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Abstract
The orthant model is a directed percolation model on Z

d , in which all clusters are
infinite. We prove a sharp threshold result for this model: if p is larger than the
critical value above which the cluster of 0 is contained in a cone, then the shift from
0 that is required to contain the cluster of 0 in that cone is exponentially small. As a
consequence, above this critical threshold, a shape theorem holds for the cluster of 0,
as well as ballisticity of the random walk on this cluster.

Keywords Oriented percolation · Phase transitions · Degenerate random
environments · Random graphs
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1 Introduction andMain Result

We consider the orthant model on the directed graph Z
d , d ≥ 2, with nearest

neighbour edges. This model is informally described as follows. Let e1, . . . , ed be
the standard unit basis vectors of R

d . We set E+ := {e1, . . . , ed}, and E− :=
{−e1, . . . , −ed}, as well as E = E+ ∪ E−. A vertex v ∈ Z

d is connected to the ver-
tices v + e for all e ∈ E+ with a directed edge with probability p, independently of
the other vertices. Otherwise, so with probability 1 − p, the vertex v is connected to
the vertices v+e for all e ∈ E−. This model was introduced by Holmes and Salisbury
[10, 11]. The model is shown in Fig. 1 for d = 2.

The random directed graph obtained in this way has the property that every vertex
is in an infinite cluster, since, for example, either the edge in the direction e1 or in the
direction −e2 is always available. Therefore, there is no classical percolation phase
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Fig. 1 The orthant model on Z
2. The cluster of the origin is shaded blue

transition in this model, where for small p there are only finite clusters, and for large
p an infinite cluster exists. Instead, for small p the clusters will have a tendency to
move in the directions of E−, and for large p a tendency in the directions of E+.
In order to make this notion precise, we introduce a cone oriented in the direction
1 := e1 + · · · + ed . For 0 ≤ η ≤ 1, we define the convex cone

Kη =
{
x ∈ R

d : x · 1 ≥ η‖x‖1}.
Note that K0 is a half-space, and that K1 is the positive orthant.

For v, w ∈ Z
d , we say that v −→ w, whenever there is a directed path from v

to w. Note that this is not a symmetrical event, since we are working with a directed
graph. Furthermore, for A ⊂ Z

d , we say that v −→ A, whenever there exists w ∈ A

such that v −→ w. For v ∈ Z
d , let Cv denote the forward cluster of v, i.e.,

Cv := {w ∈ Z
d : v −→ w}.

We can define the critical point above which C0 is contained in a translated cone with
parameter η:

p̃c(η) := inf
{
p : Pp(C0 ⊂ −n1 + Kη for some n ∈ N) = 1

}
.

Note that this critical point is increasing in η, and that p̃c(1) = 1, so that p̃c(η)

is of interest for η ∈ [0, 1). In fact, Holmes and Salisbury [12] have proven that
pOSP

c ≤ p̃c(η) < 1 for all 0 < η < 1, where pOSP
c is the critical parameter for

oriented site percolation on the triangular lattice. Furthermore, from considerations
later in this section, it follows that p̃c(0) > 0. Therefore, p̃c(η) is non-trivial for
0 ≤ η < 1. In this paper, we will prove the following result.
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Theorem 1 Consider the orthant model on Zd with parameter p. Let 0 ≤ η < 1 and
suppose p > p̃c(η). Then, there exists a constant cp > 0, such that for all n ∈ N,

Pp

(
0 −→ (−n1 + Kη)

c
) ≤ exp(−cpn).

The above result for d = 2 was proven by Holmes and Salisbury [10] by mak-
ing a connection with oriented site percolation on the triangular lattice. The result
of Theorem 1 is known as a sharp threshold, or as a sharp phase transition. This
type of result has been proven in a variety of models, most notably, and initially, for
Bernoulli bond percolation in the 80’s by Menshikov [16] and Aizenman and Barsky
[1]. More recently, a revolutionary technique using the OSSS inequality was devel-
oped by Duminil-Copin, Raoufi and Tassion to prove sharp thresholds in models with
more complexities [5–8]. These models include the random cluster model, Voronoi
percolation, Boolean percolation, Gaussian fields, the corrupted compass model and
the Widom-Rowlinson model [3, 4, 15, 17].

As a consequence of the above sharp threshold result, we can prove a shape
theorem for C0 above p̃c := limη↓0 p̃c(η). This critical point can also be written as

p̃c = inf
{
p : ∃η > 0 s.t. Pp(C0 ⊂ −n1 + Kη for some n ∈ N) = 1

}
.

A shape theorem for the orthant model was first proven by Holmes and Salisbury
[14] for large p. Using Theorem 1, we can extend this result to all p > p̃c. In order
to state the shape theorem, we introduce for u ∈ Z

d

βn(u) := inf{k ∈ Z : k1 + nu ∈ C0}.
Furthermore, let �r := {v ∈ Z

d : ‖v‖∞ ≤ r} be the closed ball around 0 with radius
r with respect to the L∞-norm. Borrowing the notation from [14], the shape theorem
for the orthant model can be stated as follows.

Corollary 1 (Shape theorem) Let p > p̃c. The following hold for the orthant model
on Zd with parameter p.

a) For u ∈ Z
d , there is a deterministic γ (u) ∈ R such that βn(u)

n
→ γ (u), as

n → ∞, Pp-almost surely.
b) This limit satisfies γ (u+w) ≤ γ (u)+γ (w), γ (ru) = rγ (u), γ (u+r1) = γ (u)−

r , for u, w ∈ Z
d , and r ∈ N. Furthermore, γ is symmetric under permutation of

coordinates, γ (u) ≥ 0 if u · 1 ≤ 0, and γ (u) ≤ 0 if u lies in the positive orthant.
c) The limit γ extends to a Lipschitz map R

d → R with these same properties, but
for r ∈ [0, ∞) and u, w ∈ R

d .
d) The set C := {z ∈ R

d : γ (z) ≤ 0} is a closed convex cone, which is symmet-
ric under permutations of the coordinates, contains the positive orthant, and is
contained in the half-space K0 = {z : z · 1 ≥ 0}.

e) Let C∗
0 := C0 + e1N0, i.e., “C0 with its holes filled in”. It holds that 1

n
C∗
0 → C,

in the sense that for every ε > 0 and every r > 0, the following holds Pp-a.s. for
sufficiently large (random) n:

(
�r ∩ 1

n
C∗
0

)
⊂ �ε + C, and (�r ∩ C) ⊂ �ε + 1

n
C∗
0 .
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To prove this theorem for all p > p̃c, we modify the proof in [14] by using
Theorem 1 in the places where they require p to be large. Another consequence of
Theorem 1 is the ballisticity of the random walk on C0.

Corollary 2 (Ballisticity of the Random Walk) Consider the orthant model on Z
d

with parameter p > p̃c. Let Xn be a simple random walk on C0 and let P be the
annealed law of this random walk (i.e., averaged over C0). Then there exists v > 0
such that 1

n
Xn → v1 P -a.s. as n → ∞, and

(
X�nt� − v1nt√

n

)

t≥0
⇒ (Bt )t≥0, as n → ∞,

weakly under P , in the space of càdlàg functions endowed with the Skorohod topol-
ogy, where (Bt )t≥0 is a d-dimensional Brownian motion with nonsingular covariance
matrix �.

This is Theorem 1.4 combined with Corollary 1.9 of [12] by Holmes and Salisbury
applied to the orthant model. Their theorem is stated for more general models, and
requires two conditions, one of which they show to hold for the orthant model with
any value of p. The other condition is the existence of η > 0 and c > 0 such
that Pp

(
0 −→ (−n1 + Kη)

c
) ≤ exp(−cnβ), for some β > 0. By taking β = 1

and assuming p > p̃c, it follows from Theorem 1 that this condition holds for the
orthant model with parameter p. Corollary 2 is therefore an immediate consequence
of combining Theorem 1 with Theorem 1.4 of [12].

Despite the above results, the theoretical picture of the orthant model is still incom-
plete. We will use the remainder of this section to formulate two open questions for
the model. The shape theorem and the ballisticity of the random walk have now been
shown to hold for p > p̃c := limη↓0 p̃c(η). A natural extension would be to prove
these results for p > p̃c(0). This would follow from the continuity of p̃c(η).

Open Problem 1 Consider the orthant model on Z
d . The function η �→ p̃c(η) is

continuous on [0, 1].

A critical value other than p̃c can be defined for the orthant model. In order to
state this definition, we introduce for v ∈ Z

d ,

Lv := inf{k ∈ Z : v + ke1 ∈ C0}.

The critical value pc is defined as

pc := sup{p : L0 = −∞ a.s.}.

Holmes and Salisbury [13] have shown that this critical value is nontrivial, i.e., 0 <

pc < 1. From the definitions of the critical values, it is clear that pc ≤ p̃c(0) ≤ p̃c.
However, it is as of yet unclear that above pc there exists a cone with parameter η > 0
that contains the forward cluster of 0.
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Open Problem 2 Consider the orthant model on Z
d . It holds that

pc = p̃c.

In order to prove this, perhaps it is most natural to first show that pc = p̃c(0), and
subsequently show the continuity of p̃c(η).

The sharp threshold result of Theorem 1 will be proven in Section 3, while some
preliminaries required for this proof are introduced in Section 2. The proof for
Corollary 1 is given in Section 4.

2 Preliminaries

We can couple the model for different values of p by considering a coupling similar to
the standard coupling in Bernoulli percolation: we consider a family of i.i.d. random
variables (Uv)v∈Zd , and connect v to v + e for all e ∈ E+ whenever Uv < p, and
to v + e for all e ∈ E− if Uv ≥ p. One difficulty in analysing the orthant model is
the lack of monotonicity in p, i.e., a path from v to w might be lost if we increase p.
To deal with this issue, we introduce the half-orthant model. In this model a vertex
v is always connected to v + e for all e ∈ E+, whereas v is connected to v + e,
for all e ∈ E−, with probability 1 − p. This model is monotone in p, in the sense
that 1{v −→ w} is monotonically decreasing in p, under the coupling where v is
connected to v + e, for all e ∈ E−, whenever Uv > p. Let C∗

v denote the forward
cluster of v in the half-orthant model. The half-orthant model dominates the orthant
model, in the sense that Cv ⊆ C∗

v , almost surely under a suitable coupling between
the two models. For v ∈ Z

d , we further define

L∗
v := inf{k ∈ Z : v + ke1 ∈ C∗

0 }.
From the domination it follows that Lv ≥ L∗

v . However, it turns out that equality
holds: L∗

v = Lv for all v ∈ Z
d [13, Thm. 1.9]. So, loosely speaking, if we only care

about the leftmost boundary of C0, it does not matter if we consider the orthant model
or the half-orthant model. This allows us to prove statements for the orthant model by
making use of the monotonicity of the half orthant model. In light of this, we remark
that the above definition of C∗

0 coincides with the definition stated in Corollary 1.
Furthermore, we note that Lv < ∞ for all v ∈ Z

d , since L∗
v < ∞, but it might be

the case that Lv = −∞ for some v ∈ Z
d . In fact, Holmes and Salisbury proved that

if Lv is finite for some v ∈ Z
d , then it is finite for all v ∈ Z

d (Lemma 2.2 of [13]).
For p < pc it follows that L∗

v = −∞ for all v ∈ Z
d , and in this case, C∗

0 = Z
d . On

the other hand, if p > pc, Lv is finite for all v ∈ Z
d using the monotonicity of the

half-orthant model.
To prove Theorem 1, it therefore suffices to work with the half-orthant model. We

start by giving a formal description of this model. For p ∈ [0, 1], we consider the
probability space (�,F,Pp), where

� = {0, 1}Zd

,
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the σ -algebra F is generated by the cylindrical events, and Pp is the product measure
on � such that Pp(ωv = 1) = p for all v ∈ Z

d . From ω ∈ � we obtain the edge
configuration ξ ⊆ {(v, v + e) : v ∈ Z

d, e ∈ E} by adding the edge (v, v + e) to the
graph for all e ∈ E+, and for all e ∈ E− whenever ωv = 0.

For v, w ∈ Z
d , we say v ∼ w when v is a neighbour ofw, i.e., wheneverw = v+e

for some e ∈ E . Furthermore, we say that v � w, whenever (v, w) ∈ ξ . For A ⊂ Z
d ,

we say that v
A−−→ w, whenever there is a path from v to w using only edges in ξ

with starting points in A. Note that w does not have to be an element A for this event

to hold. For A = Z
d we use the shorthand notation {v −→ w} := {

v
Z

d−−→ w
}
.

Furthermore, the event v
A−−→ v trivially holds for all v ∈ Z

d , and all A ⊂ Z
d .

The proof will make use of the OSSS inequality for Boolean functions f : � →
{0, 1}. In order to state this inequality, we introduce the influence of v on f . This is
defined as

Infv := Pp(f (ω) �= f (ωv �→p)),

where ωv �→p is given by

(ωv �→p)w =
{

ω′
v if w = v,

ωv if w �= v,

for a Bernoulli distributed random variable ω′
v with parameter p, which is indepen-

dent of the other variables. In other words,

Infv = 2p(1 − p)Pp(v is pivotal for the event {f = 1}).
A decision tree T is a random sequence of vertices (v0, v1, . . . ) that is built

sequentially as follows. The tree starts by revealing the value of ωv0 , for the starting
vertex v0. Then, depending on the value of ωv0 , it chooses a vertex v1 and reveals
the value of ωv1 . This process continues until it has obtained enough information to
determine the value of f , i.e., whenever the values of ωv for unrevealed vertices v,
cannot change f any more. This leads to the definition of the revealment of v by T :

Revv(T ) := Pp(ωv is revealed by T ).

The OSSS inequality states that for a Boolean function f depending on finitely many
variables and a decision tree T that determines the value of f we have

Varp(f ) ≤
∑

v∈Zd

InfvRevv(T ).

This inequality was proven by O’Donnell, Saks, Schramm and Servedio [19]. A
detailed exposition of Boolean functions has been written by O’Donnell [18], in
which the proof of the OSSS inequality can also be found. Still, we will make use
of Boolean functions f that depend on infinitely many variables, so that we require
an additional limit argument. The OSSS inequality can be generalized to Boolean
functions on �, provided f is measurable with respect to the σ -algebra

σ
({ωv : ωv revealed by T }).
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This is for example the case for decision trees that terminate in a finite number of
steps on the set {f = 1}. This generalisation of the OSSS inequality has been stated
by Duminil-Copin, Raoufi and Tassion [7]. A proof can be found in [2].

3 Proof of Theorem 1

For η ≥ 0 and n ∈ N, we define the Boolean function

fn := 1{0 −→ (−n1 + Kη)
c}.

3.1 Exploration Algorithm

We now introduce decision trees that determine the value of fn. A vital point in the
proof is that we can uniformly bound the revealment of the vertices. If we only use
one decision tree with a deterministic starting point, then the starting vertex will have
revealment 1, so that we cannot find a nontrivial uniform bound on the revealment.
Therefore, we will introduce the decision trees Tk , for 1 ≤ k ≤ n, which all start at
different vertices. In this way, we can average over k and have a meaningful uniform
bound on the revealment. The basic idea of the decision tree Tk is that it explores
the cluster of the boundary of −k1 + Kη. If 0 −→ (−n1 + Kη)

c, this path must go
through the boundary of the cone −k1 + Kη, so that Tk determines fn. Furthermore,
Tk terminates in a finite number of steps when fn = 1.

We will now describe the exploration algorithm of Tk more precisely. We define
the boundary and the outer boundary of the cone as

∂(−k1 + Kη) := {v ∈ (−k1 + Kη) ∩ Z
d : ∃w ∈ (−k1 + Kη)

c ∩ Z
d with v ∼ w},

∂+(−k1 + Kη) := {v ∈ (−k1 + Kη)
c ∩ Z

d : ∃w ∈ (−k1 + Kη) ∩ Z
d with v ∼ w}.

The decision tree Tk consists of two phases. In the first phase, Tk explores the
backward cluster of ∂(−k1 + Kη) inside the cone, that is, it explores the set {v ∈
−k1 + Kη : v −→ ∂(−k1 + Kη)}. When this is finished, the set of vertices

{
v ∈ ∂+(−k1 + Kη) : 0

−k1+Kη−−−−−→ v

}

has been determined. In the second phase, the algorithm explores the forward clusters
of these vertices. If for one of these vertices we find that v −→ (−n1+Kη)

c, then we
also have 0 −→ (−n1 + Kη)

c. A schematic visualisation of the algorithm is shown
in Fig. 2.

There is however one technical issue: since fn depends on the state of infinitely
many vertices, it is possible that the algorithm gets stuck exploring inside −k1+Kη,
and never gets to explore the forward clusters outside −k1 + Kη. In order to deal
with this, the decision tree operates in rounds, denoted by i ∈ N. Recall that �r is
the ball of radius r around 0 with respect to L∞-norm. In round i we only explore
inside �i , so it is not possible to get stuck in any particular phase. Note that if 0 −→
(−n1 + Kη)

c, there exists i ∈ N such that 0
�i−−→ (−n1 + Kη)

c.
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Fig. 2 The algorithm Tk exploring the cluster of ∂(−k1+Kη) to find a path from 0 to (−n1+Kη)
c . The

blue vertices are revealed.

We denote by R the set of revealed vertices. Furthermore, we denote by A the
set of active vertices for the first phase and by B the set of active vertices for the
second phase. We start the algorithm by setting A := A0 := ∂+(−k1 + Kη), and
B := ∅. The pseudocode of Tk is given in Algorithm 1. We have to be careful when
updating A in the first phase: by revealing v it is possible that we create a new path

x
R−→ ∂+(−k1+Kη) for some x �= v. Therefore, it is not sufficient to only consider

w ∼ v for the update of A. Instead, we add w to A if and only if w �∈ R ∩ B, and if

there exists x ∈ R such that x ∼ w, and x
R−→ ∂+(−k1 + Kη). At the start of any

iteration of the inner loops of the algorithm, the following hold for the active sets A
and B:

A ⊆ A0\R ∪ {v ∈ (−k1 + Kη) ∩ Z
d : v �∈ R, ∃w ∼ v, s.t. w

R−→ ∂+(−k1 + Kη)},
B = {v ∈ (−n1 + Kη) ∩ Z

d : v �∈ R, ∃w ∈ ∂+(−k1 + Kη) s.t. 0
R−→ w, w

R−→ v}. (1)

3.2 Bound on the Revealment

Let θn(p) := Pp(fn = 1). Summing the OSSS inequality over k gives

nθn(p)(1 − θn(p)) ≤
∑

v∈Zd

Infv

n∑
k=1

Revv(Tk). (2)

We will now bound
∑n

k=1 Revv(Tk) uniformly in v. Let kv be such that v ∈
∂+(−kv1 + Kη). Note that kv−1 = kv + 1. Suppose first that k > kv + 1. If v is
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revealed by Tk in the second phase, we have 0 −→ ∂+(−k1 + Kη) by (1). On the
other hand, if v is revealed by Tk in the first phase, there exists w ∼ v such that
w −→ ∂+(−k1 + Kη). Since k > kv + 1, we know that v − 1 ∈ −k1 + Kη, which
implies that every neighbour of v is also contained in −k1+Kη. Applying the union
bound gives

Algorithm 1: The exploration algorithm Tk .

i := n;
A := ∂+(−k1 + Kη) ∩ �n;
B := ∅;
R := ∅;
while 0

R�−→ (−n1 + Kη)
c do

while A ∩ �i �= ∅ do
Take lexicographical minimal v ∈ A ∩ �i ;
Reveal ωv;
R := R ∪ {v};
A := A\{v};
A := A ∪ {w ∈ (−k1 + Kη) ∩ Z

d : w �∈ R ∪ B, ∃x ∈ R, x ∼
w, s.t. x

R−→ ∂+(−k1 + Kη)};
B := B ∪ {w ∈ Z

d : w �∈ R, ∃x ∈ ∂+(−k1 + Kη) s.t. 0
R−→ x, x

R−→
w};
A := A\{w ∈ Z

d : w �∈ R, ∃x ∈ ∂+(−k1 + Kη) s.t. 0
R−→ x, x

R−→
w};
if 0

R−→ (−n1 + Kη)
c then return 1

while B ∩ �i �= ∅ do
Take lexicographical minimal v ∈ B ∩ �i ;
Reveal ωv;
R := R ∪ {v};
B := B\{v};
B := B ∪ {w ∈ Z

d : w �∈ R, ∃x ∈ ∂+(−k1 + Kη) s.t. 0
R−→ x, x

R−→
w};
A := A\{w ∈ Z

d : w �∈ R, ∃x ∈ ∂+(−k1 + Kη) s.t. 0
R−→ x, x

R−→
w};
if 0

R−→ (−n1 + Kη)
c then return 1

i := i + 1;

n∑
k=1

1{k > kv + 1}Revv(Tk) ≤
n∑

k=1

1{k > kv + 1}
(
θk(p) +

∑
w∼v

Pp(w −→ ∂+(−k1 + Kη))
)
.

Let
dw
k := sup{l ∈ Z : w − l1 ∈ −k1 + Kη}.
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Note that dw
k ≥ 0 for all k > kv + 1. Furthermore w − dw

k 1 ∈ −k1 + Kη, and

w − dw
k 1 + Kη ⊆ −k1 + Kη,

since −k1 + Kη is a convex cone. Therefore, using translation invariance, it follows
that

n∑
k=1

1{k > kv + 1}Revv(Tk) ≤
n∑

k=1

1{k > kv + 1}
(
θk(p) +

∑
w∼v

Pp

(
w −→ ∂+(

w − dw
k 1 + Kη

)))

=
n∑

k=1

1{k > kv + 1}
(
θk(p) +

∑
w∼v

Pp

(
0 −→ ∂+( − dw

k 1 + Kη

)))
. (3)

We have dw
kv+2 ≥ 0, and using the fact that dw

k+1 = dw
k + 1, we know dw

kv+l ≥ l − 2,
for all l ≥ 2. We can thus bound

n∑
k=1

1{k > kv + 1}Revv(Tk) ≤
n∑

k=1

θk(p) + 2d
n−1∑
k=0

Pp

(
0 −→ ∂+(−k1 + Kη)

)

=
n∑

k=1

θk(p) + 2d
n−1∑
k=0

θk(p). (4)

Now suppose k < kv , so v �∈ −k1 + Kη ∪ ∂+(−k1 + Kη). If v is revealed, it holds

that 0
R−→ v. In particular, we have 0 −→ ∂+(−k1 + Kη). We find

n∑
k=1

1{k < kv}Revv(Tk) ≤
n∑

k=1

θk(p). (5)

Combining (4) and (5) gives

n∑
k=1

Revv(Tk) ≤ 2 + 2
n∑

k=1

θk(p) + 2d
n∑

k=0

θk(p) = (2d + 2)
n∑

k=0

θk(p).

Writing Sn := ∑n
k=0 θk(p), gives

∑

v∈Zd

Infv ≥ 1

2d + 2

n

Sn

θn(p)(1 − θn(p)). (6)

3.3 Analysis of the Differential Inequality

We are now able to complete the proof of Theorem 1. We can obtain a differential
inequality by using Russo’s formula. However, since fn depends on infinitely many
vertices, θn(p) is not necessarily differentiable in p. Instead we have to work with
the upper-right Dini derivative:

D+θn(p) := lim sup
h↓0

θn(p + h) − θn(p)

h
.
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Using the fact that 0 −→ (−n1 + Kη)
c is a decreasing event, i.e., fn is a decreasing

function of ω, Russo’s formula gives

−D+θn(p) ≥
∑

v∈Zd

Pp(v is pivotal for {fn = 1}) = 1

2p(1 − p)

∑

v∈Zd

Infv .

This version of Russo’s formula can be found in the book on Percolation by Grimmett
[9]. This is the point in the proof where we use the monotonicity of the half-orthant
model, as well as the coupling given at the start of Section 2. Combining the above
inequality with (6) gives

− D+θn(p) ≥ 1

2d

n

Sn

θn(p)(1 − θn(p)), (7)

where we use (2d+2)2p(1−p) ≤ 2d for simplicity. The rest of the proof consists of
analysing the above differential inequality. This analysis follows the line of Duminil-
Copin, Raoufi and Tassion [7], but since it differs on several points, we choose to
include it. We have to work with Dini derivatives instead of regular derivatives, and,
more importantly, in our case we cannot give a simple lower bound on 1 − θn(p).

To analyse the differential inequality, we introduce the auxiliary critical point

p̂c(η) := sup

{
p : lim sup

n→∞
log Sn(p)

log n
= 1

}
.

Note that by the monotonicity of the model, lim supn→∞
log Sn(p)
log n

= 1 for all p <

p̂c(η), and lim supn→∞
log Sn(p)
log n

< 1 for all p > p̂c(η). We will first show that
p̂c(η) ≤ p̃c(η), for η ≥ 0. To prove this, we assume the contrary, and let p ∈
(p̃c(η), p̂c(η)). Since p > p̃c(η), we can fix l ∈ N, such that for all n > l it holds
that 1 − θn(p) ≥ 1/2. We define Tn(p) := 1

log n

∑n
k=l

θk(p)
k

. Taking the upper-right
Dini derivative and using (7) gives

− D+Tn ≥ 1

2d

1

log n

n∑
k=l

θk(p)

Sk

(1 − θk(p)) ≥ 1

4d

1

log n

n∑
k=l

θk(p)

Sk

≥ 1

4d

log Sn+1 − log Sl

log n
,

(8)
where in the last inequality we used

θk(p)

Sk

≥
∫ Sk+1

Sk

1

x
dx = log Sk+1 − log Sk .

Now let p1 ∈ (p, p̂c(η)). We will integrate the differential inequality between p and
p1 and use the following result regarding Dini derivatives: the Dini derivative of a
decreasing function f : [a, b] → R satisfies

f (b) − f (a) ≤
∫ b

a

D+f (x) dx. (9)

Applying this to Tn(p) and using (8) gives

Tn(p1) − Tn(p) ≤
∫ p1

p

D+Tn(s) ds ≤ −(p1 − p)
1

4d

log Sn+1(p1) − log Sl(p)

log n
.
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Furthermore, Tn(p) converges to θ(p) := limn→∞ θn(p) for n → ∞, since for all
l < m < n:

θn(p)

∑n
k=l

1
k

log n
≤ Tn(p) ≤ θm(p)

∑n
k=m

1
k

log n
+

∑m−1
k=l

1
k

log n
,

from which the limit follows by first taking n → ∞, and then m → ∞. We find

θ(p1) − θ(p) ≤ −(p1 − p)
1

4d
lim sup
n→∞

log Sn+1(p1) − log Sl(p)

log n
.

Since p < p̂c(η), we have that lim supn→∞
log Sn(p)
log n

= 1 and the same holds for p1,
so that also

lim sup
n→∞

log Sn+1(p) − log Sl(p1)

log n
= 1.

We conclude

θ(p) ≥ θ(p) − θ(p1) ≥ p1 − p

4d
> 0, (10)

which contradicts p > p̃c(η), so that we have established that p̂c(η) ≤ p̃c(η).
Now suppose p > p̂c(η). Then there exists N1 ∈ N and β < 1 such that Sn(p) ≤

nβ for all n ≥ N1, and there exists N2 ∈ N such that θn(p) ≤ 1
2 for all n ≥ N2.

Combining this with (7) and using the chain rule for Dini derivatives gives

D+ log θn(p) ≤ − 1

2d
n1−β(1 − θn(p)) ≤ − 1

4d
n1−β,

for all n > N := N1∨N2. Let p1 := (p̃c(η)+p)/2. Integrating the above inequality
between p1 and p and using (9) gives

log θn(p) ≤ log θn(p) − log θn(p1) ≤ − 1

4d
(p − p1)n

1−β .

It follows that

θn(p) ≤ exp

(
− 1

8d
(p − p̃c(η))n1−β

)
.

It remains to improve the above stretched exponential decay to proper expo-
nential decay. From the stretched exponential decay it follows that S(p) :=
limn→∞ Sn(p) < ∞. Combining this fact with (7), and using that θn(p) ≤ 1

2 for
n > N , since p > p̂c(η), gives

D+ log θn(p) ≤ − 1

4dS(p)
n.

From here the proof is similar as for the stretched exponential decay, and we conclude

θn(p) ≤ exp

(
− 1

8dS(p)
(p − p̃c(η))n

)
.

It follows that p̃c(η) = p̂c(η), and that Theorem 1 holds with

cp := 1

8dS(p)
(p − p̃c(η)) ∧ sup

{
C > 0 : θn(p) ≤ exp(−Cn) for all n ≤ N

}
> 0.

Math Phys Anal Geom (2021) 24: 3636   Page 12 of 16



Remark A mean-field lower bound can often be obtained from the analysis of a dif-
ferential inequality such as the above one, which would be θ(p) ≥ c(p̃c(η) − p) in
our case, for p < p̃c(η), and some constant c > 0, independent of p. This does not
directly follow from the above analysis, since we have assumed p ∈ (p̃c(η), p̂c(η))

in the first part of the analysis. If instead we take p < p̂c(η) such that θ(p) < 1/2,
then we can still bound 1 − θn(p) ≥ 1/2, for n large enough, and obtain the mean-
field lower bound at (10). However, this bound is of little interest for the orthant
model, since if p < pc, C∗(0) = Z

d almost surely, so that θ(p) = 1. On the other
hand, if p ∈ (p̃c, p̃c(η)) for some η > 0, Corollary 1 implies that θ(p) = 1 as well.
This leaves the interval (pc, p̃c) to be considered, but we conjecture this interval to
be empty.

4 Proof of the Shape Theorem

To prove Corollary 1, we modify the proof of Holmes and Salisbury [14] in the places
where they require p to be large. Their proof is structured in seven lemmas, two of
which require a large p. The first of these is Lemma 1 of [14]. This lemma asserts the
existence of θ > 1, such that for every η ∈ [0, 1), there exists p0 = p0(η, d) < 1,
such that for p > p0, there exists c1 > 0 such that Pp(0 −→ (−n1 + Kη)

c) ≤
c1θ

−nd , for all n ∈ N. In the remainder of their proof, this lemma is only used for
the case η = 0. Therefore, we can replace this lemma by Theorem 1, and require
p > p̃c, instead of p > p0.

The second lemma in the proof of Holmes and Salisbury which require large p is
Lemma 5 of [14]. We will prove this lemma for p > p̃c, instead of for large p, using
Theorem 1. To state this lemma, we let u ∈ Z

d\Z1, and fix v ∈ R
d such that u·v > 0

and v · 1 = 0. We define the slab

�u,v(m, n) := {z ∈ Z
d : mu · v ≤ z · v < nu · v}.

We are interested in the following three events. Let A′
n(M) be the event there exists

a path starting in 0 and ending in a point k1 + nu with k < nγ (u) that hits
�u,v(−∞, −M). Let A′′

n(M) be the event there exists a path starting in 0 and end-
ing in a point k1 + nu with k < nγ (u) that hits �u,v(M + n, ∞). Lastly, let Ân

be the event that there is a path starting in 0 and ending in some point k1, with
k < 0, and reaches �u,v(n, ∞). We will prove the following lemma regarding these
events:

Lemma 1 Let p > p̃c. There exists c > 0, such that Pp(A′
n(�cn�) i.o.) =

Pp(A′′
n(�cn�) i.o.) = Pp(Ân(�cn�) i.o.) = 0.

We will prove the above lemma for the event A′
n(�cn�), the other two events can

be proven similarly. The event A′
n(�cn�) is shown in Fig. 3. Let p > p̃c. By the

definition of this critical point there exists η > 0 such that p > p̃c(η). We fix such
an η. Let c > 0, and let M := M(n) := �cn�. We will choose the precise value of
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1

0 K0

z · v = −Mu · v z · v = nu · v

u

v

nu

nu − nγ (u)1

Yu

x

− a1 + Kη

kx 1 + K0

k 1 + K0

Fig. 3 When the event A′
n(M) occurs, there exists a path from 0 to Yu going through the shaded region

c later on. Let a > 0 and suppose C∗
0 ⊆ −a1 + Kη. If A′

n(M) occurs, there exists
x ∈ Z

d satisfying
{

(x + a1) · 1 ≥ η‖x + a1‖1,
x · v = −Mu · v,

=⇒
{

x · 1 ≥ −2da + η‖x‖1,
x · v = −Mu · v,

(11)

such that 0 −→ x, and x −→ y, with y = k1 + nu for some k < nγ (u). Since the
L1-norm is equivalent to the L2-norm, and since the L2-norm is invariant under an
orthonormal basis change, it follows from the above equation that ‖x‖1 ≥ c0M , for
some constant c0 = c0(u, v) > 0. Combining this with the above inequality gives

x · 1 ≥ −2da + c0ηM .

Define kx := x · 1/d , so that x ∈ kx1 + K0. Then the above inequality implies

kx ≥ −2a + c0ηM

d
.

We define the set

Yu := {y ∈ Z
d : y = k1 + nu, with k < nγ (u)}.

We use Theorem 1 and the union bound to obtain

Pp(A′
n(M))≤ exp(−cpa)+

∞∑
kx≥−2a+c0ηM/d

Pp(∃x ∈�u,v(−∞,−M) : x ·1= dkx, 0−→x, x −→Yu)

≤ exp(−cpa) +
∞∑

kx≥−2a+c0ηM/d

∑
x∈�u,v(−∞,−M),

x·1=dkx

Pp(x −→ Yu).
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We define k∗ := k∗(n) := n(γ (u) + u · 1/d). With this choice, it follows that
y ∈ (k∗1+K0)

c for all y ∈ Yu, and all n ∈ N. We can now use translation invariance
to bound

Pp(x −→ Yu) ≤ Pp

(
x −→ (k∗1+K0)

c
) = Pp

(
x −kx1 −→ (−(kx −k∗)1+K0)

c
)
.

We now fix

c :=
(dγ (u) + u · 1

c0η
+ 1

)
∨ 1.

Let k′ ≥ 0 such that kx = −2a + c0ηM
d

+ k′. It holds, that

kx − k∗ ≥ −2a + c0η

d

⌊
n
(dγ (u) + u · 1

c0η
+ 1

)⌋
+ k′ − n

(
γ (u) + u · 1

d

)

≥ −2a + c0η

d
(n − 1) + k′ =: f (n, k′).

It follows, that

Pp(A′
n(M)) ≤ exp(−cpa) +

∞∑
k′=0

∑
x∈�u,v(−∞,−M),

x·1=−2da+c0ηM+dk′

Pp

(
x − kx · 1−→ (−f (n, k′)1 + K0)

c
)
.

Combining x · 1 = −2da + c0ηM + dk′ with (11), shows that

‖x‖1 ≤ c0M + dk′

η
.

Using another union bound, translation invariance, and Theorem 1, we find

Pp(A′
n(M)) ≤ exp(−cpa) +

∞∑
k′=0

∣∣∣
{
x ∈ Z

d : ‖x‖1 ≤ c0M + dk′

η

}∣∣∣Pp(0 −→ (−f (n, k′)1 + K0)
c)

≤ exp(−cpa) +
∞∑

k′=0

(
2c0cn + 2

dk′

η

)d

exp(−cpf (n, k′)). (12)

We now take

a := a(n) := c0η

4
n,

so that

f (n, k′) = −2a + c0η

d
(n − 1) + k′ = c0η

(n

2
− 1

)
+ k′.

A careful examination of (12) shows that the sum over k′ converges for all n ∈
N, and that the result is summable with respect to n, so that by the Borel-Cantelli
lemma Pp(A′

n(�cn�) i.o.) = 0. The same result can be proven similarly for the events
A′′

n(�cn�) and Ân(�cn�), and we omit the proof.
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(2020)

18. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)
19. O’Donnell, R., Saks, M., Schramm, O., Servedio, R.A.: Every decision tree has an influential variable.

In: 46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pp. 31–39. IEEE
(2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Math Phys Anal Geom (2021) 24: 3636   Page 16 of 16

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2002.07735

	Sharpness of the Phase Transition for the Orthant Model
	Abstract
	Introduction and Main Result
	Preliminaries
	Proof of Theorem 1
	Exploration Algorithm
	Bound on the Revealment
	Analysis of the Differential Inequality

	Proof of the Shape Theorem
	References


