictor Initial survival model (ĥ[0](t | x))

default model class Which standard model should be used if there is no initial
survival model (e.g., Kaplan-Meier model)

multiplicative Whether we multiply or add the base learner.

iter sampling Sampling strategy for the validation data.

time points Time points evaluated in the boosting algorithm ([t1, tL]).

time buckets Number of time buckets (λ−1
T )

bucket aggregation If time bucketing should be decided based on aggregation of
the predicted values per subject (e.g., mean)

time eval Time quantile, which should be multicalibrated (similar to
measuring 75%-IBS.

loss Loss which is optimized during training (ρ).

Table 1: Implemented hyperparameters and their meaning in McBoostSurv.
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Figure 6: Benchmark setup for performance evaluation of McBoostSurv compared to ini-
tial survival model: repeated random sub-sampling performed on four data sets
and split in test Dtest and all data used for training Dtrain all. Dtrain all is sam-
pled biased or unbiased towards the majority subgroup between the training
data Dtrain and validation data Dval. We train two survival models with these
configurations on Dtrain. We post-process the trained survival model with val-
idation data Dval on the best hyperparameter configuration. The predictions
of both models on the test data Dtest are evaluated with Subgroup-IBS, IBS,
C-Index in every repetition of the repeated sub-sampling.

4. Experiments

We conducted several experiments to evaluate the suggested algorithm and R implemen-

tation McBoostSurv concerning the research question and the respective subquestions

defined in the introduction (RQ: subgroup calibration, SQ1: calibration, SQ2: discrimi-

nation, SQ3: biased training data). The experiments compare two survival models and

the respective multicalibrated models for four data sets and two different sub-sampling

procedures for the desired metrics.

4.1. Experimental Design

We set up a benchmark as depicted in Figure 6. We evaluate the performance of two

baseline survival models on four data sets and two sub-sampling techniques with repeated

random sub-sampling. Initially, we randomly split the data D in Dtest (20%) and all data
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4.1 Experimental Design

used for training Dtrain all (80%). The test data Dtest is used to evaluate the performance

of the baseline survival models and the respective multicalibrated models on the metrics

defined in the research question (RQ) and subquestions 1 and 2 (SQ1 and SQ2). The

baseline survival models are trained on the training data Dtrain, and the multicalibrated

model is trained on the respective baseline survival model and the validation data Dval.
In addition, we perform hyperparameter tuning on the multicalibrated model concerning

the Subgroup-IBS.

Baseline. As a baseline, we take two commonly used survival models, as their sole

performance is not the focus of our analysis. A 10-fold cross-validated Cox proportional

hazards model with elastic net penalty (cv glm; Simon et al., 2011) and a survival

random forest (rf; Breiman, 2001) implemented in the R package ranger (Wright &

Ziegler, 2017). For the cv glm, we estimate a survival distribution with accelerated

failure time models (Cox & Oakes, 1984). For modeling the initial survival models, we

use the R packages mlr3learners (Lang et al., 2021) and mlr3proba (Sonabend et al.,

2021).

name N p %
censored

sensitive attributes %
minority groupraceBlack sexF age 65

support 9,104 32 31.9 x x 7.6
compas 10,310 6 73.2 x x 9.4
kidtran 863 3 83.8 x x 6.8
flchain 6,521 10 70.0 x x 17.6

Table 2: Description of data sets used in experiments. N is the number of observations
in the data set, and p denotes the number of features used for modeling. The
percentage of censored data (% censored) shows the number of observations
without completed status. Sensitive attributes indicate which overlapping sub-
groups we examine, and the proportion of the smallest subgroup is given (%
minority group).

Data Sets. We conduct the experiments using publicly accessible survival analysis

data sets from the real world. Additionally, we choose popular survival data sets (see

Table 2), which are large enough for the described set-up (N > 800), are from different

contexts (recidivism or healthcare), have a distinct number of features (p), and different

proportion of censoring. Additionally, they include at least two sensitive attributes (i.e.,

gender, race, and age; Xiang & Raji, 2019) and varying size of the minority subgroup

(based on two sensitive features). For the data sets support, compas, and kidtran dataset,

we evaluate subgroups based on the defined binary attributes raceBlack (i.e., if the

person is a person of color) and sexF (i.e., if the person is female). For the flchain

30



4.1 Experimental Design

alpha {0.001, 0.01, 0.05}
auditor fitter {“TreeAuditorFitter, “RidgeAuditorFitter”}
eta {0.01, 0.1}
multiplicative {TRUE, FALSE}
num buckets {1, 2}
time buckets {1, 2}

Table 3: Search space for hyperparameter tuning on McBoostSurv. We marked in bold
our proposal for the default hyperparameter space.

data set, we use the binary-encoded variable age 65 (i.e., if the person’s age is > 65)

as the second sensitive attribute instead of the race, as there is no information about

the ethnic origin of the persons. To avoid fragmentation into very small subpopulations,

we limit the number of sensitive attributes per subgroup to two. We include complete

descriptions of the data sets and their pre-processing in Appendix B.

Biased Training Data. To address subquestion SQ3, we use two different sub-sampling

methods to split the Dtrain all between the training Dtrain and validation data Dval. In

unbiased sampling, the data is sampled stratified by the sensitive attributes and status.

In contrast, if the sampling is biased towards the majority subgroup, it is only

stratified by the censoring indicator ∆. Additionally, the majority groups are sampled

with a double probability in the train data Dtrain than in the validation data Dval. The

proportions of different subgroups in training Dtrain and validation data Dval can be

found in Appendix B.

Hyperparameter Tuning on McBoostSurv. To use the optimal parameters in the eval-

uation, we tune the McBoostSurv learner on a discretized parameters space (see Table 3)

that reflect a broad enough setting. We perform on the validation data Dval 3-fold cross

validation with an exhaustive search on the whole parameter space. Then, we choose the

best parameter set based on the Subgroup-IBS (31), as this is the evaluation measure

in outer performance evaluation. With this parameter set, we train the McBoostSurv

learner on the whole validation data set Dval.

Evaluation. To answer the research question (RQ), we evaluate the mean over the cen-

sored version of the Integrated Brier Score with respect to all subpopulations (Subgroup-

IBS, S-IBS):

`CS−IBS((ỹ ≤ t,x), h(t | x)) =
1

nS
·
∑
j∈C

`CIBS,j((ỹ ≤ t,x), h(t | x)), (31)

where C = {S1,S2, . . . ,SnS} and nS is the number of subgroups which are evaluated
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4.2 Results

(i.e. four in our case). `CIBS,S is the IBS (9) evaluated on subgroup x ∈ S. To address

SQ1 and SQ2, we additionally evaluate the IBS (9) and C-Index (10) on the whole

population.

Implementation. All experiments are implemented with the batchtools R package

(Lang et al., 2017) and the mlr3 R machine learning framework (Lang et al., 2019).

4.2. Results

The mean results of the experiments are in Table 4 and the corresponding standard

deviations can be found in Appendix B. In the following, we present the results of our

experiments:

Subgroup Fairness (RQ). To answer the research question, we evaluated the mean IBS

over the subgroups (31). The result shows (Table 4a) that in the mean, the subgroup

fairness on the test data is considerably improved for the cv glm and slightly decreased

for rf. This observation is true for the unbiased training data. In general, the mea-

sures for the survival random forest are in the initial and multicalibrated models better

than for the Cox proportional hazards model with an elastic net penalty. In a biased

setting, for the kidtran data set, the performance of both models is slightly improved by

multicalibrating them.

Calibration (SQ1). We addressed subquestion 1 by measuring the Integrated Brier

Score on the whole population (Table 4b). The improvements are similar to the im-

provements in the Subgroup-IBS: an improvement of the IBS for all cv glm and rf and

slight depreciation for the survival random forest.

Discrimination (SQ2). The standard measure for discrimination in survival analysis

is Harrell’s C-index (Table 4c). The results clearly show a decrease in the measure in

all models and data sets on the test data. Also, there is no improvement in the biased

and unbiased setting except for the survival random forest trained on the support data

set (line 8). This configuration improved in the mean in the biased and in the unbiased

setting.

Biased Training Data (SQ3). The experiments regarding the last subquestion show

that the effect is not very strong in our proposed setting. In general, the results did not

change much in mean.

Additionally, we had the following additional result:
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4.2 Results

Default Hyperparameters for McBoostSurv. During hyperparameter tuning, we per-

formed an extensive search on the defined discrete hyperparameter space. In Table 3, we

marked our results: We clearly saw that the an ridge regression as auditor (auditor -

fitter= ”RidgeAuditorFitter”), not discretizing the probabilities (num buckets = 1), a

larger step size (eta = 0.1), a small alpha (alpha = 0.01 and alpha = 0.01) and a mul-

tiplicative update (multiplicative = TRUE) were the best parameters. We propose

to tune the hyperparameter time buckets, as this parameter has only a weak tendency

to two buckets.
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a. ↓ Subgroup Integrated Brier Score (RQ)

unbiased Dtrain biased Dtrain
# data set model baseline McBoostSurv baseline McBoostSurv

1
compas

cv glm 0.2098 0.1656 0.2160 0.1644
2 rf 0.1437 0.1510 0.1446 0.1511

3
flchain

cv glm 0.1933 0.1412 0.1923 0.1521
4 rf 0.1007 0.1068 0.1060 0.1082

5
kidtran

cv glm 0.1614 0.1540 0.1587 0.1546
6 rf 0.1469 0.1630 0.1572 0.1561

7
support

cv glm 0.2836 0.2010 0.2781 0.2020
8 rf 0.1682 0.1714 0.1677 0.1697

b. ↓ Integrated Brier Score (Calibration, SQ1)

unbiased Dtrain biased Dtrain
# data set model baseline McBoostSurv baseline McBoostSurv

1
compas

cv glm 0.2223 0.1763 0.2285 0.1748
2 rf 0.1538 0.1603 0.1541 0.1606

3
flchain

cv glm 0.1792 0.1324 0.1782 0.1421
4 rf 0.0963 0.1019 0.1015 0.1039

5
kidtran

cv glm 0.1482 0.1442 0.1447 0.1453
6 rf 0.1312 0.1461 0.1370 0.1455

7
support

cv glm 0.2808 0.2006 0.2752 0.2020
8 rf 0.1672 0.1706 0.1671 0.1700

c. ↑ C-Index (Discrimination, SQ2)

unbiased Dtrain biased Dtrain
# data set model baseline McBoostSurv baseline McBoostSurv

1
compas

cv glm 0.6703 0.6436 0.6687 0.6505
2 rf 0.6891 0.6709 0.6910 0.6672

3
flchain

cv glm 0.7865 0.7828 0.7862 0.7050
4 rf 0.8037 0.7762 0.7834 0.7745

5
kidtran

cv glm 0.6498 0.6009 0.6179 0.6177
6 rf 0.6587 0.6255 0.6501 0.6272

7
support

cv glm 0.7556 0.7134 0.7553 0.7124
8 rf 0.7256 0.7317 0.7255 0.7345

Table 4: Average results of the experiments for five repetitions. Each Table contains
one evaluation measure: Subgroup Integrated Brier Score (Subgroup-IBS,
RQ), Integrated Brier Score (IBS, SQ1), and the C-index (SQ2). In each
table, each line is one of the two baseline survival models (cv glm, rf) trained
on the four data sets. For each combination, we compare the baseline survival
model and the multicalibrated model (McBoostSurv), and if the training data
Dtrain is unbiased or biased (sampled skewed towards the majority population,
SQ3). The better value in each comparison is bold. The Integrated Brier Score
should be minimized (↓), and the C-Index should be maximized (↑).
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5. Discussion

This thesis proposed an extension of multicalibration, a framework for improving fairness

regarding efficiently identifiable subgroups, to survival analysis. Here, we highlight the

main findings from our experiments, and in the second subsection, we show possible

limitations and opportunities for further research.

5.1. Main Findings

In our experiments, we computed the mean Integrated Brier Score for all subgroups, the

IBS, and the C-index for the whole population. Therefore, we can answer the research

questions formulated in the introduction.

(1) Research question (RQ): Is a multicalibrated survival model fairer than the same

survival model without post-processing?

Our results are primarily in line with the results of the experiments conducted

by Kim et al. (2019). Namely, a model with a poor calibration (cv glm) in the

subgroups (S-IBS) can be in mean improved by multicalibration. However, a model

with a better IBS, the survival random forest (rf), could not be improved for

the mean of the IBS evaluated for the subgroups. We suspect that the slight

performance decrease happens due to overfitting, as we deal with a small validation

data set Dval. Nonetheless, the result also implies that retraining with a model

with better calibration on a large data set that reflects the desired population

can be sufficient. Thus, in a setting where we have only black-box access to an

unfair survival model and a small validation set, multicalibration can enhance the

performance with respect to the subgroups.

(2) Sub-question 1 (SQ1): How does multicalibration affect the calibration overall?

Our results imply that in the cases where multicalibration can increase the S-

IBS, it also increases the overall IBS. However, for the survival random forest, the

IBS slightly decreases. Our results are also in line with Kim et al. (2019), who

showed that calibration in a binary classification setting could improve the overall

performance.

(3) Sub-question 2 (SQ2): How does multicalibration affect discrimination?

We expected the overall model performance to decrease if a model is multicali-

brated. This expectation did not hold with respect to IBS but for the discrimina-

tion of the model. Nevertheless, we can observe that the C-index in mean decreases

for almost all combinations of data sets and baseline survival models by 0.02 in

average.
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(4) Sub-question 3 (SQ3): How does the effect of multicalibration change if the ini-

tial survival model is trained on a data set skewed towards a majority population?

Lastly, we expected to improve the subgroup measures from the baseline to the

multicalibrated model if the training data Dtrain is more skewed towards the ma-

jority population than the validation data set Dval. However, we could not observe

a substantial change in the effect of the post-processing. The effect is merely ap-

parent on the smallest data set kidtran: The subgroup fairness improved, and the

overall IBS was higher (worse) for both baseline models. On the other hand, we

cannot observe a substantial effect on the discrimination of the baseline and mul-

ticalibrated model. Possibly, effects might become more pronounced in situations

of stronger sampling imbalance.

5.2. Limitations and Further Research

Our research takes a pioneering step towards post-processing black-box survival models

for subgroup fairness via multicalibration. It is therefore subject to some limitations

and should be interpreted accordingly. Throughout our work, we also identified several

promising directions for further research.

Assumptions on the Data. Firstly, the generalization of these results is limited to

the assumptions within our thesis and the multicalibration framework. These include

the supposition that we only deal with right-censored survival data with time-constant

features. Possibly, this can be extended by reformulating the survival problem and

the multicalibration framework to a Poisson regression problem (Bender et al., 2020).

Additionally, the mutlicalibration framework requires the validation data Dval to be

unbiased. This strong assumption might not be fulfilled in many real-world settings

(Chen et al., 2018).

Notion of Fairness. Secondly, this approach does not directly generalize to other no-

tions of fairness and is limited to the definition of multicalibration and multiaccuracy.

Different contexts or even stakeholders might require other definitions and measures of

fairness (Binns, 2017). Kearns et al. (2018) propose another subgroup fairness notion

(e.g., equalizing false-positive rates in the subgroups), extended to survival analysis. An-

other possibility is to evaluate the survival models beyond calibration - a model could

output the marginal distribution and still be perfectly calibrated. A possible extension

can be evaluating the sharpness of the model (e.g., Survival-CRPS; Avati et al., 2019).

Definition of Subgroups. Thirdly, the definition of subgroups in the algorithm is fixed

to all computationally identifiable subgroups and in our analysis to two sensitive at-
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tributes. Therefore, we believe there is much potential for further research on which and

how many attributes subgroups are defined. The classical perception of “sensitive at-

tributes” can be too tight (e.g., taste or opinion might also be an attribute that should

be included in the analysis). Consequently, it might also be helpful to include other

additional attributes in future data collection.

Boosting Algorithm. Lastly, the boosting algorithm in the multicalibration framework

can be adapted. Currently, we only fit the auditor on the residuals per individual and

time bucket. As a result, the same value shifts the curves in each time bucket, including

several time points. Further research could use auditors modeling the residuals combined

with the time (e.g., survival trees instead of decision trees; Bai et al., 2021). So far,

we only consider boosting the first-order partial derivative of the gradient. Possibly,

boosting higher orders may improve the results (Chen & Guestrin, 2016; Jung et al.,

2020). Furthermore, in the multicalibration framework, we keep the probabilities within

a range of [0, 1] by clipping them. Alternatively, we could use the sigmoid function

similar to the original gradient boosting approach (Friedman, 2001).

5.3. Conclusions

This thesis developed a post-processing algorithm for calibrating subgroups in a survival

setting based on the multicalibration framework. So far, the fairness research has focused

on group fairness for classification models. Hébert-Johnson et al. (2018) and Kim et al.

(2019) presented multicalibration to overcome the idea of fixed groups and calibrate

models for overlapping computationally identifiable subgroups. Our contributions are

to extend this framework to distributional right-censored survival models:

(1) we presented the interpretation of multicalibration boosting as gradient boosting,

(2) developed a survival extension to multicalibration in theory,

(3) provided an implementation in R, and

(4) empirically evaluated the effects of multicalibration.

The main result of the experiments is that we can improve the calibration of the whole

population and the subgroups if the model does not perform well. In our experiments,

the discrimination decreased in the mean. That suggests that we might achieve consid-

erable impact in situations where we only have black-box access to a model and a small

validation data set. Multicalibration of a survival model can thus decrease the mismatch

between the modeled world and the “world as it should be” and consequently reduce

discrimination and bias against subgroups.
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A. Details on Boosting

A.1. Pseudo-residual of Log-Loss

r̃ (x) = −
[

∂

∂f(x)
L(y, f(x))

]
f=f̂ [m−1]

= −
[

∂

∂f(x)
− yf(x) + ln(1 + exp(f(x)))

]
f=f̂ [m−1]

=

[
y − exp(f(x))

1 + exp(f(x))

]
f=f̂ [m−1]

=

[
y − 1

1 + exp(−f(x))

]
f=f̂ [m−1]

= [y − s (f (x))]f=f̂ [m−1]

= [y − π (x)]f=f̂ [m−1]

A.2. Anyboost optimizes L2-loss internally

It can be shown that

arg max
b∈B

−〈U (x) , b(x)〉 = arg min
b∈B

n∑
i=1

(b (xi)− r̃i)2 ,

if we assume that

1.
∑n

i=1 (b (xi))
2 is constant, i.e. we normalize the predictions. By this assumption,

we are only concerned with the direction of the base learner and not its length.

2. The negation of the base learner is still a base learner: ∀b ∈ B → ∃ − b ∈ B.

arg max
b∈B

−〈U (x) , b(x)〉

= arg min
b∈B

−〈r̃, b(x)〉

= arg min
b∈B

−
n∑
i=1

r̃ib (xi)

= arg min
b∈B

−2
n∑
i=1

r̃ib (xi)

= arg min
b∈B

n∑
i=1

r̃2
i︸︷︷︸

constant

−2r̃ib (xi) + (b (xi))
2︸ ︷︷ ︸

constant

= arg min
b∈B

n∑
i=1

(b (xi)− r̃i)2

48



B. Details on the Experimental Setup

B.1. Data Descriptions and Pre-Processing

Our experimental setup includes four data sets: support, compas, kidtran, and flchain.

We performed first individual data pre-processing for every data set and second created

one pre-processing pipeline for all data sets. For the individual data sets, we used

standard pre-processing steps comparable to other benchmarks in the literature.

(1) The support (Study to understand prognoses and preferences for outcomes and

risks of treatments, Connors et al., 1995) data is from major research to better

understand prognoses, preferences, outcomes, and risks associated with therapy

(SUPPORT), in which the survival time of critically sick hospitalized patients was

examined. In our benchmark, we used the version of the R package casebase

(Bhatnagar et al., 2020). For the support data set, we discretized the age and

created a variable age group that has the following ranges: ”0 − 14”, ”15 − 44”,

”45−64”, and ”> 64”. We dropped all rows with missing values. Additionally, we

added the two sensitive attributes sexF and raceBlack, that are not used during

modeling.

(2) The compas dataset contains information on a system for predicting criminal re-

cidivism that has been challenged for possible bias (Angwin et al., 2016). Angwin

et al. (2016) used a Cox model to assess the compas system’s effectiveness in

predicting future recidivism for African-American defendants. They found that

the system significantly overpredicts future recidivism for African-American de-

fendants. We used the data set used in the analysis of Angwin et al. (2016)2.

We followed their proposed procedure to obtain a survival data set: we calculated

the time between start and end date and filtered all data points where there is a

time > 0. Additionally, we selected the following variables for modeling: sex, age,

juv fel count, decile score, priors count, race. We deleted all entries which

are more than once in the data set. Like in the support data set, we created the

two sensitive attributes sexF and raceBlack, that are not modelled.

(3) The kidtran dataset was derived from research examining the time interval be-

tween clinically evident infection and death in a group of individuals with renal

insufficiency. We used the version in the R package KMsurv (Klein & Moeschberger,

2003). Here, we dropped all lines with missing values. Also, we added the two

sensitive attributes sexF and raceBlack, that are not used in the modeling process.

2https://raw.githubusercontent.com/propublica/compas-analysis/master/cox-parsed.csv
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B.1 Data Descriptions and Pre-Processing

(4) Flchain is a publicly available data set created by Dispenzieri et al. (2012) to

examine the connection between the serum-free light chain and mortality. The

source for the data set is the R package survival (Therneau & Grambsch, 2000).

It considers variables such as age, sex, serum creatinine concentration, and the

existence of monoclonal gammopathy. We eliminated all participants with missing

variables, and excluded the variable chapter describing the death cause. In addi-

tion, we created the two sensitive attributes sexF and age 65 that are not utilized

throughout the modeling process.

For all data sets, we used a pre-processing pipeline of mlr3pipelines (Binder et al.,

2021) that conducts the following steps

(1) We imputed all numeric features with their median.

(2) Then, removed all constant features.

(3) Next, we encode all variables which are not numeric with one-hot-encoding.

(4) Finally, we discretized all survival times in the data set in 200 quantiles to reduce

the size of the matrix of time and subjects, which is the basis for modeling and

evaluation.
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B.2 Biased Training Data

B.2. Biased Training Data

Dtrain split (in %) Dval split (in %)

dataset biased? MN MB FN FB MN MB FN FB

compas
× 39.07 40.45 11.05 9.43 39.05 40.41 11.09 9.45

X 41.56 43.04 8.41 6.99 31.58 32.63 19.02 16.77

kidtran
× 50.10 10.49 32.62 6.80 50.00 10.92 32.18 6.90

X 56.48 11.18 27.04 5.30 30.81 8.84 48.95 11.40

support
× 48.59 7.69 36.14 7.58 48.55 7.73 36.15 7.57

X 55.29 8.73 29.77 6.21 28.43 4.63 55.25 11.69

dataset biased? MY MO FY FO MY MO FY FO

flchain
× 27.33 17.62 28.15 26.90 27.36 17.62 28.12 26.90

X 22.25 14.85 32.04 30.86 42.61 25.94 16.46 15.00

Table 5: Splits of the four subgroups are defined on the two sensitive attributes in a

biased and unbiased setting. In the first column, the four data sets are listed.

The second column marks a bias for the majority groups (X) or not (×). The

subsequent values (in %) are the proportions of the subgroups in the training

data set Dtrain and the test data set Dval. The subgroups are denoted by the

following abbreviations: M = male, F = female, N = not black, B = black, O

= old, Y = young. The proportions in the test data Dtest can be derived from

the unbiased setting, as the sensitive attributes stratify the data.
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B.3 Standard Deviation of the Results

B.3. Standard Deviation of the Results

a. Standard Deviation of the S-IBS (RQ)

unbiased Dtrain biased Dtrain
# data set model baseline McBoostSurv baseline McBoostSurv

1
compas

cv glm 0.0226 0.0085 0.0318 0.0108

2 rf 0.0104 0.0029 0.0088 0.0023

3
flchain

cv glm 0.0029 0.0023 0.0042 0.0168

4 rf 0.0108 0.0019 0.0026 0.0023

5
kidtran

cv glm 0.0070 0.0085 0.0056 0.0093

6 rf 0.0238 0.0137 0.0236 0.0109

7
support

cv glm 0.0049 0.0008 0.0032 0.0014

8 rf 0.0230 0.0053 0.0236 0.0017

b. Standard Deviation of the IBS (Calibration, SQ1)

unbiased Dtrain biased Dtrain
# data set model baseline McBoostSurv baseline McBoostSurv

1
compas

cv glm 0.0198 0.0088 0.0309 0.0111

2 rf 0.0101 0.0032 0.0094 0.0014

3
flchain

cv glm 0.0027 0.0019 0.0039 0.0146

4 rf 0.0102 0.0027 0.0030 0.0034

5
kidtran

cv glm 0.0059 0.0056 0.0027 0.0143

6 rf 0.0181 0.0111 0.0129 0.0104

7
support

cv glm 0.0049 0.0013 0.0024 0.0018

8 rf 0.0236 0.0046 0.0237 0.0024

c. Standard Deviation of the C-Index (Discrimination, SQ2)

unbiased Dtrain biased Dtrain
# data set model baseline McBoostSurv baseline McBoostSurv

1
compas

cv glm 0.0077 0.0587 0.0084 0.0547

2 rf 0.0356 0.0128 0.0336 0.0079

3
flchain

cv glm 0.0075 0.0053 0.0077 0.0733

4 rf 0.0374 0.0091 0.0060 0.0053

5
kidtran

cv glm 0.0860 0.0980 0.1105 0.0833

6 rf 0.0698 0.0378 0.0446 0.0605

7
support

cv glm 0.0051 0.0118 0.0048 0.0172

8 rf 0.0347 0.0100 0.0356 0.0091

Table 6: Standard deviation of the measures for the results in Table 4.
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