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Abstract
We extend the notion of small essential deformations of Calabi–Yau complex structures
from the case of the Iwasawa manifold, for which they were introduced recently by the first-
named author, to the general case of page-1-∂∂̄-manifolds that were jointly introduced very
recently by all three authors.We go on to obtain an analogue of the unobstructedness theorem
of Bogomolov, Tian and Todorov for Calabi–Yau page-1-∂∂̄-manifolds. As applications of
this discussion, we study the small deformations of certain Nakamura solvmanifolds and
reinterpret the cases of the Iwasawa manifold and its 5-dimensional analogue from this
standpoint.

1 Introduction

In this paper, we begin to investigate the role that the new class of page-1-∂∂̄-manifolds
introduced in [11] plays in the theory of deformations of complex structures and in the new
approach to Mirror Symmetry, extended to the possibly non-Kähler context, proposed in
[10].

(I) On the one hand, we introduce in Sect. 3 the notion of small essential deformations
of an arbitrary compact Calabi-Yau page-1-∂∂̄-manifold.

The special case of the 3-dimensional Iwasawa manifold I (3) (a complex parallelisable
nilmanifold that is also a Calabi–Yau page-1-∂∂̄-manifold) was treated in [10]. Recall that a
compact complex manifold X is said to be complex parallelisable if its holomorphic tangent
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bundle T 1, 0X is trivial. ByWang’s theorem [20], any complex parallelisable X is the quotient
G/� of a complex Lie group G by a co-compact, discrete subgroup �. When the nilpotent
Lie group G is merely a real Lie group endowed with a left-invariant complex structure,
X = G/� is said to be a nilmanifold. Recall that every nilmanifold X is a Calabi-Yau
manifold in the sense (adopted in this paper) that its canonical line bundle K X is trivial.
In the case of I (3), G is a nilpotent complex Lie group, the Heisenberg group of 3 × 3
upper-triangular matrices with entries in C.

The small essential deformations of the Iwasawa manifold I (3) were defined in [10] as
those small deformations of I (3) that are not complex parallelisable.

According to [10], after removing the complex parallelisable small deformations of the
3-dimensional Iwasawa manifold X = I (3) from its Kuranishi family, the remaining, essen-
tial, small deformations turn out to be parametrised by the E2-cohomology space E2, 1

2 (X)

featuring on the second page of the Frölicher spectral sequence (FSS) of I (3). Recall that
the ordinary small deformations are parametrised by the bigger-dimensional Dolbeault coho-
mology space H2, 1

∂̄
(X) = E2, 1

1 (X) featuring on the first page of the FSS. The small essential

deformations of I (3) have much better Hodge-theoretical properties than the ordinary small
deformations. Indeed, the FSS of I (3) degenerates at E2, rather than at E1, and an analogue
of the Hodge decomposition and symmetry for I (3) was observed in [10] when the traditional
first page is replaced by the second page of the FSS.

This phenomenon was generalised in [11] through the introduction of the new class of
page-1-∂∂̄-manifolds (to which the Iwasawa manifolds belong) and, more generally, that of
page-r -∂∂̄-manifolds for every non-negative integer r .

It turns out that for some complex parallelisable n-dimensional nilmanifolds X , such as
the 5-dimensional analogue I (5) of the Iwasawa manifold I (3), the non-complex parallelis-
able small deformations no longer coincide with those parametrised by En−1, 1

2 (X) even

when this space injects in a natural way into En−1, 1
1 (X). Recall that, classically, En−1, 1

1 (X)

parametrises all the small deformations of X when there is no obstruction to deforming the
complex structure of X .

Wedefine the small essential deformationsof a compactCalabi–Yaupage-1-∂∂̄-manifold
X as those small deformations of X that are parametrised by En−1, 1

2 (X). However, in

general, there is no canonical injection of En−1, 1
2 (X) into En−1, 1

1 (X), although there is

always a canonical surjection from a canonical vector subspace En−1, 1
1 (X)0 of En−1, 1

1 (X)

to En−1, 1
2 (X). Under the Calabi-Yau page-1-∂∂̄-assumption on X , we manage to associate

in a natural, unique way a linear injection

J n−1, 1
ω : En−1, 1

2 (X) ↪−→ En−1, 1
1 (X)0 ⊂ En−1, 1

1 (X)

with every Hermitian metric ω on X such that J n−1, 1
ω is a lift (i.e. a section) of the canonical

surjection En−1, 1
1 (X)0 � En−1, 1

2 (X). (See Conclusion 3.4 and the discussion in Sect. 3
leading up to it.)

As a consequence of this discussion, we propose the following definition of small essential
deformations of the complex structure of X induced by a given metric ω on X .

Definition 1.1 Let X be a compact complex n-dimensional Calabi-Yau page-1-∂∂̄-
manifold.

For any Hermitian metric ω on X , the space En−1, 1
1 (X)ω-ess of small ω-essential defor-

mations of X is defined as the image of J n−1, 1
ω :

En−1, 1
1 (X)ω-ess := J n−1, 1

ω (En−1, 1
2 (X)) ⊂ En−1, 1

1 (X).
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See Definition 3.5 for further details. In particular, when X has a canonical (i.e. depending
only on its complex structure) Hermitian metric ω0, the small ω0-essential deformations of
X will be called the small essential deformations.

(II) On the other hand, we study in Sect. 4 the possible unobstructedness of the small
deformations, both essential and ordinary, of Calabi–Yau page-1-∂∂̄-complex structures.
We get a generalisation of the following classical Bogomolov-Tian-Todorov theorem (see
[18,19]):

The Kuranishi family of a compact Kähler Calabi-Yau manifold is unobstructed.
The Kähler assumption can be weakened to the ∂∂̄-assumption (and even to the E1 = E∞
assumption), as pointed out in [3,13,18]—see also discussions by various other authors such
as [7, Theorem 1.2].

Our main result is the following statement to the effect that, under certain cohomological
conditions, a similar phenomenon holds when the ∂∂̄-assumption is further weakened to
the page-1-∂∂̄-assumption. See Definition 4.1 for the meaning of unobstructedness for the
essential Kuranishi family. Meanwhile, for any bidegree (p, q), we letZ p, q

r (X) stand for the
vector space of smooth Er -closed (p, q)-forms on X . (These are the smooth (p, q)-forms on
X that represent Er -cohomology classes on the r -th page of the Frölicher spectral sequence.
See e.g. Proposition 2.3 in [12], reproduced as Proposition 2.8 below, for a description of
them.)

Theorem 1.2 Let X be a compact Calabi–Yau page-1-∂∂̄-manifold with dimCX = n. Fix
a non-vanishing holomorphic (n, 0)-form u on X and suppose that

ψ1(t)�(ρ1(s)�u) ∈ Zn−2, 2
2 (1)

for all ψ1(t), ρ1(s) ∈ C∞
0, 1(X , T 1, 0X) such that ψ1(t)�u, ρ1(s)�u ∈ ker d ∪ Im ∂ .

(i) Then, the essential Kuranishi family of X is unobstructed.
(ii) If, moreover, Zn−1, 1

1 = Zn−1, 1
2 , the Kuranishi family of X is unobstructed.

This undertaking is justified by the fact that unobstructedness of the Kuranishi family
occurs for some well-known compact complex manifolds that are not ∂∂̄-manifolds (so, the
Bogomolov-Tian-Todorov theorem may not apply), but are page-1-∂∂̄-manifolds, such as
I (3) and I (5). The point we will make is that I (3) and I (5) are not isolated examples, but they
are part of a pattern.

(III) Finally, we demonstrate in Sect. 5 the role played by the small essential deformations
by means of examples. Our main observation is the following

Proposition 1.3 There exist compact Calabi–Yau page-1-∂∂̄-manifolds with obstructed
small deformations but with unobstructed small essential deformations.

The examples we exhibit with the above property are the Nakamura solvmanifolds of
class (3b) introduced in [6] and taken up again in [2, §.3] and [1].

2 Background and preliminaries

We first review some general issues in the theory of deformations of complex structures,
make an observation about some non-essential deformations and then review some specific
properties of our class of page-1-∂∂̄-manifolds recently introduced in [11].
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2.1 Small deformations of complex structures

Let X be a compact complex manifold with dimCX = n. Recall that small deformations
of the complex structure of X over a base B may be described by smooth T 1, 0X -valued
(0, 1)-forms ψ(t) ∈ C∞

0, 1(X , T 1, 0X) depending on t ∈ B and satisfying the integrability
condition (see e.g. [4]):

∂̄ψ(t) = 1

2
[ψ(t), ψ(t)]. (2)

In fact, given such a ψ , the space of (0, 1)-tangent vectors for the complex structure deter-
mined by ψ is given by (Id+ψ)T 0,1

X .
Let t = (t1, ..., tm) ∈ C

m with m = dimCH0, 1(X , T 1, 0X). Writing

ψ(t) = ψ1(t) +
+∞∑

ν=2

ψν(t)

for the Taylor expansion of ψ around 0, (so each ψν(t) is a homogeneous polynomial of
degree ν in the variables t = (t1, . . . , tm)), the integrability condition is easily seen to be
equivalent to ∂̄ψ1(t) = 0 and the following sequence of conditions:

∂̄ψν(t) = 1

2

ν−1∑

μ=1

[ψμ(t), ψν−μ(t)] (Eq. (ν)), ν ≥ 2.

TheKuranishi family of X is said to beunobstructed if there exists a choice {β1, . . . , βm} of
representatives of cohomology classes that form a basis {[β1], . . . , [βm]} of H0, 1(X , T 1, 0X)

such that the integrability condition is satisfied (i.e. all the equations (Eq. (ν)) are solvable)
for any choice of parameters (t1, . . . , tm) ∈ C

m defining ψ1(t) = t1β1 + · · · + tmβm .
By the fundamental result of [5], when this qualitative condition is satisfied, a convergent

solution ψ(t) can be built for small t through an inductive construction of the ψν(t)’s from
the given ψ1(t) by solving the equations (Eq. (ν)) and choosing at every step the solution
with minimal L2 norm for a pregiven Hermitian metric on X . The r.h.s. of each of these
equations is ∂̄-closed, so the only obstruction to solvability is the possible non-∂̄-exactness
of the r.h.s. The resulting (germ of a) family (Xt )t∈
 of complex structures on X is called
the Kuranishi family of X . (It depends on the metric, but different choices of metrics yield
isomorphic families.) If it is unobstructed, its base B is smooth and can be viewed as an open
ball about 0 in the cohomology vector space H0, 1(X , T 1, 0X).

If, moreover, the canonical bundle K X of X is trivial (and we call X a Calabi–Yau man-
ifold in this case), there exists a (unique up to scalar multiplication) smooth non-vanishing
holomorphic (n, 0)-form u on X . It induces isomorphisms:

C∞
0, 1(X , T 1, 0X) � θ 	→ θ�u ∈ C∞

n−1, 1(X , C), (3)

H0, 1(X , T 1, 0X) � [θ ] 	→ [θ�u] ∈ Hn−1, 1
∂̄

(X) = En−1, 1
1 (X), (4)

that we call the Calabi–Yau isomorphisms (on forms, resp. in cohomology), where the
operation denoted by ·� combines the contraction of u by the (1, 0)-vector field component
of θ with the exterior multiplication by the (0, 1)-form component. In particular, if the
Kuranishi family of a Calabi–Yau manifold X is unobstructed, its base B can be viewed as
an open ball about 0 in Hn−1, 1

∂̄
(X).

Example 2.1 (The Kuranishi family of the 5-dimensional Iwasawa-type manifold) Let us
now consider the specific example of the complex parallelisable nilmanifold X = I (5) of
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complex dimension 5. Its complex structure is described by five holomorphic (1, 0)-forms
ϕ1, . . . , ϕ5 satisfying the equations:

dϕ1 = dϕ2 = 0, dϕ3 = ϕ1 ∧ ϕ2, dϕ4 = ϕ1 ∧ ϕ3, dϕ5 = ϕ2 ∧ ϕ3.

If θ1, . . . , θ5 form the dual basis of (1, 0)-vector fields, then [θi , θ j ] = 0 except in the
following cases:

[θ1, θ2] = −θ3, [θ1, θ3] = −θ4, [θ2, θ3] = −θ5,

hence also [θ2, θ1] = θ3, [θ3, θ1] = θ4, [θ3, θ2] = θ5.

In particular, H0, 1(X , T 1. 0X) = 〈[ϕ1 ⊗ θi ], [ϕ2 ⊗ θi ] | i = 1, . . . , 5〉, so dimC

H0, 1(X , T 1. 0X) = 10.

This manifold is the 5-dimensional analogue of the 3-dimensional Iwasawamanifold I (3).
The following fact was observed in [14].

Proposition 2.2 The Kuranishi family of the 5-dimensional nilmanifold I (5) is unobstructed.

Proof It was given in [14]. ��

2.2 Cohomological triviality of complex parallelisable deformations of nilmanifolds

In this section, we pave the way for the later introduction in Sect. 3 of the notion of small
essential deformations by exhibiting the opposite type of objects: a class of superfluous
(hence dispensable) small deformations. Specifically,we show that the complex parallelisable
small deformations of a complex parallelisable nilmanifold have the same geometry (from
the cohomological point of view—see Corollary 2.7—and as far as the universal cover is
concerned—see Theorem 2.4) as the original manifold.

For a complex parallelisable nilmanifold X = G/�, where G is a simply connected
nilpotent complex Lie group and � ⊂ G is a lattice, the Dolbeault cohomology can be
computed by left invariant forms (cf. [15]). In particular, one has (cf. [6]):

H0,1(X , T 1,0X) ∼= H0, 1(X , C) ⊗ g1,0 = (
ker ∂̄ ∩ A0,1

g

) ⊗ g1,0,

where g is the Lie algebra of G.
Furthermore, g is actually a complex Lie algebra and g1,0 ⊂ gC is a complex subalgebra,

where gC is the complexification of g. In fact, one has an identification of complex Lie
algebras g ∼= g1,0 given by z 	→ 1

2 (z − i J z). In what follows, we will always tacitly use the
above identifications.

Of particular interest are the cohomology classes in

Hpar (X) := H0, 1(X , C) ⊗ Z(g) = (ker ∂̄ ∩ A0,1
g ) ⊗ Z(g) ⊂ H0,1(X , T 1,0X),

where Z(g) is the centre of g, (which coincides with the Lie algebra of the centre Z(G) of
G since G is connected). The last inclusion is a consequence of the identification g ∼= g1,0.
Elements in Hpar (X) are called infinitesimally complex parallelisable deformations of X
due to the following

Theorem 2.3 [14] Let X = G/� be a complex parallelisable nilmanifold. Let μ ∈
H0,1(X , T 1,0X). The following statements are equivalent.

1. μ ∈ Hpar (X).
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2. For all X , Y ∈ g, one has [X , μY ] = 0.
3. tμ induces a 1-parameter family of complex parallelisable manifolds for t small enough.

Moreover, for each μ satisfying (1), (2) or (3), the sequence of equations (Eq. (ν))ν≥1

(equivalently, (2)) is solvable with ψ = ψ1 = μ.

We will show that the cohomology is the same for all the complex parallelisable small
deformations of a given complex parallelisable nilmanifold X = G/�. This will be a con-
sequence of the following

Theorem 2.4 Let X = G/� be a complex parallelisable nilmanifold, where G is a simply
connected nilpotent complex Lie group and � ⊂ G is a lattice. The universal cover of any
complex parallelisable small deformation of X is isomorphic to G as a complex Lie group.

Proof It is known that, for any left-invariant complex structure J making X into a complex
parallelisable nilmanifold X = G/�, all the small deformations of J are again left-invariant
(cf. [14, sect. 4]). In particular, they are again of the form G/�, but now with a possibly
different, yet still left invariant, complex structure. Thus, differentiably, the universal cover
is always G, which is determined entirely by g through the Lie-group/Lie-algebra correspon-
dence. However, the complex structure on G varies with μ but since it remains left-invariant,
it is determined by the splitting gC = g0,1μ ⊕ g1,0μ into i- and (−i)-eigenspaces, which can be
computed from the complex structure of the central fibre via the equalities g0,1μ = (Id+μ)g0,1

and g1,0μ = (Id+μ̄)g1,0.

Claim 2.5 The linear map of vector spaces

α : gC −→ gC,

defined as (Id+μ) on g0,10 and as (Id+μ) on g1,00 , is an isomorphism of Lie algebras.

Proof of Claim 2.5. Since μ is small, α is an isomorphism of vector spaces and the point is to
show that it is also a morphism of Lie algebras. We use [X , Ȳ ] = 0 for all X ∈ g1,0 and Ȳ ∈
g0,1. Since μ ∈ H0, 1(X , C) ⊗ Z(g), one also has [X , μȲ ] = 0, so [Z , μȲ ] = [Z , μ̄X ] = 0
for any Z ∈ gC. So, for X̄ , Ȳ ∈ g0,1, we have:

[α X̄ , αȲ ] = [X̄ , Ȳ ] + [μX̄ , μȲ ] + [μX̄ , Ȳ ] + [X̄ , μȲ ]
= [X̄ , Ȳ ] = [X̄ , Ȳ ] + μ([X̄ , Ȳ ]) = α([X̄ , Ȳ ]).

Regarding the last-but-one equality, recall Cartan’s formula (∂̄η̄)(X̄ , Ȳ ) = −η̄([X̄ , Ȳ ]) that
holds for any left-invariant (0, 1)-form η̄ and that μ ∈ ker ∂̄ ∩ A0,1

g ⊗ Z(g). Therefore,
μ([X̄ , Ȳ ]) = −(∂̄μ)(X̄ , Ȳ ) = 0. By a similar argument, [αX , αY ] = α([X , Y ]) for X , Y ∈
g1,0.

Finally, for all X ∈ g1, 0 and all Ȳ ∈ g0,1, we have:

[αX , αȲ ] = [X , Ȳ ] + [μ̄X , μȲ ] + [μ̄X , Ȳ ] + [X , μȲ ]
= 0 = α([X , Ȳ ]).

Summing up, α is an isomorphism of Lie algebras. Thus, we get an induced isomorphism
G → G which by construction is compatible with the complex structures corresponding to
0 resp. μ.

This finishes the proof of Claim 2.5 and that of Theorem 2.4. �
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Remark 2.6 Note that Theorem 2.4 does not state that the corresponding small deformations
of X are themselves biholomorphic. For example, when X is a torus, we only recover the
fact that the universal cover of each small deformation is C

n (while, of course, the lattice
changes).

For the last two cohomologies mentioned in the following statement, see Definition 3.4.
in [12], recalled as Definition 2.10 below.

Corollary 2.7 Let X ′ be a complex parallelisable small deformation of a complex paral-
lelisable nilmanifold X. Then, there exists an isomorphism between the double complexes
of left invariant forms on X and X ′.

In particular, there exist isomorphisms H(X) ∼= H(X ′), where H stands for any coho-
mology of one of the following types: Dolbeault, Frölicher Er , De Rham, Bott-Chern, Aeppli
and higher-page Bott-Chern and Aeppli.

Proof The first statement follows from Claim 2.5, since the double complex of left invariant
forms can be computed in terms of the Lie-algebra with its complex structure, while the
second follows from [17, Prop. 12] and the fact that for any nilmanifold X = G/�, the
inclusion of the double complex of left-invariant forms on G into all forms on X is an E1-
isomorphism. (This is conjectured to hold for all complex nilmanifolds and it is known for
complex parallelisable ones, see [15]). ��

2.3 Brief review of page-r-@@̄-manifolds

Let X be a compact complex manifold with dimCX = n.

2.3.1 @@̄-manifolds

Recall that X is said to be a ∂∂̄-manifold if for any d-closed pure-type form u on X , the
following exactness properties are equivalent:

u is d-exact ⇐⇒ u is ∂-exact ⇐⇒ u is ∂̄-exact ⇐⇒ u is ∂∂̄-exact.
The ∂∂̄-property of X is equivalent to X admitting a canonical Hodge decomposition.

This implies that X admits a canonical Hodge symmetry as well. These are properties of the
Dolbeault cohomology groups H p, q

∂̄
(X , C) = E p, q

1 (X) of X . They lie on the first page of

the Frölicher spectral sequence (FSS) of X . The ∂∂̄-property of X can also be characterised in
terms of the Bott-Chern and Aeppli cohomologies. (See Theorem and Definition 2.11 below
in the case r = 1 for precise statements of these properties.)

2.3.2 Terminology

Recall that the Frölicher spectral sequence (FSS) of X is a finite collection of complexes
(called pages) that inductively refine the Dolbeault cohomology of X until it becomes (non-
canonically) isomorphic to the De Rham cohomology. The first page, whose spaces are
denoted by E•, •

1 , is defined as the Dolbeault complex (with spaces E p, •
1 of bidegrees (p, •)

for every fixed p), while for every integer r ≥ 2 the r -th page E•, •
r is defined as the

cohomology of the previous page.
In [12, §.2.2], we introduced the following terminology. Fix r ∈ N and a bidegree (p, q)

with p, q ∈ {0, . . . , n}. A smooth C-valued (p, q)-form α on X is said to be Er -closed if
it represents an Er -cohomology class, denoted by {α}Er ∈ E p, q

r (X), on the r -th page of
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the Frölicher spectral sequence of X . Meanwhile, α is said to be Er -exact if it represents
the zero Er -cohomology class, i.e. if {α}Er = 0 ∈ E p, q

r (X). The C-vector space of C∞
Er -closed (resp. Er -exact) (p, q)-forms will be denoted by Z p, q

r (X) (resp. C p, q
r (X)). Of

course, C p, q
r (X) ⊂ Z p, q

r (X) and E p, q
r (X) = Z p, q

r (X)/C
p, q

r (X).
These notions are explicitly characterised as follows. (See [12, Proposition 2.3.].)

Proposition 2.8 (i) Fix r ≥ 2. A form α ∈ C∞
p, q(X) is Er -closed if and only if there exist

forms ul ∈ C∞
p+l, q−l(X) with l ∈ {1, . . . , r − 1} satisfying the following tower of r

equations:

∂̄α = 0

∂α = ∂̄u1

∂u1 = ∂̄u2

...

∂ur−2 = ∂̄ur−1.

We say in this case that ∂̄α = 0 and ∂α runs at least (r − 1) times.
(ii) Fix r ≥ 2. A form α ∈ C∞

p, q(X) is Er -exact if and only if there exist forms ζ ∈
C∞

p−1, q(X) and ξ ∈ C∞
p, q−1(X) such that

α = ∂ζ + ∂̄ξ,

with ξ arbitrary and ζ satisfying the following tower of (r − 1) equations:

∂̄ζ = ∂vr−3

∂̄vr−3 = ∂vr−4

...

∂̄v1 = ∂v0

∂̄v0 = 0,

for some forms v0, . . . , vr−3. (When r = 2, ζr−2 = ζ0 must be ∂̄-closed.)
We say in this case that ∂̄ζ reaches 0 in at most (r − 1) steps.

(iii) The following inclusions hold in every bidegree (p, q):

· · · ⊂ C
p, q

r (X) ⊂ C
p, q

r+1 (X) ⊂ · · · ⊂ Z p, q
r+1(X) ⊂ Z p, q

r (X) ⊂ · · · ,

wi th {0} = C
p, q
0 (X) ⊂ C

p, q
1 (X) = (Im ∂̄)p, q and Z p, q

1 (X) = (ker ∂̄)p, q ⊂
Z p, q
0 (X) = C∞

p, q(X).

Moreover, we say that a form α ∈ C∞
p, q(X) is Er -closed if ᾱ is Er -closed and we say

that α is Er -exact if ᾱ is Er -exact.
Taking our cue from Proposition 2.8, we defined in [12, Definition 3.1.] the following

higher-page analogues of ∂∂̄-closedness and ∂∂̄-exactness.

Definition 2.9 Suppose that r ≥ 2.

(i) We say that a form α ∈ C∞
p, q(X) is Er Er -closed if there exist smooth forms

η1, . . . , ηr−1 and ρ1, . . . , ρr−1 such that the following two towers of r − 1 equations
are satisfied:
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∂α = ∂̄η1 ∂̄α = ∂ρ1

∂η1 = ∂̄η2 ∂̄ρ1 = ∂ρ2

...
...

∂ηr−2 = ∂̄ηr−1, ∂̄ρr−2 = ∂ρr−1.

(ii) We refer to the properties of α in the two towers of (r −1) equations under (i) by saying
that ∂α, resp. ∂̄α, runs at least (r − 1) times.

(iii) We say that a form α ∈ C∞
p, q(X) is Er Er -exact if there exist smooth forms ζ, ξ, η such

that

α = ∂ζ + ∂∂̄ξ + ∂̄η (5)

and such that ζ and η further satisfy the following conditions. There exist smooth forms
vr−3, . . . , v0 and ur−3, . . . , u0 such that the following two towers of r − 1 equations
are satisfied:

∂̄ζ = ∂vr−3 ∂η = ∂̄ur−3

∂̄vr−3 = ∂vr−4 ∂ur−3 = ∂̄ur−4

...
...

∂̄v0 = 0, ∂u0 = 0.

(iv) We refer to the properties of ζ , resp. η, in the two towers of (r − 1) equations under
(iii) by saying that ∂̄ζ , resp. ∂η, reaches 0 in at most (r − 1) steps.

When r − 1 = 1, the properties of ∂̄ζ , resp. ∂η, reaching 0 in (r − 1) steps translate to
∂̄ζ = 0, resp. ∂η = 0.

To unify the definitions, we will also say that a form α ∈ C∞
p, q(X) is E1E1-closed (resp.

E1E1-exact) if α is ∂∂̄-closed (resp. ∂∂̄-exact).
As with Er and Er , it follows at once from Definition 2.9 that the Er Er -closedness

condition becomes stronger and stronger as r increases, while the Er Er -exactness condition
becomes weaker and weaker as r increases. In other words, the following inclusions of vector
spaces hold:

{∂∂̄-exact forms} ⊂ · · · ⊂ {Er Er -exact forms} ⊂ {Er+1Er+1-exact forms}
⊂ · · · ⊂ {Er+1Er+1-closed forms} ⊂ {Er Er -closed forms}
⊂ · · · ⊂ {∂∂̄-closed forms}.

The main notions introduced and studied in [12] are the following higher-page analogues of
the Bott-Chern and Aeppli cohomologies.

Definition 2.10 [12, Definition 3.4] Let X be an n-dimensional compact complex manifold.
Fix r ∈ N

� and a bidegree (p, q).

(i) The Er -Bott-Chern cohomology group of bidegree (p, q) of X is defined as the fol-
lowing quotient complex vector space:

E p, q
r , BC (X) := {α ∈ C∞

p, q(X) | dα = 0}
{α ∈ C∞

p, q(X) | α is Er Er -exact}
.
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(ii) The Er -Aeppli cohomology group of bidegree (p, q) of X is defined as the following
quotient complex vector space:

E p, q
r , A (X) := {α ∈ C∞

p, q(X) | α is Er Er − closed}
{α ∈ C∞

p, q(X) | α ∈ Im ∂ + Im ∂̄} .

When r = 1, the above groups coincidewith the standardBott-Chern, respectivelyAeppli,
cohomology groups. Moreover, for every (p, q), one has a sequence of canonical linear
surjections:

H p, q
BC (X) = E p, q

1, BC (X) � E p, q
2, BC (X) � · · · � E p, q

r , BC (X) � E p, q
r+1, BC (X) � · · · (6)

and a sequence of subspaces of H p, q
A (X):

· · · ⊂ E p, q
r+1,A(X) ⊂ E p, q

r , A (X) ⊂ · · · ⊂ E p, q
1,A (X) = H p, q

A (X). (7)

It can be shown that the representatives of Er -Bott-Chern classes can be alternatively
described as the forms that are simultaneously Er -closed and Er -closed, while the Er -
Aeppli-exact forms can be alternatively described as those forms lying in C p, q

r + C p, q
r .

2.3.3 Higher-page analogues of the @@̄-property

In [11, Theorem and Definition 1.2.] and [12, Theorem 1.3.], we generalised the notion of
∂∂̄-manifold to the higher pages of the Frölicher spectral sequence in the following form
that also features the higher-page Bott-Chern cohomology and the higher-page Aeppli
cohomology of X introduced in [12].

Theorem and Definition 2.11 Let X be a compact complex manifold with dimCX = n. Fix
an arbitrary positive integer r . The following statements are equivalent.

1. For every bidegree (p, q), every class {α p, q}Er ∈ E p, q
r (X) can be represented by a

d-closed (p, q)-form and for every k, the linear map

⊕

p+q=k

E p, q
r (X) �

∑

p+q=k

{α p, q}Er 	→
{ ∑

p+q=k

α p, q
}

DR
∈ Hk

DR(X , C)

is well-defined by means of d-closed pure-type representatives and bijective.
In this case, X is said to have the Er -Hodge Decomposition property.

2. The Frölicher spectral sequence of X degenerates at Er and the De Rham cohomology
of X is pure.

3. For all p, q ∈ {0, . . . , n} and for every form α ∈ C∞
p, q(X) such that dα = 0, the

following equivalences hold:

α ∈ Im d ⇐⇒ α is Er -exact ⇐⇒ α is Er -exact ⇐⇒ α is Er Er -exact.

4. For all p, q ∈ {0, . . . , n}, the canonical linear maps

E p, q
r , BC (X) −→ E p, q

r (X) and E p, q
r (X) −→ E p, q

r , A (X)

are isomorphisms, where E p, q
r , BC (X) and E p, q

r , A (X) are the Er -Bott-Chern, respectively
the Er -Aeppli, cohomology groups of bidegree (p, q) introduced in [12].

5. For all p, q ∈ {0, . . . , n}, the canonical linear map E p, q
r , BC (X) −→ E p, q

r , A (X) is injec-
tive.
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6. One has dimEk
r , BC (X) = dimEk

r , A(X) for all k ∈ {0, ..., 2n}.
A compact complex manifold X that satisfies any of the equivalent conditions (1)–(5) is

said to be a page-(r − 1)-∂∂̄-manifold.

The relations among these notions are captured in

Observation 2.12 [11, Corollary 2.11] Let X be a compact complex manifold.

(i) The following equivalence holds:
X is a ∂∂̄-manifold ⇐⇒ X is a page-0-∂∂̄-manifold;

(ii) For every r ∈ N
�, the following implication holds:

X is a page-r-∂∂̄-manifold
�⇒ X is a page-(r + 1)-∂∂̄-manifold.

That the Er -Hodge Decomposition property implies the higher-page analogue of the
Hodge Symmetry property was proved in [11, Corollary 2.10.].

Corollary 2.13 Let r be a positive integer. Any page-(r −1)-∂∂̄-manifold X has the Er -Hodge
Symmetry property in the following sense. For all p, q ∈ {0, . . . , n},
(a) every class {α p, q}Er ∈ E p, q

r (X) contains a d-closed representative α p, q ;
(b) the linear map

E p, q
r (X) � {α p, q}Er 	→ {α p, q}Er ∈ Eq, p

r (X)

is well-defined (in the sense that it does not depend on the choice of d-closed represen-
tative α p, q of the class {α p, q}Er ) and bijective.

3 Essential deformations of Calabi-Yaumanifolds

The notion of essential deformationswas introduced in [10] in the special case of the Iwasawa
manifold I (3). We now extend it to the class of all Calabi–Yau page-1-∂∂̄-manifolds X . The
idea is to keep only those small deformations of X that are parametrised by En−1, 1

2 (X) instead

of the larger-dimensional En−1, 1
1 (X). However, En−1, 1

2 (X) need not inject canonically into

En−1, 1
1 (X), so we will have to work with injections defined by a background Hermitian

metric on X .
Let X be a compact complex manifold with dimCX = n. Recall that, for every integer

r ≥ 1 and every bidegree (p, q), the vector space of smooth Er -closed (resp. Er -exact)
(p, q)-forms on X is denoted by Z p, q

r (X) (resp. C p, q
r (X)). We now define the following

vector subspace of E p, q
1 (X):

E p, q
1 (X)0 := {α ∈ C∞

p, q(X) | ∂̄α = 0 and ∂α ∈ Im ∂̄}
{∂̄β | β ∈ C∞

p, q−1(X)} = Z p, q
2 (X)

C p, q
1 (X)

⊂ E p, q
1 (X).

In other words, E p, q
1 (X)0 = ker d1 consists of the E1-cohomology classes (i.e. Dol-

beault cohomology classes) representable by E2-closed forms of type (p, q), where d1 :
E p, q
1 (X) −→ E p+1, q

1 (X), d1([u]∂̄ ) = [∂u]∂̄ , is the differential in bidegree (p, q) on the
first page of the FSS.

Lemma 3.1 For all p, q, the canonical linear map

P p, q : E p, q
1 (X)0 → E p, q

2 (X), {α}E1 	→ {α}E2 ,
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is well defined and surjective. Its kernel consists of the E1-cohomology classes representable
by E2-exact forms of type (p, q).

In particular, P p, q is injective (hence an isomorphism) if and only if C p, q
1 (X) = C p, q

2 (X).

Proof Well-definedness means that P p, q({α}E1) is independent of the choice of representa-
tive of the class {α}E1 ∈ E p, q

1 (X)0. This follows from the inclusion C p, q
1 (X) ⊂ C p, q

2 (X).
The other three statements are obvious. �

Since the map P p, q : E p, q
1 (X)0 → E p, q

2 (X) is surjective, there exist injective linear
maps J p, q : E p, q

2 (X) → E p, q
1 (X)0 such that P p, q ◦ J p, q = IdE p, q

2 (X). However, there is
no unique or even canonical choice for such a map J p, q . Indeed, there may exist different
representatives α1 and α2 of a same class {α}E2 ∈ E p, q

2 (X) that represent distinct classes
{α1}E1 �= {α2}E1 in E p, q

1 (X) even if α1 and α2 are d-closed. Choosing a section J p, q :
E p, q
2 (X) → E p, q

1 (X)0 for P p, q amounts to choosing a representative α in each class
{α}E2 ∈ E p, q

2 (X).
Sincewe are concernedwith small deformations of X , we assumehenceforth that (p, q) =

(n, n − 1), although most of the following arguments apply in any bidegree. Let us fix a
Hermitian metric ω on X . By the Hodge theory for the E2-cohomology introduced in [9]
(and used e.g. in [12]) and the standard Hodge theory for the Dolbeault cohomology, there
are Hodge isomorphisms:

En−1, 1
2 (X) � Hn−1, 1

2 = Hn−1, 1
2, ω and En−1, 1

1 (X) � Hn−1, 1
1 = Hn−1, 1

1, ω

associating with every E2- (resp. E1-)class its unique E2- (resp. E1-)harmonic representative
(w.r.t. ω), where the ω-dependent harmonic spaces are defined by

Hn−1, 1
2 := ker(
̃ : C∞

n−1, 1(X) → C∞
n−1, 1(X))

⊂ Hn−1, 1
1 := ker(
′′ : C∞

n−1, 1(X) → C∞
n−1, 1(X))

and 
̃ = 
̃ω = ∂ p′′∂� + ∂� p′′∂ +
′′ is the pseudo-differential Laplacian introduced in [9],

′′ = ∂̄ ∂̄� + ∂̄�∂̄ is the standard ∂̄-Laplacian, both associated with the metric ω, while p′′ is
the L2

ω-orthogonal projection onto ker
′′.

Under our page-1-∂∂̄-assumption on X , every class {α}E2 ∈ En−1, 1
2 (X) can be repre-

sented by a d-closed (n − 1, 1)-form. However, the 
̃-harmonic (= the minimal L2-norm)
representative need not be d-closed. Nevertheless, for a reason that will become apparent
later on, we need to work with d-closed representatives. In order to make the choice of such a
representative unique (once a metric ω has been fixed on X ), we will modify the 
̃-harmonic
representative to a d-closed one in a unique way imposed by ω.

We will need the following result from an earlier work in our current special case r = 2.

Theorem 3.2 [12, Theorem 4.3] Let X be a compact complex manifold with dimCX = n.
Fix an arbitrary integer r ≥ 2. The following properties are equivalent.

(A) X is a page-(r − 1)-∂∂̄-manifold.
(F) For all p, q ∈ {0, . . . , n}, the following identities of vector subspaces of C∞

p+1, q(X)

hold:

(i) Im (∂∂̄) = ∂(Z p, q
r ) and (i i) C p, q

r ∩ ker d = Im d.

The preliminary observation that produces a unique d-closed representative of any class
{α}E2 ∈ En−1, 1

2 (X) naturally associated with a given metric is the following
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Lemma 3.3 Let X be a compact complex page-1-∂∂̄-manifold with dimCX = n. Let ω be
an arbitrary Hermitian metric on X.

Fix an arbitrary class {α}E2 ∈ En−1, 1
2 (X) and let αω be the 
̃ω-harmonic representative

of it.

(i) There exist solutions ξ ∈ C∞
n−1, 0(X , C) of the equation

(�) ∂∂̄ξ = −∂αω.

(ii) For each solution ξ of equation (�), αω + ∂̄ξ is a d-closed representative of {α}E2 ∈
En−1, 1
2 (X).

(iii) The minimal L2
ω-norm solution of equation (�) is given by the formula

ξω = −(∂∂̄)�
−1
BC (∂αω), (8)

where 
−1
BC is the Green operator of the Bott-Chern Laplacian 
BC induced by ω.

Proof (i) The (n − 1, 1)-form αω represents an E2-class, so it is E2-closed (i.e. αω ∈
Zn−1, 1
2 ). Therefore, the page-1-∂∂̄-assumption on X implies, thanks to (i) of property

(F) in Theorem 3.2, that ∂αω ∈ Im (∂∂̄). This amounts to equation (�) being solvable
for ξ .

(ii) Since αω is E2-closed, ∂̄αω = 0, hence ∂̄(αω + ∂̄ξ ) = 0. Meanwhile, ∂(αω + ∂̄ξ ) = 0
because ξ is a solution equation (�).

(iii) It is known (see e.g. [Pop15, Theorem 4.1.]) that, for any ∂∂̄-exact form v, the minimal
L2-norm solution of the equation ∂∂̄u = v is given by the formula u = (∂∂̄)�
−1

BCv. In
our case, v = −∂αω. �

Note that the 
̃ω-harmonic hypothesis on αω was not used in the above proof. It was
made only to make αω uniquely associated with the pair (ω, {α}E2). The upshot of the above
construction is the following

Conclusion 3.4 Let X be a compact complex page-1-∂∂̄-manifold with dimCX = n. For any
Hermitian metric ω on X, the ω-dependent linear injection

J n−1, 1
ω : En−1, 1

2 (X) ↪−→ En−1, 1
1 (X)0 ⊂ En−1, 1

1 (X),

J n−1, 1
ω ({α}E2) := {αω − ∂̄(∂∂̄)�
−1

BC (∂αω)}E1 ,

has the property

Pn−1, 1 ◦ J n−1, 1
ω = IdEn−1, 1

2 (X)
,

where Pn−1, 1 : En−1, 1
1 (X)0 � En−1, 1

2 (X) is the canonical linear surjection introduced in
Lemma 3.1.

The map J n−1, 1
ω is called the ω-lift of Pn−1, 1.

In particular, if a canonical metric ω0 exists on X (in the sense that ω0 depends only on
the complex structure of X with no arbitrary choices involved in its definition), the associated
map J n−1, 1

ω0
constitutes a canonical injection of En−1, 1

2 (X) into En−1, 1
1 (X).

Definition 3.5 Let X be a compact complex n-dimensional Calabi-Yau page-1-∂∂̄-
manifold.
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(i) For any Hermitian metric ω on X , the space of small ω-essential deformations of X is
defined as the image in En−1, 1

1 (X) of the ω-lift J n−1, 1
ω of Pn−1, 1, namely

En−1, 1
1 (X)ω-ess := J n−1, 1

ω

(
En−1, 1
2 (X)

)
⊂ En−1, 1

1 (X).

(ii) Suppose that X carries a canonical Hermitian metric ω0. The space of small essential
deformations of X is defined as the image in En−1, 1

1 (X) of the canonical injection
J n−1, 1
ω0

, namely

En−1, 1
1 (X)ess := J n−1, 1

ω0

(
En−1, 1
2 (X)

)
⊂ En−1, 1

1 (X).

If the page-1-∂∂̄-assumption on X is replaced by a more general one (for example, the
page-r -∂∂̄-assumption for some r ≥ 2 or merely the Er (X) = E∞(X) assumption for a
specific r ≥ 2), one can define a version of essential deformations using higher pages than
the second one. The most natural choice is the degenerating page Er = E∞ of the FSS if
r > 2. Since at the moment we are mainly interested in page-1-∂∂̄-manifolds, we confine
ourselves to E2.

Example 3.6 (The Iwasawa manifold) If α, β, γ are the three canonical holomorphic
(1, 0)-forms induced on the complex 3-dimensional Iwasawa manifold X = G/� by
dz1, dz2, dz3 − z1 dz2 from C

3 (the underlying complex manifold of the Heisenberg group
G), it is well known that α and β are d-closed, while dγ = ∂γ = −α ∧ β �= 0. It is equally
standard that the Dolbeault cohomology group of bidegree (2, 1) is generated as follows:

E2, 1
1 (X) = 〈[α ∧ γ ∧ α]∂̄ , [α ∧ γ ∧ β]∂̄ , [β ∧ γ ∧ α]∂̄ , [β ∧ γ ∧ β]∂̄

〉

⊕ 〈[α ∧ β ∧ α]∂̄ , [α ∧ β ∧ β]∂̄
〉
.

In particular, we see that every E1-class of bidegree (2, 1) can be represented by a d-closed
form. Since every pure-type d-closed form is also E2-closed (and, indeed, Er -closed for
every r ), we get

E2, 1
1 (X) = E2, 1

1 (X)0.

It is equally standard that the E2-cohomology group of bidegree (2, 1) is generated as
follows:

E2, 1
2 (X) = 〈[α ∧ γ ∧ α]E2 , [α ∧ γ ∧ β]E2 , [β ∧ γ ∧ α]E2 , [β ∧ γ ∧ β]E2

〉
.

It identifies canonically with the vector subspace

H2, 1
[γ ] (X) = 〈[α ∧ γ ∧ α]∂̄ , [α ∧ γ ∧ β]∂̄ , [β ∧ γ ∧ α]∂̄ , [β ∧ γ ∧ β]∂̄

〉

� E2, 1
1 (X)/

〈[α ∧ β ∧ ᾱ]∂̄ , [α ∧ β ∧ β̄]∂̄
〉

of E2, 1
1 (X) introduced in [10, §.4.2] as parametrising the essential deformations defined

there for the Iwasawa manifold X .
On the other hand, let

ω0 := iα ∧ ᾱ + iβ ∧ β̄ + iγ ∧ γ̄

be theHermitian (even balanced)metric on X canonically induced by the complex parallelis-
able structure of X . It can be easily seen that the vector space of small essential deformations
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coincides with the space H2, 1
[γ ] (X) of [10]:

E2, 1
1 (X)ess = J 2, 1

ω0

(
E2, 1
2 (X)

)
= H2, 1

[γ ] (X) ⊂ E2, 1
1 (X).

Example 3.7 (The manifold I (5)) Let X = I (5) be the complex parallelisable nilmanifold
of complex dimension 5 described in Example 2.1 (i.e. the 5-dimensional analogue of the
Iwasawa manifold.) It is a page-1-∂∂̄-manifold by [11, Thm. 4.7]. We will use the standard
notation ϕi1...i p j̄1... j̄q := ϕi1 ∧ · · · ∧ ϕi p ∧ ϕ j1 ∧ · · · ∧ ϕ jq .

For every l ∈ {3, 4, 5}, the linear map

Tl : H0, 1(X , T 1, 0X) −→ H0, 1(X), [θ ] 	→ [θ�ϕl ],
is well defined. If we set

H0, 1
ess (X , T 1, 0X) := ker T3 ∩ ker T4 ∩ ker T5 ⊂ H0, 1(X , T 1, 0X),

and define H4, 1
ess (X) ⊂ H4, 1(X) to be the image of H0, 1

ess (X , T 1, 0X) under the Calabi-Yau
isomorphism H0, 1(X , T 1, 0X) −→ H4, 1(X) w.r.t. u = ϕ1 ∧ . . . ∧ ϕ5, we get the following
description:

H4, 1
ess (X) =

〈
[ϕ23451̄]∂̄ , [ϕ13451̄]∂̄ , [ϕ23452̄]∂̄ , [ϕ13452̄]∂̄

〉
.

Moreover, we have the following identities of C-vector spaces:

H4, 1
ess (X) = E4, 1

1 (X)ess := J 4, 1
ω0

(E4, 1
2 (X)) ⊂ E4, 1

1 (X),

where

ω0 :=
5∑

j=1

iϕ j ∧ ϕ j ,

is the canonical metric of I (5).

4 Deformation unobstructedness for page-1-@@̄-manifolds

In this section, we prove Theorem 1.2.

Definition 4.1 Let X be a Calabi-Yau page-1-∂∂̄-manifold with dimCX = n. Fix a non-
vanishing holomorphic (n, 0)-form u on X .

We say that the essential Kuranishi family of X is unobstructed if every E2-class
in En−1, 1

2 (X) admits a representative ψ1(t)�u such that the integrability condition (2) is
satisfied (i.e. all the equations (Eq. (ν)) of Sect. 2.1 are solvable) when starting off with
ψ1(t) ∈ C∞

0, 1(X , T 1, 0X).

Before proving Theorem 1.2, we make a few comments. First, we notice an equiva-
lent formulation for the assumption made in (ii) of Theorem 1.2. Obviously, the inclusion
Zn−1, 1
2 ⊂ Zn−1, 1

1 always holds.

Lemma 4.2 Let X be a compact complex page-1-∂∂̄-manifold with dimCX = n. Then,
Zn−1, 1
1 = Zn−1, 1

2 if and only if every Dolbeault cohomology class of bidegree (n − 1, 1)
can be represented by a d-closed form.
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Proof Let α ∈ C∞
n−1, 1(X) be an arbitrary ∂̄-closed form, i.e. α ∈ Zn−1, 1

1 . The class {α}∂̄
can be represented by a d-closed form if and only if there exists β of bidegree (n − 1, 0)
such that ∂(α + ∂̄β) = 0. This is equivalent to ∂α being ∂∂̄-exact, which implies that ∂α is
∂̄-exact.

Conversely, since X is a page-1-∂∂̄-manifold, the ∂̄-exactness of ∂α implies its ∂∂̄-
exactness. Indeed, ∂̄α = 0 and if ∂α is ∂̄-exact, then α ∈ Zn−1, 1

2 , so ∂α ∈ ∂(Zn−1, 1
2 ). Now,

∂(Zn−1, 1
2 ) = Im (∂∂̄) thanks to property (i) in characterisation (F) of the page-1-∂∂̄-property

given in [12, Thm. 4.3] (with r = 2). Therefore, ∂α ∈ Im (∂∂̄) whenever α ∈ Zn−1, 1
2 .

Summing up, the class {α}∂̄ can be represented by a d-closed form if and only if ∂α is
∂̄-exact if and only if α ∈ Zn−1, 1

2 . �

Second, we notice that both the Iwasawa manifold I (3) and the 5-dimensional Iwasawa
manifold I (5) satisfy all the hypotheses of Theorem 1.2. Indeed, I (3) and I (5) are complex
parallelisable nilmanifolds, so they are page-1-∂∂̄-manifolds by Theorem [11, Thm. 4.7]. In
particular they are also Calabi-Yau manifolds (actually, all nilmanifolds are). Moreover, we
have

Lemma 4.3 Let X be either I (3) or I (5) and let n = dimCX ∈ {3, 5}. Let u := ϕ1∧ϕ2∧ϕ3 =
α ∧ β ∧ γ ∈ C∞

3, 0(I (3)) or u := ϕ1 ∧ · · · ∧ ϕ5 ∈ C∞
5, 0(I (5)) according to whether X = I (3)

or X = I (5), a non-vanishing holomorphic (n, 0)-form on X.
Then, for all ψ1(t), ρ1(s) ∈ C∞

0, 1(X , T 1, 0X) such that ψ1(t)�u, ρ1(s)�u ∈ ker d ∪ Im ∂ ,
we have

ψ1(t)�(ρ1(s)�u) ∈ Zn−2, 2
2 .

Proof It is given in section 5. ��
Finally, let us mention that both manifolds X = I (3) and X = I (5) have the property that

every Dolbeault cohomology class of type (n − 1, 1) can be represented by a d-closed form.
Indeed, as seen in the proof of Lemma 4.3 spelt out in Sect. 5, Hn−1, 1

∂̄
(X) is generated by

the classes represented by the ϕ̂i ∧ ϕ1’s and the ϕ̂i ∧ ϕ2’s with i ∈ {1, 2, 3} (in the case of
X = I (3)) and i ∈ {1, . . . , 5} (in the case of X = I (5)), where ϕ̂i stands for u = ϕ1∧ . . .∧ϕ5
with ϕi omitted. All the forms ϕ̂i ∧ ϕλ, with λ ∈ {1, 2}, are d-closed.

Note that the hypotheses of Theorem 1.2, all of which are satisfied by X = I (3) and
X = I (5), have the advantage of being cohomological in nature, hence fairly general and not
restricted to the class of nilmanifolds. Indeed, there is no mention of any structure equations
in Theorem 1.2.

Finally, for the reader’s convenience, we recall the following classical result (cf. Lemma
3.1. in [18], Lemma 1.2.4. in [19]) that will be made a key use of in the proof of Theorem
1.2.

Lemma 4.4 (Tian–Todorov Lemma) Let X be a compact complex manifold (n = dimCX)
such that K X is trivial. Then, for any forms θ1, θ2 ∈ C∞

0, 1(X , T 1, 0X) such that ∂(θ1�u) =
∂(θ2�u) = 0, we have

[θ1, θ2]�u ∈ Im ∂.

More precisely, the identity

[θ1, θ2]�u = −∂(θ1�(θ2�u)) (9)

holds for θ1, θ2 ∈ C∞
0, 1(X , T 1, 0X) whenever ∂(θ1�u) = ∂(θ2�u) = 0.
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Proof of Theorem 1.2 Let {η1}E2 ∈ En−1, 1
2 (X) be an arbitrary nonzero class. Pick any d-

closed representative η1 ∈ C∞
n−1, 1(X) of it. A d-closed representative exists thanks to the

page-1-∂∂̄-assumption on X . Under the extra assumption Zn−1, 1
1 = Zn−1, 1

2 of (ii), there

is even a d-closed representative η1 in every Dolbeault class {η1}E1 ∈ En−1, 1
1 (X), thanks

to Lemma 4.2. So, we choose an arbitrary d-closed form η1 ∈ C∞
n−1, 1(X) that represents

an arbitrary nonzero class in either En−1, 1
2 (X) or En−1, 1

1 (X) depending on whether we
are in case (i) or in case (ii). By the Calabi-Yau isomorphism (3), there exists a unique
ψ1 ∈ C∞

0, 1(X , T 1, 0X) such that

ψ1�u = η1.

We will prove the existence of forms ψν ∈ C∞
0, 1(X , T 1, 0X), with ν ∈ N

� and ψ1 being
the already fixed such form, that satisfy the equations

∂̄ψν = 1

2

ν−1∑

μ=1

[ψμ, ψν−μ] (Eq. (ν − 1)), ν ≥ 2,

which, as recalled in Sect. 2.1, are equivalent to the integrability condition ∂̄ψ(τ) =
(1/2) [ψ(τ), ψ(τ)] being satisfied by the formψ(τ) := ψ1 τ +ψ2 τ 2+· · ·+ψN τ N +· · · ∈
C∞
0, 1(X , T 1, 0X) for all τ ∈ C with |τ | sufficiently small. The convergence in a Hölder norm

of the series defining ψ(τ) for |τ | small enough is guaranteed by the general Kuranishi the-
ory (cf. [5]), while the resulting ψ(τ) defines a complex structure ∂̄τ on X that identifies on
functions with ∂̄ −ψ(τ) and represents the infinitesimal deformation of the original complex
structure ∂̄ of X in the direction of [ψ1] ∈ H0, 1(X , T 1, 0X).

Since ∂(ψ1�u) = ∂η1 = 0, the Tian-Todorov Lemma 4.4 guarantees that [ψ1, ψ1]�u ∈
Im ∂ and

[ψ1, ψ1]�u = −∂(ψ1�(ψ1�u)).

On the other hand, ∂̄η1 = 0, hence ∂̄ψ1 = 0, hence ψ1�(ψ1�u) ∈ ker ∂̄ . We even have
the stronger property ψ1�(ψ1�u) ∈ Zn−2, 2

2 thanks to assumption (1), since ψ1�u ∈ ker d .
Therefore,

[ψ1, ψ1]�u = −∂(ψ1�(ψ1�u)) ∈ ∂(Zn−2, 2
2 ) = Im (∂∂̄),

the last identity being a consequence of the page-1-∂∂̄-assumption on X . (See (i) of property
(F) in Theorem 3.2.)

Thus, there exists a form �2 ∈ C∞
n−2, 1(X) such that

∂̄∂�2 = 1

2
[ψ1, ψ1]�u.

If we fix an arbitrary Hermitian metric ω on X , we choose �2 as the unique solution of
the above equation with the extra property �2 ∈ Im (∂∂̄)�. This is the minimal L2

ω-norm
solution, as follows from the 3-space orthogonal decomposition of C∞

n−2, 1(X) induced by
the Aeppli Laplacian (see [16]). Let η2 := ∂�2 ∈ C∞

n−1, 1(X). Thanks to the Calabi-Yau

isomorphism (3), there exists a unique ψ2 ∈ C∞
0, 1(X , T 1, 0X) such that ψ2�u = η2. In

particular, ∂(ψ2�u) = 0 and (∂̄ψ2)�u = ∂̄(ψ2�u) = ∂̄η2 = (1/2) [ψ1, ψ1]�u. This means
that

∂̄ψ2 = 1

2
[ψ1, ψ1],
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so ψ2 is a solution of (Eq.1). Moreover, by construction, ψ2 has the extra key property that
ψ2�u ∈ Im ∂ .

We continue inductively to construct the forms (ψN )N≥3. Suppose the formsψ1, ψ2, . . . ,

ψN−1 ∈ C∞
0, 1(X , T 1, 0X) have been constructed as solutions of the equations (Eq. (ν − 1))

for all ν ∈ {2, . . . , N − 1} with the further property ψ2�u, . . . , ψN−1�u ∈ Im ∂ . (Recall
that ψ1�u ∈ ker d .) Since ∂(ψ1�u) = ∂(ψ2�u) = · · · = ∂(ψN−1�u) = 0, the Tian-Todorov
Lemma 4.4 guarantees that [ψμ, ψN−μ]�u ∈ Im ∂ for all μ ∈ {1, . . . , N − 1} and yields the
first identity below:

N−1∑

μ=1

[ψμ, ψN−μ]�u = −∂

⎛

⎝
N−1∑

μ=1

ψμ�(ψN−μ�u)

⎞

⎠ ∈ ∂(Zn−2, 2
2 ) = Im (∂∂̄),

where the relation “∈” follows from assumption (1) and the last identity is a consequence of
the page-1-∂∂̄-assumption on X . (See (i) of property (F) in Theorem 3.2.)

Thus, there exists a form �N ∈ C∞
n−2, 1(X) such that

∂̄∂�N = 1

2

N−1∑

μ=1

[ψμ, ψN−μ]�u.

We choose �N to be the solution of minimal L2
ω-norm of the above equation, so �N ∈

Im (∂∂̄)�. Let ηN := ∂�N ∈ C∞
n−1, 1(X). Thanks to the Calabi-Yau isomorphism (3),

there exists a unique ψN ∈ C∞
0, 1(X , T 1, 0X) such that ψN �u = ηN . Hence, (∂̄ψN )�u =

∂̄(ψN �u) = ∂̄ηN = ∂̄∂�N , so

∂̄ψN = 1

2

N−1∑

μ=1

[ψμ, ψN−μ],

which means that ψN is a solution of (Eq. (N − 1)). Moreover, by construction, ψN has the
extra key property that ψN �u ∈ Im ∂ .

This finishes the induction process and completes the proof of Theorem 1.2.

The proof of Theorem 1.2 shows that it suffices to check condition (1) on a small subset
of all forms. For instance, we have

Remark 4.5 Suppose there is a sub-double-complex C ⊂ AX := (C∞·,·(X , C), ∂, ∂̄) such
that

1. the inclusion C ⊂ AX is an E1-isomorphism;1

2. writing T = {ω ∈ C∞
0,1(X , T X1,0) | ω�u ∈ (ker d ∪ Im∂) ∩ C}, the set ∂(T �T �u) =

[T , T ]�u is contained in C .

Then, for the conclusion of Theorem 1.2 to hold, it suffices to check that the forms in T
satisfy condition (1) in Theorem 1.2.

Proof By property (1), we have En−1,1
2 (X) = En−1,1

2 (C). We may therefore start the proof
of Theorem 1.2 by picking η1 ∈ C . By property (2), ψ1 ∈ T . Again by property (1), the
inclusion C → AX induces isomorphisms in Bott-Chern cohomology and higher pages of
the Frölicher spectral sequence of C and AX [17, Cor. 13], whenever a form in C is exact

1 Recall [17] that thismeans it induces an isomorphismboth inDolbeault and conjugateDolbeault cohomology
(the latter being automatic if C is a real sub-complex).
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in any way (w.r.t. ∂ , ∂̄ , ∂∂̄ , dr ,...) in AX , one is able to find a primitive in C . Using this and
property (2), whenever we use the Calabi-Yau isomorphism, we see that, at each step in the
proof of Theorem 1.2, one may take the solutions to (Eq. (ν)) to lie in C . �

5 Examples, applications and explicit computations

In this section, we apply our results to certain classes of compact complex paralellisable
solvmanifolds of complex dimension 3 that were studied by Nakamura in [6]. For the reader’s
convenience, we start by giving a brief rundown of the background by following Hasegawa’s
more recent treatment of thesemanifolds in [2], where Nakamura’s discussionwas expanded.

Let X be a compact complex paralellisable solvmanifold with dimCX = n. It is standard
that any such X arises as a quotient X = G/�, where G is a simply connected solvable
complex Lie group and � ⊂ G is a co-compact lattice (i.e. a discrete subgroup). Any such
G is unimodular (i.e. the left-invariant Haar measure of G is also right-invariant, a fact that
is equivalent to | det Adg| = 1 for every g ∈ G). This is equivalent to the Lie algebra g of G
being unimodular (i.e. tr (adξ ) = 0 for every ξ ∈ g).

Now, let n = 3. Fix a C-basis {X , Y , Z} of g. The unimodular solvable complex Lie
algebras g of complex dimension 3 are classified into the following types ( [2,6]):

1. g is Abelian: [X , Y ] = [Y , Z ] = [Z , X ] = 0;
2. g is nilpotent: [X , Y ] = Z , [X , Z ] = [Y , Z ] = 0;

Note that in this case we have: g1 := [g, g] = 〈Z〉, so g2 := [[g, g], g] =
[〈Z〉, 〈X , Y , Z〉] = 0, hence g is 2-step nilpotent.

3. g is non-nilpotent (but solvable): [X , Y ] = −Y , [X , Z ] = Z , [Y , Z ] = 0.
Note that in this case we have: g1 := [g, g] = 〈Y , Z〉, so g2 := [[g, g], g] =
〈Y , Z〉 = g1, so g is indeed non-nilpotent. However, g(2) := [[g, g], [g, g]] =
[〈Y , Z〉, 〈Y , Z〉] = 0, so g is indeed solvable.

The solvmanifolds X = G/� corresponding to Lie groups G whose Lie algebras g are
of this type (3) are usually called Nakamura manifolds. They are not nilmanifolds.

The lattices � ⊂ G of the simply connected solvable complex Lie groups G whose Lie
algebras g belong to the respective above classes are completely determined as follows. (See
[2,6])

1. If g is Abelian, then G = (C3, +) and any lattice � ⊂ G is Z-generated by an R-basis
of C

3 � R
6. Hence, X := G/� is a complex torus.

2. If g is nilpotent, then G is the semi-direct product G = C
2

�φ C with

φ : C −→ Aut(C2), φ(x) =
(
1 0
x 1

)
.

This means that the group operation on G = C
2

�φ C is defined by

(a, b, c)�(x, y, z) := (a + x, (b, c) + φ(a)(y, z)) = (a + x, b + y, c + z + ay).

Any lattice � ⊂ G is of the shape

� = 
 �φ �, where 
 ⊂ C
2 � R

4 and � ⊂ C � R
2 are lattices.

Hasegawa [2] goes on to show that we can assume, without loss of generality, these
lattices to be generated over Z as follows:

� = 〈1, λ〉, 
 = 〈(α1, β1), (α2, β2), (0, α1), (0, α2)〉,
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where λ ∈ C \ R, β1, β2 ∈ C are arbitrary and α1, α2 ∈ C are R-linearly independent
such that (α1, α2) is a λ-eigenvector of some A ∈ GL(2, Z).
The Iwasawa manifold I (3) = G/� belongs to this class. It is obtained for the choice
of lattice � defined by λ = i , β1 = β2 = 0, α1 = 1, α2 = i .

3. If g is non-nilpotent, then G is the semi-direct product G = C
2

�φ C with

φ : C −→ Aut(C2), φ(x) =
(

ex 0
0 e−x

)
.

This means that the group operation on G = C
2

�φ C is defined by

(a, b, c)�(x, y, z) := (a + x, (b, c) + φ(a)(y, z)) = (a + x, b + ea y, c + e−az).

Any lattice � ⊂ G is of the shape

� = 
 �φ �, where 
 ⊂ C
2 � R

4 and � ⊂ C � R
2 are lattices.

Hasegawa [2] goes on to show these lattices to be generated over Z as follows:

� = 〈λ, μ〉, 
 = 〈(α1, β1), (α2, β2), (α3, β3), (α4, β4)〉,
where λ, μ ∈ C satisfy the following condition. There exist commuting semi-simple
matrices A, B ∈ SL4(Z) and vectors α = (α1, α2, α3, α4), β = (β1, β2, β3, β4) ∈ C

4

such that α and β are eigenvectors for A with eigenvalues e−λ, resp. eλ, while α and
β are also eigenvectors for B with eigenvalues e−μ, resp. eμ. Conversely, all lattices
� of G = C

2
�φ C arise in this way from arbitrary commuting semi-simple matrices

A, B ∈ SL4(Z).

This third class of solvmanifolds (corresponding to the case where g is non-nilpotent) has
two subclasses:

• subclass (3a): when either I m(λ) /∈ πZ or I m(μ) /∈ πZ.
In this case, h0, 1

∂̄
(X) = 1, dimCH0, 1

∂̄
(X , T 1, 0X) = 3 and X has unobstructed defor-

mations [6, p. 99].
• subclass (3b): when I m(λ), I m(μ) ∈ πZ.

In this case,h0, 1
∂̄

(X) = 3, dimCH0, 1
∂̄

(X , T 1, 0X) = 9and X hasobstructeddeformations
[6, eqn. (3.3.)].

5.1 Case of the Nakamuramanifolds of type (3b)

WenowproveProposition1.3 by showing that theNakamuramanifolds of type (3b) constitute
an example of manifolds satisfying the conditions of that statement. However, we cannot
immediately apply Theorem 1.2 because of

Observation 5.1 The Nakamura manifolds of class (3b) do not satisfy hypothesis (1) of
Theorem 1.2.

Proof Let us denote the coordinates on G = C
2

� C by (z3, z2, z1), which is the ordering
adopted in [2] and [1]. It differs from the original ordering in [6], where the roles of z3 and
z2 are reversed. We will use standard abbreviations like dz123̄ := dz1 ∧ dz2 ∧ dz̄3 and set
u := dz123. Set

ψ := e−2z1dz̄2 ⊗ ∂

∂z3
and ρ := dz̄1 ⊗ ∂

∂z1
.
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Then

∂(ψ�(ρ�u)) = −2e−2z1dz1212,

which defines a nonzero class in H2,2
BC by [1]. Therefore it is not ∂̄∂-exact, which implies that

(ψ�(ρ�u)) /∈ Zn−2,2
2 since ∂Zn−2,2

2 = Im(∂∂̄) by the page-1-∂∂̄ hypothesis. �

We now show that the Nakamura manifolds of class (3b) have unobstructed essential
deformations despite them not satisfying hypothesis (1) of Theorem 1.2. Consider the left-
invariant forms on G given by η1 := dz1, η2 := e−z1dz2, η3 := ez1dz3 and equip the
Nakamura manifold X with the metric ω0 := ∑3

i=1 ηi ⊗ η̄i .

Proof of Proposition 1.3 From table [1, table 7], we get, with the same notational conventions
as in the previous proof,

E2,1
2 (X) = 〈[dz123̄]E2 , [dz132̄]E2 , [dz231̄]E2〉

J 2,1
ω0∼= 〈[dz123̄]E1 , [dz132̄]E1 , [dz231̄]E1〉

= E p,q
1 (X)ω0

ess,

where we use that the chosen representatives are closed and co-closed. Under the (inverse
of) the Calabi-Yau isomorphism this space corresponds to:

H0,1
ess (X , T X1,0) =

〈
dz̄3 ⊗ ∂

∂z3
, dz̄2 ⊗ ∂

∂z2
, dz̄1 ⊗ ∂

∂z1

〉

Since in [6] the roles of z2 and z3 are reversed, in the notation of [6] we have:

H0,1
ess (X , T X1,0) = 〈

θ2ϕ
∗
2 , θ3ϕ

∗
3 , θ1ϕ

∗
1

〉
.

This means that an essential deformation corresponds to an element

μ = t22 · θ2ϕ
∗
2 + t33 · θ3ϕ

∗
3 + t11 · θ1ϕ

∗
1 .

In particular, tiλ = 0 for (i, λ) �= (2, 2), (3, 3), (1, 1). So the conditions in [6, eqn (3.3.)] are
trivially satisfied, i.e. the essential deformations are unobstructed.

Note also that, since t12 = 0, cases (3) and (4) of [6, p.98f] do not occur. This implies
that, e.g., the universal covering space of any small essential deformation Xt of X0 = X is
always C

3. �

5.2 Further computations

In this section, we spell out the proof of Lemma 4.3. The subcomplex of left-invariant forms
on I (3) and I (5) satisfies the conditions of Remark 4.5 by [15], which is why in the following
we will, without further mentioning, work with left-invariant forms only.

• Case where X = I (3). We use the notation of Example 3.6, but also put ϕ1 := α,
ϕ2 := β and ϕ3 := γ . We have: dϕ1 = dϕ2 = 0 and dϕ3 = −ϕ1 ∧ ϕ2. The dual basis of
(1, 0)-vector fields consists of

θ1 = ∂

∂z1
, θ2 = ∂

∂z2
+ z1

∂

∂z3
, θ3 = ∂

∂z3
,

(actually of the vector fields induced by these ones on X by passage to the quotient) whose
mutual Lie brackets are as follows:

[θ1, θ2] = −[θ2, θ1] = θ3 and [θi , θ j ] = 0 whenever {i, j} �= {1, 2}.
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In particular, H0, 1(X , T 1. 0X) = 〈[ϕ1 ⊗ θi ], [ϕ2 ⊗ θi ] | i = 1, . . . , 3〉, so dimC

H0, 1(X , T 1. 0X) = 6.
Note that all the (2, 1)-forms (ϕ1 ⊗ θi )�u and (ϕ2 ⊗ θi )�u are d-closed for i ∈ {1, 2, 3},

so every Dolbeault class in H2, 1
∂̄

(X) can be represented by a d-closed form.

(a) Let ψ1(t), ρ1(s) ∈ C∞
0, 1(X , T 1, 0X) such that ψ1(t)�u, ρ1(s)�u ∈ ker d . Then,

ψ1(t) =
3∑

i=1

2∑

λ=1

tiλ θiϕλ, so ψ1(t)�u =
3∑

i=1

(−1)i−1
2∑

λ=1

tiλ ϕλ ∧ ϕ̂i ,

ρ1(s) =
3∑

j=1

2∑

μ=1

s jμ θ jϕμ, so ρ1(s)�u =
3∑

j=1

(−1) j−1
2∑

μ=1

s jμ ϕμ ∧ ϕ̂ j ,

where ϕ̂ j stands for ϕ1 ∧ ϕ2 ∧ ϕ3 with ϕ j omitted.
Sinceψ1(t)�u, ρ1(s)�u ∈ ker ∂̄ ,ψ1(t) and ρ1(s) are ∂̄-closed for the ∂̄ of the holomorphic

structure of T 1, 0X , hence ψ1(t)�(ρ1(s)�u) ∈ Z1, 2
1 . Moreover, since ψ1(t)�u, ρ1(s)�u ∈

ker ∂ , the Tian–Todorov Lemma 4.4 ensures that

∂(ψ1(t)�(ρ1(s)�u)) = [ψ1(t)�u, ρ1(s)�u],
where [ψ1(t)�u, ρ1(s)�u] is the scalar-valued (n − 1, 2)-form defined by the identity
[ψ1(t)�u, ρ1(s)�u] = [ψ1(t), ρ1(s)]�u. So, we have to show that [ψ1(t)�u, ρ1(s)�u] is
∂̄-exact. We get:

[ψ1(t), ρ1(s)] =
∑

1≤i, j≤3

∑

1≤λ,μ≤2

tiλ s jμ [θi , θ j ]ϕλ ∧ ϕμ = Dt,s θ3 ϕ1 ∧ ϕ2,

where Dt,s = (t11 s22 + t22 s11 − t12 s21 − t21 s12). Hence,

[ψ1(t), ρ1(s)]�u = Dt,s ϕ1 ∧ ϕ2 ∧ ϕ1 ∧ ϕ2 = ∂̄(Dt,s ∂ϕ3 ∧ ϕ3) = ∂̄∂(Dt,s ϕ3 ∧ ϕ3) ∈ Im ∂̄,

as desired.
We conclude that ψ1(t)�(ρ1(s)�u) ∈ Z1, 2

1 and ∂(ψ1(t)�(ρ1(s)�u)) ∈ Im ∂̄ , hence

ψ1(t)�(ρ1(s)�u) ∈ Z1, 2
2 , as desired.

(b) Let ψ1(t), ρ1(s) ∈ C∞
0, 1(X , T 1, 0X) such that ψ1(t)�u ∈ ker d and ρ1(s)�u ∈ Im ∂ .

Then, ψ1(t) = ∑
1≤i≤3

∑
1≤λ≤2 tiλ θiϕλ and ρ1(s) = (

∑
1≤μ≤3 sμ ϕμ) θ3, so

ρ1(s)�u =
∑

1≤μ≤3

sμ ϕμ ∧ ϕ1 ∧ ϕ2 = ∂

⎛

⎝−
∑

1≤μ≤3

sμ ϕ3 ∧ ϕμ

⎞

⎠ ∈ Im ∂.

On the one hand, we get ψ1(t)�(ρ1(s)�u) = ∑2
λ=1

∑3
μ=1 t1λ sμ ϕλ ∧ ϕμ ∧ ϕ2 −

∑2
λ=1

∑3
μ=1 t2λ sμ ϕλ ∧ ϕμ ∧ ϕ1, hence

∂̄(ψ1(t)�(ρ1(s)�u)) = −∑2
λ=1 t1λ s3 ϕλ ∧ ∂̄ϕ3 ∧ ϕ2 + ∑2

λ=1 t2λ s3 ϕλ ∧ ∂̄ϕ3 ∧ ϕ1 = 0
because ∂̄ϕ3 = −ϕ1 ∧ ϕ2. Thus, ψ1(t)�(ρ1(s)�u) ∈ ker ∂̄ .

On the other hand, since [θi , θ3] = 0 for all i , we get

∂(ψ1(t)�(ρ1(s)�u)) = [ψ1(t), ρ1(s)]�u =
3∑

i=1

2∑

λ=1

3∑

μ=1

tiλ sμ ϕλ ∧ ϕμ [θi , θ3] = 0.

We conclude that ψ1(t)�(ρ1(s)�u) ∈ Z1, 2
2 .
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(c) Ifψ1(t), ρ1(s) ∈ C∞
0, 1(X , T 1, 0X) are such thatψ1(t)�u and ρ1(s)�u both lie in Im ∂ ,

then ψ1(t) = (
∑

1≤λ≤3 tλ ϕλ) θ3 and ρ1(s) = (
∑

1≤μ≤3 sμ ϕμ) θ3. We get

ψ1(t)�(ρ1(s)�u) = −
⎛

⎝
∑

1≤λ≤3

tλ ϕλ

⎞

⎠ ∧
∑

1≤μ≤3

sμ ϕμ ∧ [θ3�(ϕ1 ∧ ϕ2)] = 0

since θ3�ϕ1 = θ3�ϕ2 = 0. In particular, ψ1(t)�(ρ1(s)�u) ∈ Z1, 2
2 .

• Case where X = I (5). We use the notation of Example 2.1.
(a) Let ψ1(t), ρ1(s) ∈ C∞

0, 1(X , T 1, 0X) such that ψ1(t)�u, ρ1(s)�u ∈ ker d . Then,

ψ1(t) =
5∑

i=1

2∑

λ=1

tiλ θiϕλ, so ψ1(t)�u =
5∑

i=1

(−1)i−1
2∑

λ=1

tiλ ϕλ ∧ ϕ̂i ,

ρ1(s) =
5∑

j=1

2∑

μ=1

s jμ θ jϕμ, so ρ1(s)�u =
5∑

j=1

(−1) j−1
2∑

μ=1

s jμ ϕμ ∧ ϕ̂ j ,

where ϕ̂ j stands for ϕ1 ∧ · · · ∧ ϕ5 with ϕ j omitted.
Since [θi , θ j ] = 0 unless {i, j} ⊂ {1, 2, 3} and given the other values for [θi , θ j ], we

get:

[ψ1(t), ρ1(s)]�u = −D3(t, s) ϕ1 ∧ ϕ2 ∧ ϕ4 ∧ ϕ5 ∧ ϕ1 ∧ ϕ2

+D2(t, s) ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ5 ∧ ϕ1 ∧ ϕ2

−D1(t, s) ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ1 ∧ ϕ2, where

D3(t, s) =
∣∣∣∣
t11 t12
s21 s22

∣∣∣∣ −
∣∣∣∣
s11 s12
t21 t22

∣∣∣∣ , D2(t, s) =
∣∣∣∣
t11 t12
s31 s32

∣∣∣∣ −
∣∣∣∣
s11 s12
t31 t32

∣∣∣∣ ,

D1(t, s) =
∣∣∣∣
t21 t22
s31 s32

∣∣∣∣ −
∣∣∣∣
s21 s22
t31 t32

∣∣∣∣ .

Now, since ϕ1 ∧ ϕ2 = ∂ϕ3 and ϕ̄1 ∧ ϕ2 = ∂̄ϕ3, using also the other properties of the ϕi ’s,
we get

ϕ1 ∧ ϕ2 ∧ ϕ4 ∧ ϕ5 ∧ ϕ1 ∧ ϕ2 = ∂̄∂(ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ3)

ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ5 ∧ ϕ1 ∧ ϕ2 = ∂̄∂(ϕ2 ∧ ϕ4 ∧ ϕ5 ∧ ϕ3).

Similarly, since ϕ2 ∧ ϕ3 = ∂ϕ5 and ϕ̄1 ∧ ϕ2 = ∂̄ϕ3, we get

ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ1 ∧ ϕ2 = ∂̄∂(ϕ1 ∧ ϕ4 ∧ ϕ5 ∧ ϕ3).

We conclude that ∂(ψ1(t)�(ρ1(s)�u)) = [ψ1(t), ρ1(s)]�u ∈ Im (∂∂̄) ⊂ Im ∂̄ . Meanwhile,
ψ1(t)�(ρ1(s)�u) is ∂̄-closed (because ψ1(t)�u and ρ1(s)�u are), hence ψ1(t)�(ρ1(s)�u) ∈
Z4, 1
2 , as desired.
(b) Let ψ1(t), ρ1(s) ∈ C∞

0, 1(X , T 1, 0X) such that ψ1(t)�u ∈ ker d and ρ1(s)�u ∈ Im ∂ .
Then,

ψ1(t) =
5∑

i=1

2∑

λ=1

tiλ θiϕλ, so ψ1(t)�u =
5∑

i=1

(−1)i−1
2∑

λ=1

tiλ ϕλ ∧ ϕ̂i ,

ρ1(s) =
5∑

j=3

s j θ jϕ3, so ρ1(s)�u =
5∑

j=3

(−1) j−1 s j ϕ3 ∧ ϕ̂ j .
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Indeed, in the case of ρ1(s)�u, we have

ϕ̂3 = ∂(ϕ3 ∧ ϕ4 ∧ ϕ5), soϕ3 ∧ ϕ̂3 = −∂(ϕ3 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5),

ϕ̂4 = ∂(ϕ2 ∧ ϕ4 ∧ ϕ5), soϕ3 ∧ ϕ̂4 = −∂(ϕ3 ∧ ϕ2 ∧ ϕ4 ∧ ϕ5),

ϕ̂5 = ∂(ϕ1 ∧ ϕ4 ∧ ϕ5), soϕ3 ∧ ϕ̂5 = −∂(ϕ3 ∧ ϕ1 ∧ ϕ4 ∧ ϕ5)

and every ∂-exact (4, 1)-form is a linear combination of ϕ3 ∧ ϕ̂3, ϕ3 ∧ ϕ̂4 and ϕ3 ∧ ϕ̂5.
On the one hand, we get

ψ1(t)�(ρ1(s)�u) =
5∑

i=1

5∑

j=3

2∑

λ=1

(−1) j−1 tiλ s j ϕλ ∧ ϕ3 ∧ (θi�ϕ̂ j ).

Now, θi�ϕ̂ j is always ∂̄-closed because it vanishes when i = j , it equals (−1)i−1ϕ̂i j when
i < j and it equals (−1)i ϕ̂ j i when i > j , where ϕ̂i j stands for ϕ1 ∧ · · · ∧ ϕ5 with ϕi

and ϕ j omitted and i < j . All the ϕi ’s being ∂̄-closed, so are all the ϕ̂i j ’s. Meanwhile,
∂̄(ϕλ ∧ ϕ3) = −ϕλ ∧ ∂̄ϕ3 = 0 for all λ ∈ {1, 2}, since ∂̄ϕ3 = ϕ1 ∧ ϕ2. This proves that
ψ1(t)�(ρ1(s)�u) ∈ ker ∂̄ .

On the other hand, we get

∂(ψ1(t)�(ρ1(s)�u)) = [ψ1(t), ρ1(s)]�u =
5∑

i=1

5∑

j=3

2∑

λ=1

tiλ s j ϕλ ∧ ϕ3 ∧ ([θi , θ j ]�u)

= −
2∑

λ=1

t1λ s3 ϕλ ∧ ϕ3 ∧ (θ4�u) −
2∑

λ=1

t2λ s3 ϕλ ∧ ϕ3 ∧ (θ5�u)

= t11 s3 ϕ1 ∧ ϕ3 ∧ ϕ̂4 + t12 s3 ϕ2 ∧ ϕ3 ∧ ϕ̂4 − t21 s3 ϕ1 ∧ ϕ3 ∧ ϕ̂5

−t22 s3 ϕ2 ∧ ϕ3 ∧ ϕ̂5

= t11 s3 ∂̄ϕ4 ∧ ϕ̂4 + t12 s3 ∂̄ϕ5 ∧ ϕ̂4 − t21 s3 ∂̄ϕ4 ∧ ϕ̂5 − t22 s3 ∂̄ϕ5 ∧ ϕ̂5

= ∂̄(t11 s3 ϕ4 ∧ ϕ̂4 + t12 s3 ϕ5 ∧ ϕ̂4 − t21 s3 ϕ4 ∧ ϕ̂5

−t22 s3 ϕ5 ∧ ϕ̂5) ∈ Im ∂̄,

where the second line followed from the fact that [θi , θ j ] = 0 unless i, j ∈ {1, 2, 3} and
i �= j . Given the fact that the summation bears over j ∈ {3, 4, 5}, this forces j = 3 and
i ∈ {1, 2}. Then, we get the second line from [θ1, θ3] = −θ4 and [θ2, θ3] = −θ5.

The facts that ψ1(t)�(ρ1(s)�u) ∈ ker ∂̄ and ∂(ψ1(t)�(ρ1(s)�u)) ∈ Im ∂̄ translate to
ψ1(t)�(ρ1(s)�u) ∈ Z3, 2

2 , as desired.
(c) Let ψ1(t), ρ1(s) ∈ C∞

0, 1(X , T 1, 0X) such that ψ1(t)�u, ρ1(s)�u ∈ Im ∂ . Then,

ψ1(t) =
5∑

i=3

ti θiϕ3, ρ1(s) =
5∑

j=3

s j θ jϕ3, so ρ1(s)�u =
5∑

j=3

(−1) j−1 s j ϕ3 ∧ ϕ̂ j .

We get

ψ1(t)�(ρ1(s)�u) =
5∑

i=3

5∑

j=3

(−1) j−1 ti s j ϕ3 ∧ ϕ3 ∧ (θi�ϕ̂ j ) = 0 ∈ Z3, 2
2 ,

as desired. This completes the proof of Lemma 4.3. �
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