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Abbrevations 

ACC anterior cingulate cortex  

ALIC anterior limb of the internal capsule 

BG basal ganglia 

CSTC cortico-striatal-thalamo-cortical 

DA dopamine  

DAergic dopaminergic 

dACC dorsal anterior cingulate cortex  

DAT dopamine active transporter 

DDM drift diffusion model 

DS dorsal striatum  

fMRI functional magnetic resonance imaging 

HDI highest density interval  

L-DOPA levo-3,4-dihydroxyphenylalanine

lPFC lateral prefrontal cortex 

NAcc nucleus accumbens 

MB model-based 

MF model-free 

MTL medial temporal lobe 

OFC orbitofrontal cortex 

OCD obsessive compulsive disorder 

PFC prefrontal cortex  

SN substantia nigra  

RL reinforcement learning 

RT reaction time 

RTs reaction times 

TS Tourette syndrome  

vmPFC ventromedial prefrontal cortex 

VS ventral striatum 

VTA ventral tegmental area  
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Preface 

We constantly make decisions and these often involve trade-offs between direct and 

future outcomes. Often these trade-offs are minor or irrelevant, but in other cases they have 

major impacts. Even small decisions can have long lasting consequences when a specific 

decision pattern (e.g. never taking into account the future) persists and negative effects 

accumulate over time. In consequence, those decision patterns can become bad habits and 

contribute to maladaptive behavior and harmful consequences in the long-run. An example for 

such a trade-off is the decision between c(going out with friends, playing a video game, 

listening to music) or writing a thesis. Enjoying social interactions, games and music 

immediately pays off, while writing a thesis on the trade-off between smaller-sooner and larger-

but-later rewards (probably) pays off in the future. How should one decide? Daily life requires 

these frequent trade-offs in various forms and different processes like valuation of decision 

options, prospection into the future, self-control and context orchestrate their outcome.  

This dissertation tries to contribute to a better understanding of so-called intertemporal 

choices. Thereby it will especially focus on the role of dopamine in modulating decisions with 

time trade-offs in various populations, from healthy controls to humans with gambling 

problems and participants with neurological and psychiatric disorders. In view of the above and 

below I would like to thank my supervisor Prof. Dr. Jan Peters for the tremendous support and 

for everything I was allowed to learn during these times. Thank you for the opportunity to 

eventually become a scientist. I would like to thank my grandmother Renate Duderstadt for her 

kind support and always believing in me, even when no one else did. Finally, I would like to 

thank my girlfriend Nadja Hödl, for all her patience, humor and love. 
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Introduction 

In cognitive science, decisions between mutually exclusive outcomes that unfold at 

temporally divergent points in time are known under the concepts of intertemporal choice, 

temporal or delay discounting (used interchangeably here). When faced with such intertemporal 

choices in the context of rewards humans typically devalue or discount rewards as a function 

of time to delivery. Thus, humans do often prefer smaller-sooner (SS) over larger-but-later (LL) 

rewards rendering intertemporal choice as one measure for choice impulsivity (Ainslie 1975; 

Mazur and Coe 1987; Peters and Büchel 2011; Lempert et al. 2019). Overall, the discounting 

of rewards has been broadly studied across economics, psychology and cognitive neuroscience 

for quite some time (Samuelson 1937; Loewenstein and Elster 1992; Grüne-Yanoff 2015; 

Peters and Büchel 2011). Scientific studies assessing this construct often rely on questionnaires 

such as the Kirby Monetary Choice Questionnaire ) or on 

computerized tasks (so-called intertemporal choice or delay discounting tasks), where 

participants have to make exclusive choices between rewarding options. These rewards can be 

primary reinforcers such as food or secondary reinforces like money and usually vary with 

respect to magnitude  and delay (e.g. days, weeks or months) to receipt 

(Lempert et al. 2019).  

The quantification of intertemporal choice, nowadays, is typically assessed via a 

mathematical model. Estimated model parameter then describe the degree of future 

devaluation/discounting, i.e. how short-sighted (impulsive; SS preference; steep discounting) 

or future oriented (self-controlled; LL preference; shallow discounting) the individual is in 

contrast to others in the sample (Lempert et al. 2019). Historically, stories of human myopia 

date back over 1000 years. A well-known example is part of the story of Odysseus. Odysseus 

had to be tied to a mast by his comrades while listening to the song of the sirens. All his sailors 

had to stuff beeswax in their ears to resist the sirens' appealing but deadly song. Metaphorically, 

this tale can be interpreted as a story of impulsivity and self-control in the face of desirable 

incentives.  

Around 900 years later the first recorded scientific studies on intertemporal choice were 

dominated by economists. During the end of the 19th and beginning of the 20th century 

economists like Jevons and Böhm-

-sighted choice is the consequence of an inability to

(Jevons 2013; Böhm-Bawerk 1891; Loewenstein and Elster 1992). 

Interestingly, nowadays it is a given fact that future imagination modulates delay discounting 

(Peters and Büchel 2010b; Gershman and Bhui 2020; Rösch et al. 2021). During these times 
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the most famous contribution likely stems from Samuelson´s (1937) model of discounted 

utility, which was widely adopted across multiple research disciplines (Samuelson 1937; 

Loewenstein and Elster 1992). One of the first important psychological experiments on 

intertemporal choice is nowadays known under the Stanford marshmallow experiment (Mischel 

and Ebbesen 1970) and a few years later, the finding of preference reversals in pigeons (Ainslie 

1974) questioned the dominating view proposed by economists. Preference reversals describe 

the observation that immediate (SS) options are sometimes preferred as the time to reward 

delivery decreases. Note, that these inconsistencies are incompatible the economists view of 

ther inconsistent with 

fundamental assumptions proposed by the model of discounted utility, i.e. exponential 

discounting (see methods). In consequence, Georg Anslie in 1975 proposed that discounting of 

future rewards follows a hyperbolic function (Ainslie 1975). This idea was further elaborated 

by Mazur and Coe in 1987 and is still the most common model for describing the devaluation 

of reward over time (Mazur and Coe 1987). Thus, while it was long known that most humans 

do discount future rewards, the first experimental finding of a relationship between steep 

discounting and mental illnesses date back to 1968 (Shybut 1968). Since then, countless studies 

assessed links between discounting and mental health conditions.  

During the 1990s research on the neurotransmitter dopamine (DA) expanded from its 

known role in movement and movement disorders (Coyle and Snyder 1969) to a role in 

predicting reward (Schultz et al. 1993) and causing motivation (Robinson and Berridge 1993). 

Since then the catecholamine DA is known to play a fundamental role reward-related decision-

making and is likewise implicated in nearly all psychiatric diseases (Beaulieu and Gainetdinov 

2011). Interestingly, both steep discounting (impulsive choice; extreme SS preference) and DA 

neurotransmission are associated with a range of potentially maladaptive behaviors ranging 

from substance use disorders (Taber et al. 2012; Bickel et al. 2014; Bickel et al. 2019; 

Rodriguez-Moreno et al. 2021), attention-deficit hyperactivity disorder (Shiels et al. 2009; 

Jackson and MacKillop 2016), obesity (Volkow et al. 2011; Volkow and Baler 2015; Amlung 

et al. 2016) and behavioral addictions, such as gambling disorder (Dixon et al. 2003; Potenza 

2013; Wiehler and Peters 2015; Potenza 2018). Further, steep discounting and dopaminergic 

disturbances are observed in major depression, schizophrenia, borderline personality disorder 

and binge eating disorder (Friedel 2004; Tye et al. 2013; Maia and Frank 2017; Bickel et al. 

2019; Amlung et al. 2019). On the other side, shallow discounting (extreme LL preference) is 

associated with increased suicidality, anorexia nervosa and in some cases with obsessive 

compulsive personality disorder (Amlung et al. 2019; Lempert et al. 2019). Interestingly, in 
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recent years many aspects of human cognitive functioning have proven to lie on larger and 

continuous dimensions (Casey et al. 2014). Given these associations (see above) and 

establishing view of continuous dimensions of behavior it was suggested that intertemporal 

choice/delay discounting also lies on a continuous dimension and likely constitutes a trans-

diagnostic trait (for an illustration see Figure 1) (Lempert et al. 2019). 

Figure 1. Adapted from Lempert et al. (2019). Illustration of delay discounting as a 
transdiagnostic process on a continuum. 

009



Continuous Dimensions of Mental Health 

In 2009 the National Institute of Menthal Health (NIMH) of the United States launched 

the Research Domain Criteria (RDoC). The mission of this ongoing initiative is to implement 

a new framework for investigating human functioning with the central goal of understanding 

mental disorders (Insel et al. 2010). The RDoC homepage describes the framework as a research 

strategy implemented in a dynamic matrix of elements spanning six domains of human 

functioning (for an overview see Figure 2 below). These consist of valence systems, motor- 

sensory- and regulatory circuits and social processing, each under constant influences of 

environmental and neurodevelopmental context. Importantly, each of these domains contains 

specific constructs designed to combine information, if applicable from genes over neural 

circuits to behavior (Kozak and Cuthbert 2016). The overall promise of this systematic 

approach is to foster our understanding of the continuous facets of mental health.  

Intertemporal choice or the discounting of delayed rewards falls into the domain of 

positive valence systems  under the construct of reward valuation  (Lempert et al. 2019; U.S. 

Department of Health and Human Services, National Institutes of 2016). This construct is of 

high significance since reward, valuation of reward and motivation to work for reward all play 

crucial roles in human everyday life and mental health (Costello 1972; Alloy et al. 2016; 

Dutcher and Creswell 2018; Lempert and Phelps 2016; Lempert et al. 2019). In detail the 

construct aims to capture internal or external processes that influence the subjective valuation 

of reward (i.e. probability, delay or valence) and its subprocesses that might go awry in disease. 

 Delay discounting is believed to live up to the promise of the RDoC framework because 

research results suggest that it spans multiple levels of human functioning (it formally spans 

multiple matrix elements of the RDoC framework) (Lempert et al. 2019). First, findings suggest 

that delay discounting captures a trait-like variable. Delay discounting is relatively stable over 

time (Kirby 2009; Peters and Büchel 2011) and thus provides a reliable marker of choice 

preference. Further, studies linking behavior to genetics proposed that intertemporal 

preferences are partly inherited (Anokhin et al. 2011; Anokhin et al. 2015). Moreover, social 

processing, i.e. the context or social evaluation, plays an important role. For example, delay 

discounting changes as a function of community or social trust (Michaelson et al. 2013; 

Jachimowicz et al. 2017), parenting practices (Schneider et al. 2014), poverty (Lawrance 1991) 

and income in general (Green et al. 1996; Hampton et al. 2018). Specific contexts (Dixon et al. 

2006), option framing (Peters and Büchel 2010b) and pharmacological manipulations (Weber 

et al. 2016; Pine et al. 2010) have shown to modulate choice preferences. In consequence, 

controlled experiments can assess long-term trait-like and short-term state-like effects in detail 
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(Peters and Büchel 2011). Manipulations of DA neurotransmission can inform the interplay of 

modulating neurotransmission of a specific neurotransmitter and behavioral choice (Pine et al. 

2010; Weber et al. 2016; Foerde et al. 2016). Studying contextual manipulation of different 

populations, i.e. in specific cue-reactivity designs can provide deeper insights of decision-

making processes in addiction. For example, gambling related cues (Miedl et al. 2014) or real-

life environmental gambling contexts (Dixon et al. 2006) have shown to increase delay 

discounting and alter neural reward representations in pathological gamblers (Miedl et al. 

2012). In contrast the framing of LL reward options via individualized future related cues has 

proven to decrease discounting in controls (Peters and Büchel 2010b). Intra-individual 

differences in discounting have successfully been linked to neural processes like value 

representation (Peters and Büchel 2010a), functional or structural connectivity (van den Bos et 

al. 2014) and specific valuation processes in adolescence (Huang et al. 2017).  

In terms of neurodevelopment it is known that delay discounting decreases from 

adolescence to adulthood (Ripke et al. 2012). Likewise the prefrontal cortex (PFC) is 

undergoing crucial changes during maturation in adolescence (Caballero et al. 2016). These 

changes are associated with the development of cognitive control (Crone and Steinbeis 2017) 

and decreases in impulsive choice (Steinbeis et al. 2016). Delay discounting has repeatedly 

been linked to real-life behavior. A study found that choice preferences in to childhood to some 

degree are predictive of adolescent competence (Mischel et al. 1988) and academic success 

(Kirby et al. 2005). Delay discounting in adults predicted creditworthiness (Meier and Sprenger 

2012) and retirement savings (Hershfield et al. 2011). The steepness of delay discounting 

further, was associated with smoking (Peters et al. 2011), alcohol consumption (Rossow 2008), 

risky sexual-practices (Chesson et al. 2006) and impulsivity in general (Reimers et al. 2009). It 

has further been associated with risk for relapse (Sheffer et al. 2014) and has shown to hold 

predictive value for treatment outcome (Stanger et al. 2012; Athamneh et al. 2017) and was 

suggested a potential target for therapeutic intervention (Odum 2011).  

Importantly, delay discounting is easy to quantify and allows for relatively fast, intuitive 

and standardized protocols (Lempert et al. 2019). Parameters can easily be compared within or 

between individuals and are, due to their intuitive nature, relatively robust against biases 

(Grimm 2010) and other problems with questionnaire assessment (Kaplan and Saccuzzo 2018; 

Alwin 2006). Overall, intertemporal choice has high potential for linking behavioral choice to 

neural circuits, developmental processes, context and might hold predictive value for treatment 

outcome and therefore suits the systematic approach suggested by the RDoC framework (see 

Figure 2 for an overview). 
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Figure 2. Illustration of the RDoC framework. Domains are listed in rows, elements in 
columns. Adapted from the RDoC Homepage (U.S. Department of Health and Human 
Services, National Institutes of 2016). 
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Theoretical Background 

The Studies in this dissertation asses intertemporal choice in different populations 

ranging from healthy individuals to problem gamblers and patients with neurological disorders. 

The grand topic moreover focusses on the role of the neurotransmitter DA. In the following 

section I will briefly introduce the anatomy, neural systems and neuropharmacology that is 

believed to orchestrate reward-related decision-making. I will first illustrate concepts of the 

cortico-striatal-thalamo-cortical (CSTC) loops, the basics in anatomy and highlight the role of 

important basal ganglia (BG) pathways. 

Further I will use this framework and integrate known concepts of neural processes 

involved in intertemporal choice. The first overview in parts will follow findings of one state-

of-the-art publication on CSTC anatomy (Haber and Knutson 2010) and well-studied 

subprocesses in intertemporal choice as primarily summarized by Peters and Büchel (Peters and 

Büchel 2011). I will then continue to introduce the basic anatomy and physiology of DA. DA 

has an important role in modulating activity in CSTC loops (Satoh et al. 2003; Saddoris et al. 

2015; Rogers 2011; Westbrook et al. 2021). Therefore, the last part of this chapter focusses on 

DAs qualitative role as a neurotransmitter in modulating circuits within the BG.  

Cortico-Striatal-Thalamo-Cortical Loops 

The CSTC loops are neural circuits projecting from the cortex to the BG, the thalamus 

and back to cortical areas. Said differently, projections originating in cortical cells, associated 

with action plans and goal representations, form a loop connecting these regions to the BG, the 

dopaminergic midbrain (both associated with reward and motivational processing) and then 

project back to regions in spatial proximity to where they originated (Haber and Knutson 2010). 

Until the late 1970s, these CSTC loops were primarily associated with their role in motor and 

sensory functions, most likely due to their known involvement in movement disorders such as 

(Coyle and Snyder 1969; Haber and Knutson 2010). The general idea was 

that movement plans originating in cortex are modulated along the way, resulting for example 

in the automatic execution of motor plans or the learning and refinement of motor skills. 

Following the work on the ventral striatum (VS), this idea was revised with the concept of an 

additional limbic loop associated with emotional and motivational processes (Heimer et al. 

1982; Haber and Knutson 2010). Further findings led to the view of at least three domain 

specific and segregated circuits. This point of view suggested multiple in parallel working 

CSTC loops each corresponding to either motor, associative or limbic cortical functions 

(Alexander et al. 1990; Parent and Hazrati 1995; Haber and Knutson 2010). However, 
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nowadays the concept of segregated functional CSTC-loops has been revised and replaced with 

the view of parallel pathways that interact and integrate information at multiple nuclei along 

the loop (Draganski et al. 2008; Haber and Knutson 2010). This revised view also lines up with 

the theoretical perspective that adaptive behavior requires the integration of multiple sources of 

information, e.g. sensory information, associative learning and the retrieval of information from 

memory plus motivational components (Haber and Knutson 2010).  

Cortex to Striatum 

Cortical inputs to the striatum are organized in a topographical manner where the VS, 

including the nucleus accumbens (NAcc), receive inputs from the ventro-medial-prefrontal 

cortex (vmPFC) and broader orbitofrontal-cortex (OFC) areas, both associated with reward 

valuation (Peters and Büchel 2010a). Importantly, the most medial part of the VS, the NAcc, 

also receives most inputs from the medial part of the PFC, the vmPFC (see Figure 3 below). In 

contrast the dorsolateral striatum (head of the caudate nucleus) receives more inputs from 

sensorimotor areas which also originate more caudally in cortex. However, none of these 

topographic patterns are exclusive and cortical projections often interface between different 

projection areas and therefore provide evidence of functional integration (Haber and Knutson 

2010). Still, this distinction between movement and reward associated projections, namely the 

topographic organization is also evident in striatal afferents that originate in the dopaminergic 

(DAergic) midbrain. DA neurons from the ventral tegmental area (VTA; mesolimbic pathway) 

project most exclusively to the VS especially the NAcc.  

These anatomical projections are in line with activations commonly found in human 

imaging studies on reward valuation and subjective value (Peters and Büchel 2010a; Haber and 

Knutson 2010). Substantia nigra (SN) neurons project more laterally to the dorsal striatum (DS) 

(the so-called nigrostriatal pathway). The lateral prefrontal cortex (lPFC) also projects most 

densely to dorsal parts of the striatum. The dorsal anterior cingulate cortex (dACC), associated 

with conflict monitoring (Braem et al. 2017; Ebitz et al. 2020), projects mostly to areas directly 

ventral to those of lPFC. The dACC is further deeply integrated within other prefrontal areas, 

i.e. the OFC and especially the vmPFC. Anatomically, hippocampal and amygdaloid fibers

project most densely to the VS and especially the NAcc region making the VS the main entry 

point where motivational and emotional information converge and enter the BG (Haber and 

Knutson 2010). The VS is also the region where fibers from vmPFC overlap with those from 

amygdala and hippocampus making it one spot of informational integration (Haber and Knutson 
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2010). In intertemporal decision-making findings support the importance of information 

integration in these regions, for example in terms of future imagination (see below). 

Striatum to Cortex 

The striatum is the main entry point to the BG and receives major inputs from cerebral cortex 

and the DAergic midbrain. The most important and major striatal outputs, both from the ventral 

and dorsal part, project through the remaining BG nuclei, that is via the globus pallidus internal 

and external segments to the thalamus before projecting back to cortex (Alexander et al. 1990). 

In detail, concepts dissociate two different classes of pathways the so-called direct 

pathway and the so-called indirect pathway (Frank and O'Reilly 2006), both of which reach out 

to the thalamus via different routes. The direct pathway projects from striatal areas to the 

internal segment of the globus pallidus (GPi). Activity in this pathway results in inhibition of 

the GPi. While normally, the GPi inhibits the thalamus, inhibition of the GPi releases the 

thalamus from inhibition. This does not activate the thalamus directly but enables other direct 

excitatory projections to excite the thalamus and therefore provides a gating function (Frank 

and O'Reilly 2006). 

 In contrast, the indirect pathway first projects to the external segment of the globus 

pallidus (GPe) which regularly tonically inhibits the GPi via the subthalamic nucleus. Activity 

in the indirect pathway inhibits the GPe and therefore takes away the inhibition of the GPi, 

which then results in overall increased inhibition of the thalamus (Parent and Hazrati 1995; 

Frank 2005; Frank and O'Reilly 2006). Several models propose that activity in both pathways 

compete, and in consequence modulate action plans originating in cortical areas (Frank and 

O'Reilly 2006; Parent and Hazrati 1995; Collins and Frank 2014). Importantly, DA is deeply 

involved in further modulating these already modulatory CSTC loops via its action on both 

direct and indirect BG pathways (see section on DA below) (Frank and O'Reilly 2006; Frank 

2005; Collins and Frank 2014; Westbrook et al. 2021; Westbrook et al. 2020).  
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Subprocesses Involved in Intertemporal Choice 

Intertemporal decisions are the product of at least three dissociable but integrated subprocesses 

(Peters and Büchel 2011). In what follows I will integrate these processes within the CSTC-

loop framework introduced above.  

Valuation 

Valuation is subjective and it is thus plausible that this subjective value is represented in neural 

activity. Research in decision neuroscience has identified strong evidence for value-correlates 

in the OFC, especially the ventromedial part, the vmPFC (Peters and Büchel 2010a; Bartra et 

al. 2013; Seaman et al. 2018). The vmPFC is a highly integrated region with strong connections 

to other prefrontal areas such as the lPFC and other reward associated regions like the VS and 

DAergic midbrain, both of which play important roles in valuation processes. Together these 

regions make up a so-called valuation network (FitzGerald et al. 2009; Peters and Büchel 

2010a; Bartra et al. 2013). Evidence for a unique domain spanning account of this concept 

comes from empirical studies ranging from various choice paradigms and stimulus types. For 

example, Peters and Büchel (2009) showed that subjective value of delayed monetary rewards 

(estimated via hyperbolic discounting) correlated with activity in the VS and some parts of OFC 

(Peters and Büchel 2009). Hare and colleagues and others identified a vmPFC subjective value 

signal in a food-choice task (Hare et al. 2009; Tabibnia et al. 2011; Harris et al. 2013). Hariri 

and colleagues further reported an association of VS activity and choice preferences in 

intertemporal choice (Hariri et al. 2006).  

Importantly, in the past there was an ongoing debate whether potentially dissociable 

striatal and prefrontal value signals contribute to choice during intertemporal decision-making. 

In this dual-systems view, a VS/vmPFC value signal corresponds to the concrete immediate 

outcomes and a prefrontal valuation signal corresponds to the value of more abstract LL rewards 

. Choice is then modelled as a function of a specific weighting/ competition between both 

valuation systems (McClure et al. 2004). However, new findings suggest one unique valuation 

systems for all types of rewards (Kable and Glimcher 2007) where the lPFC exerts top-down 

control in support of self-controlled choices (Hare et al. 2009; Figner et al. 2010; Peters and 

D'Esposito 2016). This view is also supported by studies providing evidence for the integration 

of costs and benefits of decision value within one vmPFC value signal (Basten et al. 2010). 

To sum up, human imaging studies and primate anatomy converge on evidence for prefrontal 

and striatal recruitment for various types of rewards. Here primary and secondary rewards 

generally recruit OFC, especially the vmPFC the VS and the DAergic midbrain (see Figure 3) 
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(Peters and Büchel 2009; Haber and Knutson 2010). Empirical evidence emerged in studies 

on food-choice (Hare et al. 2009; Harris et al. 2013), risky decision-making (Peters and 

Büchel 2009), intertemporal choice (Peters and Büchel 2009; Hare et al. 2014) and others 

(Clithero and Rangel 2014; Peters and Büchel 2010a).  

Self-Control 

A central distinction between humans and other living organisms is the high degree of 

selectively in choosing to which sensory information humans react and what they ignore. 

Navigating complex environments, filtering information and resisting distraction is an essential 

ability to achieve short- and long-term goals (Miller 2000). In cognitive neuroscience research 

on these mechanisms is often summarized under the term of cognitive control. Cognitive control 

is anatomically attributed to the PFC. The PFC is characterized by widespread connections 

through which it can exert a modulating influence on a wide range of cognitive processes (see 

Miller 2000 for an overview).  

With respect to intertemporal choice, cognitive control is especially useful when long-

term goals require to resist immediate gratification. The concept of cognitive control in such a 

situation can thus be viewed as one type of self-control (Harris et al. 2013). Evidence for an 

involvement of self-control in intertemporal choice stems from several studies. For example, 

artificially impairing dorsolateral-prefrontal cortex (dlPFC) results in less far sighted 

choice/steeper discounting (Figner et al. 2010). Functional connectivity between regions 

associated with valuation and PFC during the choice period is predictive of successful and 

unsuccessful dieters (Hare et al. 2009; Harris et al. 2013). Hare and colleagues (2014) provided 

further evidence that increased lPFC activity is especially evident when subjects prefer LL over 

immediate SS options (Hare et al. 2014). Moreover, there is evidence of a scaling effect, i.e. 

dlPFC activity increases even more with choice difficulty particular in self-controlled 

individuals (Jimura et al. 2018). Another study by van den Bos and colleagues confirmed these 

functional effects and extended the findings in terms of structural differences. That is, far-

sighted choice was associated with higher density of structural integration of lPFC and VS (van 

den Bos et al. 2014). Another well-replicated effect on temporal discounting refers to the 

observation that the rate of temporal discounting decreases (less impulsive choice) with 

increasing reward magnitude (Green et al., 1997). This so-called magnitude-effect also depends 

on lPFC processing (Ballard et al., 2017). Further, non-substance use addictions like 

pathological gambling (characterized by increased discounting) are associated with decreased 

PFC response during decision-making (Tanabe et al. 2007). Likewise, evidence for a pivotal 
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role of the PFC stems from the developmental trajectory of self-control. It has been proposed 

that the developmental trajectory of PFC can be linked to vulnerability for addiction in 

adolescents (Volkow and Boyle 2018) and the developmental trajectory of cognitive control 

and intertemporal choice (Water et al. 2014; Achterberg et al. 2016).  

Taken together, self-control is an important modulator of intertemporal choice. Studies 

suggest that self-control resides mostly within regions in the PFC, likely in the dorsolateral part. 

The dlPFC can modulate vmPFC and subcortical value representations to foster long-term 

achievements and resist immediate incentives. Changes in structural and functional 

connectivity within these circuits have been linked to self-controlled choice in both adolescents 

(van den Bos et al. 2015) and adults (van den Bos et al. 2014) and the developmental trajectory 

from adolescence to adulthood [(van den Bos et al. 2015; Anandakumar et al. 2018); see Figure 

3]  

Future Imagination 

The human ability to foresee and simulate the future may reach beyond those of any other 

(known) species. While retrospection refers to memorize and re-experience the past, 

prospection refers to our ability to imagine or pre-experience what might be tomorrow (Gilbert 

and Wilson 2007). Research in memory and future imagination revealed striking similarities 

and suggested a common network underlying both (Schacter et al. 2012). For example patients 

with specific hippocampal- or general medial temporal lobe (MTL) damages show significant 

impairments in both memory performance and future imagination (Hassabis et al. 2007; Race 

et al. 2011). And indeed one aspect of hippocampus function is the evaluation of possible 

decision outcomes (Lebreton et al. 2013). 

 Likewise intertemporal decisions often require imagination of future outcomes. In 

rodents, damage to hippocampal areas are associated with increased discounting (Mariano et 

al. 2009). In humans, research has found that (positive) future imagination can reduce delay 

discounting in both adults and adolescence, i.e. trials framed with personalized episodic cues 

were associated with more farsighted choice (Peters and Büchel 2010b; Bromberg et al. 2017; 

Rösch et al. 2021). One possible mechanism may be that imagining an event makes it seem 

more certain to happen (Bulley et al. 2016) or that imagining a positive (reward associated) 

event might induce some kind of positive anticipatory affect. The combination of positive affect 

and imagery might result in a less abstract representation and thus attenuated discounting 

(Benoit et al. 2018). Peters and Büchel (2011b) showed that the extend of episodic imagery 

predicted the reduction strength in delay discounting. In detail, the episodic future thinking 
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(EFT) condition differed from the control condition in activations in the right amygdala, 

anterior cingulate cortex (ACC) and dlPFC. Further, this was accompanied by an enhanced 

ACC-hippocampal coupling likely modulating subjective value via an upregulation of neural 

value signals (Peters and Büchel 2010b). Interestingly, a number of studies have associated the 

amygdala with the certainty and timing of reward delivery (Bermudez et al. 2012; van Holstein 

et al. 2020) and amygdala to striatal structural and functional connectivity is predictive of 

differences in intertemporal choice (van den Bos et al. 2014).  

To sum up, MTL regions (see Figure 3) associated with both memory and future 

imagination, namely the hippocampus (memory, future imagination) and the amygdala (reward 

proximity and probability) are both associated with the effects of EFT on intertemporal choice 

(Peters and Büchel 2010b). Further, studies propose that these regions are integrated within a 

neural circuit responsible for integrating spontaneous future imagination into valuation 

processes (Peters and Büchel 2010b, 2011; Rösch et al. 2021; Masuda et al. 2020). 
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Figure 3. Schematic illustration of key structures and pathways of the human-reward circuit; 
Adapted from Haber and Knutson (2010) and modified. Regions associated with neural 
processing of intertemporal choice: valuation processes (blue), prospection (purple) and self-
control (green). Regions associated with valuation: vmPFC = ventral medial prefrontal cortex; 
s = shell of the NAcc/ventral striatum; SN/VTA = substantia nigra/ventral tegmental area 
located in the midbrain; OFC = orbital frontal cortex. Medial temporal lobe regions associated 
with future imagination: Amy = amygdala; Hipp = hippocampus. Regions associated with self-
control: DPFC = dorsal prefrontal cortex; dACC = dorsal anterior cingulate cortex. Other 
regions within the CSTC loops: Raphe = Raphe nucleus; PPT = pedunculopontine nucleus; 
hypo = hypothalamus; OFC = orbital frontal cortex; STN = subthalamic nucleus; Thal = 
Thalamus; VP = ventral pallidum; LHb = lateral habenula.  
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Dopamine 

DA plays a fundamental role in modulating the CSTC loops and is implicated in 

mediating multiple functions like reward learning (Schultz 2015), reward valuation (Schultz et 

al. 2017), motivation (Wise 2004; Berridge 2012; Westbrook et al. 2020) and cognitive control 

(Cools 2008). The next pages briefly summarize the pharmacology of DA and its receptors and 

then continue on theories of qualitative function of DA neurotransmission.  

Physiology and Anatomy 

DA (4-[2-Aminoethyl]benzene-1,2-diol) is a monoamine compound of the family of 

catecholamines. It consists of a benzene ring with two hydroxyl side groups and a side-chain 

amine. DA is directly synthesized in the cytosol of DAergic neurons and packed into vesicles 

located within the presynaptic terminals of those (Beaulieu and Gainetdinov 2011; Meiser et al. 

2013). Biochemically, DA it is the product of an enzymatic reaction, derived from the amino 

acid tyrosine and part of a bigger reaction cycle that also metabolizes epinephrine (adrenaline) 

and nor-epinephrine (nor-adrenaline) (Meiser et al. 2013). In the human brain around 80 % of 

DA neurons reside within the midbrain. Two regions, specifically the substantia nigra (SN) and 

the ventral tegmental area (VTA) contain the highest number of DA neuron cell bodies 

(Beaulieu et al. 2015).  

There are three major DAergic pathways (given a classical distinction of DA pathways), 

each originating from the neighboring regions of the SN and VTA. Axons of the nigrostriatal 

pathway mostly project from cells located in the SN to the caudate nucleus (see CSTC loops 

above). This pathway is mostly associated with the control of voluntary movement and action 

selection and further (Bernheimer 

et al. 1973; Haber and Knutson 2010). The so-called mesolimbic pathway projects from the 

VTA to the VS and most densely to the NAcc area. Further, projections of this pathway reach 

out to MTL regions such as the amygdala and hippocampus. This pathway is associated with 

processing of reward, reward magnitude (NAcc), probability (amygdala) and reward associated 

cues and memory (hippocampus) (Haber and Knutson 2010; Beaulieu and Gainetdinov 2011). 

The last major DA pathway projects from the VTA to cortical structures. This so-called 

mesocortical pathway is associated with executive functions like working memory, attention 

and cognitive control in general (Cools 2008; Ayano 2016). At first, all DA pathways travel 

through the median fore brain bundle and internal capsule before extensively branching out 

(~500,000 synapses per neuron) to their corresponding nuclei (Doucet et al. 1986; Björklund 

and Dunnett 2007). 
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In striatal target regions, DA neurons most exclusively synapse with medium spiny 

neurons (MSNs) of the direct and indirect BG pathways. DA can interact with pre- and 

postsynaptic DA receptors located on both DA and GABAergic MSN neurons, respectively. 

Here D1 (D1 and D5) and D2 (D2-D4) like DA receptors represent two main categories (Ayano 

2016; Beaulieu et al. 2015). D1- s/olf proteins which stimulate 

signaling via signal-cascade that increases cyclic-adenosin-monophosphat (cAMP) levels. D2-

like receptors play an inhibiting role via decreasing cAMP levels and therefore decrease the 

probability of action potentials in the preceding neuron (Ford 2014; Beaulieu et al. 2015; Ayano 

2016). Thus, when DA binds to D1-like receptors (located on MSNs), the probability that these 

neurons depolarize rises, whereas when DA binds to D2 - like receptors these neurons 

hyperpolarize. Besides these direct effects on polarization DA can initiate signal cascades that 

modulate further processes including long term potentiation (LTP) and long term depression 

(LTD) (Ayano 2016; Schultz 2016). The density/ratio of DA D1- and D2-receptors differs 

between structurally divergent BG pathways. GABAergic neurons projecting directly to the 

internal segment of the globus pallidus (direct pathway) have a higher ratio of D1-receptors. 

MSNs of the pathway projecting indirectly (via GPE and the subthalamic nucleus; indirect 

pathway) to the GPi show a higher ratio of D2 receptors (Aizman et al. 2000; Ayano 2016). 

The literature differentiates between two distinct modes of DA neuron activity: Spike-

dependent DA release via phasic bursts following high frequency cell firing (e.g. prediction 

error) and low frequency tonic DA release (Robinson et al. 2004; Schultz 2007; Ford 2014). 

One suggested mechanism that induces tonic DA release are low frequency single action 

potentials from projections from the PFC or other regions (e.g. amygdala, hippocampus, 

midbrain) that synapse with DAergic neurons in striatum (Nieoullon et al. 1978; Grace and 

Bunney 1984; Zhang et al. 2009). Following exocytosis and signaling, DA can be degraded by 

various mechanisms in the synaptic cleft. The DA active transporter (DAT) uses a symport 

transport mechanism to pump DA back out of the synaptic cleft into the presynaptic terminal, 

that is the cytosol of DAergic neurons. DAT is an integral membrane protein (Giros and Caron 

1993) and the primary mechanism (Ciliax et al. 1999) through which DA is cleared from the 

synapse. Cleared DA is then repacked into synaptic storage or degraded via specific enzymes. 

Enzymatic degradation of DA is conducted mostly inside neuronal- or neighboring glial-cells 

by Monoamine-Oxidase or Catechol-O-Methyltransferase, both of which catalyze slightly 

different reactions that degrade DA to its various metabolites, e.g. homovanillicacid (Meiser et 

al. 2013).  
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One further important site of DA action are D2-autoreceptors located in the presynaptic 

membrane directly on DA neurons. D2-autoreceptores are G-protein coupled inhibitory 

receptors (Gi/o) that modulate the synthesis, release, cell firing and reuptake of DA via an 

inhibitory feedback mechanism (Ford 2014; Ayano 2016). D2-autoreceptors are expressed in 

high density in striatal regions and to a lower degree in the hippocampus. D2-autoreceptors in 

these regions are believed to regulate locomotor- and reward related behavior (Ford 2014). For 

example, animals lacking D2-autoreceptors have shown hyperactive behavior and 

hypersensitivity to cocaine (Bello et al. 2011). Also, altered autoreceptor function correlates 

with changes in impulsivity (Buckholtz et al. 2010). D2-antagonists like haloperidol are 

associated with differential effects as a function of dosage. For example, acute administration 

of low haloperidol concentrations are believed to primarily interact with D2-autoreceptors 

(Frank and O'Reilly 2006). The resulting antagonistic inhibition of these autoreceptors in 

consequence can inhibit the DA feedback loop and therefore enhance tonic (Zhang et al. 2009) 

and/or phasic DA neurotransmission (Benoit-Marand et al. 2011; Frank and O'Reilly 2006) 

predominantly in regions with the highest D2 density, e.g. the striatum and hippocampus (Ford 

2014). Note, that all of these mechanisms mentioned above result in a complex interplay of DA 

release, pre- and postsynaptic DA receptors and reuptake that could be individually affected in 

neuropsychiatric disease and in consequence to medication. 

Reward Prediction Error 

One prominent theory suggests that DA neurons encode expectancy violations, that is 

they react in response to unexpected reward or when expected reward is omitted (Schultz 2013, 

2015, 2016; Kobayashi and Schultz 2014). In the 1990s Schultz and colleagues (1993) studied 

firing patterns of DA neurons in rhesus monkeys. In detail, they recorded DA neuron activity 

in the context of salient stimuli presentation while these monkeys were learning a behavioral 

task. While, Schultz et al. knew a priori that the performance of such cognitive tasks was 

impaired when DA neurons were lesioned (Schultz and Romo 1990), they were able to show 

that around 75% of these neurons responded with phasic short latency firing to unpredicted 

liquid reward but responded with a reduction in firing rate when a reward was already predicted 

(Schultz et al. 1993). Shortly thereafter, this finding turned out as an important scientific 

achievement and marked the beginning of DAs role as an error signal. Further discoveries 

confirmed that the neuronal responsiveness of midbrain DA neurons is indeed determined by 

the particular context and timing of reward delivery, namely by its predictability (Schultz and 

Romo 1990; Schultz et al. 1993; Lak et al. 2016; Mirenowicz and Schultz 1994). These findings 
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also lined up with assumptions of learning theory suggesting that the rate of learning is 

proportionally related to predictability of reward (Sutton 1988; Sutton and Barto 1990, 1998). 

Computationally, these observations were compatible with simple temporal-difference 

reinforcement learning (RL) algorithms (Sutton 1988). These algorithms track an estimate of 

the average reward rate of a specific state or action. Said differently, they encode a summary 

value that each action or state-transition has produced in the past. In consequence, values are 

learned on the fly and new knowledge is integrated at each moment the agent (human or animal) 

revisits a specific state or action, but only when the obtained reward differs from what was 

predicted (Bayer and Glimcher 2005; Sutton and Barto 1998; Dayan and Niv 2008).  

These perspectives (RPE and RL) were finally united in a 1996 collaboration of 

Montague, Dayan and Schultz (1996). Imaging studies later confirmed the neural correlates of 

prediction error in temporal difference learning models (Knutson and Cooper 2005). Further 

research expanded on this work to account for higher order decision problems. So called model-

based (MB) RL tackles situations in which an agent has to infer the structure of the environment, 

evaluate and update the transition probabilities leading to specific states and rewards. In line 

with work on simple temporal-difference learning (also known as model-free [MF] RL) DA 

was found to report discrepancies between assumed and observed state-transitions in higher 

order MB RL (Gläscher et al. 2010). Over the following years the reward prediction error (RPE) 

hypothesis further evolved. For example, the signal is nowadays believed to consist of distinct 

components. A first sensory component is believed to represent physical salience (sensory 

impact), novelty or surprise, while shortly thereafter the signal rapidly transitions into detection 

and valuation of reward (Schultz 2016). Thus, the first component of the signal is relatively 

unrelated to reward and might explain why DA bursts have been associated with aversive 

stimuli (Joshua et al. 2008). Electrophysiological and voltammetry studies confirm this two-

component prediction error response (Schultz 2016). 

 Interestingly, a salient context associated with reward beforehand can modulate both 

response components (Kobayashi and Schultz 2014; Kobayashi and Hsu 2019). A recent 

publication (Dabney et al. 2020) provided first evidence for distributional coding of DA 

neurons, that is individual neurons might encode different expectations resulting in a complete 

probability distribution. This is especially exciting in light of theories proposing that the brain 

computationally mirrors Bayesian principles and approximates probability densities of 

outcomes (Friston 2010, 2012). However, future research needs to clarify the mechanisms 

behind such theories. 
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Incentive Salience 

While first formulated in 1993, incentive salience provides a framework for the 

involvement of DA in addiction and formulates evidence for motivational effects of DA 

neurotransmission (Robinson and Berridge 1993). While referring to the emergence of their 

theory Berridge and Robinson (2016) explain that the (an)hedonia hypothesis (Wise 1980), that 

assigned DA pleasure neurotransmitter In 

fact, studies provided evidence that DA is not necessary to produce liking reactions (Berridge 

et al. 1989; Berridge 2000; Berridge and Robinson 1998). The theory of incentive saliences 

highlights these differences between liking (pleasure of reward consumption) and wanting 

(craving for reward). For example, while pharmacological manipulation or impairments of DA 

activity changed wanting reactions, liking was relatively unaffected in animals (Berridge and 

Robinson 1998; Berridge et al. 1989; Cannon and Palmiter 2003) and human subjects 

(Sienkiewicz-Jarosz et al. 2005; Sienkiewicz-Jarosz et al. 2013; Leyton et al. 2005). For 

example, DA is not necessary for mice to preferably consume sweet solutions or to find sweet 

tastes rewarding (Cannon and Palmiter 2003). It was thus suggested, that liking per se is rather 

modulated by specific hedonic hotspots belonging to the opioid system than by DA (Peciña and 

Berridge 2005; Peciña et al. 2006). Secondly, Robinson and colleagues (2005) showed that DA 

depleted mice were still able to learn about rewards (Robinson et al. 2005). Another study 

confirmed these findings (Cagniard et al. 2006). Thus, DA is not always necessary to learn 

about reward, contradicting one important assumption of the RPE hypothesis. These findings 

are compatible with other research highlighting the motivational aspects of DA, i.e. its role in 

working for reward and willingness to expend cognitive resources (Cagniard et al. 2006; Day 

et al. 2010; Nunes et al. 2010; Westbrook and Braver 2016; Berke 2018).  

Berridge and Robinson (1998, 2016) further argue that reward associated DA neurons 

assign magnet-like  properties to specific internal representations or external stimuli. For 

example, specific cues or contexts that predict subjective reward. These representations are then 

rendered as appetitive and in consequence preferably induce approach-like behavior (Berridge 

and Robinson 1998; Berridge 2016). Incentive sensitization, a theoretical derivative of 

incentive salience, further elaborates on the exact role of DA in addiction and refines these ideas 

(Robinson and Berridge 2001). In detail, incentive sensitization posits that DAs systems are 

rendered hypersensitive (in response to specific cues), due to a history of excessive DA release 

in the context of drug-abuse or behavioral addiction. Since DA is supposed to induce wanting 

(see above), this hypersensitive DA system induces pathological craving for drugs of abuse, 

even though liking may be absent or reduced. Further, this should be especially evident in 
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contexts that are associated with addiction-related cues. Said differently, DA transfers wanting 

to associations, contexts and cues that predict the desired state (Berridge and Robinson 2016). 

Theoretically, this sensitization might be the result of a first excessive mesencephalic DA 

release as a function of pharmacology, i.e. DAT blockade (cocaine or amphetamine) or 

extensive prediction errors due to behavior alone (e.g. a first gambling win). However, the exact 

mechanisms are puzzling and for example studies on DA in gambling disorder showed 

inconsistent results. While some studies suggest that gamblers and controls show no overall 

difference in DA release while gambling (Joutsa et al. 2012; van Holst et al. 2018) others 

propose differences in striatal synthesis capacity (van Holst et al. 2018). Still, a bias in response 

to gambling cues (Oberg et al. 2011) and blunted responses to other incentives (Sescousse et 

al. 2013) are compatible with DA assigning magnet-like  properties to addiction-specific cues. 

 Interestingly, there is evidence that incentive sensitization is associated with functional 

and structural changes within DAergic systems (Steketee and Kalivas 2011). Finally and 

contradicting with the suggested distinction between wanting (DAergic system) and liking 

(opiod system), in some recent studies DA sometimes correlated with subjective pleasantness 

(Kühn and Gallinat 2012), or enhancement of DA led to elevated liking (Ferreri et al. 2019). In 

consequence, the exact interplay of DA, the opioid system and reward liking might be more 

complex than previously thought and future studies are necessary to resolve these issues.  
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Theories Synthesizing Dopamine´s Role in Learning and Motivation 

Over the years considerable progress shaped our understanding of DAs effects on both 

learning (Schultz 2013, 2015, 2016) and motivation (Smith et al. 2011; Berridge 2012). 

However, both theories have also been prominently contrasted (Berridge 2012; Colombo 2014). 

Nevertheless, recent attempts aimed to synthesize both of these perspectives into more unifying 

accounts of DAs qualitative role in human functioning (Collins and Frank 2014; FitzGerald et 

al. 2015; Westbrook and Braver 2016; Berke 2018). Likewise theories on regional differences 

emerged, e.g. it was suggested that while RPE-scaled midbrain DA bursts signal learning, 

separate striatal DA fluctuations signal motivation and arise independently from midbrain DA 

cell bursts (Mohebi et al. 2019). 

One promising model to combine both perspectives was suggested by Collins and Frank 

in 2014 (Collins and Frank 2014). Their approach builds on earlier work, namely the actor-

critic model as illustrated in Sutton and Barto (1998). In this RL model, the critic and actor 

learn the state- and action-values of specific states and actions via temporal difference 

mechanism, respectively (Dayan and Niv 2008; Montague et al. 1996). While this model 

provided a compelling explanation of some findings, i.e. learning via RPE, others like 

asymmetries in context dependent choice or different weighting of learned values, are not well 

explained. For example, DA signals can ramp up in the presence of incentives which can boost 

task performance independently of learned action values and directly influence choice (Wassum 

et al. 2011; Smith et al. 2011; Berridge 2012). Thus, a simple actor-critic architecture can 

explain DAs effects on learning specific values, but is unable to account for DAs effects during 

choice (incentive salience /motivational properties).  

The modified opponent actor and critic model (OPAL) can do both, while at the same 

time better approximating BG anatomy and function. In detail, Collins and Frank (2014) 

implemented positive (GO signal) and negative (NO-GO signal) action values (also known as 

Q-values; Q+ and Q-) and further added separate weighting parameters -GO) 

that simulate DA activity during choice. Note, these Q-values (Q+ and Q-) are updated (learned) 

via temporal-difference mechanism (Sutton and Barto 1998)  

are just weights on these learned Q-values simulating DAs effects on both values, separately. 

 (GO-singal) - (NO-

GO signal). In analogy to BG anatomy OPAL assumes these different action values do mirror 

the direct (GO) and indirect (NO-GO) pathway gain and further allows for context dependent 

weighting of these . Said differently, each pathway gain, modelled via separate 

action values, is learned. Mechanisms that shape learning are phasic DA bursts (positive 
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prediction errors) or dips below the baseline rate of DA neuron activity (negative prediction 

errors), both after choice. This translates to BG anatomy in the following way: Stimulating D1-

receptors increases the signal to noise ratio and amplifies activity (GO signal) in the direct 

pathway (increased action value for GO; see Figure 1B). A lack of DA at D2-receptors after 

choice (DA dip) in the indirect pathway results in increased inhibition via the indirect pathway 

(increased action values for NO-GO; Figure 1C) (Collins and Frank 2014). Motivation is then 

reflected in the context dependent weighting of these already learned direct (GO) and indirect 

(NO-GO) action-values. For example, when a phasic burst or dip of DA neuron activity occurs 

during choice it immediately effects the direct pathway (GO; D1-receptor mediated) MSNs or 

indirect pathway (NO-GO; D2 mediated) MSNs (Shen et al. 2008; Collins and Frank 2014; 

Frank 2005) and is modelled via an effect on direct (GO) weights or indirect (NO-GO) 

weights, respectively. This allows the model to account for context effects, i.e. incentives or 

other cue effects without new learning due to a different environmental context or otherwise 

motivating stimuli (see Figure 1D).  

Simulations using OPAL showed that it accounts more flexibly for data than simpler 

reinforcement learning approaches (Collins and Frank 2014) and experimental findings are 

compatible with some of its main assumptions. For example, pharmacological enhancement of 

indirect pathway activity results in avoidance learning (Nunes et al. 2010) confirming the 

suggested role of this BG pathway. Moreover, specific D1 or D2 MSN optogenetic stimulation 

proved to enhance or diminish action values (Tai et al. 2012) and likewise confirm the roles of 

the direct and indirect pathways in approach and avoidance learning (Hikida et al. 2010; Kravitz 

et al. 2012). Enhancing DA function restores cognitive motivation in Parkinson´s disease 

(McGuigan et al. 2019). Maia and Frank (2017) further show that, under specific assumptions 

of DAergic disturbances, OPAL architecture can account for positive and negative symptoms 

in schizophrenia. The authors argue that spontaneous task/stimulus-irrelevant DA transients 

might induce learning of irrelevant stimulus-response associations which in consequence can 

be exaggerated by excessive DA during choice. Further, decreased stimulus relevant DA 

transients might contribute to a lack of motivation and so-called negative symptoms [for further 

details see: (Maia and Frank 2017)].  

These ideas are also compatible with research on the role of striatal DA in decisions that 

require cognitive effort. While cognitive control is generally associated with the maintenance 

of information in working memory and prefrontal control processes (Cools 2008), the 

willingness to control or invest in effort for control processes fundamentally requires motivation 

(Haber and Knutson 2010). Moreover fast striatal gating processes control which information 
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represented in cortex is updated or maintained (van Schouwenburg et al. 2010). Thus, 

Westbrook and colleagues argue that striatal DA and its known role in reward and motivation 

are crucial for understanding the willingness to exert cognitive effort (Westbrook and Braver 

2016; Westbrook et al. 2020; Westbrook et al. 2021). They tackle this idea with a task that 

requires to allocate effort and find that participants with low (dorsal) striatal DA synthesis 

capacity were less likely to invest in cognitive effort. However, methylphenidate or a selective 

D2 antagonist (presynaptic mechanism) restored motivation especially in participants with low 

baseline synthesis capacity (Westbrook et al. 2020). Using the Drift Diffusion Model (DDM), 

Westbrook and colleagues demonstrate that DA shifts attention (early in the decision process) 

to benefits (reward information) away from costs (effort information). In other words, increased 

baseline synthesis capacity or methylphenidate/sulpiride increase the weight of benefits on 

evidence accumulation (drift-rate) and therefore increase the willingness to spend cognitive 

resources. Interestingly, these findings are in line with an motivational effect of DA during 

choice (see Figure 1D above) and with the perspective that the direct (GO) and indirect (NO-

GO) pathway qualitatively signal benefits and costs of actions (Westbrook et al. 2021). 

 Therefore the effect of DA on cognitive effort is compatible with a dual-pathway model 

where DA emphasizes processing in the direct D1 pathway and suppresses processing in the 

indirect D2 pathway (Frank and O'Reilly 2006; Collins and Frank 2014; Maia and Frank 2017). 

Note, that other theories are also compatible with these findings, i.e. a general effect of DA on 

the willingness to spend energy resources (Berke 2018) or the idea that DAs basically modulates 

reward sensitivity (FitzGerald et al. 2015), however, these are less specific in terms of the exact 

mechanisms.  
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Figure 4. The effect of dopamine (DA) on learning and motivation. Adapted from Maia and 
Frank (2017). A, reference scenario (without prior learning). B, learning scenario where 
unpredicted reward resulted in a phasic response of DA neurons (positive prediction error). C, 
learning scenario where predicted but omitted reward resulted in a dip of DA neuron activity 
(negative prediction error). D, scenario of increased DA during decision-making/choice 
reflecting motivational effects of DA biasing approach (benefits) vs. avoidance (costs).  
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Study Specific Summaries 

The overall goal of the studies presented in this dissertation is to improve our 

understanding of DA-associated changes in intertemporal preferences. Understanding these 

dopamine-mediated relationships is essential to our understanding of the continuous 

dimensions of human functioning and the promise of the RDoC framework (U.S. Department 

of Health and Human Services, National Institutes of 2016). Study 1 in this dissertation 

investigates DAergic modulation of intertemporal choice in healthy adult participants using the 

DA D2-receptor antagonist haloperidol and state-of-the-art computational approaches to further 

decompose the decision-process (see methods section below). Study 2 takes behavioral testing 

beyond the lab into real-life environments and assesses the effects of addiction related 

environments on intertemporal preferences and MB RL in regular slot machine gamblers. In 

Study 3 we examine whether patients with Tourette Syndrome (TS) show aberrations in 

intertemporal choice. This is of particular interest because TS is associated with reward 

sensitivity and disturbances in DA neurotransmission. In Study 4 we investigate short- and long-

term stability of intertemporal preferences as a function of acute and chronic deep brain 

stimulation (DBS) in a cohort of OCD-patients. OCD is associated with pathological activity in 

CSTC loops and the NAcc is a central hub of the reward circuit. In what follows I will further 

introduce specific background information on each work. 

Study 1 Dopaminergic Modulation of Human Intertemporal Choice: A Diffusion Model Analysis 
Using the D2-  

DAergic modulation of frontostriatal-circuits (CSTC loops) is associated with reward 

learning, motivation and is implicated in cost-benefit decision-making (see above). Reduced 

discounting has especially been observed under moderate doses of amphetamine (Wit 2002) 

and D2-receptor antagonists (Weber et al. 2016; Arrondo et al. 2015). Note, D2-receptor 

antagonists in small doses are likely to increase DA neurotransmission via a presynaptic 

mechanism. In contrast Pine and colleagues (2010) did not find an effect of the D2-receptor 

antagonist haloperidol but observed increased discounting following administration of L-

DOPA (Note, this study consisted of a small sample size [n = 13]). Using a greater sample than 

(Pine et al. 2010) and state-of-the-art computational methods, Study 1 of this dissertation tries 

to resolve and clarify the effects of haloperidol. We therefore examined the effect of a single (2 

mg) dose of the D2-receptor antagonist to healthy human participants. Further, our approach 

extends previous studies via applying state-of-the-art temporal discounting drift-diffusion 

models (see methods below) to further evaluate the effects of haloperidol on individual decision 

components. Moreover our approach, using two different magnitude conditions, allows us to 

031



 

 

examine the effects of DA on modulating the magnitude effect. The magnitude effect describes 

the phenomenon that larger rewards are discounted less than smaller rewards (Ballard et al. 

2017). Results are discussed with respect to the effects of haloperidol on decision components 

and the literature on DA and intertemporal choice in general. 

Study 2 Environment Exposure Increases Temporal Discounting but Improves Model-
Based Control in Regular Slot-Machine G  

Substance use disorders and behavioral addictions are both associated with increased 

discounting (Lempert et al. 2019; Lempert and Phelps 2016; Bickel et al. 2019). Incentive 

sensitization theory (Robinson and Berridge 1993; Robinson and Berridge 2008) provides a 

theoretical framework that links contextual effects, i.e. addiction-related cues to a highly 

sensitized DA system (see Incentive salience above). It thus provides a theoretical framework 

that renders addiction related environments as powerful triggers of craving and their role in 

relapse. One example for a highly context dependent addiction with huge societal impact is 

gambling disorder. Continuous gambling often negatively impacts personal finances, work, 

relationships and mental health (Blaszczynski and Nower 2002; Muggleton et al. 2021). 

Interestingly, steep discounting has been consistently observed in substance use disorders and 

gambling disorder (Reynolds 2006; Bickel et al. 2012; MacKillop et al. 2011; Bickel et al. 

2019). One further candidate that might contribute to a range of psychiatric conditions are 

impairments in MB control during RL (Daw 2011). While MF control operates on stimulus-

response associations (Balleine and O'Doherty 2010; Doll et al. 2012; Daw 2011; Voon et al. 

2017), MB control refers to computationally more expensive goal-directed strategies that utilize 

models of the environment. Such reinforcement learning strategies are typically assessed via 

the so-called Two-Step task (Daw 2011). Contextual modulation of intertemporal choice has 

been consistently observed in laboratory tasks that include gambling-related cues (Miedl et al. 

2014; Genauck et al. 2020; Dale et al. 2019). Further, one study confirms these findings in real-

life gambling environments (Dixon et al. 2006). While there is evidence that MB reinforcement 

learning might be reduced in gambling disorder (Wyckmans et al. 2019) it is unclear if this 

process is under contextual control. In Study 2 of this dissertation we therefore use the rare 

opportunity to investigate the impact of real-life gambling environments on both of these 

computational markers of addiction. We extend previous findings of contextual modulation of 

intertemporal choice via an assessment and analysis of important predictors of gambling 

behavior, i.e. gambling related cognitive distortions and a gambling severity compound score. 

Both constructs are analyzed using state-of-the-art hybrid temporal discounting and RL DDMs 

and results are discusses with respect to neural models of addiction. 
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Discounting in Adolescents and Adults with Tourette S

TS is a neuropsychiatric disorder with a typical onset during childhood. TS patients are 

characterized by so called tics, i.e. involuntary eye blinking or muscle concentrations, phonic 

repetitive sounds and others (Leckman 2002; M. M. Robertson 2012). TS symptom severity 

generally improves at the end of adolescence in around 80% of patients (Coffey et al. 2004; 

Bloch and Leckman 2009). However the rate of comorbidities like impulsive control disorders, 

attention-deficit/hyperactive disorder (ADHD) or obsessive compulsive disorder (OCD), are 

relatively high and only absent in around 25% of participants (Robertson 2012; Hirschtritt et 

al. 2015; Groth et al. 2017). Clinical and neuroscientific studies both highlight neurological 

aberrations within the CSTC-loops (Baldermann et al. 2016; Dwyer 2018) especially with 

respect to DA that strongly modulates these circuits (Frank and O'Reilly 2006; Denys et al. 

2013). Theories on the developmental underpinnings of TS range from DA receptor super-

sensitivity (Singer 2013) over an imbalance in tonic-phasic DA function to a presynaptic DA 

dysfunction (Buse et al. 2013; Singer et al. 2002) and DA hyperinnervation (Buse et al. 2013; 

Maia and Conceição 2018). DA in fronto-striatal circuits plays a key role in both motor control 

(Smith et al. 2018; Canário et al. 2019) and choice impulsivity (Pine et al. 2010; Weber et al. 

2016; Freund et al. 2019). TS has already been associated with aberrations in reward sensitivity 

in RL tasks (Palminteri and Pessiglione 2013; Kéri et al. 2002). However, whether choice 

impulsivity is impaired in TS remains ambiguous. To date, only one recent study reports slightly 

increased choice impulsivity in adolescent TS patients (Vicario et al. 2020). Study 3 in this 

dissertation therefore compares intertemporal choice in two cohorts of TS patients (adolescents 

and adults) with matched healthy controls. Said differently, we examine whether TS 

pathophysiology is associated with changes in temporal discounting. Our results are likewise 

discussed with respect to neural models of temporal discounting, DAergic alterations in 

Tourette syndrome and the developmental trajectory of cognitive control.  

Deep Brain Stimulation of the Human NAcc Region Disrupts the Stability of 
Intertemporal P  

Obsessive-compulsive disorder (OCD) is a chronic disorder marked by either 

compulsions, obsessions or both and has a life time prevalence around 2-3 % (Björgvinsson et 

al., 2007; Ruscio et al., 2010). Patients with OCD suffer from intrusive aversive thoughts 

(obsessions) and ritualistic behaviors (compulsions). Around 10% of patients with OCD do not 

respond to conventional therapy (cognitive-behavioral therapy, serotonin reuptake inhibitors) 

and are considered therapy refractory (Milad and Rauch, 2012). The underlying neurobiology 

of OCD is not fully understood. Converging evidence suggests a CSTC dysfunction and 
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especially aberrations in orbitofrontal and VS activity (Modell et al. 1989; Whiteside et al. 

2004; Chamberlain et al. 2008; Milad and Rauch 2012; Robbins et al. 2019). While traditional 

research viewed impulsivity and compulsivity as opposing concepts, new perspectives 

challenge this view (e.g. Robbins et al., 2012). In patients with OCD, poor treatment outcome 

has been associated with heightened self-reported impulsivity and a likewise high prevalence 

of impulsive disorders (Fontenelle et al. 2005). Those findings lead to the assumption that both 

compulsivity and impulsivity contribute to OCD (Robbins et al. 2012; Kashyap et al. 2012). 

However, studies on choice impulsivity in patients with OCD have shown inconsistent results. 

For instance, a study by Sohn and colleagues (2014) patients with OCD discounted significantly 

more than controls (Sohn et al. 2014), whereas other studies found no difference in discounting 

behavior between patients with OCD and controls (Pinto et al. 2014; Steinglass et al. 2017; 

Carlisi et al. 2017). Thus it is not clear if OCD is generally characterized by abnormalities in 

delay discounting. When conventional therapy is ineffective, deep brain stimulation (DBS) can 

be considered as a treatment option for patients with OCD. DBS is a neuromodulation  

procedure that relies on the implantation of electrodes in subcortical structures (Cleary et al. 

2015). DBS is widely used with high success rates in areas of movement disorders (Larson 

2014). For patients with OCD, DBS targeted for the anterior limb of the internal capsule and 

the NAcc (ALIC/NAcc) area leads to symptom reduction in about 40 % of therapy refractory 

patients (Denys et al. 2010; Kohl et al. 2014; Alonso et al. 2015). Thus, hypotheses that justify 

the application of DBS for psychiatric patients (including OCD) are based on the assumption 

that DBS modulates CSTC function (Figee et al. 2013; Wu et al. 2020), and in our case directly 

in regions at the heart of the reward circuit (i.e. the NAcc).  

While some studies showed no effect of acute subthalamic nucleus (Seinstra et al. 2016; 

Aiello et al. 2019) and NAcc (Peisker et al. 2018) stimulation protocols it is especially unclear 

if chronic long-term DBS can modulate intertemporal choice. In the context of a DBS 

treatment-efficacy study (Huys et al. 2019) we examined whether phasic or long-term effects 

of chronic DBS to the ALIC/ NAcc area are associated with changes in intertemporal 

preferences in OCD patients.  
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Methods 

Computational Modelling of Intertemporal Choice 

Over the years scientists developed multiple methods to quantify intertemporal 

preferences. Choice proportions, for instance, are a simple ratio of how often specific options, 

i.e. the SS or LL rewards are chosen. So-called points of indifference capture the specific value 

were preferences do switch from one choice option (i.e. SS) to the other (i.e. LL). One would 

therefore fit a sigmoid function into delay-specific choices between rewards of varying 

magnitude. The inflection point of this sigmoid function is qualitatively equivalent to the point 

of indifference, the amount where the decision-maker becomes indifferent between the SS and 

LL reward (FitzGerald et al. 2009). 

 Connecting multiple indifference points in a graph results in a continuous function. 

Integrating the area under this empirical discounting curve (AUC) provides a model-free 

estimate of intertemporal choice. One would therefore normalize the subjective values (the 

points of indifference) and delays (proportions of the maximum delay) and compute the integral 

(in a step-wise numerical approximation) over the normalized y- and x-axis data points. The 

resulting AUC would then vary within the boundaries of 0 to 1, whereas a lower value indicates 

steeper discounting and values next to 1 indicate shallow to no discounting (Myerson et al. 

2001) -  (mentioned above) have in common that 

they are easy to compute and provide a central tendency without further theoretical 

assumptions. This rather agnostic approach has the advantage to provide a neutral measurement 

without a theoretical framework, but also lacks further explanation and does not yield specific 

testable predictions.  

Computational models are often build on the promise for further explanatory power. 

That is, they try to formalize testable assumptions (theoretical frameworks), ideally match 

underlying processes (so-called process models) and manage to predict data not yet observed 

(Farrell and Lewandowsky 2018). Early computational approaches to delay discounting 

modelled the relationship of delay and reinforcer using an exponential function within the 

framework of discounted utility (Samuelson 1937). In its rewritten form this function can be 

expressed as follows SV = A * exp(-kD). The subjective value (SV) of an amount (A) is 

devalued via an exponential function weighting delay (D) by an individual discounting 

parameter (k). A lower value of the discount-rate indicates shallower discounting, whereas a 

higher value of the discount-rate reflects steeper discounting. However in practice, 

experimental validation and comparison of computational models (McKerchar et al. 2009; 

Ainslie 1974) led to the notion, that the exponential model often fails to accurately describe 
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empirical data. In general people tend to discount more (are increasingly impatient) when 

choosing between options in the near future, but show less discounting when options are further 

in the future. For example people might prefer 25  

but 20  

and date back to observations in pigeons around 50 years ago (Ainslie 1974; Ainslie 1975). 

Building on these findings and further validation of experimental data the hyperbolic model SV 

= A / (1 + kD) proved superior to fit delay discounting data (Mazur and Coe 1987). The main 

mathematical difference is that the exponential model assumes a constant rate of devaluation, 

i.e. a neutral time preference, and the hyperbolic model assumes steeper discounting of the near 

future. Nowadays parameter estimates of the discount-rate parameter derived from the 

hyperbolic model are determined the standard procedure to quantify tendencies in intertemporal 

choice/delay discounting (Mazur and Coe 1987; Green and Myerson 2004; Peters and Büchel 

2011). Formally a simple hyperbolic function describes how values change as a function of 

delay (Eq. 1).  

 

Here, At is the numerical reward amount of the LL option on trial t. A trial is simply one 

choice between a SS and LL option. Dt is the corresponding delay in days on that trial. The 

model has only one free parameters, the hyperbolic discounting rate k. A standard softmax 

action-selection rule (Sutton and Barto 1998) can then be used to model choice probabilities (in 

this case the probability for choosing the LL reward) as a sigmoid function of value differences, 

that is the difference between the SS and discounted LL in a trial-wise fashion. 

 

 

The softmax model thus accounts for two things. First, it maps the discounted subjective 

LL and SS values onto the observed decisions. Secondly, the  parameter models choice 

stochasticity, that is as  increases choices become more dependent on the option values. As  

approaches zero, choices become purely random (Sutton and Barto 1998). Thus, the softmax 

choice-rule or its  parameter can inform overall tendencies in terms of choice noisiness but do 

not allow for further insights into the decision process itself. 
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One recent advancement in modelling value-based decisions is the implementation of 

sequential sampling models (Pedersen et al. 2017; Fontanesi et al. 2019; Peters and D'Esposito 

2020). A key feature of these models, here with focus on the drift diffusion model (DDM) is 

that they explain both choices and reaction time (RT) distributions (Ratcliff and McKoon 2008). 

According to Forstmann et al. (2016) sequential sampling models date back to the early days 

of probability theory where much effort was attributed to problems devoted to gambling. For 

example, early random walk models described the process when gamblers with different 

starting capitals and win probabilities played against each other multiple times. The resulting 

random walk only depended on the starting capital and win probabilities for each player and is 

theoretically equal to an accumulation of evidence over time (Forstmann et al. 2016; Feller 

2003). The evidence accumulation in a DDM itself, however, historically stems from modelling 

Brownian motion, that is the random fluctuations of physical particles given a specific 

temperature. The first observation of this phenomenon date back to 1827 where botanist Robert 

Brown described the random like behavior of pollen in water (Brown 1828). Later in 1905 

Einstein referred to Brown in his work on the molecular-kinetic theory of heat where he 

statistically modelled Brownian motion for the first time (Einstein 1905). This work was later 

described as one of his most important contribution to modern science indirectly proving the 

existence of atoms (Mazo 2009). Another important step to modern sequential sampling models 

was the work of Norbert Wiener in the 1920s. Wiener worked on the mathematical properties 

of noisy stochastic processes and his contributions were later fundamental to prove the 

P (Nelson 1967). 

 In 1978 Roger Ratcliff built on these findings to propose the first mathematical 

diffusion model in psychology capable of predicting RT distributions in the framework of 

memory retrieval (Ratcliff 1978). Since then the DDM has been successfully implemented in 

the broad field of psychology and cognitive neuroscience (Forstmann et al. 2016). In detail, the 

DDM models participant´s choices as two distinct response boundaries, each reflecting the 

whole RT distributions corresponding to each choice-option (see Figure 5). A choice is initiated 

if the cumulated rate of evidence crosses one of two response-boundaries. In its simple form 

the standard DDM has four parameters. First, the drift-rate (average speed of evidence 

accumulation) parameter (v) models the rate at which evidence for one of both response 

boundaries is accumulated (see Figure 5). Second, the starting point of this process (z). This so-

called bias can account for a bias to either response boundary. Third, the distance between both 

response boundaries is captured by boundary separation parameter (a). This parameter adjusts 

the speed-accuracy trade-off, i.e. the amount of evidence that is needed until one of the two 
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alternative boundaries is reached. Fourth, the non-decision time (t0) captures the time for 

stimulus encoding (e.g. sensory processing of option space) and motor preparation until the 

evidence accumulation process starts. While hyperbolic discounting in combination with 

softmax-action selection maps the different values (SS and subjective LL) onto participants 

choices, the DDM in its standard form maps RTs onto choice boundaries, but ignores further 

value information. In other words, standard DDM thus allows for the studying of individual RT 

components of this decision process but ignores trial-wise value differences. 

In Study 1 and Study 2 within this dissertation we therefore aimed to combine the 

strength of the DDM´s ability in capturing individual components of the decision process and 

trial-wise option valuation of hyperbolic discounting. To do this we build on recent successful 

implementations of the DDM in RL (Pedersen et al. 2017; Fontanesi et al. 2019; Shahar et al. 

. In this combined model, the two boundaries correspond to the RT 

distributions of the choices (stimulus coding) of the SS and subjective LL (via hyperbolic 

discounting) rewards, whereas the drift-rate is modelled as a linear (Pedersen et al. 2017) or 

sigmoid (Fontanesi et al. 2019) trial-wise function of value differences (see Eq. 3 and Eq. 4 for 

the linear version, and the methods sections on Study 1 and Study 2 for other versions). Using 

a DDM as choice-rule has some major advantages over the softmax choice-rule introduced 

above. Instead of simply mapping value-differences (differences of SS and subjective LL 

values) onto binary choices it allows for further decomposition with the advantage of studying 

each component individually while taking option valuation into account. 

 

 

 

 

 

Value-based diffusion models are a promising candidate for a further approximation to 

a real process model in value based choice, i.e. a model that not only manages to explain 

patterns in data but also captures underlying processes (Farrell and Lewandowsky 2018). This 

point of view is also supported by neurobiological evidence. For example, neural correlates of 

gradual evidence accumulation in monkeys (Selen et al. 2012; Bichot et al. 2001) and humans 

(Selen et al. 2012; Shadlen and Kiani 2013) support some of the DDM´s assumptions like for 

example, evidence accumulation under time-pressure (Shadlen and Kiani 2013).  
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In Study 2 we additionally model behavior in a reinforcement learning (RL) task. This 

so-called Two Step Task (Daw 2011) dissociates model-based (MB) from model-free (MF) RL 

strategies. MB control refers to computationally more expensive goal-directed strategies that 

rely on a probabilistic map of the environment, contrasting with MF control that operates on 

simpler stimulus-response associations (Balleine and O'Doherty 2010; Daw 2011; Voon et al. 

2017). Behavior in this task is modelled using a Q-learning algorithm that estimates both MF 

and MB Q-values (state-action values). The standard-approach to analyze this task is the hybrid 

RL model introduced by Daw (2011). The model updates MF state-action values through 

prediction errors. MB state-action values are then computed from the transition and reward 

estimates using the Bellman Equation. This approach then models the strength of MF and MB 

RL strategies during task performance via a softmax function. Like in our analysis of temporal 

discounting we additionally replaced the softmax function with a DDM choice rule (Shahar et 

al. 2019). Further in deepth explanations on task and computational methods are available in 

the methods section of Study 2. 

 

Figure 5 Illustration of the drift diffusion model. Adapted from (Pedersen et al. 2017). 
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Hierarchical Bayesian Parameter Estimation 

This chapter gives a brief overview of cognitive modelling implemented in a 

hierarchical Bayesian framework. Cognitive modelling in general provides a mathematical 

description that preferably describes an underlying process (Farrell and Lewandowsky 2018). 

A Bayesian estimation scheme implies that the parameters describing this process are updated 

(given the data) in the sense of probability distributions. Bayesian frameworks have the 

advantage of estimating the entire posterior distribution of parameters. This allows to quantify 

the degree of belief in these values via a probability estimate, i.e. the probability density of a 

continuous parameter (Wagenmakers et al. 2018). In the special case of hierarchical models the 

hierarchy can involve multiple levels to reflect some kind of hierarchical dependencies within 

the data, that could be a different experimental manipulation or a specific environmental 

context. In consequence subject level parameters that describe individual behavior, i.e. the 

discounting of rewards, are drawn from separate hyperparameter distributions depending on the 

specific context or group. The subject- and group level parameters then form a joint parameter 

space, are estimated simultaneously and mutually inform each other. In consequence group 

comparisons can be intuitively implemented via a comparison of overlapping probability 

density estimates of group- or condition-specific hyperparameter distributions and their 

corresponding highest density invervalls (Kruschke 2011; Baldwin and Fellingham 2013; 

Farrell and Lewandowsky 2018; Wagenmakers et al. 2018).  

In a first step one needs to define a model that maps the observed data (experiment or 

simulation) to outcomes via a likelihood function in the setting of probability distributions. 

Such a model for example consists of a hyperbolic function like Eq.1 in combination with a 

softmax choice-rule Eq. 2 (Sutton and Barto 1998) . In terms of intertemporal choice one main 

parameter of interest is the individual discount-rate k. However, we cannot directly observe this 

parameter. Instead our model defines the relationship of a suggested underlying process 

(hyperbolic devaluation) and a function, i.e. softmax to map the estimated values onto choice 

probabilities and in consequence to binary decision-outcomes. Before one can begin to 

numerically solve this one needs to define a plausible range of prior values (defined as 

probability distributions) that constrain our parameters of interest (discount-rate and softmax-

temperature; see above) in a plausible way. If there is no prior knowledge a uniform prior 

distribution, that assigns equal probability to each possible parameter in a plausible range is 

appropriate (e.g. that let the discount-rate account for both the possibility of very steep 

discounting [only SS choices] or no discounting [only LL choices]). Bayes Rule (Eq. 5) for 

conditional probabilities formalizes the relationship of our priors p( ), the likelihood of the data 
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given the parameters p(D| ) and the posterior that quantifies the probability of a parameter 

given that we have seen the data p( ). In other words, the observed data is used to update our 

prior information, resulting in an updated posterior belief. The term ( ), the so called 

evidence/general probability of the data or the marginal likelihood, serves as a normalizing 

constant such that the posterior distribution is a proper probability density function where the 

integral sums to 1 (Wagenmakers et al. 2018). As this is a scaling parameter a rule of thumb 

states that the posterior is equivalent to the prior times the likelihood (Eq. 6). 

 There are multiple methods available for solving or fitting these Bayesian or 

hierarchical Bayesian models. So-called -

implemented in programs like JAGS (Plummer 2003) or STAN (Stan Development Team 2020) 

generate a conditioned walk through parameter space. Even though the details of both 

algorithms (Metropolis Hastings [Stan] or Gibbs Sampling [JAGS]) differ, both result in a 

chained walk that visits those values with higher probability more often, than those with lower 

or no probability yielding a converging representative sample of the true posterior given the 

model and data (Kruschke 2015). One major advantage of models implemented in these 

programming languages is that functions are easily replace- and extendable allowing for fast 

modification and model comparison. For example, one can easily replace softmax action-

selection with a DDM to further account for response time distributions. Furthermore, 

parameters in hierarchical models mutually inform and constrain each other (partial pooling), 

such that meaningful estimates can be derived even with limited data per subject. Moreover, 

the decision rule can accept the null value and provides an effect size estimate (Kruschke 2011, 

2013, 2015). 

 

  (Eq. 5) 

 

 (Eq. 6) 
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Dopaminergic Modulation of Human Intertemporal Choice:
A Diffusion Model Analysis Using the D2-Receptor
Antagonist Haloperidol
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The neurotransmitter dopamine is implicated in diverse functions, including reward processing, reinforcement learning, and
cognitive control. The tendency to discount future rewards over time has long been discussed in the context of potential do-
paminergic modulation. Here we examined the effect of a single dose of the D2 receptor antagonist haloperidol (2mg) on
temporal discounting in healthy female and male human participants. Our approach extends previous pharmacological studies
in two ways. First, we applied combined temporal discounting drift diffusion models to examine choice dynamics. Second,
we examined dopaminergic modulation of reward magnitude effects on temporal discounting. Hierarchical Bayesian parame-
ter estimation revealed that the data were best accounted for by a temporal discounting drift diffusion model with nonlinear
trialwise drift rate scaling. This model showed good parameter recovery, and posterior predictive checks revealed that it accu-
rately reproduced the relationship between decision conflict and response times in individual participants. We observed
reduced temporal discounting and substantially faster nondecision times under haloperidol compared with placebo.
Discounting was steeper for low versus high reward magnitudes, but this effect was largely unaffected by haloperidol. Results
were corroborated by model-free analyses and modeling via more standard approaches. We previously reported elevated cau-
date activation under haloperidol in this sample of participants, supporting the idea that haloperidol elevated dopamine neu-
rotransmission (e.g., by blocking inhibitory feedback via presynaptic D2 auto-receptors). The present results reveal that this
is associated with an augmentation of both lower-level (nondecision time) and higher-level (temporal discounting) compo-
nents of the decision process.

Key words: computational modeling; decision making; dopamine; haloperidol; intertemporal choice; pharmacology

Significance Statement

Dopamine is implicated in reward processing, reinforcement learning, and cognitive control. Here we examined the effects of
a single dose of the D2 receptor antagonist haloperidol on temporal discounting and choice dynamics during the decision pro-
cess. We extend previous studies by applying computational modeling using the drift diffusion model, which revealed that
haloperidol reduced the nondecision time and reduced impulsive choice compared with placebo. These findings are compati-
ble with a haloperidol-induced increase in striatal dopamine (e.g., because of a presynaptic mechanism). Our data provide
novel insights into the contributions of dopamine to value-based decision-making and highlight how comprehensive model-
based analyses using sequential sampling models can inform the effects of pharmacological modulation on choice processes.

Introduction
Future rewards are discounted in value (Peters and Büchel, 2011)
such that humans and many animals prefer smaller-sooner (SS)
rewards over larger-but-later (LL) rewards (temporal discount-
ing). Steep discounting of reward value is associated with a range
of maladaptive behaviors ranging from substance use disorders
(Bickel et al., 2014), attention-deficit hyperactivity disorder
(Jackson and MacKillop, 2016), and obesity (Amlung et al.,
2016) to behavioral addictions, such as gambling disorder
(Wiehler and Peters, 2015). Temporal discounting has thus been
suggested to constitute a transdiagnostic process (Amlung et al.,
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2019; Lempert et al., 2019) with relevance for many psychiatric
conditions.

Dopamine (DA) plays a central role in addiction (Robinson
and Berridge, 1993). In rodents, reductions versus moderate
increases in DA transmission led to increases and decreases in dis-
counting, whereas the corresponding human literature is small
and more heterogeneous (D’Amour-Horvat and Leyton, 2014).
For example, de Wit et al. (2002) found that acute administration
of D-amphetamine decreased impulsivity, such that temporal dis-
counting was reduced under D-amphetamine. However, a later
study did not replicate this effect (Acheson and de Wit, 2008).
Administration of the D2/D3 receptor agonist pramipexole did
not affect measures of impulsivity in another study (n=10) from
the same group (Hamidovic et al., 2008). In contrast, Pine et al.
(2010) observed increased temporal discounting following admin-
istration of the catecholamine precursor L-DOPA compared with
placebo in healthy control participants (n=13), while the D2-re-
ceptor antagonist haloperidol did not modulate discounting. In a
recent within-subjects study using L-DOPA in a substantially
larger sample (n=87), there was no overall effect on temporal dis-
counting (Petzold et al., 2019). Rather, effects depended on base-
line impulsivity, which the authors interpreted in the context of
the inverted-U-model of DA effects on cognitive control functions
(Cools and D’Esposito, 2011). Two recent studies have reported a
reduction in discounting following administration of the selective
D2/D3-receptor antagonist amisulpride (Weber et al., 2016) as
well as the D2 receptor antagonist metoclopramide (Arrondo et
al., 2015). Although the latter is primarily used clinically for its pe-
ripheral effects, it can pass the blood-brain barrier and act cen-
trally (Shakhatreh et al., 2019).

A similar heterogeneity is evident when considering model-
based reinforcement learning (RL) (Doll et al., 2012), which in
some studies (Shenhav et al., 2017), but not others (Solway et al.,
2017), was associated with reduced temporal discounting.
However, in contrast to temporal discounting (see above), L-
DOPA instead increased reliance on model-based RL in healthy
controls (Wunderlich et al., 2012) and Parkinson’s disease
patients (Sharp et al., 2016). Notably, this overall effect was not
observed in a recent study in a substantially larger sample
(n=65) (Kroemer et al., 2019). Here, increased model-based RL
under L-DOPA was restricted to participants with high working
memory capacity.

One well-replicated behavioral effect in temporal discounting
(magnitude effect) refers to the observation that the rate of tem-
poral discounting decreases with increasing reward magnitude
(Green et al., 1997). In humans, this effect depends on lateral
PFC processing (Ballard et al., 2017); and in rodents, D-amphet-
amine effects on temporal discounting are more pronounced for
large-magnitude conditions (Krebs et al., 2016). However, it is
unclear whether DA impacts the magnitude effect in humans.

In the present study, we examined these processes using a
between-subjects double-blind placebo-controlled pharmacolog-
ical study with the D2-receptor antagonist haloperidol (2mg).
We previously reported increased dorsal striatal activation under

haloperidol versus placebo in these participants (Clos et al.,
2019a,b), compatible with a predominantly presynaptic effect of
haloperidol that increases striatal dopaminergic signaling.
Importantly, we extended previous pharmacological studies by
applying a temporal discounting modeling framework based on
a combination of discounting models with the drift diffusion
model (DDM) (Pedersen et al., 2017; Fontanesi et al., 2019;
Shahar et al., 2019; Peters and D’Esposito, 2020), allowing us to
comprehensively examine drug effects on response time (RT)
components related to both valuation and non–valuation-related
processes.

Materials and Methods
Participants
Fifty-four healthy participants were initially enrolled in the study.
Participants were screened by a physician for current diseases and cur-
rent intake of prescription drugs or drugs of abuse. All participants were
presently in good health and had no history of neurologic or psychiatric
disorder with no current intake of prescription medication. Only healthy
subjects were allowed to participate. Twenty-seven participants were
randomly assigned to each group (placebo/haloperidol). Two partici-
pants from the haloperidol group did not complete the temporal dis-
counting task. Technical problems led to working memory data loss
from 4 participants (3 from the haloperidol, 1 from the placebo group),
but these participants were still included in the temporal discounting
data analysis.

Following filtering of RTs (see below; the fastest and slowest 2.5% of
trials were excluded per participant), we examined the individual RT his-
tograms for each subject (see Extended Data Fig. 1-1). This revealed
that, even after filtering, the 3 participants with the fastest minimum
RTs (2 from the haloperidol group and 1 from the placebo group) still
showed implausibly fast responses on a number of trials (minimum RTs
of 2, 2, and 234ms, in Subjects 24, 25, and 41, respectively) such that the
minimum RTs were substantially faster than those in the remaining par-
ticipants (all min(RT) z scores of �2.04, �2.04, and �1.7; see Extended
Data Fig. 1-2). These subjects were therefore excluded from further
modeling.

We verified that there were no significant differences in demographic
background in terms of age or baseline working memory capacity (Table
1). Potential side effects of the medication were monitored via multiple
blood pressure and pulse measurements and evaluated via mood ques-
tionnaires. These analyses did not reveal significant group differences in
terms of reported mood, side effects, or physiological parameters, as
reported in our previous study (Clos et al., 2019b). Before enrollment,
participants provided informed written consent, and all study proce-
dures were approved by the local institutional review board (Hamburg
Board of Physicians).

Experimental design
General procedure. The study consisted of two testing sessions per-

formed on separate days. On the first day (T0), participants completed a
background screening and a set of working memory tasks (see below).
On the second day (T1), participants received either placebo or haloperi-
dol (2mg). In line with the pharmacokinetics of haloperidol (Franken et
al., 2017), testing on T1 was performed 5 h after drug administration to
ensure appropriate plasma levels of haloperidol. During the first 2.5 h,
participants were under constant observation, and pulse as well as blood
pressure levels were checked 30min and 2 h after drug administration.

Table 1. Demographic and working memory dataa

Placebo Haloperidol Group comparison

Age (yr) 24.46 3.4 23.36 2.5 t(45,614) = 1.40, p= 0.17
Sex (M/F) 7/19 6/17 x 2

(1) = 0.001, p= 1
WM baseline (z score) �0.04536 0.665 0.09436 0.556 t(46,826) = �0.80, p= 0.43
Weight (kg) (M/F) 70.76 3.39/63.56 3.19 80.56 2.80/62.56 2.32 t(36,702) = �0.68, p= 0.50
aData are mean 6 SD.
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During the waiting period, participants filled out questionnaires on
current mood and medication effects. Participants then completed a
number of unrelated tasks during an fMRI scanning session (total
scan time 2.5 h.). Following scanning, they first completed the tem-
poral discounting task outlined below, followed by a set of working
memory tasks (digit span forward and backward, block span for-
ward and backward, complex working memory span) (for detailed
results, see Clos et al., 2019b).

Temporal discounting task. Participants performed 210 trials of a
temporal discounting task where on each trial they made a choice
between an SS reward available immediately and an LL reward. SS and
LL rewards were randomly displayed on the left and right sides of the
screen, and participants were free to make their choice at any time. For
half the trials, the SS reward consisted of 20e; and for the remaining
trials, the SS reward was fixed at 100e. These trials were presented
randomly intermixed. LL options were computed via all combina-
tions of a set of LL reward amounts (constructed by multiplying the
SS reward with [1.01, 1.02, 1.05, 1.10, 1.20, 1.50, 1.80, 2.50, 2, 3, 4, 5,
7, 10, 13]) and LL delays (1, 2, 3, 5, 8, 30, 60 d), yielding 105 trials in
total per magnitude condition. As is typically the case for temporal
discounting tasks investigating magnitude effects (Green et al.,
1997), all choices were hypothetical.

Computational modeling
Temporal discounting model. We applied a simple single-parameter

hyperbolic discounting model to describe how value changes as a func-
tion of delay (Mazur, 1987; Green and Myerson, 2004) as follows:

SVðLLtÞ ¼ At

11exp k1 sk p Itð Þ pDt
(1)

Here, At is the numerical reward amount of the LL option on trial t,
Dt is the LL delay in days on trial t, and It is an indicator variable that
takes on a value of 0 for trials from the large-magnitude condition (SS
amount = 100e) data and 1 for trials from the small-magnitude condi-
tion (SS amount= 20e). The model has two free parameters: k is the
hyperbolic discounting rate from the large-magnitude condition (mod-
eled in log-space) and sk is a weighting parameter that models the degree
of change in discounting for small versus large SS rewards (i.e., higher
values in sk reflect a greater magnitude effect) (Green et al., 1997).

Softmax action selection
Softmax action selection models choice probabilities as a sigmoid func-
tion of value differences (Sutton and Barto, 1998) as follows:

P LLð Þt ¼
exp b 1sb p Itð Þ p SV LLtð Þ� �

exp b1sb p Itð Þ p SV SStð Þ� �
1 exp b 1 sb p Itð Þ p SV LLtð Þ� �

(2)

Here, SV is the subjective value of the risky reward according to
Equation 1 and b is an inverse temperature parameter, modeling choice
stochasticity (for b = 0, choices are random and as b increases, choices
become more dependent on the option values). SV(SSt) was fixed at 100
for the large-magnitude condition and fixed at 20 for the small-magni-
tude condition. It is again the dummy-coded condition regressor, and sb
models the magnitude effect on b .

Temporal discounting DDMs
To more comprehensively examine dopaminergic effects on choice dy-
namics, we additionally replaced Softmax action selection with a series
of DDM-based choice rules. In the DDM, choices arise from a noisy evi-
dence accumulation process that terminates as soon as the accumulated
evidence exceeds one of two response boundaries. In the present setting,
the upper boundary was defined as selection of the LL option, whereas
the lower boundary was defined as selection of the SS option.

RTs for choices of the SS option were multiplied by�1 before model
fitting. We furthermore used a percentile-based cutoff, such that, for
each participant, the fastest and slowest 2.5% of trials were excluded

from the analysis. We then first examined a null model (DDM0) without
any value modulation. Here, the RT on each trial t is distributed accord-
ing to the Wiener First Passage Time (wfpt) as follows:

RTt ;wfpt a1 sa p It; t 1 st p It; z1 sz p It; v1 sy p Itð Þ (3)

The parameter a models the boundary separation (i.e., the amount
of evidence required before committing to a decision), t models the
nondecision time (i.e., components of the RT related to motor prepara-
tion and stimulus processing), z models the starting point of the evi-
dence accumulation process (i.e., a bias toward one of the response
boundaries, with z. 0.5 reflecting a bias toward the LL boundary, and
z, 0.5 reflecting a bias toward the SS boundary), and � models the rate
of evidence accumulation. For each parameter x, we also include a pa-
rameter sx that models the change in that parameter from the high-mag-
nitude (SS= 100e) to the low-magnitude (SS= 20e) condition (coded via
the dummy-coded condition regressor It).

As in previous work (Pedersen et al., 2017; Fontanesi et al., 2019;
Peters and D’Esposito, 2020), we then set up temporal discounting diffu-
sion models by making trialwise drift rates proportional to the difference
in subjective values between options. First, we set up a linear modeling
scheme (DDMlin) (Pedersen et al., 2017) as follows:

vt ¼ vcoeff 1 svcoeff p It
� �

p SV LLtð Þ � SV SStð Þ� �
(4)

Here, the drift rate on trial t is calculated as the scaled value differ-
ence between the LL and SS rewards. As noted above, RTs for SS options
were multiplied by �1 before model estimation, such that this formula-
tion predicts SS choices whenever SV(SS) . SV(LL) (the trialwise drift
rate is negative) and predicts longest RTs for trials with the highest deci-
sion conflict (i.e., in the case of SV(SS) = SV(LL) the trialwise drift rate is
zero). We next examined a DDM with nonlinear trialwise drift rate scal-
ing (DDMS) that has recently been reported to account for the value de-
pendency of RTs better than the DDMlin (Fontanesi et al., 2019; Peters
and D’Esposito, 2020). In this model, the scaled value difference from
Equation 4 is additionally passed through a sigmoid function with as-
ymptote vmax as follows:

vt ¼ S vcoeff 1 svcoeff p It
� �

p SV LLtð Þ � SV SStð Þ� �h i
(5)

S mð Þ ¼ 2 p vmax 1 svmax p Itð Þ
11 exp �mð Þ � vmax 1 svmax p Itð Þ (6)

All parameters, including vcoeff and vmax, were again allowed to vary
according to the reward magnitude condition, such that we included sx
parameters for each parameter x that were multiplied with the dummy-
coded condition predictor It (see above).

Hierarchical linear regression
Here we used the median posterior log(k) parameter of each participant
from the DDMS model (see above) to compute the discounted values for all
LL options.We then computed the trialwise decision conflict as the absolute
difference between the subjective value of the LL reward and the corre-
sponding smaller sooner reward. To ensure that the intercept in the regres-
sion model corresponds to the RT for the lowest decision conflict and to
account for the strongly skewed distribution of value differences, we took
the inverse of the absolute difference in SS and discounted LL values in each
trial. To further avoid numerical instabilities when taking the inverse of
absolute differences, 1 (high conflict, e.g., SV(LL)=20.10e, SS=20e),
these value differences were capped at 1 before computing the inverse. We
then ran a hierarchical linear regression model in JAGS with 1/RT (to
account for the skewed RT distribution) as dependent variable and decision
conflict (inverse of the absolute value difference) as a predictor.

Statistical analyses
Hierarchical Bayesian models. Models were fit to all trials from all

participants using a hierarchical Bayesian modeling approach with
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separate group-level distributions for all parameters for the placebo and
haloperidol groups. Model fitting was performed using Markov Chain
Monte Carlo as implemented in the JAGS software package (Plummer,
2003) (version 4.3) using the Wiener module for JAGS that implements
the Wiener
First Passage Time (Wabersich and Vandekerckhove, 2014) (see Eq. 3)
in combination with R (version 3.4) and the R2Jags package. For group-
level means, we used uniform priors defined over numerically plausible
parameter ranges (see Code and data availability). For all sx parameters
modeling condition effects on model parameters, we used Gaussian pri-
ors with means of 0 and SDs of 2. For group-level precisions, we used g
distributed priors (0.001, 0.001). We initially ran 2 chains with a burn-in
period of 900,000 samples and thinning of two. Chain convergence was
then assessed via the Gelman-Rubinstein convergence diagnostic R̂ and
sampling was continued until 1 � R̂ � 1:1 for all group-level and indi-
vidual-subject parameters. This occurred after a maximum of 1.3 million
samples. For most parameters, 1 � R̂ � 1:01 (Softmax: all parameters,
DDM0: all parameters, DDMlin: 5 parameters 1:01 � R̂ � 1:1, DDMS: 9
parameters 1:01 � R̂ � 1:1). Relative model comparison was performed
via the deviance information criterion (DIC), where lower values reflect
a superior fit of the model (Spiegelhalter et al., 2002). A total of 10,000
additional samples were then retained for further analysis. We then
show posterior group distributions for all parameters of interest as well
as their 85% and 95% highest density intervals (HDIs). For group com-
parisons, we report Bayes factors (BFs) for directional effects Kass and
Raftery, 1995 for the hyperparameter difference distributions of placebo-
haloperidol, estimated via kernel density estimation using R (version
4.01) via RStudio (version 1.3) interface. These are computed as the ratio
of the integral of the posterior difference distribution from 0 to1 versus
the integral from 0 to –1. Using common criteria (Beard et al., 2016),
we considered BFs between 1 and 3 as anecdotal evidence, BFs .3 as
moderate evidence, and BFs.10 as strong evidence. BFs.30 and.100
were considered as very strong and extreme evidence, respectively,
whereas the inverse of these reflect evidence in favor of the opposite
hypothesis.

Parameter recovery analyses. To ensure that the parameters underly-
ing the data-generating process could be recovered using our modeling
procedures, we performed posterior predictive checks for the best-fitting
model (DDMS). During model estimation, we generated 10,000 datasets
simulated from the posterior distribution of the DDMS. Ten of these
simulated datasets were randomly selected and refit with the DDMS (see
previous section) (Fontanesi et al., 2019; Peters and D’Esposito, 2020).
Parameter recovery was then assessed in two ways. For group-level pa-
rameters, we examined whether the estimated 95% highest posterior
density intervals contained the true generating parameters. For subject-
level parameters, we examined scatter plots of generating versus esti-
mated single-subject parameters, pooled across all 10 simulations.

Posterior predictive checks. To check whether the best-fitting model
indeed captured key aspects of the data, in particular the value depend-
ency for RTs, we performed posterior predictive checks (Peters and

D’Esposito, 2020) as follows. For each indi-
vidual participant, we binned trials into five
bins, according to the absolute difference in
LL versus SS value (“decision conflict,” com-
puted according to each participant’s median
posterior log(k) parameter from the DDMS,
and separately for the high- and low-magni-
tude conditions). For each participant
and condition, we then plotted the mean
observed RTs as a function of decision con-
flict, as well as the mean RTs across 10,000
datasets simulated from the posterior distri-
butions of the DDM0, DDMlin and DDMS.

Code and data availability
Model code is available on the Open Science
Framework (https://osf.io/wm7ud/). Raw
choice data are available from Zenodo.org
(https://doi.org/10.5281/zenodo.4006531) for
researchers meeting the criteria for access to
confidential data.

Results
Subjective and physiological drug effects
As reported in detail in our previous papers (Clos et al., 2019a,b),
there were no significant group differences with respect to
reported side effects, subjective mood, heart rate, or blood pres-
sure relative to baseline. Likewise, groups did not differ with
respect to the actual and guessed drug condition (haloperidol vs
placebo) (Clos et al., 2019b).

Model free analysis of temporal discounting
Figure 1a shows the overall RT distributions per group with
choices of the LL option coded as positive RTs and choices of the
SS option coded as negative RTs. As a model-free measure of
temporal discounting, we examined proportions of LL choices as
a function of group (placebo vs haloperidol) and condition (100e
vs 20e reference reward). Raw proportions of LL choices are
plotted in Figure 1b. ANOVA on arcsine-square-root trans-
formed proportion values with the within-subject factor magni-
tude (high [100e] vs low [20e] SS reward) and the between-
subject factor drug (placebo vs haloperidol) confirmed a signifi-
cant magnitude effect (F(1,47) = 96.86, p, 0.001) such that partic-
ipants overall made more LL selections in the high-magnitude
condition. Furthermore, effects of drug (F(1,47) = 3.47, p=0.068)
and drug � magnitude (F(1,47) = 3.31, p=0.075) showed trend-
level significance.

Softmax choice rule
First, we analyzed our data using a standard Softmax choice rule
(Fig. 2). This analysis revealed an overall drug effect on log(k),
such that discounting was substantially lower in the haloperidol
group compared with the placebo group (Fig. 1a). Examination
of BFs indicated that a decrease in log(k) in haloperidol versus
placebo was;116 times more likely than an increase (Table 2).

Model comparison
We next compared three versions of the DDM that varied in the
way that they accounted for the influence of value differences on
trialwise drift rates, based on the DIC (Spiegelhalter et al., 2002).
In each model, we included separate group-level distributions for
the two drug conditions (haloperidol vs placebo). Furthermore,
for each parameter x, we included a shift parameter sx modeling
the change in parameter x from the high-magnitude condition
(SS reward =100e) to the low-magnitude condition (SS

Figure 1. a, Overall RT distributions for the placebo group (n= 26) and the haloperidol group (n= 23). Negative RTs reflect
choices of the SS option, whereas positive RTs reflect choices of the LL option. It can be seen that participants in the placebo
group made numerically more SS selections than participants in the haloperidol group. For individual subject RT distributions,
see Extended Data Figure 1-1. For minimum RTs following trial filtering, see Extended Data Figure 1-2. b, Proportion of LL
choices per group and magnitude condition.
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reward= 20e) (see Materials and Methods). These sx parameters
were modeled with Gaussian priors with means of zero (see
Materials and Methods). DDM0 assuming constant drift rates in-
dependent of value was also included and compared with two
variants of the DDM using either linear (DDMlin) (Pedersen et
al., 2017) or in a nonlinear (sigmoid) drift rate scaling (Fontanesi
et al., 2019; Peters and D’Esposito, 2020). In both drug condi-
tions as well as overall (Table 3), the data were best accounted
for by a DDMwith nonlinear drift rate scaling (DDMS).

We also compared the three diffusion models and the
Softmax model with respect to the proportion of binary choices
(LL vs SS selections) that they correctly accounted for. As can be
seen from Table 4, the DDMs performed numerically on par
with the Softmax model, whereas the DDMlin performed slightly
worse.

Overall group differences
We next examined overall group differences in model parame-
ters for the baseline (SS reward =100e) condition. Results are
plotted in Figure 3, and BFs for all group comparisons are listed
in Table 5. In both groups, there was a positive association
between trialwise drift rates and value differences, as the 95%
HDI for the drift rate coefficient parameter did not include 0 in
either group (Fig. 3b). Likewise, there was a slight bias toward
the SS option in both groups, as the 95% HDI for bias was ,0.5
in both cases (Fig. 3e).

We furthermore observed substantially lower group-level dis-
count rates log(k) in the haloperidol group compared with pla-
cebo, such that the 95% HDI of the posterior group difference in
log(k) was .0 (Fig. 3a; Table 5). Interestingly, the nondecision
time was likewise substantially lower in the haloperidol group
(Fig. 3c; Table 5), amounting, on average, to 180ms faster non-
decision times.

Magnitude effects on model parameters
We next turned to the effects of the magnitude manipulation on
diffusion model parameters, that is, the change in each parame-
ter in the low-magnitude condition compared with the high-
magnitude baseline condition. Results are plotted in Figure 4,
and BFs for all directional group comparisons are listed in Table
5. There was a substantial magnitude effect on log(k), such that
discounting was steeper in the low-magnitude condition (Fig.
4a). Interestingly, this pattern of results was not mirrored by in
the magnitude effect on the starting point/bias parameter.
Instead, the bias was shifted in the direction of a neutral bias
(0.5) in the low-magnitude condition (Fig. 4e) in both groups.
An additional interesting observation is that the nondecision
time was increased in the low-magnitude condition by on aver-
age;30ms (Fig. 4c).

Table 2. Summary of group differences in model parameters for the temporal
discounting Softmax modela

Parameter

Baseline Magnitude effect

Mdiff dBF Mdiff dBF

Log(k) 2.66 116.34 �0.10 0.42
Temp 0.03 1.36 �0.01 0.89
aFor each parameter, we report mean posterior group differences (Mdiff) and BFs (dBF) testing for directional
effects on both the baseline parameter in the 100e condition (left columns) and on the magnitude effect on
each parameter (right columns). BFs , 0.33 reflect evidence for placebo , haloperidol, whereas BFs .3
reflect evidence for placebo . haloperidol. For details, see Statistical analyses.

Figure 2. Modeling results (blue: placebo, orange: haloperidol) from a hierarchical Bayesian Model with softmax choice rule. a, Log(k) is the log(discount rate) from the high magnitude con-
dition (smaller-sooner reward = 100e ). b, Log(k)shift is the change in log(k) from the high magnitude condition to the low magnitude condition (smaller-sooner reward = 20e). c, is the
inverse temperature parameter. d,shift the corresponding shift in inverse temperature from the high to low magnitude condition. The thin (thick) horizontal lines denote 95% (85%) highest pos-
terior density intervals.

Table 3. Model comparison of three variants of the DDM based on the DIC
(Spiegelhalter et al., 2002) where lower values indicate a better model fita

Model

DIC

Placebo Haloperidol Full model

DDM0 11792.1 10034.5 21833.8
DDMlin 10835.0 10092.1 20923.9
DDMs 8586.5 8161.7 16771.8
aThe data were generally better accounted for by a temporal discounting DDM with DDMS compared with
DDMlin and DDM0.

Table 4. Proportion of correctly predicted binary choices for each group and
modela

Placebo Haloperidol

Softmax 0.89 (0.77–1.00) 0.90 (0.78–0.98)
DDM0 0.73 (0.57–1.00) 0.80 (0.60–0.98)
DDMlin 0.88 (0.71–0.97) 0.85 (0.62–0.98)
DDMs 0.89 (0.81–1.00) 0.90 (0.82–0.98)
aData are mean (range).
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Both drift rate components (vcoeff and vmax) were increased in
the 20e condition (Fig. 4b,f). This overall effect might in part be
attributable to the fact that, in the model, these two parameters
effectively scale the trialwise value differences to the appropriate
scale of the DDM (Pedersen et al., 2017). Because average value
differences spanned a smaller absolute range in the 20e condi-
tion, this is compensated in the model by increasing both vcoeff
(Fig. 4b) and vmax (Fig. 4f). Notably, under haloperidol, the drift
rate coefficient was somewhat increased, whereas the maximum
drift rate was attenuated. There might be some trade-off between
the drift rate components, which could contribute to such con-
trasting effects, such that increases in one component can be
compensated by decreases in the other. There was also some evi-
dence for a reduced magnitude effect on the maximum drift rate
(Fig. 4f) in the haloperidol group. This could be a reflection of
the fact that the magnitude effect on LL choice proportions was
numerically attenuated under haloperidol (Fig. 1a), leading to
overall more homogeneous values in the two conditions.
Difference distributions in the remaining model parameters were
centered at zero, indicating no systematic group differences.

Correlation of model parameters
For descriptive purposes, we show the full correlation matrices
for all single-subject median posterior parameters in Figure 5a
for haloperidol and Figure 5b for placebo.

Hierarchical linear regression
We also explored whether the qualitative pattern of results could
be reproduced using a hierarchical linear regression, modeling
trialwise inverse RTs as a function of value differences (see
Materials and Methods). Full posterior distributions of all

parameters are shown in Figure 6. This analysis reproduced
effects observed for the full DDM. For example, the slope was
overall negative, reflecting the decrease in 1/RT for increasing
conflict (Fig. 6a). The intercept was numerically smaller under
haloperidol (dBF=0.11; see Table 6), mirroring the drug effect
on the nondecision time in the DDMS. However, a direct com-
parison with DDM parameters is complicated by the fact the
intercept in the regression model also captures RT components
that in the DDM are reflected in the boundary separation, as well
as potentially additional nonlinear aspects of the evidence accu-
mulation process that cannot be accounted for by the slope.
These effects are visualized in Figure 6e where we plot the 1/RT
predicted by this regression model as a function of group, condi-
tion, and decision conflict. This illustrates again the slope effect
in the baseline condition and the attenuated intercept under
haloperidol.

Associations with working memory span
Exploratory analyses did not reveal associations between model
parameters of interest (log(k), nondecision time, drift rate scal-
ing) and working memory score (all |r|, 0.38).

Posterior predictive checks
We next performed extensive posterior predictive checks to
ensure that the best-fitting model (DDMS) could account for
RTs of individual participants in both groups. To this end, we
binned the trials of each individual participant into five bins,
according to the absolute difference in LL versus SS value (com-
puted according to each participant’s median posterior log(k) pa-
rameter from the DDMS). For each bin, participant, and
condition, we then plot the mean observed RT, as well as the
mean simulated RT across 10,000 datasets simulated from the
posterior distributions of the DDM0, DDMlin, and DDMS. These
results are shown in Figure 7 for the placebo group and Figure 8
for the haloperidol group. As can be seen, the DDMS provided a
much better account of how RTs vary as a function of decision
conflict than the DDMlin in the vast majority of participants in
both groups. This was mainly because the DDMlin overestimated
RTs with medium decision conflict and underestimated RTs in
cases of very low decision conflict (Peters and D’Esposito, 2020).

Some additional nontrivial patterns in the data deserve men-
tion. For example, while the DDMS in most cases predicted lon-
gest RTs for choices with the highest decision conflict, this was
not always the case (see, e.g., the low-magnitude condition of
Participant 34 from the placebo group in Fig. 7). In this case, in
the low-magnitude condition, the participant exhibited a

Figure 3. Posterior distributions (blue: placebo, orange: haloperidol) per parameter (top row: a, Log(k); b, Drift rate coefficient; c, Nondecision time; d, Boundary separation; e, Starting point
bias; f, Drift rate maximum) and group differences (bottom row, placebo–haloperidol) for the baseline condition (smaller-sooner reward = 100e). Thin (thick) horizontal lines denote 95%
(85%) highest posterior density intervals.

Table 5. Summary of group differences in model parameters for the temporal
discounting DDMa

Model parameter

Baseline Magnitude effect

Mdiff dBF Mdiff dBF

Log(k) 2.26 77.9 �0.093 0.47
Drift rate coefficient �0.365 0.061 0.020 2.73
Nondecision time 0.180 98.4 �0.0001 0.95
Boundary separation �0.047 0.60 0.017 1.47
Starting point bias �0.004 0.74 �0.017 0.26
Drift rate maximum 0.18 8.27 0.16 16.88
aFor each parameter, we report mean posterior group differences (Mdiff) and BFs (dBF) testing for directional
effects on both the baseline parameter in the 100e condition (left columns) and on the magnitude effect on
each parameter (right columns). BFs , 0.33 reflect evidence for placebo , haloperidol, whereas BFs .3
reflect evidence for placebo . haloperidol. For details, see Statistical analyses.
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Figure 4. Posterior distributions (blue: placebo, orange: haloperidol) of the change in each parameter from the high magnitude (baseline) to the low magnitude condition (top row: a, Log
(k)shift; b, Drift rate coefficientshift; c, Nondecision timeshift; d, Boundary separationshift; e, Starting point biasshift; f, Drift rate maximumshift) and corresponding group differences (bottom row,
placebo–haloperidol). Thin (thick) horizontal line denote 95% (85%) highest posterior density intervals.

Figure 5. Correlations between all single-subject median posterior parameter estimates across participants from the haloperidol (a) and placebo group (b).

Figure 6. Modeling results (blue: placebo, orange: haloperidol) from a hierarchical linear regression with decision conflict as a predictor and 1/RT as dependent variable. Top row: The slope
in a, represents the influence of increasing decision conflict (decreasing value differences) on 1/RT. The intercept in c, here corresponds to 1/RT for the lowest decision conflict (highest subjec-
tive value difference) from the high magnitude condition (smaller-sooner reward = 100e). Shift-parameters again reflect the change in slope and intercept (b, d) from the high to the low
magnitude condition. e, Illustrates 1/RT predicted by this regression model as a function of group, condition and decision conflict. Bottom row: Corresponding group differences (placebo–halo-
peridol). The thin (thick) horizontal lines denote 95% (85%) highest posterior density intervals.
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relatively small boundary separation (1.84) and drift rate coeffi-
cient (0.24), in combination with a bias toward the SS boundary
(0.43) and a high discount rate log(k) (�0.7). In such a constella-
tion, the bias toward the SS boundary can only be overcome
when value evidence is accumulated for a relatively long time
(because vcoeff is relatively small), giving rise to long RTs for LL
choices (which in this case only occurred in the case of low deci-
sion conflict).

Parameter recovery
As a final model check, we ran a series of parameter recovery
simulations. Here, we randomly selected 10 datasets simulated
from the posterior distribution of the DDMS (see Materials and
Methods), and refit these synthetic data with the DDMS. Results
are shown in Figure 9 for the baseline (high magnitude 100e) pa-
rameters, and Figure 10 for the parameters modeling condition
effects. As can be seen from these plots, for both baseline and
condition effects, this revealed that group-level parameters (Figs.
9, 10, bottom rows) recovered well, such that the true generating
parameters were generally contained in the estimated 95% HDIs.

Parameter recovery for individual-subject parameters was
excellent for all baseline (100e magnitude) parameters (Fig. 9,
top row) such that the correlation between generating and esti-
mated individual-subject parameters was .0.9 for all parame-
ters. For the parameters modeling condition effects (magnitude
effects, Fig. 10, top row), these correlations were lower for some
parameters, in particular for condition effects on boundary sepa-
ration and log(k). The likely reason is that the synthetic data
were simulated from the actual posterior distribution, and there
was overall little between-subject variance in some of these pa-
rameters in our data (see, e.g., Fig. 10a,f).

Discussion
We investigated the effects of a single dose of the D2-receptor
antagonist haloperidol (2mg) on temporal discounting in a
between-subjects study in a double-blind placebo-controlled set-
ting. A diffusion model-based analysis revealed substantially
smaller log(k) parameters and a substantial reduction in nonde-
cision times under haloperidol versus placebo.

We applied a recent class of value-based decision models
based on the DDM (Pedersen et al., 2017; Fontanesi et al., 2019;
Shahar et al., 2019; Peters and D’Esposito, 2020). Comprehensive
RT-based analysis was not possible in previous studies because
of the specifics of task timing (Pine et al., 2010) or low trial num-
bers (Weber et al., 2016; Petzold et al., 2019). Model comparison
confirmed previous results (Fontanesi et al., 2019; Peters and
D’Esposito, 2020), such that the data were better accounted for
by a model assuming a nonlinear trialwise scaling of the drift
rate, and this was confirmed via posterior predictive checks of
single-subject data. Extensive parameter recovery analyses con-
firmed that group-level parameters recovered well (Fontanesi et

al., 2019; Peters and D’Esposito, 2020). Recovery of individual-
subject baseline parameters (100e magnitude condition) was
excellent, whereas recovery of parameters modeling condition
effects was somewhat lower. This is likely because of some pa-
rameters (e.g., boundary separation shift) showing low between-
subject variance. Modeling was further validated by the observa-
tion that drug effects were fully reproduced using a Softmax choice
rule (Sutton and Barto, 1998) and by the finding that the magni-
tude effect (Green et al., 1997; Ballard et al., 2017; Mellis et al.,
2017) was likewise replicated using the DDM-based approach.
The qualitative pattern of RT effects was reproduced using a hier-
archical linear regression model of trialwise inverse RTs as a func-
tion of decision conflict.

The human literature on DA and impulsivity is heterogene-
ous (D’Amour-Horvat and Leyton, 2014), and interpretation of
these findings is complicated by several factors. First, effects of
dopaminergic drugs might depend on baseline DA availability
(Cools and D’Esposito, 2011), such that the same drug might
impair or enhance performance in different participants, accord-
ing to an inverted U-shaped function (or a different process-de-
pendent function) (Floresco, 2013). Second, the action of D2-
receptor antagonists is often interpreted in terms of a reduction
in DA neurotransmission (Pessiglione et al., 2006; Pine et al.,
2010). But such drugs might indeed enhance DA release by pre-
dominantly binding at presynaptic DA auto-receptors, at least at
lower dosages (Frank and O’Reilly, 2006) as shown in animal
(Pehek, 1999; Schwarz et al., 2004) and human studies (Chen et
al., 2005).

Interpretation of D2-receptor antagonist effects as a presy-
naptically mediated elevation of DA release might reconcile a
number of conflicting results. First, our finding of reduced tem-
poral discounting under haloperidol is in line with two recent
studies that reported reduced temporal discounting follow-
ing administration of D2/D3-receptor antagonists (Arrondo
et al., 2015; Weber et al., 2016). On the other hand, a reduc-
tion of temporal discounting following administration of
haloperidol was not observed in an earlier within-subjects
study in n = 13 participants (Pine et al., 2010) that used a
slightly lower dosage of 1.5 mg (we used 2mg). Lower dos-
ages of D2/D3-receptor antagonists might increase (rather
than decrease) DA signaling (Frank and O’Reilly, 2006), an
effect mediated by inhibitory feedback through presynaptic
D2 auto-receptors (Grace, 1991), which may lead to an
enhancement of phasic (vs. tonic) DA signaling (Frank and
O’Reilly, 2006), a point that we return to below. However, we
do acknowledge that such an interpretation is not general
consensus in the cognitive literature on DA drug effects
(Pessiglione et al., 2006; Pine et al., 2010).

Our results advance previous findings regarding the role of
D2/D3-receptor antagonists in temporal discounting in several
ways. First, participants performed an unrelated memory task
during fMRI directly before completing the temporal discount-
ing task. Those data revealed an overall main effect of drug con-
dition on trial onset-related activity in caudate nucleus (Clos et
al., 2019a,b) (i.e., caudate activity was increased under haloperi-
dol). Although this neural read-out was obtained before the dis-
counting task, both the fMRI and temporal discounting time
points were well within the time of maximum haloperidol
plasma levels (Franken et al., 2017). This observation is arguably
more compatible with the idea that the dosage of haloperidol
applied here increased (rather than decreased) striatal DA signal-
ing. Similar neural evidence was lacking in most previous human
pharmacological studies on DA effects on discounting (de Wit et

Table 6. Summary of group differences in model parameters for the hierarchi-
cal linear regression modela

Model parameter

Baseline Magnitude effect

Mdiff dBF Mdiff dBF

Slope 0.02 2.09 �0.07 0.09
Intercept �0.10 0.11 0.01 2.59
aFor each parameter, we report mean posterior group differences (Mdiff) and BFs (dBF) testing for directional
effects on both the baseline parameter in the 100e condition (left columns) and on the magnitude effect on
each parameter (right columns). BFs , 0.33 reflect evidence for placebo , haloperidol, whereas BFs .3
reflect evidence for placebo . haloperidol. For details, see Statistical analyses.

Wagner et al. · Dopaminergic modulation of inter-temporal choice J. Neurosci., October 7, 2020 • 40(41):7936–7948 • 7943

049



al., 2002; Hamidovic et al., 2008; Arrondo et al., 2015; Weber et
al., 2016). Second, the DDM-based modeling approach adopted
in the present study allowed us examine the dynamics underlying
decision-making much more comprehensively than previous
human pharmacological studies (de Wit et al., 2002; Hamidovic
et al., 2008; Pine et al., 2010; Arrondo et al., 2015; Weber et al.,
2016; Petzold et al., 2019). In addition to the drug effect on the
discount rate log(k), diffusion modeling revealed substantially
shorter nondecision times in the haloperidol group that

amounted to �180ms on average. Such a robust enhancement
of lower-level motor and/or perceptual RT components is also
more compatible with an increase, rather than a decrease, in DA
transmission (Weed and Gold, 1998) and resonates with previ-
ous findings regarding a dopaminergic enhancement of RT-
based response vigor (Guitart-Masip et al., 2011; Beierholm et
al., 2013). An exploratory inspection of parameter correlations
revealed that log(k) and nondecision time were positively corre-
lated in both groups, suggesting that they might capture similar

Figure 7. Placebo condition posterior predictive checks. For each participant and condition (high (left facet) represents the high magnitude condition; low (right facet) represents the low
magnitude condition), trials were binned into five equal sized bins according to the absolute difference in between subjective LL and SS options (decision conflict bin). Plotted are mean
observed RTs per bin (data) as well model-generated RTs (blue represents DDM0; red represents DDMlin; orange represents DDMS) averaged.10,000 datasets simulated from the posterior dis-
tribution of each hierarchical model (blue represents DDM0; red represents DDMlin; orange represents DDMs).
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aspects of the data and/or might both be modulated by changes
in phasic dopaminergic responses. In support of this interpreta-
tion, augmentation of DA levels in Parkinson’s disease patients
reduces temporal discounting (Foerde et al., 2016) and improves
model-based RL (Sharp et al., 2016). Finally, this interpretation
of available human D2-receptor antagonist effects would also
reconcile the human and animal literature on acute dopami-
nergic effects on impulsivity (D’Amour-Horvat and Leyton,
2014). Together, these considerations lead us to suggest that
haloperidol increased (rather than decreased) striatal DA neu-
rotransmission, resulting in enhanced cognitive control
(reduced discounting) and a substantial facilitation of motor
responding (shorter nondecision times).

By what mechanism might haloperidol attenuate the impact
of delay on reward valuation? According to models of basal

ganglia contributions to action selection (Maia and Frank, 2011),
the probability for selecting a given candidate action depends on
the relative difference in activation between the direct (go) and
the indirect (nogo) pathways. A similar striatal gating mechanism
might underlie working memory and/or prefrontal control func-
tions (Cools, 2011). By increasing phasic DA responses, haloperi-
dol might increase the signal-to-noise ratio in striatal value
representations, thereby increasing the likelihood that objectively
smaller and/or more delayed LL rewards gain access to processing
in the PFC. Naturally, other modes of action are likewise conceiv-
able. Frontal and striatal regions are interconnected via a series of
loops that follow a dorsal-to-ventral organization (Haber and
Knutson, 2010), and haloperidol might impact functional interac-
tions within these circuits (Cools, 2011), for example, related to
top-down control of value representations (Hare et al., 2009,

Figure 8. Haloperidol condition posterior predictive checks. For each participant and condition (high (left facet) represents the high magnitude condition; low (right facet) represents the low
magnitude condition), trials were binned into five equal sized bins according to the absolute difference in between subjective LL and SS options (decision conflict bin). Plotted are mean
observed RTs per bin (data) as well model-generated RTs (blue represents DDM0; red represents DDMlin; orange represents DDMS) averaged.10,000 datasets simulated from the posterior dis-
tribution of each hierarchical model (blue represents DDM0; red represents DDMlin; orange represents DDMs).
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2014; Figner et al., 2010; Peters and D’Esposito, 2016). Finally,
haloperidol might have directly augmented control processes in
specific PFC regions (Figner et al., 2010). However, because of the
much greater expression of D2 receptors in striatum compared
with PFC (Seamans and Yang, 2004), it is generally assumed that
prefrontal action of D2 antagonists requires substantially higher
dosages than those applied in the studies examined here
(Seamans and Yang, 2004; Frank and O’Reilly, 2006).

The present study has a number of limitations that need to be
acknowledged. First, we did not run a within-subjects design,
which would have allowed us to account for individual-partici-
pant baseline parameters in the analysis of the drug effects.
Second, this also precluded us from comprehensively analyzing

potential modulatory influences of, for example, individual dif-
ferences in working memory on the drug effects, which might
modulate DA effects on discounting (Petzold et al., 2019) and
cognitive control more generally (Cools and D’Esposito, 2011).
Third, the proportion of female participants was relatively large.
Given the known association of ovarian hormones with the DA
system (Yoest et al., 2018), future studies would benefit from
testing larger sample sizes that allow for the examination of gen-
der effects and/or from directly controlling menstrual cycle
phase. Fourth, rewards were hypothetical because of the inclu-
sion of the high-magnitude condition. However, preferences for
real and hypothetical outcomes in temporal discounting tasks
show a very good correspondence (Johnson and Bickel, 2002)

Figure 9. Parameter recovery analysis for all Baseline parameters using the DDMs (a, Log(k); b, Drift rate coefficient; c, Nondecision time; d, Boundary separation; e, Starting point bias; f,
Drift rate maximum). Top row: Generating parameters vs. fitted parameters for each subject across ten simulations for haloperidol group (yellow) and placebo group (blue). Second row: True
generating group level hyperparameter means (points) and Bottom row: standard deviations (points) and estimated 95% highest density intervals (lines) per fitted simulation. For correlations
between generating and estimated single-subject parameters, see Extended Data Figure 9-1.

Figure 10. Parameter recovery analysis for all shift parameters using the DDMs (a, Log(k)shift; b, Drift rate coefficientshift; c, Nondecision timeshift; d, Boundary separationshift; e, Starting point
biasshift; f, Drift rate maximumshift). Top row: Generating parameters vs. fitted parameters for each subject across ten simulations for haloperidol group (yellow) and placebo group (blue).
Second row: True generating group level hyperparameter means (points) and Bottom row: standard deviations (points) and estimated 95% highest density intervals (lines) per fitted
simulation.
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and rely on similar neural circuits (Bickel et al., 2009). Also, neu-
ral haloperidol effects vary across brain regions and functions
(Wächtler et al., 2020), complicating interpretation as no task-
related imaging data were obtained here.

In conclusion, our data show that the D2-receptor antagonist
haloperidol attenuated temporal discounting and substantially
shortened nondecision times, as revealed by comprehensive
computational modeling of choices and RTs using hierarchical
Bayesian parameter estimation. These data are best accounted
for by a model in which low dosages of haloperidol lead to an
enhancement of phasic DA responses because of reduced feed-
back inhibition from D2 auto-receptors, leading to an augmenta-
tion of both lower-level (nondecision time) and higher-level
(temporal discounting) decision components.
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Abstract 14 

Gambling disorder is a behavioral addiction that negatively impacts personal finances, work, 15 

relationships and mental health. In this pre-registered study (https://osf.io/5ptz9/) we 16 

investigated the impact of real-life gambling environments on two computational markers of 17 

addiction, temporal discounting and model-based reinforcement learning. Regular gamblers (n 18 

= 30, DSM-5 score range 3-9) performed both tasks in a neutral (café) and a gambling-related 19 

environment (slot-machine venue) in counterbalanced order.  Data were modeled using drift 20 

diffusion models for temporal discounting and reinforcement learning via hierarchical Bayesian 21 

estimation. Replicating previous findings, gamblers discounted rewards more steeply in the 22 

gambling-related context. This effect was positively correlated with gambling related cognitive 23 

distortions (pre-registered analysis). In contrast to our pre-registered hypothesis, model-based 24 

reinforcement learning was improved in the gambling context. Gambling disorder is associated 25 

with increased temporal discounting and reduced model-based learning. Here we show that 26 

these effects are modulated in opposite ways by real-life gambling cue exposure. Results 27 

challenge aspects of habit theories of addiction, and reveal that laboratory-based computational 28 

markers of psychopathology are under substantial contextual control. 29 

 30 

 31 
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Introduction 32 

Gambling disorder is a behavioral addiction that can have detrimental effects on quality of life 33 

including personal finances, work, relationships and overall mental health (Blaszczynski & 34 

Nower, 2002; Muggleton et al., 2021). Despite these negative consequences, many gamblers 35 

are motivated to continue to play, and praise the temporary excitement and pleasure (Fauth-36 

Bühler et al., 2017). Accumulating evidence suggests similarities of gambling disorder and 37 

substance-use-disorders both on behavioral, cognitive and neural levels (Balodis & Potenza, 38 

2020; Leeman & Potenza, 2012; Lobo et al., 2015; N. M. Petry, 2010; Singer et al., 2020). In 39 

light of these similarities, the fifth edition of the “Diagnostic and Statistical Manual of Mental 40 

Disorders” categorizes gambling disorder in the category of “Substance-related and Addictive 41 

Disorders” (Association, 2013). In contrast to substance-use-disorders, differences in 42 

behavioral and/or neural effects between gamblers and controls are unlikely to be confounded 43 

by chronic or acute drug effects (Clark et al., 2019; Peters & Büchel, 2011; Wiehler & Peters, 44 

2015) . Gambling disorder has thus been termed a “pure addiction”  (Mark Dixon, Ghezzi, et 45 

al., 2006).  46 

Recently, categorical definitions of mental illness have increasingly been called into 47 

question. The National Institute for Mental Health of the United States proposed the Research 48 

Domain Criteria (RDoC) to foster characterization of the dimensions underlying psychiatric 49 

disorders. According to this approach, research in cognitive science should focus on the 50 

identification of continuous neuro-cognitive dimensions that might go awry in disease, i.e. 51 

trans-diagnostic markers (Nelson et al., 2016). Here we focus on two promising candidates for 52 

such trans-diagnostic processes that are affected across a range of psychiatric conditions, 53 

including gambling disorder: temporal discounting, i.e. the devaluation of delayed rewards 54 

(Bickel et al., 2019; Lempert et al., 2019; Peters & Büchel, 2011), and model-based (MB) 55 

control during reinforcement learning (Daw et al., 2011). MB control refers to computationally 56 

more expensive goal-directed strategies that utilize models of the environment, contrasting with 57 

model-free (MF) control that operates on stimulus-response associations (Balleine & 58 

O'Doherty, 2010; Daw et al., 2011; Doll et al., 2012; Valerie Voon et al., 2017).  59 

Steep discounting has been consistently observed in substance use disorders and 60 

gambling disorder (Bickel et al., 2012; Bickel et al., 2019; MacKillop et al., 2011; Reynolds, 61 

2006). Moreover, alterations in temporal discounting occur in a range of other disorders, 62 

including depression, bipolar disorder, schizophrenia and borderline personality disorder 63 

(Amlung et al., 2019), underlining the trans-diagnostic nature of this process. Changes in the 64 

contributions of MF and MB control have likewise been reported across disorders, including 65 
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gambling disorder (Wyckmans et al., 2019), schizophrenia (Culbreth et al., 2016), obsessive 66 

compulsive disorder (Gillan et al., 2020) and substance use disorders (Sebold et al., 2014). 67 

Reduced MB control is also reflected in sub-clinical psychiatric symptom severity (Gillan et 68 

al., 2016).  69 

 Addiction is known to be under substantial contextual control. Addiction-related cues 70 

and environments are powerful triggers of subjective craving, drug use and relapse. Incentive 71 

sensitization theory (T. Robinson & Berridge, 1993; Terry E. Robinson & Berridge, 2008) 72 

provides a theoretical framework that links such effects to a highly sensitized dopamine system 73 

that responds to drugs and addiction-related cues. Increased responses of the dopamine system 74 

to addiction-related cues (“cue-reactivity”) has been consistently observed in neuroimaging 75 

studies of human addicts (Courtney et al., 2016; Moeller & Paulus, 2018), and there is evidence 76 

that trans-diagnostic behavioral traits are likewise under contextual control. For example, 77 

regular gamblers discount delayed rewards substantially more steeply when tested in a 78 

gambling-related environment as compared to a neutral environment (Mark. Dixon, Jacobs, & 79 

Sanders, 2006). Similar effects have been observed in laboratory tasks that include gambling-80 

related cues (Dale et al., 2019; Genauck et al., 2020; Miedl et al., 2014) but whether other 81 

putative trans-diagnostic traits such as MB control are under similar contextual control is 82 

unclear. Beyond, it is unclear whether gambling severity or maladaptive control beliefs (Raylu 83 

& Oei, 2004) modulate such effects. 84 

Though rarely examined in naturalistic settings, contextual effects on trans-diagnostic 85 

dimensions of decision-making are of substantial clinical and scientific interest. Settings with 86 

high ecological validity might provide more informative insights into the central drivers of 87 

maladaptive behavior than laboratory-based studies (Anderson & Brown, 1984). If such trans-88 

diagnostic traits are further exacerbated in e.g. addiction-related environments, this could 89 

constitute a mechanism underlying the maintenance and/or escalation of maladaptive behavior. 90 

Second, traits such as temporal discounting can be modulated (Bickel et al., 2011; Bickel et al., 91 

2019; Lempert & Phelps, 2016) and could thus serve as a potential treatment target (Lempert 92 

et al. 2019).  93 

 The present pre-registered study thus had the following aims. First, we aimed to 94 

replicate the findings by Dixon et al. (Mark Dixon, Ghezzi, et al., 2006), who observed 95 

increased temporal discounting in gambling-related environments in regular gamblers, 96 

compared to neutral environments. Second, we extended their approach by including a modified 97 

version of the prominent 2-step sequential decision task (Daw et al., 2011) to test whether 98 

model-based control of behavior is likewise under contextual control. Reduced model-based 99 
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control has been linked to a range of psychiatric conditions (see above) including gambling 100 

disorder (Wyckmans et al., 2019). Third, we directly tested for associations of contextual effects 101 

with gambling severity and working memory capacity. Finally, our tasks allowed for 102 

comprehensive computational modelling of choices and response time (RT) distributions. 103 

Analyses of reinforcement learning and decision-making have recently been shown to 104 

substantially benefit from an incorporation of RTs (Fontanesi et al., 2019; Pedersen et al., 2017; 105 

Peters & D'Esposito, 2020; Shahar et al., 2019; Wagner et al., 2020) via the application of 106 

sequential sampling models such as the drift diffusion model (DDM) (Forstmann et al., 2016). 107 

Such analyses yield additional insights into the latent processes underlying decision-making 108 

(Wagner et al., 2020) and can improve parameter stability (Shahar et al., 2019). To account for 109 

these recent developments, we complemented our pre-registered analyses with additional 110 

analyses of temporal discounting and reinforcement learning drift diffusion models (RLDDM). 111 

112 

Methods 113 

Preregistration 114 

This study was preregistered via the open science framework (osf.io/ua42h). We deviated from 115 

the pre-registered study design in two ways. First, it was initially planned to use a lab-setting 116 

for the neutral (non-gambling) testing environment. However, this was changed following pre-117 

registration to a café, which we felt was more similar to the gambling environment in terms of 118 

the presence of social cues and the overall level of distraction. Second, we initially aimed to 119 

include gamblers fulfilling at least one DSM-5 criterion for gambling disorder. This was 120 

adjusted to a stricter inclusion criterion of at least three DSM-5 criteria. Both of these changes 121 

were implemented before testing began.  122 

To account for recent developments in computational modelling we also complemented 123 

the pre-registered computational modeling analyses with additional analyses of RT 124 

distributions via temporal discounting and reinforcement learning DDMs (Fontanesi et al., 125 

2019; Pedersen et al., 2017; Peters & D'Esposito, 2020; Wagner et al., 2020). As a model-free 126 

measure of intertemporal choice we decided to simply use choice proportions of larger-but-127 

later values instead of computing the Area under the empirical discounting curve (AUC).  128 

A-priori sample size was calculated based on results by Dixon et al. (2006). Dixon et al.129 

observed an effect size of d = .5 for the effect of gambling environments on temporal 130 

discounting in regular gamblers. Power analysis (Faul et al., 2007) yielded a minimum sample 131 
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size of n = 26 with alpha error probability of .05 and power of .80. We then pre-registered a 132 

target sample size of n = 30. 133 

Participants 134 

Participants were recruited via advertisements posted online and in local gambling venues. 135 

First, they were screened via a telephone interview to verify that they show evidence for 136 

problematic gambling behavior, with a primary gambling mode of electronic slot machines. 137 

Further inclusion criteria were age in the range of nineteen to fifty, no illegal drug use, and no 138 

history of neuropsychiatric disorders, current medication or a history of cardiovascular disease. 139 

The ethics committee of the University of Cologne Medical Center approved all study 140 

procedures.  141 

Forty-two participants were then invited to a first appointment, were they provided 142 

written informed consent and completed a questionnaire assessment and a set of working 143 

memory tasks (see section on background screening below). Five participants dropped out 144 

during or after the first appointment. Four additional participants were excluded after the first 145 

appointment because they fulfilled less than three DSM-V criteria for gambling disorder. Two 146 

participants dropped out after the first experimental testing session, and one participant was 147 

excluded because he fell asleep twice during one testing session. Due to technical problems, we 148 

obtained complete datasets for thirty participants for the intertemporal choice task and twenty-149 

nine participants for the two-step task, with twenty-eight participants overlapping.  150 

  151 
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Overall procedure  152 

Participants were invited to three appointments. At the first appointment (baseline screening; 153 

see below) participants were invited to our lab and performed a questionnaire assessment and 154 

four working memory tasks. Participants were randomly assigned to one of the two locations 155 

(café vs. casino) on the first experimental appointment (pseudorandomized location [first 156 

session neutral or gambling] and task-version; see section on tasks below). We label the café 157 

environment as neutral because no gambling associated cues were present. In both locations, 158 

the delay discounting task was completed first, followed by the 2-step task. Appointments were 159 

made on an individual basis but spaced within 7+-2 days and around the same time of day +- 2 160 

hours. The café environment was an ordinary café serving non-alcoholic drinks and snacks and 161 

furnished with 10 tables and approximately 50 m2 of size. Testing occurred while the café was 162 

in business as usual and experimenter and participant sat at a table next to a wall to assure some 163 

privacy. The café was usually moderately attended and testing occurred at the same spot for all 164 

participants, with only a few exceptions when this seat was taken. The gambling environment 165 

was a common slot-machine venue operated by a German gambling conglomerate. The 166 

experimenter and participant were seated at a table placed next to a wall in sight of the electronic 167 

gaming machines (EGMs). In total there were four EGMs in direct sight of the participant and 168 

a total of ten in the room (hidden by eye protection walls). The density of gambling related cues 169 

varied as a function of people playing at EGMs, background sounds e.g. sounds of winning or 170 

money dropping were all depended on regularly customers. However, in nearly all cases other 171 

people were playing EGMs in direct sight of the participants. The experimenter was granted 172 

permission to conduct research in two local gambling venues. Two chairs and a table to use for 173 

the experimental session were provided. In both locations, subjects were placed in such a way 174 

that neither experimenter nor customers could view their screen. Both tasks ran on a 15inch 175 

Laptop using the Psychopysics toolbox running in Matlab (The MathWorks ©). 176 

 177 

  178 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452520doi: bioRxiv preprint 

060

https://doi.org/10.1101/2021.07.15.452520
http://creativecommons.org/licenses/by-nc-nd/4.0/


Background screening 179 

Participants filled out a battery of questionnaires regarding gambling related cognition (GRCS) 180 

(Raylu & Oei, 2004) and symptom severity (DSM-5;KFG,SOGS) (Falkai, 2015; Lesieur & 181 

Blume, 1987; J. Petry & Baulig, 1996), demographic evaluation and standard psychiatric 182 

diagnostic tools (see Supplemental Table S1 and S2). 183 

We assessed working memory capacity using a set of four working memory paradigms.  184 

First, in an Operation Span Task  (Redick et al., 2012) subjects were required to memorize a 185 

sequence of letters while being distracted by math-operations. Second, in a Listening Span Task 186 

(adapted from the German version of the Reading Span Test developed by van den Noort et al. 187 

(van den Noort et al., 2008) subjects were required to listen to a series of sentences and had to 188 

recall the last word of each sentence. Last, subjects performed two different versions of a Digit 189 

Span Task (forward/backward) that were adopted from the Wechsler Adult Intelligence Scale 190 

(Wechsler, 2008). Here, participants listened to a series of numerical digits which they had to 191 

recall as a series in regular or reverse order. All working memory scores were z-transformed 192 

and averaged to obtain a single compound working memory score (z-score). 193 

194 

Temporal discounting task 195 

Participants performed 140 trials of a temporal discounting task where on each trial they made 196 

a choice between a smaller-but-sooner (SS) immediate reward, and a larger-but-later (LL) 197 

reward delivered after a specific delay. SS and LL rewards were randomly displayed on the left 198 

and right sides of the screen, and participants were free to make their choice at any time. While 199 

SS rewards were held constant at 20€f LL rewards were computed as multiples thereof. In one 200 

version these amounted to 1.05, 1.055, 1.15, 1.25, 1.35, 1.45, 1.55, 1.65, 1.85, 2.05, 2.25, 2.55, 201 

2.85, 3.05, 3.45, 3.85, and in the other version they were 1.025, 1.08, 1.2, 1.20, 1.33, 1.47, 1.5, 202 

1.70, 1.83, 2.07, 2.3, 2.5, 2.80, 3.10, 3.5, 3.80. Each LL reward from one version was then 203 

combined with each delay option for this version (in days):  (either: 1, 7, 13, 31, 58, 122, or v: 204 

2, 6 15, 29, 62, 118) yielding 140 trials in total. The mean larger later reward magnitude was 205 

the same across versions and the order was counterbalanced across subjects and session 206 

(neutral/gambling).  207 

At the end of each session one decision was randomly selected and paid out in the form 208 

of a gift certificate for a large online store, either immediately (in the case of a smaller-sooner 209 

choice) or via email/text message after the respective delay (in the case of a larger-later choice). 210 

211 

212 
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2-step task213 

Participants performed a slightly modified version of the 2-step task, a sequential 214 

reinforcement-learning  task developed by Daw et al. (Daw et al., 2011). Based on suggestions 215 

by Kool et al. (Kool et al., 2016) we modified the outcome stage by replacing the fluctuating 216 

reward probabilities (reward/ no reward) with fluctuating reward magnitudes (Gaussian random 217 

walks with reflecting boundaries at 0 and 100, and standard deviation of 2.5). In total the task 218 

contained 300 trials. Each trial consisted of two successive stages: In the 1st stage (S1), 219 

participants chose between two fractals embedded in grey boxes. After taking an S1 action, 220 

participants transitioned to one of two possible 2nd stages (S2) with fixed transition probabilities 221 

of 70% and 30%. In S2, participants chose between two new fractals each providing a reward 222 

outcome in points (between 0-100) that fluctuated over time.  To achieve optimal performance, 223 

participants had to learn two aspects of the task. They had to learn the transition structure, that 224 

is, which S1 stimulus preferentially (70%) leads to which pair of S2 stimuli. Further, they had 225 

to infer the fluctuating reward magnitudes associated with each S2 stimulus. .  226 

In both versions, the tasks differed in the S1 and S2 stimuli, and in the fluctuating 227 

rewards in S2. However both task versions reward walks were equal in variance and mean and 228 

were presented in counterbalanced order per session (neutral/gambling).  Participants were 229 

instructed about the task structure and performed 40 practice trials (with different random walks 230 

and symbols) at the first appointment (Baseline screening). Following task completion, points 231 

(*0.25) were converted to € and participants could win a bonus of up to 4.50€ that was added 232 

to the baseline reimbursement of 10€/h. 233 

234 

Computational modeling and Statistical Analysis 235 

Temporal discounting model 236 

We applied a single-parameter hyperbolic discounting model to describe how subjective value 237 

changes as a function of LL reward height and delay (Mazur, 1987; Green and Myerson, 238 

2004): 239 

𝑆𝑉(𝐿𝐿𝑡) =
𝐴𝑡

1 + exp(𝑘 + 𝑠𝑘 ∗ 𝐼𝑡) ∗ 𝐷𝑡
 (1) 240 

241 

Here, At is the reward height of the LL option on trial t, Dt is the LL delay in days on trial t and 242 

It is an indicator variable that takes on a value of 1 for trials from the gambling context and 0 243 

for trials from the neutral condition. The model has two free parameters: k is the hyperbolic 244 
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discounting rate (modeled in log-space) and sk is a weighting parameter that models the degree 245 

of change in discounting in the gambling compared with the neutral context condition.  246 

 247 

Softmax action selection 248 

Softmax action selection models choice probabilities as a sigmoid function of value differences 249 

(Sutton and Barto, 1998): 250 

𝑃(𝐿𝐿)𝑡 =
exp ((𝛽 + 𝑠𝛽 ∗ 𝐼𝑡) ∗ 𝑆𝑉(𝐿𝐿𝑡))

exp ((𝛽 + 𝑠𝛽 ∗ 𝐼𝑡) ∗ 𝑆𝑉(𝑆𝑆𝑡)) + exp ((𝛽 + 𝑠𝛽 ∗ 𝐼𝑡) ∗ 𝑆𝑉(𝐿𝐿𝑡))
       (2) 251 

 252 

Here, SV is the subjective value of the larger but later reward according to Eq. 1 and 𝛽 is an 253 

inverse temperature parameter, modeling choice stochasticity (for 𝛽 = 0, choices are random 254 

and as 𝛽 increases, choices become more dependent on the option values). SV(SSt) was fixed at 255 

at 20 and It is again the dummy-coded context regressor, and s models the context effect on 𝛽.  256 

 257 

Temporal discounting drift diffusion models 258 

To more comprehensively examine environmental effects on choice dynamics, we additionally 259 

replaced softmax action selection with a series of drift diffusion model (DDM)-based choice 260 

rules. In the DDM, choices arise from a noisy evidence accumulation process that terminates 261 

as soon as the accumulated evidence exceeds one of two response boundaries. In the present 262 

setting, the upper boundary was defined as selection of the LL option, whereas the lower 263 

boundary was defined as selection of the SS option.  264 

RTs for choices of the SS option were multiplied by -1 prior to model fitting. We 265 

furthermore used a percentile-based cut-off, such that for each participant the fastest and 266 

slowest 2.5 percent of trials were excluded from the analysis. We then first examined a null 267 

model (DDM0) without any value modulation. Here, the RT on each trial t (t ϵ 1:140) is 268 

distributed according to the Wiener First Passage Time (wfpt): 269 

 270 

𝑅𝑇𝑡~ 𝑤𝑓𝑝𝑡(𝛼 + 𝑠𝛼 ∗ 𝐼𝑡 , 𝜏 + 𝑠𝜏 ∗ 𝐼𝑡 , 𝑧 + 𝑠𝑧 ∗ 𝐼𝑡, 𝑣 + 𝑠𝜐 ∗ 𝐼𝑡)       (3) 271 

 272 

The parameter  models the boundary separation (i.e. the amount of evidence required before 273 

committing to a decision),  models the non-decision time (i.e., components of the RT related 274 

to motor preparation and stimulus processing), z models the starting point of the evidence 275 

accumulation process (i.e., a bias towards one of the response boundaries, with z>.5 reflecting 276 
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a bias towards the LL boundary, and z<.5 reflecting a bias towards the SS boundary) and  277 

models the rate of evidence accumulation. Note that for each parameter x, we also include a 278 

parameter sx that models the change in that parameter from the neutral context to the gambling 279 

context (coded via the dummy-coded condition regressor It). 280 

As in previous work (Pedersen et al., 2017; Fontanesi et al., 2019; Peters and D’Esposito, 2020, 281 

Wagner et al. 2020), we then set up temporal discounting diffusion models with modulation of 282 

drift rates by the difference in subjective values between choice options. First, we set up a 283 

version with linear modulation of drift-rates (DDMlin) (Pedersen et al., 2017): 284 

𝑣𝑡 = (𝑣𝑐𝑜𝑒𝑓𝑓 + 𝑠𝑣𝑐𝑜𝑒𝑓𝑓
∗ 𝐼𝑡) ∗ (𝑆𝑉(𝐿𝐿𝑡) − 𝑆𝑉(𝑆𝑆𝑡))       (4) 285 

 286 

Here, the drift rate on trial t is calculated as the scaled value difference between the subjective 287 

LL and SS rewards. As noted above, RTs for SS options were multiplied by -1 prior to model 288 

estimation, such that this formulation predicts SS choices whenever SV(SS)>SV(LL) (the trial-289 

wise drift rate is negative), and predicts longest RTs for trials with the highest decision-conflict 290 

(i.e., in the case of SV(SS)= SV(LL) the trial-wise drift rate is zero). We next examined a DDM 291 

with non-linear trial-wise drift rate scaling (DDMS) that has recently been reported to account 292 

for the value-dependency of RTs better than the DDMlin (Fontanesi et al., 2019; Peters & 293 

D'Esposito, 2020; Wagner et al., 2020). In this model, the scaled value difference from Eq. 4 is 294 

additionally passed through a sigmoid function with asymptote vmax: 295 

𝑣𝑡 = 𝑆 [(𝑣𝑐𝑜𝑒𝑓𝑓 + 𝑠𝑣𝑐𝑜𝑒𝑓𝑓
∗ 𝐼𝑡) ∗ (𝑆𝑉(𝐿𝐿𝑡) − 𝑆𝑉(𝑆𝑆𝑡))]    (5)     296 

 297 

𝑆(𝑚) =
2 ∗ (𝑣𝑚𝑎𝑥+𝑠𝑣𝑚𝑎𝑥

∗ 𝐼𝑡)

1 + exp (−𝑚)
− (𝑣𝑚𝑎𝑥+𝑠𝑣𝑚𝑎𝑥

∗ 𝐼𝑡)      (6) 298 

 299 

All parameters including vcoeff and vmax were again allowed to vary according to the context, 300 

such that we included sx parameters for each parameter x that were multiplied with the dummy-301 

coded condition predictor It. 302 

  303 
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Reinforcement Learning model 304 

 305 

Hybrid model  306 

We first applied a slightly modified version of the hybrid RL model (Daw et al., 2011) to 307 

analyze the strength of model-free and model-based RL strategies. The model updates MF state-308 

action values (𝑄𝑀𝐹 -values, Eq. 7, 8) in both stages through prediction errors (Eq. 9, 10). In 309 

stage 1, MB state-action values (𝑄𝑀𝐵) are then computed from the transition and reward 310 

estimates using the Bellman Equation (Eq. 11).  311 

 312 

𝑄𝑀𝐹,𝑆1 (𝑎𝑗,𝑡) =  𝑄𝑀𝐹,𝑆1(𝑎𝑗,𝑡) + (𝜂1 + 𝑠𝜂1 ∗  𝐼𝑡)𝛿𝑠1,𝑡 + (𝜂2 + 𝑠𝜂2 ∗  𝐼𝑡)𝛿𝑆2,𝑡     (7) 313 

𝑄𝑀𝐹,𝑆2(𝑠2𝑖,𝑡 , 𝑎𝑗,𝑡) = 𝑄𝑀𝐹,𝑆2(𝑠2𝑖,𝑡, 𝑎𝑗,𝑡) + (𝜂2 + 𝑠𝜂2 ∗ 𝐼𝑡)𝛿𝑆2,𝑡       (8) 314 

 𝛿𝑆1,𝑡 = 𝑄𝑀𝐹,𝑆2(𝑠2𝑖,𝑡, 𝑎𝑗,𝑡) − 𝑄𝑀𝐹,𝑆1(𝑎𝑗,𝑡−1)     (9) 315 

 𝛿𝑆2,𝑡 = 𝑟2 𝑡 − 𝑄𝑀𝐹,𝑆2(𝑠2𝑖,𝑡−1, 𝑎𝑗,𝑡−1)  (10) 316 

𝑄𝑀𝐵(𝑎𝑗,𝑡) =  𝑃(𝑠21|𝑠1, 𝑎𝑗) max
𝑎∈{𝑎1,𝑎2}

𝑄𝑀𝐹,𝑆2(𝑠21, 𝑎) + 𝑃(𝑠22|𝑠1, 𝑎𝑗) max
𝑎∈{𝑎1,𝑎2}

𝑄𝑀𝐹,𝑆2(𝑠22, 𝑎)  (11) 317 

 318 

Here, i indexes the two different second stages (𝑆21, 𝑆22),  j indexes actions a (𝑎1, 𝑎2) and t 319 

indexes the trials. Further, 𝜂1 and 𝜂2denote the learning rate for S1 and S2, respectively. S2 MF 320 

Q-values are updated by means of reward (𝑟2,𝑡) prediction errors (𝛿𝑆2,𝑡) (Eq. 8, 10). To model 321 

S1 MF Q-values we allow for reward prediction errors at the 2nd-stage to influence 1st-stage 322 

Q-values (Eq. 7, 9).  323 

 324 

 In addition, as proposed by Toyama et al. (Toyama et al., 2017, 2019) Q-values of all unchosen 325 

stimuli were assumed to decay with decay-rate ηdecay and centered to the mean of reward walks 326 

(0.5). A decay of Q-values over time accounts for the fact that participants know that reward 327 

walks fluctuate over time. The decay was implemented according to Eq. 12 and 13: 328 

𝑄𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛(𝑠𝑘,𝑡, 𝑎𝑗,𝑡) = 𝑄𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛(𝑠𝑘,𝑡−1, 𝑎𝑗,𝑡−1) ∗ (𝜂𝑑𝑒𝑐𝑎𝑦𝑆) + (1 − (𝜂𝑑𝑒𝑐𝑎𝑦𝑆)  ∗  0.5 (12) 329 

where 330 

𝜂𝑑𝑒𝑐𝑎𝑦𝑆 = 𝜂𝑑𝑒𝑐𝑎𝑦 + 𝑠𝜂𝑑𝑒𝑐𝑎𝑦 ∗ 𝐼𝑡 (13) 331 

and 𝑘 𝜖 {1, 21, 22}, that is, k indexes the three task stages. 332 

 333 

S1 action selection is then modelled via weighting S1 MF and MB Q-values through a softmax 334 

action-selection. S2 stage action selection is likewise modelled as a function of MF Q-value 335 
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differences. Separate ‘inverse temperature' parameters β model subjects’ weights of MF and 336 

MB Q-Values (Eq. 14 and Eq. 15). The additional parameter 𝜌 captures 1st-stage choice 337 

perseveration, and is set to 1 if the previous S1 choice was the same and is zero otherwise.  338 

 339 

 340 

 𝑝(𝑎𝑗,𝑡 = 𝑎|𝑠1,𝑡) =
exp (𝛽𝑀𝐵𝑠∗𝑄𝑀𝐵(𝑎)  +𝛽𝑀𝐹𝑠∗𝑄𝑀𝐹,𝑆1 (𝑎) + 𝜌𝑠∗𝑟𝑒𝑝(𝑎))

 ∑ 𝑒𝑥𝑝(𝛽𝑀𝐵𝑠∗𝑄𝑀𝐵(𝑎′)  +𝛽𝑀𝐹𝑠∗𝑄𝑀𝐹,𝑆1 (𝑎′) + 𝜌𝑠∗𝑟𝑒𝑝(𝑎′))𝑎′
,     (14) 341 

𝑝(𝑎𝑗,𝑡 = 𝑎|𝑠2,𝑡) =
exp (𝛽2𝑠∗𝑄𝑀𝐹,𝑆2 (𝑎)

∑ exp (𝛽2𝑠∗𝑄𝑀𝐹,𝑆2 (𝑎′)  )𝑎′
,     (15) 342 

where:   343 

𝛽𝑀𝐵𝑠
 = 𝛽𝑀𝐵 + 𝑠𝛽𝑀𝐵

∗ 𝐼𝑡 344 

𝛽𝑀𝐹𝑠
 = 𝛽𝑀𝐹 + 𝑠𝛽𝑀𝐹

∗ 𝐼𝑡 345 

𝜌𝑠 = 𝜌 + 𝑠𝜌 ∗ 𝐼𝑡 346 

𝛽2𝑠
 = 𝛽2 + 𝑠𝛽2

∗ 𝐼𝑡 347 

 348 

Hybrid model with drift diffusion action selection 349 

As in our analysis of temporal discounting we replaced softmax action selection with a DDM 350 

choice rule (Shahar et al., 2019), leaving the reinforcement learning equations unchanged. For 351 

each stage of the task, the upper boundary was defined as selection of one stimulus, whereas 352 

the lower boundary was defined as selection of the other stimulus. We modelled each stage of 353 

the task using separate non-decision time (𝜏), boundary separation (α) and drift- rate (v) 354 

parameters. The bias (𝑧) was fixed to 0.5. All parameters including vcoeffMF , vcoeffMB and vmax 355 

were again allowed to vary according to the context, such that we included sx parameters for 356 

each parameter x that were multiplied with the dummy-coded condition predictor It (see above). 357 

Data were filtered using a percentile-based cut-off, such that for each participant the fastest and 358 

slowest 2.5 percent of RTs/trials were excluded from further analysis. In addition, an absolute 359 

cutoff of > 150ms was applied. We then first examined a null model (DDM0; Eq. 3) without 360 

any value modulation followed by two value-informed models where the drift-rate (v) is a linear 361 

(Eq. 16 and 17) or sigmoid (Eq. 18) function of MF and MB Q-value weights. For the linear 362 

version, the drift rate in S1 is 363 

 364 

𝑣𝑆1,𝑡 = 𝑣𝑐𝑜𝑒𝑓𝑓𝑀𝐵𝑠
∗ (𝑄𝑀𝐵[2]−𝑄𝑀𝐵[1]) + 𝑣𝑐𝑜𝑒𝑓𝑓𝑀𝐹𝑠

  ∗ (𝑄𝑀𝐹 [2]−𝑄𝑀𝐹 [1]) + 𝑝𝑠 ∗ 𝑟𝑒𝑝(𝑎′) (16) 365 

 366 

and the drift rate in S2 is calculated as 367 
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 368 

𝑣𝑆2,𝑡 = 𝑣𝑐𝑜𝑒𝑓𝑓𝑆2 ∗ (𝑄
𝑀𝐹𝑆2[2]

−𝑄
𝑀𝐹𝑆2[1]

) (17) 369 

 370 

For the non-linear version, the linear drift rate from equations 16 and 17 are additionally passed 371 

through a sigmoid:    372 

𝑣𝑆𝑖,𝑡 =
2∗𝑣𝑚𝑎𝑥𝑆𝑖𝑠 

1+𝑒𝑥𝑝 (−𝑚)
− 𝑣𝑚𝑎𝑥𝑆𝑖 𝑠 

 (18) 373 

 374 

where 375 

𝑣𝑐𝑜𝑒𝑓𝑓𝑀𝐵𝑠
 = 𝑣𝑐𝑜𝑒𝑓𝑓𝑀𝐵 + 𝑠𝑣𝑀𝐵

∗ 𝐼𝑡 376 

𝑣𝑐𝑜𝑒𝑓𝑓𝑀𝐹𝑠
 = 𝑣𝑐𝑜𝑒𝑓𝑓𝑀𝐹 + 𝑠𝑣𝑀𝐹

∗ 𝐼𝑡 377 

𝑣𝑐𝑜𝑒𝑓𝑓𝑆2𝑠
 = 𝑣𝑐𝑜𝑒𝑓𝑓𝑆2 + 𝑠𝑆2 ∗ 𝐼𝑡 378 

𝑣𝑚𝑎𝑥𝑆𝑖𝑠
 = 𝑣𝑚𝑎𝑥𝑆𝑖 + 𝑠𝑆𝑖 ∗ 𝐼𝑡 379 

 380 

Hierarchical Bayesian models 381 

Softmax models were fit to all trials from all participants using a hierarchical Bayesian 382 

modeling approach with separate group-level distributions for all baseline parameters for the 383 

neutral context and shift parameters (sx) for the gambling context.  384 

For the intertemporal choice model fitting was performed using Markov Chain Monte 385 

Carlo (MCMC) sampling as implemented in the JAGS (Version 4.3) software package (Martyn 386 

Plummer, 2003) in combination with the Wiener module (Wabersich and Vandekerckhove, 387 

2014). Model estimation was done in R (Version 4.0.3) using the corresponding R2Jags 388 

package (Version 0.6-1).  For baseline group-level means, we used uniform priors defined over 389 

numerically plausible parameter ranges (see code and data availability section for details). For 390 

all sx parameters modeling context effects on model parameters, we used Gaussian priors with 391 

means of 0. For group-level precisions, we used gamma distributed priors (.001, .001). We 392 

initially ran 2 chains with a varying burn-in period and thinning of two until convergence. Chain 393 

convergence was then assessed via the Gelman-Rubinstein convergence diagnostic �̂� and 394 

sampling was continued until 1 ≤ �̂� ≤ 1.02 for all group-level and individual-subject 395 

parameters. 20k additional samples were then retained for further analysis. 396 

 397 

 398 
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For reinforcement learning model fitting was performed using MCMC sampling as 399 

implemented in and STAN (Stan Development Team, 2020) via R (Version 4.0.3) and the 400 

rSTAN package (Version 2.21.0).  401 

For baseline group-level means, we used uniform and normal priors defined over numerically 402 

plausible parameter ranges (see code and data availability section for details). For all sx 403 

parameters modeling context effects on model parameters, we used Gaussian priors with means 404 

of 0. For group-level standard deviations we used cauchy (0, 2.5) distributed priors. We initially 405 

ran 2 chains with a burn-in period of 1000 and retained 2000 samples for further analysis. Chain 406 

convergence was then assessed via the Gelman-Rubinstein convergence diagnostic �̂� and 407 

sampling was continued until 1 ≤ �̂� ≤ 1.02. This threshold was not met for one participant (�̂� 408 

< 1.4).  409 

For both tasks, relative model comparison was performed via the loo-package in R 410 

(Version 2.4.1) using the Widely-Applicable Information Criterion (WAIC) where lower values 411 

reflect a superior fit of the model (Vehtari et al., 2017). We then show posterior group 412 

distributions for all parameters of interest as well as their 85% and 95% highest density 413 

intervals. For group comparisons we report Bayes Factors for directional effects for sx 414 

hyperparameter distributions of sx > 0 (gambling context > neutral context), estimated via kernel 415 

density estimation using R via the RStudio (Version 1.3) interface. These are computed as the 416 

ratio of the integral of the posterior difference distribution from 0 to +∞ vs. the integral from 0 417 

to -∞. Using common criteria (Beard et al. 2016), we considered Bayes Factors between 1 and 418 

3 as anecdotal evidence, Bayes Factors above 3 as moderate evidence and Bayes Factors above 419 

10 as strong evidence. Bayes Factors above 30 and 100 were considered as very strong and 420 

extreme evidence respectively, whereas the inverse of these reflect evidence in favor of the 421 

opposite hypothesis. 422 

  423 
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Posterior Predictive checks 424 

We carried out posterior predictive checks to examine whether models could reproduce key 425 

patterns in the data, in particular the value-dependency of RTs (Peters & D'Esposito, 2020; 426 

Wagner et al., 2020) and participant’s choices. For the intertemporal choice task, we binned 427 

trials of each individual participant into five bins, according to the absolute difference in 428 

subjective larger-later vs. smaller-sooner value (“decision conflict”, computed according to 429 

each participant’s median posterior log(k) parameter from the DDMS, and separately for the 430 

neutral and gambling context. For each participant and context, we then plotted the mean 431 

observed RTs as a function of decision conflict, as well as the mean RTs across 10k data sets 432 

simulated from the posterior distributions of the DDM0, DDMlin and DDMS. For the two-step 433 

task, we extracted mean posterior parameter estimates and simulated 1000 datasets in R 434 

(Version 4.0.3) using the Rwiener package (Version 1.3.3). We then show RTs as a function of 435 

S2 reward difference of observed data and the mean RTs across 1000 simulated datasets for of 436 

all DDMs. We further show that our models capture the relationship of S2 reward difference 437 

and optimal (max[reward]) choices.  438 

 439 

Model free analysis 440 

As a model-agnostic measure of temporal discounting, we examined arcsine-square-root 441 

transformed proportions of LL choices as a function context (neutral vs. gambling) with order 442 

(neutral vs. gambling session first) as fixed and subject as random effect using a hierarchical 443 

generalized linear model (HGLM). For the 2-step task we likewise use a HGLM approach and 444 

modeled 2nd-stage RTs as a function of transition (common vs. rare) and context (neutral vs. 445 

gambling) as fixed and subject as random effect. In line with our modelling analyses, data were 446 

filtered so that unplausible fast RTs were excluded (see methods).  A standard analysis of stay 447 

probabilities (Daw et al., 2011) adapted to our task version is reported in the supplement.  448 

 449 

Subjective Craving Rating 450 

On each testing day, participants rated their subjective craving (“How much do you desire to 451 

gamble right now?”) on a visual-analogue scale ranging from 0 to 100, both at the beginning of 452 

the testing session, and at the end following task completion. We then used paired t-tests to 453 

examine whether subjective craving differed between the testing environments (neutral vs. 454 

gambling). 455 

  456 
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Results 457 

Subjective craving 458 

Craving was assessed on a visual-analogue-scale before and after task performance. Subjective 459 

craving was substantially higher in the gambling-related environment compared to the neutral 460 

environment (paired t-test pre-task: t23 = -3.13; p = 0.0048, Cohen’s d: 0.75; post-task: t21 = -461 

4.32, p = 0.0003, Cohen’s d = 0.68; Figure 1).  462 

 463 

 464 

Figure 1. Subjective craving was assessed at the beginning (A) and at the end (B) of each 465 

testing session via a visual-analogue scale rating. Craving was significantly higher in the 466 

gambling environment, both at the start of the session (p = 0.0048) and at the end of the session 467 

(p = 0.0003). Due to technical problems, craving ratings of the first eight participants were lost. 468 

Another two participants missed the ratings after task performance. 469 

 470 

Model-agnostic analysis temporal discounting task 471 

Raw proportions of larger-but-later (LL) choices are plotted in Figure 2A for each context. A 472 

hierarchical linear model on arcsine-square-root transformed proportion values with context 473 

and order (gambling vs. neutral first) as fixed effects and subject as random effect confirmed a 474 

significant main effect of context (F28 = 13.33, p = 0.01) such that participants made more LL 475 

selections in the neutral vs. the gambling-related environment. There was no effect of order on 476 

choice proportions. Overall response time (RT) distributions are plotted in Figure 2B with 477 

choices of the LL option coded as positive RTs and choices of the smaller-sooner option coded 478 

as negative RTs.  479 

 480 
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 481 

Figure 2. Behavioral data from the temporal discounting task. A: raw proportions of larger-482 

later (LL) choices in each context. B: Overall response time distributions with choices of the 483 

LL option coded as positive RTs and choices of the smaller-sooner option coded as negative 484 

RTs. 485 

 486 

Softmax choice rule 487 

We first modeled our data using standard softmax-action selection. This analysis revealed an 488 

overall context effect on log(k), such that discounting was substantially steeper in the gambling 489 

context compared to the neutral context (Figure 3B, 95% HDI > 0). Examination of Bayes 490 

Factors indicated that an increase in log(k) in the gambling context (sk) was about 116 times 491 

more likely than a decrease (see Figure 3 and Table 3). 492 

 493 

 494 
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 495 

Figure 3. Softmax model; Posterior distributions of mean hyperparameter distributions for the 496 

neutral baseline context (blue) and the corresponding shift in the gambling context (pink). A, 497 

discount-rate log (k); B, shift in discount-rate (sk); C, softmax β; D, shift in softmax β; Thin 498 

(thick) horizontal line denote 95% (85%) highest posterior density intervals 499 

 500 

Temporal discounting drift diffusion models (DDMs) 501 

We next compared three versions of the drift diffusion model (DDM) that varied in the way 502 

that they accounted for the influence of value differences on trial-wise drift rates, based on 503 

model-fit (WAIC). To verify comparable model ranking across conditions, we first carried out 504 

a model comparison separately for each environment (see Table 1). In both environments, a 505 

DDM with nonlinear drift-rate scaling (DDMs) (Fontanesi et al., 2019; Peters & D'Esposito, 506 

2020; Wagner et al., 2020) accounted for the data best when compared to a DDM with linear 507 

scaling (DDMlin) (Pedersen et al., 2017) and a null model without value modulation (DDM0). 508 

We then build a full model with group level distributions for the baseline condition 509 

(neutral context) and sx parameters for each model parameter x, modeling the change from the 510 

neutral to the gambling context. Sx parameters where modeled with Gaussian priors with means 511 

of zero (see methods section). Model ranking was confirmed for the full model (Table 1).  512 

We next compared the DDMs and the softmax model with respect to the proportion of 513 

binary choices (LL vs. SS selections) that they correctly accounted for. As can be seen from 514 

Table 2, the DDMS and DDMlin performed numerically on par with the softmax model, whereas 515 

the DDM0 performed substantially worse (see Supplemental Figure S1). Posterior predictive 516 

checks for the winning model showed that it accurately captured the effect of decision conflict 517 
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(value difference) on RTs (see Posterior Predictive Checks in the supplement; Supplemental 518 

Figure S2). Parameter recovery for this model was reported in our prior papers (Peters & 519 

D'Esposito, 2020; Wagner et al., 2020). 520 

 521 

Table 1. Temporal discounting DDM model comparison using the Watanabe-Akaike 522 

Information Criterion (WAIC) revealed the same model ranking for each context (neutral vs. 523 

gambling) and the full model. Scores are WAIC (SE). 524 

 Neutral Gambling Full model 

DDM0 12037.7 (150.1) 11754.9 (157.7) 23792.4 (217.4)  

DDMlin 9304.6 (155.5) 9174.7 (158.5) 18949.6 (219.0)  

DDMs 8982.3 (155.6) 8744.6 (157.6) 17656.0 (220.8) 

 525 

Table 2 Proportions of correctly predicted binary choices (mean [range]) for the temporal 526 

discounting models (neutral vs. gambling context; see Supplemental Figure S1).  527 

 Neutral Gambling 

Softmax  0.89 [0.57-0.98] 0.90 [0.66-1.00]  

DDM0 0.74 [0.52-0.93] 0.76 [0.55-0.99] 

DDMlin 0.89 [0.58-0.98] 0.90 [0.65-0.99] 

DDMs 0.90 [0.60-0.99] 0.91 [0.70-1.00] 

 528 
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 529 

Figure 4. Temporal discounting drift diffusion model results: posterior distributions for 530 

hyperparameter means from the neutral context. A: discount-rate log(k), B: non-decision time 531 

τ, C: boundary separation α, D: maximum drift-rate vmax, E: drift-rate coefficient vcoeff, F: 532 

starting-point z. Thin (thick) horizontal line denote 95% (85%) highest posterior density 533 

intervals 534 

 535 

 536 

Figure 5. Temporal discounting drift diffusion model results: posterior distributions for 537 

hyperparameter means for context shift (sx) parameters modeling changes from the neutral to 538 

the gambling context. A: shift in discount-rate (sk), B: shift in non-decision time sτ, C: shift in 539 

boundary separation sα, D: shift in maximum drift-rate vmax, E: shift in drift-rate coefficient 540 

vcoeff, F: shift in starting-point sz. Thin (thick) horizontal line denote 95% (85%) highest 541 

posterior density intervals. 542 

 543 

 544 

 545 

 546 
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Overall context differences 547 

We next examined the posterior distributions of  model parameters of the best-fitting TD-DDM 548 

model (DDMS). Results are plotted in Figure 4 and Figure 5 and Bayes Factors for all context-549 

effects are listed in Table 3. There was a consistent positive association between trial-wise drift 550 

rates and value differences in the neutral context (Figure 4E, the 95% HDI for the drift rate 551 

coefficient parameter did not include 0). Likewise, there was a numerical bias towards the 552 

smaller-sooner option in the baseline condition (85% HDI < 0.5, see Figure 4F). The non-553 

decision time was numerically smaller in the gambling context (85 % HDI < 0, Figure 5B, 554 

Table 3), amounting to on average a 50ms faster non-decision time. The maximum drift-rate 555 

was substantially higher in the gambling context (95% HDI > 0, Figure 5D).  556 

As in the softmax model (Figure 3), we observed a substantial increase in the discount 557 

rates log(k) in the gambling context (95% HDI > 0, see Figure 5A, Table 3).  558 

 559 

Table 3. Overview of overall context differences. For group comparisons we report Bayes 560 

Factors for directional effects for sx hyperparameter distributions of sx > 0 (gambling context 561 

> neutral context). 562 

Model parameter  

(change in gambling context) 

Softmax Model DDMS 

 Mean dBF Mean dBF 

sk (discount-rate) 0.77 1688.53 0.40 54.20 

sβ (softmax beta) 0.025 2.27 - - 

svcoeff (drift-rate coeff.)  - - -0.012 0.25 

sτ (non-decision time) - - -0.05 0.10 

sα (boundary separation)  - - 0.10 4.40 

sz (starting point bias) - - 0.02 13.64 

svmax (max drift-rate) - - 0.33 39490.71 

 563 

Temporal discounting and gambling-related questionnaire data 564 

As preregistered, we next examined whether the increased in discount-rate sk in the gambling 565 

context was associated with symptom severity or gambling related cognition. We therefore 566 

computed a compound symptom severity z-score of DSM-5 (Falkai, 2015), SOGS (Lesieur & 567 

Blume, 1987) and KFG (J. Petry & Baulig, 1996) questionnaire data.  Gambling context related 568 

shifts in impulsive choice i.e. a positive shift in the discount-rate parameter was not related to 569 
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this score (rho = -0.05, p = 0.78). Increases in  discounting (sk) were positively associated with 570 

Gambling Related Cognitions Scale (Raylu & Oei, 2004) (rho = 0.39; p = 0.03); see Figure 6). 571 

Further analyses of temporal discounting and working memory are reported in the supplement. 572 

 573 

Figure 6. Relationship of total scores from the gambling-related cognition scale (GRCS) 574 

(Raylu & Oei, 2004) and changes in discount-rate from neutral to gambling environment 575 

(sk)[softmax model]. 576 

 577 

Model-agnostic analysis 2-step task  578 

Participants earned significantly more points in the gambling context (t-test: t28 = -2.44, p = 579 

0.02, Cohen’s d = 0.22). As a second model agnostic performance measure, we analyzed the 580 

effect of transition (common vs. rare) on S2 RTs. Longer RTs following rare transitions are an 581 

indirect measure for MB control (Otto et al., 2015; Shahar et al., 2019). We used an HGLM 582 

approach to model S2 RTs as a function of transition (rare vs. common) and context (neutral 583 

vs. gambling) allowing for interactions including subject as random effect. We observed a 584 

significant main effect of transition (see Table 4 and Figure 7) and a trend (p = 0.07; see Table 585 

4) for a transition x context interaction. The latter reflected a tendency for greater RT increases 586 

following rare-transitions in the gambling context (see Figure 7). As a model-agnostic 587 

performance measure, the probability of choosing the same S1 option as in the previous trial 588 

(stay-probability) is typically analyzed as a function of reward, transition, and their interaction 589 

(Daw et al., 2011). Since the 2-step task version employed here utilized continuous payoffs, 590 

every trial was rewarded. The “reward” in S2 can thus not be used to directly predict stay 591 

probabilities, as done in previous work. In Table  S3, we present an analogous regression model 592 

for stay probabilities using a moving average of recent rewards as a reference.  593 

 594 

 595 

 596 
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Table 4. Model agnostic analysis of S2 RTs. HGLM with transition and context as fixed 597 

effects and subject as random effect. 598 

S2 RT Model 

 Estimate T-statistic  p 

Transition 0.13 17.227 < 2e-16*** 

Context 0.0004 0.07 0.94 

Transition*Context 0.02 1.804 0.07 

 599 

 600 

Figure 7. Model free analysis of S2 RTs. RTs were substantially slower following rare 601 

transitions, both in the neutral (A) and the gambling context (B), see also Table 4. 602 

 603 

Hybrid model with softmax choice rule 604 

We first examined a hybrid model as proposed by Daw et al.  (Daw et al., 2011) with extensions 605 

by ourselves and Otto et al. (Otto et al., 2015) using a standard softmax choice rule (for details 606 

see methods; Figure 8). This model included separate parameters for S1 and S2 learning rates, 607 

model-free and model-based β weights for S1 and a β weight for S2 Q-value differences. We 608 

confirmed substantial contributions of both MB and MF values to S1 choices (Figure 8 B,C). 609 

There was an increase in the S2 learning-rate ῃ (95% HDI > 0, Figure 8F) in the gambling 610 

context. Furthermore, there was a strong decrease in MF β weights (95% HDI < 0, Figure 8H) 611 

such that participants showed substantially less MF behavior in the gambling environment 612 

compared to the neutral environment. BFs for directional effects indicate that an increase in 613 

MB reinforcement learning is 4 times more likely than a decrease. For examination of Bayes 614 

Factors see Table 6. 615 

 616 
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 617 

Figure 8. Hybrid model with softmax choice rule posterior distributions (top row: neutral 618 

context, bottom row: parameter changes in gambling context) of all group level means. A, S1 619 

and S2 learning-rates. B, MB β weight. C, MF β weight. D, S2 β weight. E, perseveration 620 

parameter ρ. G, shift in MB β. H, shift in MF β. I, shift in S2 β. J, shift in stickiness parameter 621 

ρ. Thin (thick) horizontal line denote 95% (85%) highest posterior density intervals. 622 

 623 

Hybrid model with drift diffusion choice rule 624 

We next combined the hybrid model with a DDM choice-rule (Shahar et al., 2019) and likewise 625 

compared DDMs that varied in the way that they accounted for the influence of Q-value 626 

differences on trial-wise drift rates in both task stages.  Model comparison based on the WAIC 627 

(Vehtari et al., 2017) (see Table 5) revealed that in the neutral context, a DDM with nonlinear 628 

drift-rate scaling DDMs (Fontanesi et al., 2019; Peters & D'Esposito, 2020; Wagner et al., 2020) 629 

accounted for the data best when compared to a DDM with linear drift rate scaling (DDMlin) 630 

(Pedersen et al., 2017) and a null-model without learning (DDM0) (see Table 5). The same 631 

ranking held for the gambling context.  632 

We next build a full model with group level distributions for the baseline condition 633 

(neutral context) and additional sx parameters for each model parameter x, modeling the change 634 

in from the neutral to the gambling context. These sx parameters where modeled with Gaussian 635 

priors with means of zero (see methods section). The full model reproduced the model ranking 636 

(see Table 5). We then compared the three DDMs and the softmax model with respect to the 637 

proportion of binary choices that they correctly accounted for. As can be seen from Table 7, the 638 

DDMS and DDMlin performed numerically on par with the softmax model, whereas the DDM0 639 

performed substantially worse. Posterior predictive checks showed that the final model 640 

accurately captured the effect of reward differences on second stage RTs and reproduced choice 641 

behavior (see Supplemental Figure S3 and S4). 642 

 643 

 644 
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Table 5. Reinforcement learning DDM model comparison using the Widely-Applicable 645 

Information Criterion (WAIC) revealed the same model ranking for each condition (neutral or 646 

gambling context) as well as for the full model. Scores are WAIC (SE). 647 

 Neutral Gambling Full model 

DDM0 11808.5 (1549.3) 10942.1 (1569.2) 22764.0 (2193.7) 

DDMlin 4616.2 (1897.0) 4429.0 (1729.9) 15519.7 (3984.4) 

DDMs 4357.2 (1935.1) 4197.2 (1749.7) 8800.3 (2670.0) 

 648 

 649 

 650 

Table 6. Overview of overall context differences. For group comparisons we report Bayes 651 

Factors or directional effects for sx hyperparameter distributions of sx > 0 (gambling context > 652 

neutral context). 653 

Model parameter (shift) Softmax 

Model 

DDMs 

 Mean dBF Mean dBF 

sηS1  (learning-rate S1) 0.44 3.29 0.0801 1.186 

sηS2  (learning-rate S2) 0.40 92.3 0.280 14.658 

sτS1  (non-decision times S1) - - 0.001 0.8454 

sτS2  (non-decision times S2) - - 0.001 1.161 

sρ  (Stickiness S1) 0.04 1.946 0.05 2.365  

sαS1 (boundary separation S1)  - - -0.002 0.9354 

sαS2 (boundary separation S2) - - 0.0149 2.026 

βMF / SvcoeffMF (MF beta/ drift-rate coeff.) -1.14 0.010 -0.93 0.083 

βMB / SvcoeffMB (MB beta/ drift-rate coeff.) 1.08 4.00 4.01 169.62 

βS2 / SvcoeffS2 (S2 beta / drift-rate coeff.) -0.44 0.428 -0.64 0.271 

svmaxS1 (max drift-rate S1)  - - -0.19 0.296 

svmaxS2 (max drift-rate S2) - - 0.41 15.83 

 654 

 655 

 656 

 657 
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Table 7. 2-step task models. Proportions of correctly predicted binary choices (mean [range]) 658 

for all models.  659 

 Neutral Gambling 

 Stage 1 Stage 2 Stage 1 Stage 2 

DDM0 0.63 [0.49-1.00] 0.62 [0.50-0.78] 0.56 [0.46-0.99] 0.63 [0.51-0.79] 

DDMlin 0.74 [0.51-1.00] 0.80 [0.53-0.96] 0.74 [0.50-0.99] 0.81 [0.59-0.95] 

DDMs 0.74 [0.49-1.00] 0.80 [0.55-0.96] 0.72 [0.47-0.99] 0.81 [0.59-0.95] 

Softmax 0.72 [0.42-1.00] 0.79 [0.49-0.96] 0.72 [0.45-0.99] 0.81 [0.56-0.96] 

 660 

 661 

 662 

 663 

Figure 9. RL-DDM. Posterior distributions of all hyperparameters for the neutral baseline 664 

condition. A: S1 and S2 learning rates η. B: S1 and S2 non-decision time τ. C: S1 and S2 665 

boundary separation α. D: S1 and S2 drift-rate maximum vmax. E: MF drift-rate coefficient 666 

vcoeffMF. F: MB drift-rate coefficient vcoeffMB. G: S2 drift-rate coefficient vcoeffS2. H: 667 

stickiness parameter  ρ.  Thin (thick) horizontal line denote 95% (85%) highest posterior density 668 

intervals. 669 

 670 
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 671 

Figure 10. RL-DDM. Posterior distributions of all hyperparameters shift-parameters modelling 672 

the change from neutral to gambling condition. A, shift in Stage 1 and Stage 2 learning rates η. 673 

B, shift in S1 and S2 non-decision time τ. C, shift in S1 and S2 boundary separation α. D, shift 674 

in S1 and S2 drift-rate maximum vmax. E, shift in S1 MF drift-rate coefficient vcoeffMF. F, shift 675 

in S1 MB drift-rate coefficient vcoeffMB. G, shift in S2 drift-rate coefficient vcoeffS2. H, shift 676 

in stickiness parameter ρ.  Thin (thick) horizontal line denote 95% (85%) highest posterior 677 

density intervals. 678 

 679 

 680 

Overall Context Differences 681 

Posterior distributions for the best-fitting RL-DDM are shown in Figure 9 (neutral context 682 

parameters) and Figure 10 (gambling context changes).  In general there was a positive 683 

association between trial-wise drift rates and Q-value differences (Figure 9F-J, all 95% HDIs 684 

above 0). Likewise, in the hybrid model with softmax choice-rule beta weights were positive 685 

indicating an effect of MB and MF Q-values on choice behavior (Fig9E-G, all 95% HDIs > 0). 686 

In terms of context related changes we observe a decrease in MF strategies and a robust increase 687 

in MB strategies. This is evident in terms of negative shifts in MF drift-rate coefficients  (DDMs 688 

85% HDI  <= 0)   and positive shifts in MB parameters, respectively (DDMs: 95% HDI  > 0). 689 

We report BFs for directional effects in Table 6. Overall these results suggest a systematic 690 

association of gambling environments with decreased MF and increased MB reinforcement 691 

learning. 692 

  693 
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Reinforcement learning and gambling related questionnaire data 694 

As preregistered, we examined associations between ρ (perseveration/stickyness) and gambling 695 

severity (average z-score across SOGS (Lesieur & Blume, 1987), KFG (J. Petry & Baulig, 696 

1996) and DSM-5 criteria). The association was non-significant ρ (r = -0.10, p = 0.59). We next 697 

ran exploratory analyses to examine associations between MB/MF behavior (SvcoeffMB and 698 

SvcoeffMF) and gambling severity (see above) and gambling-related cognition (GRCS) scores. 699 

Participants with higher gambling severity exhibited a greater reduction in MF learning in the 700 

gambling context (r = -0.48,  p = 0.009; see Figure 11). The corresponding exploratory analyses 701 

on MB changes and gambling related cognitive distortions are provided in the Supplement 702 

(Reinforcement Learning section). 703 

 704 

Figure 11. Gambling severity (y-axis; average z-score across DSM, KFG and SOGS) was 705 

associated with a greater gambling context related decrease in MF drift-rate weights (SvcoeffMF, r 706 

= -0.48,  p = 0.009). 707 

 708 

Discussion 709 

Here we comprehensively examined the contextual modulation of two putatively trans-710 

diagnostic markers implicated in addiction, temporal discounting (Bickel et al., 2019; Lempert 711 

et al., 2019) and model-based control (Gillan et al., 2016; Gillan et al., 2020) in a pre-registered 712 

study. We studied regular slot machine gamblers, a group previously characterized by high 713 

levels of temporal discounting (Wiehler & Peters, 2015) and reduced model-based control 714 

(Wyckmans et al., 2019). Following a seminal study by Dixon et al. (Mark. Dixon, Jacobs, & 715 

Sanders, 2006), regular gamblers were tested in gambling environments (slot-machine venues) 716 

and neutral control environments. Gambling cue exposure modulated temporal discounting and 717 
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model-based control in gamblers in opposite ways: replicating Dixon et al., (2006), discounting 718 

substantially increased in a gambling context. In contrast, model-based (MB) control improved 719 

(increased). This differential modulation of two prominent trans-diagnostic traits in 720 

(behavioral) addiction has important theoretical and clinical implications.  721 

 Theoretical accounts highlight the central role of addiction-related cues and 722 

environments in drug addiction (T. Robinson & Berridge, 1993). Similar mechanisms have 723 

been suggested to underlie gambling disorder (M. J. F. Robinson et al., 2016). Because 724 

terrestrial slot machine gambling is directly linked to specific locations, gambling disorder is 725 

uniquely suited to investigate the impact of cue exposure on behavior. We replicated the finding 726 

of Dixon et al. (2006) of steeper discounting in gambling vs. neutral environments in gamblers. 727 

This effect was observed across model agnostic analyses (proportion of LL choices) and 728 

computational modeling (softmax, drift diffusion models [DDM]). We additionally extended 729 

these earlier results in the following ways. First, we observed an association of this effect with 730 

maladaptive control beliefs (GRCS) (Raylu & Oei, 2004) suggesting that such beliefs contribute 731 

to increased temporal discounting in gambling environments. Second, in a subset of 732 

participants, we confirmed that exposure to gambling environments substantially increases 733 

subjective craving. Third, comprehensive modeling via DDMs revealed additional effects on 734 

latent decision processes. The gambling context-related attenuation in non-decision time 735 

mirrors previous effects of pharmacological enhancement of dopamine transmission (Wagner 736 

et al. 2020). In contrast to these earlier pharmacological results, we observed a substantial 737 

increase in maximum drift rate (Vmax) in the gambling context, reflecting increased value 738 

sensitivity of RTs. Lastly, our results complement cue-reactivity designs showing increased 739 

impulsive and/or risky choice in gamblers during exposure to gambling cues in laboratory 740 

studies (Dale et al., 2019; Genauck et al., 2020; Miedl et al., 2014). However, effect sizes during 741 

naturalistic cue exposure (e.g. the present study and Dixon et al., 2006) were substantially larger 742 

than during lab-based exposure in these previous studies. 743 

In addition to temporal discounting, we included a 2-step sequential decision-making 744 

task designed to dissociate model-based (MB) from model-free (MF) contributions to behavior 745 

(Daw et al., 2011). Reductions in MB control are associated with compulsivity-related disorders 746 

(Gillan et al., 2016; Gillan et al., 2020; V. Voon et al., 2015a). We observed increased MB 747 

learning and reduced MF learning in gamblers in the gambling context, a pattern of results 748 

consistent between softmax and DDM models. These findings were again corroborated my 749 

model-agnostic analyses. First, participants earned more points in the gambling context, an 750 

effect linked to MB learning (Kool et al., 2016). Second, the slowing of RTs following rare 751 
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transitions, an indirect measure for MB learning (Otto et al., 2015) tended to be more 752 

pronounced in the gambling vs. neutral context. The MF effect correlated with gambling 753 

severity in an exploratory analysis, such that higher gambling severity was associated with a 754 

greater reduction in MF reinforcement learning in the gambling context.  Together, these 755 

findings converge on the picture of decreased MF and increased MB control in gamblers when 756 

tested in gambling-related environments.  757 

The latter result contrast with our pre-registered hypothesis of reduced MB control, 758 

which was based on findings of reduced MB control in populations with extensive habit 759 

formation (Gillan et al., 2016; Gillan et al., 2020; V. Voon et al., 2015b). Addiction is likewise 760 

thought to be inherently associated with pathological habits (Barry J Everitt & Trevor W 761 

Robbins, 2005; Robbins & Everitt, 1999) which are thought to be triggered by exposure to 762 

environmental cues (Antons et al., 2020). We thus hypothesized gambling environments would 763 

likewise trigger increased MF behavior and reduced MB behavior on the 2-step task. However, 764 

critics of habit theory have emphasized that addiction might in contrast be associated with 765 

excessive goal-directed behavior, in particular in the presence of addiction-related cues 766 

(Hogarth 2020). Our findings are more in line with this latter perspective. This interpretation is 767 

compatible with incentive sensitization theory (T. Robinson & Berridge, 1993; Terry E. 768 

Robinson & Berridge, 2008), which proposes that addiction-related environments exert their 769 

influence on behavior in part via a potentiation in dopamine release (Anselme & Robinson, 770 

2013; Berridge, 2016; T. E. Robinson & Berridge, 2001). Earlier studies observed increased 771 

MB control following increases in DA neurotransmission (Sharp et al., 2016; Wunderlich et 772 

al., 2012), which could contribute to the present findings regarding 2-step task performance. 773 

Furthermore, our results are compatible with decreased MF control under L-Dopa (Kroemer et 774 

al., 2019). The gambling context might thus enhance goal-directed control via an improved 775 

construction and/or utilization of the task transition structure. This interpretation further 776 

resonates with other perspectives on DA function including a regulation of outcome sensitivity 777 

or precision (FitzGerald et al., 2015; Shiner et al., 2012), or the general motivation to exert 778 

(cognitive) effort (Berke, 2018). All of these perspectives are compatible with the idea that 2-779 

step task performance might improve with enhanced DA neurotransmission. The observed 780 

increase in S2 learning rates could likewise be mediated in part by increases in DA transmission 781 

(Frank & O'Reilly, 2006). 782 

If the effects of gambling environments on 2-step task performance are (at least in part) 783 

driven by increases in DA, then the question arises why gamblers at the same time exhibited 784 

substantially increased temporal discounting. The literature on DA effects on temporal 785 
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discounting is a mixed bag (D'Amour-Horvat & Leyton, 2014) with some studies showing 786 

reduced discounting (van Gaalen et al., 2006; Wagner et al., 2020), some increased discounting 787 

(Pine et al., 2010) and others suggesting baseline-dependent effects (Petzold et al., 2019). 788 

Although we cannot conclusively address these questions in our study, it is plausible that DA 789 

might be context-dependent. In some situations DA might facilitate cognitive control (Ott & 790 

Nieder, 2019) whereas in addiction-related contexts it might facilitate the contrary (Terry E. 791 

Robinson & Berridge, 2008) i.e. approach and consumption. Given that DA facilitates 792 

execution of action-plans originating elsewhere in cortex (Frank & O'Reilly, 2006) it is thus 793 

theoretically plausible that it facilitates impulsive choice in the setting of addiction-related cues 794 

(Antons et al., 2020), when short-sighted cortical action schemas are activated. A further 795 

mechanism known to modulate temporal discounting is episodic future thinking or future 796 

prospection (Gershman & Bhui, 2020; Peters & Büchel, 2010). Future prospection has been 797 

shown to attenuate temporal discounting in a range of settings (Rösch et al., 2021) but might 798 

be attenuated at gambling venues. Participants might be focused on the present in the presence 799 

of cues or contexts endowed with high levels of incentive salience (Flagel et al., 2009). 800 

Our results show that two prominent (potentially trans-diagnostic) computational 801 

processes, temporal discounting and MB control, are differentially modulated by addiction-802 

related environments in regular slot machine gamblers. This provides a computational 803 

psychiatry perspective on factors that contribute to the understanding of this disorder. The 804 

substantial contextual effects on temporal discounting further highlight the potential clinical 805 

relevance of this process (Amlung et al., 2019; Lempert et al., 2019). Gambling disorder is 806 

reliably associated with increased temporal discounting (Mark. Dixon et al., 2003; Mark. 807 

Dixon, Jacobs, & Sanders, 2006; MacKillop et al., 2011; Miedl et al., 2012; Wiehler & Peters, 808 

2015) . This trait-like behavior then appears to be further exacerbated during exposure to 809 

gambling-related environments, potentially contributing to the maintenance of maladaptive 810 

behavior. In contrast, MB control improved (increased) in a gambling context, despite the fact 811 

that an earlier study reported reduced MB control in gamblers (Wyckmans et al., 2019). In 812 

general these findings are further compatible with a greater tendency for pattern matching 813 

(Wilke et al., 2014) or enhanced cause-effect associations that might translate into increased 814 

MB control (Joukhador et al., 2004). 2-step task transitions are not random, but can be learned 815 

and exploited. An increased tendency to seek for patterns during gambling context exposure 816 

might facilitate this behavior. Our findings suggest that gamblers might not generally exhibit 817 

MB control impairments (Wyckmans et al., 2019). This is supported by the robust RTs 818 

increases observed following rare transitions (Table 4, Figure 7) and the positive MB 819 
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parameters observed across models, somewhat contrasting with the findings of Wyckmans et 820 

al. (Wyckmans et al., 2019), although different 2-step task versions have been used in these 821 

studies.  822 

We also extended previous studies on this topic via a recent class of value-based 823 

decision models based on the DDM (Fontanesi et al., 2019; Pedersen et al., 2017; Peters & 824 

D'Esposito, 2020; Shahar et al., 2019; Wagner et al., 2020). Comprehensive RT-based analysis 825 

revealed that standard DDM parameters were largely unaffected by context, suggesting that 826 

primarily MF and MB contributions to evidence accumulation were affected by gambling 827 

environments (Figure 10.). Posterior predictive checks showed that a DDM with non-linear 828 

trial-wise drift rate scaling captured the relationship of decision conflict (SS-LL value 829 

difference) and RTs, replicating prior findings  (Peters & D'Esposito, 2020; Wagner et al., 830 

2020). We previously reported good parameter recovery of such temporal discounting DDMs 831 

(Peters & D'Esposito, 2020; Wagner et al., 2020).  832 

A number of limitations need to be acknowledged. First, as in the original study (Mark. 833 

Dixon, Jacobs, & Sanders, 2006) we did not test a non-gambling control group. However, the 834 

observed associations between experimental effects and gambling severity / gambling-related 835 

cognition suggests that these effects are at least in part driven by the underlying problem 836 

gambling symptoms. Second, MB and MF effects in the 2-step task might be affected by 837 

instructions (da Silva & Hare, 2019). Participants in our study were well instructed in written 838 

and verbal form and completed extensive training trials. Moreover, due to the counter-balanced 839 

within-subject design, the observed context-dependent changes in MB/MF behavior cannot be 840 

attributed to overall instruction effects. Third, MB control might more generally be related to 841 

attentional or motivational processes. For example, incentives boost 2-step task performance 842 

(Patzelt et al., 2019). However, we ensured that mean and variance of reward walks as well as 843 

incentives were identical in both contexts. Fourth, although participants were tested in the same 844 

venues, the number of customers present varied across participants, affecting e.g. noise levels 845 

and auditory gambling cues (slot machine sounds etc.). A trade-off between the control of such 846 

variables and ecological validity is unavoidable when testing in naturalistic settings. Finally, 847 

DA neurotransmission was obviously not assessed, rendering our interpretation of the effects 848 

in terms of the incentive sensitization theory speculative. But the substantial increase in 849 

subjective craving supports the idea that cue exposure had subjective effects predicted by 850 

incentive sensitization.  851 

 To conclude, here we show that two computational trans-diagnostic markers with high 852 

relevance for gambling disorder in particular and addiction more generally are modulated in 853 
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opposite ways by exposure to real gambling environments. Gamblers showed increased 854 

temporal discounting in a gambling context, and this effect was modulated by maladaptive 855 

control beliefs. In contrast, MB control improved, a finding that posits a challenge for 856 

habit/compulsion theories of addiction. Ecologically valid testing settings such as those 857 

investigated here can thus yield novel insights into environmental drivers of maladaptive 858 

behavior underlying mental disorders. 859 

 860 

  861 
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Supplemental Information 1185 

Supplemental Table S1. Baseline screening questionnaires. 1186 

 Reference Measure 

AUDIT (Saunders et al., 

1993) 

Alcohol-Use-Disorders Identification Text 

BDI (Beck et al., 1996; 

Hautzinger et al., 

2009) 

Beck Depression Inventory II 

DSM-5 (American 

Psychiatric 

Association, 2013; 

Falkai, 2015) 

Diagnostic criteria for gambling disorder 

FTND (Heatherton et al., 

1991) 

Fagerström Test for Nicotine Dependence 

GRCS (Raylu & Oei, 

2004) 

Gambling-related cognition scale 

KFG (J. Petry & Baulig, 

1996) 

Kurzfragebogen zum Glücksspielverhalten 

SOGS (Lesieur & Blume, 

1987) 

South Oaks Gambling Screen 

 1187 

 1188 

 1189 

 1190 

  1191 
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Supplemental Table S2. Summary of demographics and clinical information (n = 30). 1192 

 Mean SD Range 

Age 30.87 7.94 20-47 

School years 11.83 1.93 8-17 

Income 1284.73 590.71 300-2500 

FTND 2.5 3.01 0-9 

AUDIT 7.6 7.10 0-26 

DSM-5 5.9 2.02 3-9 

KFG 27.54 10.31 7-54 

SOGS 9.5 3.87 3-16 

BDI 17.27 10.13 0-45 

GRCS 17.60 4.54 9.57-30.4 

 1193 

 1194 

Supplemental Figure S1. Proportions of correctly predicted binary choices for the softmax 1195 

model (A) and the drift diffusion model with non-linear drift rate scaling (B, DDMs) in both 1196 

contexts (neutral [blue], gambling [pink]). 1197 

  1198 
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Model-free analysis 2-step task 1199 

We here present a model-agnostic analysis of stay probability in the present 2-step task version 1200 

with continuous rewards at S2.  First, we categorized a reward Rt-1 as positive “R+” if Rt-1 was 1201 

higher than the mean of last 7 rewards (Rt > mean[Rt-1: t-7]) and as negative “R-“ if Rt < mean(Rt-1202 

1:t-7). Stay probabilities were constructed in analogy with the original task (Daw et al., 2011), 1203 

that is stay was set to 1 if the subject choose the same S1 option as before and 0 otherwise. We 1204 

then fitted separate hierarchical general linear models (HGLMs) per condition, with stay 1205 

probability as dependent variable and reward and transition (common vs. rare) as fixed effects 1206 

and subject as random effect (see Supplemental Table S3), as well as a full model that 1207 

additionally included a context factor as fixed effect. 1208 

The full model confirmed the expected main effect of reward (z = 4.34, p =  1.36e-05), transition 1209 

(z = 3.91 p = 7.04e-05) and the reward*transition interaction (z = -4.95 , p =4.48e-07) . Using 1210 

this analysis the reward*transition*context interaction was not statistically significant, even 1211 

though it numerically suggests increased probability to switch after a “R+” (Rt > mean[Rt-1: t-7]) 1212 

and a rare transition in the gambling context when compared to the neutral context. (see 1213 

Supplemental Table S3).     1214 
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Supplemental Table S3. Model agnostic analysis of stay probability using an hierarchical 1215 

general linear model (HGLM). HGLMs were estimated for each context separately using 1216 

reward and transition as fixed and subject as random effects. The fill model model with stay 1217 

probability as dependent variable includeed the predictors reward, transition (rare vs. common) 1218 

and context (gambling vs. neutral) as fixed effects and subject as random effect. 1219 

Neutral Context 

 Estimate z-Value p 

Reward 0.27350 4.127 3.68e-05*** 

Transition 0.29908 3.455 0.00055*** 

Reward*Transition -0.51326 -4.190 2.79e-05*** 

Gambling Context 

Reward 0.38419 5.889 3.89e-09*** 

Transition 0.39439 4.653 3.27e-06*** 

Reward*Transition -0.71324 -5.927 3.08e-09*** 

Full Model 

Reward 0.27361 4.131 3.60e-05*** 

Transition 0.29924 3.460 0.00054*** 

Context -0.12701 -0.426 0.67015 

Reward*Transition -0.51377 -4.199 2.68e-05*** 

Reward*Context 0.11057 1.190 0.23423 

Transition*Context 0.09502 0.785 0.43249 

Reward*Transition*Context -0.19892 -1.160 0.24614 

 1220 

 1221 

 1222 

 1223 

 1224 

 1225 

 1226 

 1227 
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Model free analysis of Stage 1 RTs 1228 

S1 RTs were modeled as a function of categorized reward in the previous trial (see previous 1229 

section for how this was defined) and context as fixed effects and trial and subject as random 1230 

effects. Previous reward significantly increased RTs (t = -2.431, p = 0.015, see Supplemental 1231 

Table S2). We also observed a reward * context interaction (see Supplemental Table S2), 1232 

reflecting Also reaction times were slower, when previously rewarded in the gambling context 1233 

when contrasted to the neutral context indicating an increased effect of reward on S1 response 1234 

caution in the gambling context. 1235 

Supplemental Table S4. Hierarchical general linear model results of S1 RTs with reward and 1236 

context as fixed effects and subject as random effect. 1237 

S1 RT Model 

 Estimate t-Value p 

Reward -0.025 -2.431 0.015* 

Context -0.0005 -0.044 0.97 

Reward*Context 0.029 2.050 0.04* 

 1238 

Working memory assessment  1239 

Temporal discounting 1240 

Preregistered analysis:  1241 

We hypothesized a positive relationship of decision noise parameter and working memory z-1242 

score. Our data in fact confirms this hypothesis of a positive relationship between softmax beta 1243 

and working memory (neutral condition: r = 0.42, p = 0.012); gambling condition: r = 0.44 p =  1244 

p = 0.016).  1245 

 1246 

Exploratory analysis:  1247 

There was relationship between discount-rate and working memory (r = -0.03, p = 0.85). One 1248 

further exploratory analysis revealed an association of working memory and drift-rate 1249 

coefficient. Here, higher working memory capacity was associated with higher drift rate 1250 

coefficients (r = 0.42, p = 0.02).  1251 

  1252 
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Reinforcement learning 1253 

Preregistered analysis: 1254 

WM z-score was positively related to MB RL in the neutral condition, but nonsignificant (r = 1255 

0.27, p = 0.16). In the gambling context this association reached trend-level significance (r = 1256 

0.31,  p = 0.10). The shift in MB RL (individual difference score) from neutral to gambling 1257 

context was again only descriptively associated with WM (r = 0.27, p = 0.16).  1258 

 1259 

Exploratory analysis: 1260 

MF gambling related shifts were unrelated to WM capacity. We further explored the association 1261 

of WM capacity and S2 learning rates. This analysis revealed that overall WM capacity was 1262 

positively associated with baseline (neutral context) (r = 0.57, p = 0.001) and gambling context 1263 

(r = 0.37, p = 0.048)  S2 learning rates. 1264 

 1265 

Posterior predictive checks 1266 

Temporal discounting 1267 

We carried out posterior predictive checks to visualize if our computational analysis captures 1268 

key aspect in the data, in particular the value-dependency of RTs  (Peters & D'Esposito, 2020; 1269 

Wagner et al., 2020) . For the temporal discounting task, we binned trials per participant into 1270 

five bins according to the absolute difference in larger-later vs. smaller-sooner value (“decision 1271 

conflict”, computed according to each participant’s median posterior log(k) parameter from the 1272 

DDMS, and separately for the neutral and gambling context conditions). We then plotted the 1273 

mean observed RTs as a function of decision conflict per participant and context, as well as the 1274 

mean RTs across 10.000 data sets simulated from the posterior distributions of the DDM0, 1275 

DDMlin and DDMS (see Figure S3).   1276 
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 1277 

Supplemental Figure S2. Posterior predictive checks for temporal discounting drift diffusion 1278 

models. For each participant and condition (Gambling vs. Neutral), trials were binned into five 1279 

equal sized bins according to the absolute difference between subjective LL and SS option 1280 

values (decision conflict bin). Plotted are mean observed RTs per bin (data) as well model-1281 

generated RTs (blue: DDM0, red: DDMlin, orange: DDMS) averaged over 10,000 datasets 1282 

simulated from the respective posterior distributions of the hierarchical models. 1283 

  1284 
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2-step task 1285 

We conducted posterior predictive checks to evaluate if our different hierarchical models 1286 

capture both the relationship of RTs and reward differences and the relationship of reward 1287 

differences and optimal choices. An optimal choice here is defined as a choice for the random 1288 

walk with highest payout. To this end, we binned all trials into four bins, according to the 1289 

absolute max(reward) differences in stage 2. For each reward difference bin we then plot the 1290 

mean observed RTs, as well as the mean simulated RTs across 1000 datasets simulated using 1291 

our mean parameter estimates for the posterior distributions of the DDM0, DDMlin, and DDMS. 1292 

We further show the mean observed optimal choices (max[reward]) vs. the mean simulated 1293 

optimal choices given our mean parameter estimates for the posterior distribution of each 1294 

model. These results are shown in Supplemental Figures S3 and S4. As can be seen, the DDMs 1295 

provided the best account of how RTs vary as a function of reward differences. This model 1296 

outperformed the other models in capturing the relationship of reward differences and optimal 1297 

choices (Supplemental Figure S4).  1298 

 1299 

 1300 

Supplemental Figure S3. Group level posterior predictive checks. Trials were binned into four 1301 

equal sized bins according to the absolute difference in reward values given S2 reward walks. 1302 

Plotted are mean observed RTs per bin (data; dashed line) as well model-generated RTs (blue 1303 

represents DDM0; orange represents DDMlin; red represents DDMS) averaged 1000 simulated 1304 

datasets simulated from the mean parameter estimates the posterior distribution of each 1305 

hierarchical model. 1306 
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 1307 

Supplemental Figure S4. Group level posterior predictive checks. Trials were binned into four 1308 

equal sized bins according to the absolute difference in reward values given S2 reward walks. 1309 

Plotted are mean optimal choices in % of all choices per bin (data; dashed line) as well model-1310 

generated RTs (blue represents DDM0; orange represents DDMlin; red represents DDMS) 1311 

averaged 1000 simulated datasets simulated from the mean parameter estimates for the 1312 

posterior distribution of each hierarchical model. 1313 
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Abstract

Tourette syndrome is a neurodevelopmental disorder associated with hyperactivity in dopa-

minergic networks. Dopaminergic hyperactivity in the basal ganglia has previously been

linked to increased sensitivity to positive reinforcement and increases in choice impulsivity.

In this study, we examine whether this extends to changes in temporal discounting, where

impulsivity is operationalized as an increased preference for smaller-but-sooner over larger-

but-later rewards. We assessed intertemporal choice in two studies including nineteen ado-

lescents (age: mean[sd] = 14.21[±2.37], 13 male subjects) and twenty-five adult patients

(age: mean[sd] = 29.88 [±9.03]; 19 male subjects) with Tourette syndrome and healthy age-

and education matched controls. Computational modeling using exponential and hyperbolic

discounting models via hierarchical Bayesian parameter estimation revealed reduced tem-

poral discounting in adolescent patients, and no evidence for differences in adult patients.

Results are discussed with respect to neural models of temporal discounting, dopaminergic

alterations in Tourette syndrome and the developmental trajectory of temporal discounting.

Specifically, adolescents might show attenuated discounting due to improved inhibitory

functions that also affect choice impulsivity and/or the developmental trajectory of executive

control functions. Future studies would benefit from a longitudinal approach to further eluci-

date the developmental trajectory of these effects.

Introduction

Tourette syndrome (TS) is a childhood onset neuropsychiatric disorder characterized by

motor and phonic tics that wax and wane in their severity with an estimated prevalence of
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around 1% [1]. Motor tics are repetitive, sudden movements such as eye blinking or facial

muscle contractions and phonic tics are repetitive sounds such as throat clearing or verbal

utterances [1, 2]. TS onset occurs predominantly in early childhood with a peak of symptom

severity between the age of 10 and 12 years. Thereafter, tics improve in around 80% of children

until the end of adolescence [3].

Both clinical and neuroscientific research have highlighted possible developmental dysfunc-

tions in the cortico-striatal-thalamo-cortical (CSTC) loops [4–6] especially with respect to

dopamine (DA) that strongly modulates these circuits [7, 8]. The striatum, a main gateway in

these loops [9] plays a key role in selectively amplifying converging sensory input to enable sit-

uation specific behavioral adaptations, such as the adequate control of voluntary movement

[7]. Predictions (i.e. expectations) of reward, as well as the gating of specific motor responses,

are under dopaminergic modulation. Theories about the developmental underpinnings of TS

in terms of DA function range from striatal DA receptor super-sensitivity [10] over tonic-pha-

sic or presynaptic DA dysfunction [11, 12] to DA hyper-innervation [11, 13]. The DA hyper

innervation hypothesis unifies previous findings under a promising framework.

To date, several studies have investigated motor impulsivity in patients with TS with refer-

ence to DA´s role in reward and motor control [14, 15]. However, fewer studies have explored

alterations in value-based decision-making in TS. This question is of particular interest

because motor and choice impulsivity might at least in part be supported by common neural

systems. First, DA in fronto-striatal circuits plays a role in both motor control [16, 17] and

choice impulsivity [18–20]. Second, some studies have suggested that lateral prefrontal cortical

(LPFC) regions might support impulse control functions, both in motor and non-motor

domains [21–24]. Two studies [25, 26] examined impairments in value-based decision-making

in TS in the context of reinforcement learning tasks. Palminteri and Pessiglione observed

impaired learning from negative feedback in TS [25], which is consistent with the idea of a

hyperdopaminergic state. Kéri and colleagues observed impaired probabilistic classification

learning, especially in children with severe tics [26]. However, the degree to which choice

impulsivity is impaired in TS remains unclear. To date, only one study examined temporal dis-

counting in patients with TS via the Kirby Monetary Choice Questionnaire [27] and observed

slightly increased discounting compared to healthy controls.

Another way to reliably assess this process is via intemporal choice tasks [28, 29]. Temporal

discounting describes a general preference for smaller sooner (SS) over larger, but later

rewards (LL) [30]. A relative preference for SS rewards (steep discounting of value over time)

is associated with a range of problematic behaviors, including substance use disorders and

overweight/obesity [31], the tendency to procrastinate investing in a pension [32], and to pro-

crastinate saving up for future investments [33]. The rate of temporal discounting is subject to

complex modulation by individual and contextual variables [34, 35], where striatal DA net-

works and prefrontal top down modulation seem to play crucial roles. However, the precise

relationship between dopaminergic states and impulsive choice is complex and might be a

function of age with a proposed u-shape association [36]. On the one hand, pharmacological

elevation of DA levels decreases discounting [20, 37–39]. On the other hand, hyperdopaminer-

gic states, e.g. due to administration of the dopamine precursor L-DOPA, are in some studies

associated with increased discounting [18], and patients with Parkinson’s disease can exhibit

increased impulsive behavior following DA replacement therapy [19]. To sum up, DA modula-

tion likely contributes to the modulation of intertemporal choice via its action on different

fronto-striatal loops, but scientific evidence suggests that there is no clear and simple linear

relationship between DA levels and choice impulsivity.

The picture is clearer with regard to top-down inhibitory mechanisms. The LPFC is

assumed to modify choice impulsivity [40–42], that is, inhibition of the selection of tempting
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SS choices in this model depends on prefrontal inhibitory regulation of subcortical or ventro-

medial prefrontal value representations. Changes in structural and functional connectivity

within this network are linked to the development of self-control (in this study the term ‘self-

control’ generally refers to far-sighted behavior in value based decision making) from adoles-

cence to early adulthood [43, 44]. Furthermore, inhibition and top-down control play a central

role in motor impulsivity and are believed to modulate TS pathophysiology, e.g. in the context

of suppressing urges and tics [14].

Studies have shown that motor and cognitive impulsive actions might require different

forms of self-control and these can be differentiated [45]. To sum up, there is extensive evi-

dence for regional overlap between inhibitory mechanisms in terms of motor impulsivity,

choice impulsivity, and other forms of impulsivity, such as emotion regulation [22–24]. Train-

ing in one domain might affect performance in other domains [46]. Regarding choice and

motor impulsivity, the dorsal striatum might be a key region of interest where top down inhib-

itory processes (originating in the PFC) modulate the execution or the re-evaluation of choice

outcomes [47]. These anatomical regions and attributed functions might be affected in TS

pathophysiology [48]. Even though temporal discounting has been proposed as an transdiag-

nostic trait [49] with valuable diagnostic potential [50] it is still an open question whether

patients with TS show aberrations in the domain of intertemporal choice. In the present study,

we compared adolescents (Study 1, Hamburg) and adults (Study 2, Cologne) with TS to con-

trols, using two modified temporal discounting tasks to broaden the understanding of value

based decisions in TS on one operational measure of choice impulsivity [32, 33].

Materials and methods

Ethics

The ethics committee of the University Hospital Hamburg approved the first study. Adoles-

cent patients with TS provided written assent and their parents provided written consent

(PV4439). Patients with TS were recruited in the University Hospital of Hamburg, whereas

controls were recruited by advertisement. The second study was carried out in accordance

with institutional guidelines and was approved from the ethics committee of the University of

Cologne (protocol ID: DRKS00011748). All participants provided written consent. Patients

were recruited at the University Hospital of Cologne whereas controls were recruited by

advertisement.

Study 1 specific methods

Participants. We included nineteen adolescents with TS (age: mean[sd] = 14.21[±2.37],

13 male subjects, range: 10–17) and nineteen age, education and gender-matched controls

(age: mean[sd] = 14.21[±2.53], 15 male subjects, range: 10–18). Adolescents with TS were

recruited from a specialist Tourette syndrome clinic in Hamburg. All patients had been diag-

nosed with Tourette syndrome, some had been treated for their tics. Healthy controls were

partly recruited from a pool of healthy participants who had participated in a previous study,

partly via public advertisement. All participants underwent a clinical assessment and per-

formed a modified delay discounting paradigm. Two adolescents with TS were taking antido-

paminergic drugs (Tiaprid) as prescription medication.

Clinical assessment. Adolescents were assessed with the “Yale Global Tic Severity Scale”

(YGTSS) [51], the “Premonitory Urge for Tic Disorders Scale” (PUTS), a self-report scale to

identify premonitory urges [52], and the “Children’s Yale-Brown Obsessive Compulsive Scale”

(CY-BOCS), a semi structured interview to evaluate OCD severity. CY-BOCS data were avail-

able from all adolescents with TS and 13 controls; in total, three adolescents with TS had a
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score above 12, the cut-off for clinically relevant OCD symptoms [53]. The “Parent-rated and

Self-rated Questionnaires for Attention Deficit Hyperactivity Disorder” (German: “Fremd-

beurteilungsbogen /Selbstbeurteilungsbogen für Aufmerksamkeitsdefizit-/Hyperaktivitätsstör-

ungen”) FBB-ADHD and SBB-ADHD are diagnostic instruments to identify ADHD [54].

FBB-ADHD data was available for all adolescents with TS and 16 controls. SBB-ADHS data

was available for 18 adolescents with TS and 17 controls. All adolescents also filled out a ques-

tionnaire on demographic measurements (age, gender, medication).

Task. Participants performed a experiential delay discounting task based on prior proce-

dure [55] where they chose between varying smaller sooner (SS � [0, 1, 2, 3 or 4 cents]) or

larger but later (LL [5 cents]) rewards. LL options were available after a specific waiting period

of 10, 20, 30, 40 or 60 seconds. Each SS-option was paired twice with each LL-option resulting

in 50 trials per participant. A progress bar indicated the number trials past. Position of the LL

option was counterbalanced to the left or right side of the screen. LL waiting-time was visual-

ized by the number of horizontal lines (e.g. 2 horizontal lines = 20s waiting period). Following

choice rewards were transferred into a virtual piggy bank either immediately (if SS was chosen)

or after the appointed waiting period (if LL was chosen). Depending on choices, participants

could gain between 0 € and 2.50 €. Following this time spent with task, i.e. delay to reward

delivery was related to the proportion of SS choices. (see S1 Fig).

Study 2 specific methods

Participants. We recruited twenty-five patients with diagnosed TS according to DSM-5

criteria [56] from the psychiatric outpatient clinic of the University Hospital Cologne (age:

mean[sd] = 29.88 [±9.03]; 19 male subjects, range: 19–53) and 25 age, education and gender-

matched controls (age: mean[sd] = 29.40 [±9.28]; 17 male subjects, range:19–49) through pub-

lic advertisement. All participants underwent a clinical assessment, performed a temporal dis-

counting paradigm, including a pretest based on prior procedures [57, 58]. Nine patients were

taking medication or cannabinoids. Five patients were treated with antidopaminergic drugs

(Aripiprazole, risperidone, tiapride) as a monotherapy, one patient with an anticonvulsant

(Valproate), one patient was taking a noradrenergic and specific serotonergic antidepressant

(Mirtazapine), and one patient was medicated with a combination of two antidopaminergic

drugs (Aripiprazole, risperidone) and a selective serotonin reuptake inhibitor (Citalopram).

One patient regularly smoked medical cannabis.

Clinical assessment. All participants filled out the Obsessive Compulsive Inventory-

Revised (OCI-R) [59] and the Beck Depression Inventory (BDI) [60]. The Wender Utah Rat-

ing Scale was used to assess ADHD symptoms [61]. Furthermore, they filled out a short intelli-

gence test (Leitprüfsystem-3 (LPS 3)) [62], followed by a demographic questionnaire with

information on age, gender, handedness, years of education and current drug or alcohol use.

Further, patients with TS completed an assessment with the YGTTS [51], and the PUTS [52].

All questionnaires were in German.

Task. Prior to the first testing session, participants completed a short adaptive pretest to

estimate the individual discount- rate (k). This discount rate was used to construct a set of 140

participant-specific trials using MATLAB (version 8.4.0. Natick, Massachusetts: The Math-

Works Inc). The task consisted of choices between an immediate smaller-sooner reward of 20

€ and participant specific larger-but-later (LL) rewards delivered after some delay (1, 2, 7, 14,

30, 90 or 180 days). In 70 trials, LL amounts were uniformly spaced between 20.5 € and 80 €,

whereas in the remaining 70 trials LL amounts were uniformly spaced around each estimated

indifference point per delay (based on the pre-test discount rate). If indifference points were

larger than 80 €, only uniformly-spaced LL amounts were used. Trials were presented in a
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pseudorandomized order. Participants were informed that after task completion, one trial

would be randomly selected and paid immediately in cash (smaller-sooner choice) or via a

timed bank transfer (larger-but-later choice).

Statistical analyses (both studies)

Model free analysis. Using model agnostic approaches can avoid possible caveats associ-

ated with model-based analysis, e.g., problems with parameter estimation or the choice for a

theoretical framework. Due to task structure in study 1 (adolescents) we used the percentage

of LL in contrast to SS choices as a model agnostic quantification of choice behavior. For com-

parison, we used a two-sided parametric test on the arc-sin-transformed values of SS vs. LL

choices.

In study 2 (adults) we computed the area under the empirical discounting curve (AUC)

(Note, due to the low number of varying rewards [only four different SS rewards], computing

the area under the points of indifference would decrease variability and in consequence infor-

mation when applied to the data in study 1). In detail, the AUC corresponds to the area under

the connected data points that describe the decrease of the subjective value (y-axis) over time

(x-axis). Each specific delay was expressed as a proportion of the maximum delay and plotted

against the normalized subjective (discounted) value. We then computed the area of the result-

ing trapezoids using Eq 1.

x2� x1

ðy1þy2Þ

2

� � ðEq 1Þ

Smaller AUC-values indicate more discounting (more impulsive choices) and higher AUC-

values indicate less discounting.

Computational modeling. Based on prior analysis and basic research in the field of tem-

poral discounting we a-priori assumed a hyperbolic model [63, 64] to model the decrease in

subjective value over time. Bayesian estimation methods have the advantage of estimating the

entire posterior distribution of parameter values given the data. Furthermore, hierarchical

Bayesian parameter estimation benefits from the fact that the entire data set is taken into

account via the hierarchical structure of the model. Parameters from each participant thus

mutually inform and constrain each other (partial pooling), such that meaningful estimates can

be derived even with limited data per subject (for details on Bayesian group comparison see [65,

66]; or for an overview see [67]. Due to the different time-scales of both intertemporal choice

tasks in adolescents and adults we decided to compare hyperbolic (Eq 2) and exponential dis-

counting (Eq 3) models. Both models assume that the LL reward, delivered after a specific delay

(D), is devaluated via a subject specific discount rate (k) that weights the influence of time on

subjective value (SV). A lower k-parameter reflects a lower weight on delay (reduced discount-

ing) whereas a higher k-parameter reflects steeper discounting. Both models differ in the way

they model this weight. In hyperbolic discounting the near future is discounted more heavily

than distant events. In exponential discounting the discount rate is constant.

SV ¼
LL

ð1þ kDÞ
ðEq 2Þ

SV ¼ LL � expð� kDÞ ðEq 3Þ

After devaluating the delayed option a sigmoid function (softmax choice rule; Eq 4) maps

the comparison of both the devaluated LL and SS option to choice probability on a trial by trial

basis. Here a free β inverse temperature parameter scales the influence of value differences on
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choice. A high β value implies that participants decide purely on value differences whereas

lower values indicates higher choice stochasticity. For limit of β = 0 choices are completely ran-

dom.

P LLð Þ ¼
expðb � SVðLLÞÞ

expðb � SVðSSÞÞ þ expðb � SVðLLÞÞ
ðEq 4Þ

Models were fit using a hierarchical Bayesian framework to estimate parameter distributions

via Markov Chain Monte Carlo (MCMC) sampling with JAGS [68]. Single subject parameters

were drawn from group-level normal distributions, with mean and variance hyper-parameters

that were themselves estimated from the data. Model convergence was assessed via the R̂ -statis-

tic (Gelman-Rubinstein convergence diagnostic) where values < 1.01. (two chains) were con-

sidered acceptable. For information on prior specification see S1 Table.

Analyses of group differences. Group comparisons were conducted by examining the

differences in posterior distributions per parameter of interest (discount-rate k and softmax

β). For group comparisons, we report Bayes factors (directional Bayes Factor (dBF)) for direc-

tional effects for the hyperparameter difference distributions of patients with TS and controls.

BFs were estimated via kernel density estimation using R (4.03) via the RStudio (1.3.1) inter-

face. These are computed as the ratio of the integral of the posterior difference distribution

from 0 to1 versus the integral from 0 to–1. Using common criteria [69], we considered BFs

between 1 and 3 as anecdotal evidence, BFs > 3 as moderate evidence, and BFs > 10 as strong

evidence. BFs > 30 and> 100 were considered as very strong and extreme evidence, respec-

tively, the inverse of these reflect evidence in favor of the opposite hypothesis.

Results

Study 1

Demographic characteristics and clinical assessment. Demographic and clinical charac-

teristics between adolescents with TS and controls are shown in Table 1. For demographic,

Table 1. Demographic, clinical and neuropsychological characteristics of adolescents with TS and healthy controls.

Adolescents with TS (n = 19) Controls (n = 19) T/U/ Χ2 p
Mean SD Mean SD

Age (Years) a 14.21 2.37 14.21 2.53 0.000 1.000

Male/Female c 13/6 - 78.9 - 0.543 0.467

Right-handed c 14/19 - 84.2 - 1.276 0.435

Current medication 2/19 - - - - -

YGTSS impairment 16.00 8.00 - - - -

YGTSS 23.37 12.38 - - - -

PUTS 19.53 5.61 - - - -

FBB-ADHDb 0.38 0.26 0.82 0.48 -3.226 0.093

SBB-ADHDa 0.39 0.22 0.68 0.39 88.0 0.497

CY-BOCS b 6.84 6.31 0.08 0.277 21.50 <0.001

ADHD, attention deficit hyperactivity disorder; CY-BOCS, Children’s Yale-Brown Obsessive-Compulsive Scale; (FBB)-ADHD/(SBB)-ADHD,

Fremdbeurteilungsbogen/Selbstbeurteilungsbogen für Aufmerksamkeitsdefizit-/Hyperaktivitätsstörungen; PUTS, Premonitory Urge for Tics Scale; TS, Tourette

syndrome; YGTSS, Yale Global Tic Severity Scale.

a. T-test was used because data was normally distributed.

b. Mann Whitney U test was used because data was not normally distributed.

c. Χ2 square test.

https://doi.org/10.1371/journal.pone.0253620.t001
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clinical and neuropsychological characteristics of adolescents with TS and controls adjusted

for multiple comparison see S2 Table.

Model free analysis. Controls chose the LL option in 48.3% of all cases whereas patients

with TS chose that option around 10% more often in 58.4% of all cases (see S2 Fig). Before

using a parametric-t-test, we applied an arcsin-transformation on all mean choice proportions

per participant. The groups did not differ significantly in the frequency of LL choices (t(35.83) =

1.0646; p = 0.29).

Computational modeling. Model comparison via DIC [70] revealed a better fit of the

exponential model (see Table 2). This holds when applying a full model including all partici-

pants from both groups or when modeling both groups separately (see Table 2). We next

examined overall group differences for the discount-rate k (Fig 1A). Analyzing the posterior

group difference distribution (Fig 1B) revealed that 93% of the posterior distribution of con-

trols is below the distribution of patients with TS. We then computed a dBF(see methods sec-

tion) which quantifies the relative evidence for increases vs. decreases in patients compared to

controls. This yielded a dBF of 12.52, i.e. given the data and model, an increase in discounting

on the group level in controls was 12.52 times more likely than a decrease. The corresponding

analysis of choice stochasticity is provided in S3 Fig.

Model comparison was based on the Deviance Information Criterion (DIC) [66] where

lower values indicate a better model fit. The adolescent data were better accounted by a model

Table 2. Model comparison of two variants of intertemporal choice.

Adolescents Adults

Patients with TS Controls Full model Patients with TS Controls Full model

Hyberbolic 791.5 878.8 1668.83 2538.4� 2156.4� 4701.7�

Exponential 686.5� 806.2� 1535.92� 2634.8 2297.8 4926.9

https://doi.org/10.1371/journal.pone.0253620.t002

Fig 1. a, Group level hyperparameter distributions of the discount-rate parameter k revealed that discounting was lower in adolescents with TS (orange) when

compared to controls (blue). b, Difference distribution of controls—adolescence with TS. Bayes factor for directional effects (dBF) indicated that a decrease in

discount-rate (k) in patients was 12.52 times more likely than an increase. Thin and thick colored (a) and black (b) bars indicate the 95% and 85% highest density

intervals respectively. TS, Tourette syndrome.

https://doi.org/10.1371/journal.pone.0253620.g001
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with an exponential discount function and the adult data were generally better accounted for

by a temporal discounting model with hyperbolic discounting whereas.

Study 2

Demographic characteristics and clinical assessment. Demographic and clinical charac-

teristics of adult patients with TS and controls are shown in Table 3. Controls did not score in

a clinically relevant range. Neither patients nor controls reported clinically relevant drug or

alcohol abuse. We further conducted an analysis of correlations of discount-rate, age, compul-

sivity and symptom severity (S3 Table).

Model free analysis. Applying a parametric t-test on the integral of the area under the

empirical discounting curve revealed no significant differences between patients with TS

(mean[AUC] = 0.459) and controls (mean[AUC] = 0.511) (t(46.1) = -0.8791; df = 46.1; p = 0.38),

see S4 Fig.

Computational modeling. Comparing hyperbolic and exponential discount functions

based on the DIC [70] revealed a better fit of the hyperbolic model. This holds when apply-

ing a full model including all participants from both groups or when modeling both groups

separately (see Table 2). In line with our model-agnostic approach, we did not find evidence

for group differences when analyzing the posterior difference distribution of the discount-

rate (k). Results are plotted in Fig 2. There was no evidence for consistent group differences

(dBF = 0.38). The analysis was repeated excluding six patients with TS, that were taking

antidopaminergic drugs at the time of the study. The exclusion of these patients only had a

marginal effect and the result pattern did not change. For analysis of choice stochasticity see

S5 Fig.

Table 3. Demographic, clinical and neuropsychological characteristics of patients with TS and healthy controls.

Adult patients with TS (n = 25) Controls (n = 25) T/U/ Χ2 p
Mean SD Mean SD

Age (Years)a 29.88 9.03 29.40 9.28 0.185 0.854

Male/Female c 19/6 - 68.00 - 0.397 0.529

Right-handed 22/25 - 88.00 - 0.000 1.000

Current medication 9/25 - - - - -

Years of education b 11.68 1.25 11.90 1.22 250.00 0.197

Tourette Onset 8.76 5.13 - - - -

YGTSS motor 15.84 5.72 - - - -

YGTSS verbal 12.32 6.36 - - - -

YGTSS impairment 26.80 11.08 - - - -

YGTSS 54.96 20.78 - - - -

PUTS 30.02 4.22 - - - -

BDI b 11.68 9.34 5.28 5.19 165.50 0.004

WURS-k a 26.12 11.60 16.04 9.55 3.36 0.002

OCI-R b 20.30 12.06 10.92 7.58 149.50 0.002

LPS-3 b 55.80 8.25 58.60 8.48 249.50 0.213

BDI, Becks depression inventory; LPS-3, Leistungsprüfsystem; OCI-R, Obsessive-Compulsive Inventory-Revised; PUTS, premonitory urge tic for scale; TS, Tourette

syndrome; WURS-k, Wender-Utah-Rating-Scale; YGTSS, Yale Global Tic Severity Scale.

a. T-test was used because data was normally distributed.

b. Mann Whitney U test was used because data was not normally distributed.

c. Χ2 square test.

https://doi.org/10.1371/journal.pone.0253620.t003

PLOS ONE Temporal discounting in adolescents and adults with TS

PLOS ONE | https://doi.org/10.1371/journal.pone.0253620 June 18, 2021 8 / 17
118

https://doi.org/10.1371/journal.pone.0253620.t003
https://doi.org/10.1371/journal.pone.0253620


Conclusions

The present study assessed temporal discounting in adolescent and adult patients with TS and

matched healthy controls. Our data suggest reduced discounting (experiential task) in adoles-

cent TS patients where in decrease in discounting was 12.52 times more likely than an increase

when contrasted to controls. We did not find any difference in intertemporal choice in adults

(hypothetical intertemporal choice task). TS is a complex neuropsychiatric disorder associated

with developmental disturbances in dopaminergic transmission which possibly result in failure

to control motor output [1, 2, 14, 15, 71]. These dopaminergic anomalies may either cause,

enable or enhance tics via inadequate gating of information through the striatum [7]. Some

studies point towards reductions in temporal discounting due to pharmacological elevation of

DA levels, whereas others point to an increase [18]. Generally, the human literature on dopa-

minergic contributions to impulsivity is characterized by substantial heterogeneity [72]. A fur-

ther complicating factor is that dopaminergic effects might be non-linear [73], as summarized

in the inverted U-model of DA functioning [74]. However, acute dopaminergic modulation by

pharmacological agents and long-term abnormal dopaminergic states such as in TS may effect

behavior differently. In line with this distinction, our results suggest that the putative chronic

hyperdopaminergic state of TS does not give rise to substantial changes in temporal discount-

ing in adults.

However, we did find evidence for decrease in temporal discounting in adolescents with TS

when compared to healthy controls, i.e. adolescents with TS preferred LL rewards.

Our analysis revealed that a decrease in temporal discounting in adolescents with TS was

about 12 times more likely than an increase (dBF = 12.52). Adolescents typically show higher

discount rates than adults [75]. This is thought to be attributable to functional and structural

fronto-subcortical connectivity that undergoes maturation until early adulthood [15, 43, 44].

Adolescents with TS are constantly faced by tics and the need to control their motor output.

Fig 2. a, Group level hyperparameter distributions of discount-rate k for patients with TS (orange) and controls (blue); b Difference distribution of patients with

TS—controls. The black bars indicate the 95% and 85% highest density interval respectively. Bayes factors for directional effects (dBF) of 0.36 patients> controls

indicate no substantial difference between patients and controls. Thin and thick colored (a) and black (b) bars indicate the 95% and 85% highest density intervals

respectively. TS, Tourette syndrome.

https://doi.org/10.1371/journal.pone.0253620.g002
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Even though these tics might emerge from complex neurophysiological interactions, i.e. hyper-

active DA modulated striatal gating and reduced inhibition of GABAergic interneurons [76,

77], one could speculate that the ability to inhibit tics might foster the ability to inhibit other

impulses, thereby strengthening cognitive control more generally [46]. However our results

conflict with a recent study by Vicario and colleagues [27] who report increased discounting

in adolescent patients with TS. We note that the task for the adolescent sample in our study

differed distinctively, not only from the task of the adult sample but also from the Monetary

Choice Questionnaire used by Vicario and colleagues [27]. Importantly, our task included a

payout dependent on actual choice behavior (experiential task). Differences in the reported

findings on impulsive choice of Vicario and colleagues and our findings might therefore be

reflected in differences in task demands. In theory three complementary systems are thought

to orchestrate intertemporal decisions: the valuation network, regions associated with cogni-

tive control [40, 41], and a network associated with future prospection [29]. We therefore fur-

ther propose that the weights between brain circuits involved in intertemporal choices might

differ. That is the networks involved might depend on the temporal horizon of the task i.e. the

need for future prospection might be less pronounced in the experiential task. However future

studies are needed to clarify these issues.

The question then arises why such an effect would not likewise translate into greater self-

control during temporal discounting in the adult TS patients. One possibility is that such a

“training” account merely affects the developmental trajectory of self-control, such that adoles-

cents with TS reach adult levels of self-control earlier than their healthy peers. Testing such a

model would require longitudinal studies.

Additional clinical differences between adolescent and adult TS patients further complicate

the interpretation of the differential effects in the two age groups. Adolescents and adults with

TS exhibit different tic-phenomenology, for instance adolescents exhibit higher variability

and/or fluctuations in tics. In consequence adolescents who successfully control their tics have

a greater likelihood of eventual remission, likely due to better executive control capabilities

[78]. In contrast, patients who still exhibit TS in adulthood exhibit attenuated inhibitory con-

trol [14]. In both samples, the discount rate (k) was not significantly correlated (corrected for

multiple comparisons) with ADHD, OCD comorbid symptomatology or the YGTSS (see S1

and S2 Tables). Interestingly, the data in adolescent patients with TS was best fit by an expo-

nential function, while the data in adult patients with TS was best accounted for by a model

with hyperbolic discount function, which is in line with most of the literature on intertemporal

choice [63]. First, though speculative the function of temporal discounting, processed in

CSTC-loops, might generally be sensitive to the time scale (seconds/minute in adolescents vs.

days to weeks in adults) of the task (see discussion of task differences above). Second, there

might be technical reasons for this finding so the differences in the relative model fit between

tasks could be due to differences in the option sets.

The present study has several limitations. First, adolescents and adults performed different

temporal discounting tasks with different reward magnitudes (0–4 cents vs. 20–80 €) on a dif-

ferent timescale. Reward magnitudes in the range of cents vs. tens of Euros may entail different

valuation and/or control processes [79, 80]. This precludes direct comparisons in k between

age groups. Importantly, both tasks experiential and hypothetical differ in what is known

regarding their internal and external validity. While the hypothetical intertemporal choice task

was proposed to constitute a transdiagnostic trait [81] less is known about the experiential

task. Nonetheless, we note that the experiential task in study 1 is comparable with tasks like

those used in the Marshmallow experiments by Mischel and Ebbesen [82] or other experiential

adaptions [83, 84]. These experiential tasks have also shown some predictive value [85, 86] and

successful treatment interventions in populations that are known for steep discounting [87].
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Some studies do report correlation of experiential and hypothetical tasks (e.g. [88]). However,

these findings are not always present [89, 90] and therefore represent a limitation of the cur-

rent study.

Second, we draw theoretical conclusions from reward impulsivity to motor inhibition in

patients with TS, even though motor inhibition was nor directly tested in the present studies.

Further studies should further examine the developmental trajectories of both functions.

Third, although only two adolescents with TS took medication, about a quarter of the adult

patients (n = 6) were on antidopaminergic medication. An integrative review showed that

most TS medication (i.e. D2 antagonists) reduce phasic DA, tonic DA or both [71] such that

processing in fronto-striatal circuits was likely affected by the medication. However, a control

analysis, excluding participants on antidopaminergic medication yielded the same pattern of

results. Fourth, the samples may not be representative of the true TS population. Generalizabil-

ity is limited due to the respective age ranges, the exclusion of patients with severe comorbidi-

ties and the fact that all patients were seeking treatment in a specialized outpatient clinic. Fifth,

another limitation is the relatively small sample size of both studies. This is especially relevant

for the interpretation of study 2, were no significant between-group differences were observed.

Importantly, the lack of difference should be interpreted carefully with further studies needed

to verify this finding.

The present study assessed temporal discounting in adolescent and adult patients with TS

and matched healthy controls. Our data suggest reduced discounting (via an experiential task) in

adolescent TS patients. We speculate that this might be due to improved inhibitory functions

that affect choice impulsivity and/or the developmental trajectory of executive control functions.

Interestingly, adult patients with TS exhibited levels of discounting similar to controls. This

might be due to higher disease severity in adult patients with TS (e.g., patients who acquired suc-

cessful tic inhibition during adolescence might have gone into remission). Future studies would

benefit from adopting a consistent longitudinal approach to further elucidate the developmental

trajectory of neural correlates i.e. dopaminergic states and intertemporal preferences and further

from directly examining effects of dopaminergic medication on these processes in TS.

Supporting information

S1 Fig. Example for two trials in the temporal discounting task adapted for children and

adolescents. The blue circle depicts the LL reward (in cents) that participants will receive if

they wait. How long they have to wait is indicated by blue lines, i.e. one blue line = 10s wait, six

blue lines = 60s wait. The red circle indicates how much the participant will receive if they

move on to the next trial immediately (0–4 cents). Participants received feedback about the

amount earned after every trial (piggy bank). The green bar below the two circles indicates

how many trials the participant has already finished. LL, larger but later.

(TIF)

S2 Fig. Percentage of larger, but later choices in adolescents with TS and controls. LL,

larger but later.

(TIF)

S3 Fig. A: Softmax β in adolescent patients with TS vs. controls. Group level hyperpara-

meter distributions of the inverse temperature parameter softmax β revealed no group differ-

ences between patients (orange) and controls (blue). B: Difference distribution of controls—

patients with TS. Thin and thick colored (a) and black (b) bars indicate the 95% and 85%. TS,

Tourette syndrome.

(TIF)
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S4 Fig. Subject specific comparison of the integral under the empirical area under the

curve in adults with TS and controls. TS, Tourette syndrome.

(TIF)

S5 Fig. A: Softmax β in adult patients with TS vs. controls. Group level hyperparameter dis-

tributions of the inverse temperature parameter softmax β revealed no group differences in the

mean of the posterior or a shift in either direction between patients (orange) and controls

(blue). However, variance was increased in controls indicating higher interindividual differ-

ences in decision noise. B: Difference distribution of controls—patients with TS. Thin and

thick colored (a) and black (b) bars indicate the 95% and 85% highest density intervals respec-

tively. TS, Tourette syndrome.

(TIF)

S1 Table. Prior specifications for group and subject level parameters. Discount-rate (k)

parameters were estimated in logarithmic space due to parameter stability. Softmax β values

were estimated in standard-normal space for the same reason.

(DOCX)

S2 Table. Correlation analysis of model parameters and subscale of the SBB-Questionnaire

adjusted for multiple comparison. We report our exploratory analysis on discount-rate and

questionnaire data. Scores are spearman correlation coefficients (p-value) not corrected for

multiple comparisons. TS, Tourette syndrome.

(DOCX)

S3 Table. Correlation analysis of model parameters and questionnaire data in adult

patients with TS and controls adjusted for multiple comparison. We report our exploratory

analysis on discount-rate and questionnaire data. Scores are spearman correlation coefficients

(p-value) not corrected for multiple comparisons. TS, Tourette syndrome; BDI, Becks depres-

sion inventory; OCI-R, Obsessive-Compulsive Inventory-Revised; TS, Tourette syndrome;

WURS-k, Wender-Utah-Rating-Scale.

(DOCX)
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Abstract 

When choosing between rewards that differ in temporal proximity (inter-temporal choice), 

human preferences are typically stable, constituting a clinically-relevant transdiagnostic trait. 

Here we show in patients undergoing deep brain stimulation (DBS) to the anterior limb of the 

internal capsule / nucleus accumbens for treatment-resistant obsessive-compulsive disorder, 

that chronic (but not acute) DBS disrupts inter-temporal preferences. Findings support a 

contribution of the human nucleus accumbens region to preference stability over time. 

 

Main text 

Humans continuously maneuver the world weighting the future against the present. The degree 

of temporal discounting of future rewards as assessed via inter-temporal choice tasks is a stable 

trait 1 with relevance for a range of psychiatric conditions 2. For example, steep discounting of 

value over time is a hall-mark of addiction 3. Multiple neural systems contribute to human self-

control, including prefrontal cortex (PFC) regions involved in cognitive control, and regions of 

the mesolimbic and mesocortical dopamine system (e.g. ventral striatum and ventro-medial 

PFC) involved in reward valuation 4–6. Earlier studies focused on characterizing potentially 

dissociable striatal and prefrontal value signals during inter-temporal choice 7–9. This debate 
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has ultimately led to a revised view of self-control, according to which lateral PFC exerts top-

down control over ventromedial PFC in support of self-controlled choices10–12 . Despite the 

finding that both striatal reward responses13 and cortico-striatal connectivity 14 are associated 

with temporal discounting in cross-sectional analyses, this model is largely silent with respect 

to the contribution of the ventral striatum.  

Here we address this issue by capitalizing on the rare opportunity to longitudinally 

follow patients undergoing therapeutic deep brain stimulation (DBS) of the nucleus accumbens 

region for treatment-resistant obsessive-compulsive disorder (OCD). OCD is assumed to be 

associated with a dysregulation in fronto-striatal circuits 15, which can be normalized via 

anterior limb of the internal capsule / nucleus accumbens (ALIC/NAcc ) DBS 16–19. In the 

context of a DBS treatment-efficacy study 20 we examined acute and chronic effects of DBS on 

temporal discounting. 

Patients with OCD and matched controls (for inclusion criteria and demographics see 

methods and Supplemental Table S1, for DBS stimulation details see methods and 

Supplemental Table S2) completed three separate testing sessions: one initial testing session at 

T1 (patients: pre-DBS, controls: session one) and two follow-up sessions at T2 (T1-T2 test-

retest interval mean [range] in days for patients: 203 [155-260], controls: 206 [164-247]). The 

T2 sessions were spaced within a week (patients: DBS on vs. off in counterbalanced order with 

at least 24h wash-out; controls: sessions two and three). N=7 patients completed all three testing 

sessions. Two additional patients completed T1 but only one of the T2 sessions (total n=9 for 

pre vs. post DBS analyses). Eight additional patients were only tested at T2 (in total n=15 for 

on vs. off DBS analyses). N=28 controls participated, with one control missing the final testing 

session (yielding n=27 for the corresponding analysis). Due to the Covid-19 pandemic, ten of 

the controls completed testing at T2 online. On each testing day, participants completed a 

temporal discounting task involving 140 choices between smaller-immediate (20 €) and larger-

but-later rewards (individualized amounts ranging between 20.5 – 80€, see methods). One trial 

per session was selected at random and paid out in cash or via timed bank transfer.  

 

	
Figure 1. Group-level changes in inter-temporal choice. a, At T1 (pre DBS), partients (n = 9) discounted 

delayed rewards steeper compared to controls (n = 28) at the first session (directional Bayes Factor 
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(dBF) = 35.75). b, pooled second and third sessions in controls (n = 28) vs. pooled DBS on and DBS 

off in patients (n = 9). (T2; controls < patients; dBF = 15.85). c and d: Controls and patients tended to 

discount rewards steeper after six months of time (controls T1 < T2 (n = 28); dBF = 4.15) or 6 months 

of continuous stimulation (patients pre DBS < post DBS (n = 15); dBF = 10.87). e, Discounting on the 

group level did not reveal changes with consistent directionality following acute DBS (DBS on < DBS 

off (n = 15); dBF = 0.90).  Thin (thick) horizontal lines denote the 95% (85%) highest density intervals. 

Data were modeled for each time point separately using hierarchical Bayesian parameter 

estimation (see methods) and a hyperbolic discounting model with softmax action selection. In 

line with previous work 21, OCD patients exhibited increased discounting (a higher discount 

rate log[k]), both pre DBS at T1 (Figure 1a) and across on and off DBS sessions at T2 (Figure 

1b). Controls showed no systematic change in discounting between the two T2 testing sessions 

(see Supplemental Table S3). There was no systematic effect of acute DBS on temporal 

discounting (n=15, Figure 1e). If anything, rewards where discounted somewhat steeper after 

six months (controls: Figure 1c) or six months of continuous DBS (patients: Figure 1d), a 

pattern observed previously in healthy participants 1. An overview of all group comparisons is 

provided in Supplemental Table S3, and the corresponding analyses for decision noise (softmax 

𝛽) are provided in Supplemental Figure S1. 

	
Figure 2. Reliability of inter-temporal choice (discount rate log[k]). a, and b, show individual discount 

rates log(k) at different points in time (task sessions at T1 and T2) in controls (a) and patients (b). The 
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x- and y axis with regard to the short-term data (orange) refer to the comparison within T2 (a: control 

data session 2 (x-axis) vs. session 3 (y-axis). With regard to the long-term data  (blue) the axis refer to 

session 1 (x-axis) vs. pooled sessions 2 and 3 (y-axis). b:  patient short-term data (orange) DBS on (x-

axis) vs. DBS off (y-axis). In the long-term condition data (blue) the x-axis shows discount-rates in the 

first/prior to DBS task session and data on the y-axis refers to the pooled sessions at T2. c, bootstrapped 

correlation coefficients in controls and patients.  

 

To study DBS effects on the stability of inter-temporal preferences, we applied both inter- and 

intra-individual analytical approaches. In controls, the discount rate log(k) exhibited the 

expected high test-retest reliability (Figure 2a), both between sessions two and three at T2 (one-

week short-term stability, bootstrapped mean r = .90, 95% highest density interval [HDI] = .82 

– .98 see Figure 2c) and between T1 and pooled T2 data (6-month long-term stability, 

bootstrapped mean r = .80, 95% HDI = .61 – .96, see Figure 2c). All bootstrapped correlation 

values are provided in Supplemental Table S4. In patients (Figure 2b), short-term test-retest 

reliability (DBS on vs. off, n=15) was comparable to controls (bootstrapped mean r = .96, 95% 

HDI = .90 – 1.0, see Figure 2c;). This was also the case when examining only patients who 

completed all three sessions (n=7, see Figure 2c, DBS on vs. off matched patients; bootstrapped 

mean r = .95, 95% HDI = .86 – 1.0).  

In stark contrast, long-term stability in patients was completely disrupted (T1 pre-DBS 

vs. pooled T2 post-DBS, n=9, bootstrapped mean r = -.44, 95% HDI = -.93 – .00; see Figure 

2c). This group difference was not due to range restriction in the patients (range-matched subset 

of n=9 controls: bootstrapped mean r = .68, 95% HDI = .37 – .96, Figure 2d). Likewise, it was 

unlikely attributable to the presence of OCD symptoms, as a subset of n=14 controls with high 

OCI-R scores (mean [range] = 23.57 [14 – 40]) still exhibited high long-term test-retest 

reliability (bootstrapped mean r = .95, 95% HDI = .87 – 1.0; see Figure 2d). Furthermore, the 

long-term test-retest reliability in DBS patients was lower than that of any n=9 sub-sample of 

controls with similarly narrow ranges of log(k) values (Supplemental Figure S2). Reliability in 

controls was similar for lab vs. online testing due to Covid-19 lockdown (Supplemental Figure 

S3).  
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Figure 3. Within-subject changes in inter-temporal preferences. a and c, model-based (MB) T1-T2 

choice inconsistency (deviation between T2 choices and model-predictions based on a decision model 

fitted to T1 data, see main text and methods) and model-agnostic (MA) T1-T2 choice inconsistency 

(mean absolute deviation of indifference points between T1 and T2, see main text and methods). b and 

d permutation test for model-based and model-agnostic inconsistency scores respectively. Histograms 

show null distributions of mean group differences across 10k randomly shuffled group labels; red 

vertical lines: observed group differences; red horizontal line: 95% highest density interval.   

We next tested whether a disruption of preference stability would also manifest at the level of 

individual decisions, using both model-based and model-agnostic measures. First, we extracted 

individual-subject median discount-rates (log[k]) and decision noise parameters (𝛽) from our 

hierarchical Bayesian model estimated on T1 data (see methods) to compute choice 

probabilities for each T2 decision (pooling across sessions). We then computed a model-based 

choice inconsistency score as the mean deviation of predicted and observed choices at T2 for 

each participant (higher values correspond to greater inconsistency). A permutation-based 

group comparison using 10k randomly shuffled group labels revealed a significant increase in 

patients (permutation test: p = 0.01, Figure 3a, b). This difference held when groups were 

matched on decision noise across a range of thresholds (see Supplemental Figure S4). 

As a model-agnostic measure of within-participant changes in preferences, we 

computed the mean absolute change in indifference points from T1 to T2 (see methods and 

Supplemental Figures S5 and S6 for single-subject data). This confirmed a greater increase in 

patients vs. controls (permutation test, p = 0.018, Figure 3b, c). Inconsistency measures did not 

correlate with years of education, pre-post DBS symptom severity scores, overall duration of 

OCD or the T1-T2 interval (see Supplemental Table S5). These analyses suggest that choices 

at T2 deviated from T1 more after six months of continuous ALIC/NAcc DBS.  

Taken together, we show using both inter- and intra-individual analyses that 

ALIC/NAcc DBS disrupts the long-term (but not short-term) stability of inter-temporal 

preferences in OCD patients undergoing DBS treatment. This suggests that in addition to short-

term plasticity processes22, long-term ALIC/NAcc DBS23 can interfere with the expression of 

inter-temporal preferences that are thought to rely on the this same circuitry 4,5,7,13. While earlier 
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reports noted effects of acute stimulation on risk-taking and impulsivity 24,25 (albeit with acute 

block-wise stimulation protocols), our longitudinal analysis revealed changes only following 

prolonged stimulation. Our data do not suggest a specific direction of change, nor do they reflect 

an association with a change in OCD symptoms. Rather, the data suggests a fundamental role 

of the nucleus accumbens region in maintaining preference stability over time. The exact 

cellular mechanisms underlying the DBS effects remain speculative 17,26  – potential effects 

range from DBS acting as an informational lesion, to changes in inter-regional functional 

connectivity17 and a general modulation of oscillatory activity and in consequence pathological 

circuitry26.  

In summary, our data extend neural models of self-control12 and inter-temporal choice4,5 

by revealing a contribution of the human nucleus accumbens region to the maintenance of 

preference stability over time. These findings reveal a case of subtle long-term modulation of 

higher cognitive function via DBS that further studies might elaborate on. 
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Methods 

Participants 

All participants provided informed written consent prior to participation, and the study 

procedure was approved by the Ethics Committee of the Medical Faculty of the University of 

Cologne. 

 

OCD Patients 

OCD-Patients eligible for DBS had to meet the DSM-IV criteria for OCD, a Yale-Brown 

Obsessive Compulsive Scale (Y-BOCS) over 25, at least one cognitive-behavioral therapy 

(minimum of 45 sessions), at least two unsuccessful treatments with a serotonin reuptake 

inhibitor (SSRI) and one unsuccessful augmentation with either lithium, neuroleptics or 

buspirone. Patients were excluded due to drug, medication or alcohol abuse, suicidal ideation, 

mental retardation, pregnancy or breastfeeding and schizophrenia. Disease duration was on 

average 27.59 ± 13.02 years ranging from 6 to 48 years. The mean age at onset for OCD was 

16.2 ± 9.25 years. For further details see Supplemental Table S1. 

 

Controls 

Exclusion criteria were drug, medication or alcohol abuse or the diagnosis of a psychiatric 

disorder. Controls were screened for OCD-symptoms via the OCI-R questionnaire. Here 9/28 

subjects scored above the threshold (>21) for possibly obtaining OCD.  

 

Sample size 

N=9 patients and n=28 controls completed testing at T1 (session 1 and pre-DBS). N=15 patients 

completed DBS on and off sessions at T2. Out of the N=9 patients who completed pre DBS 

testing, N=7 completed both DBS on and DBS off testing at T2, whereas one patient missed 

the DBS off session, and one patient missed the DBS on session. N=27 controls completed both 

testing sessions at T2 (sessions 2 and 3).  

 

Temporal discounting task 

Prior to the first testing session, participants completed a short adaptive pretest to estimate the 

individual discount- rate (k). This discount rate was used to construct a set of 140 participant-

specific trials using MATLAB (version 8.4.0. Natick, Massachusetts: The MathWorks Inc). 

The task consisted of choices between an immediate smaller-sooner reward of 20€ and 

participant specific larger-but-later (LL) rewards delivered after some delay (1, 2, 7, 14, 30, 90 
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or 180 days). In 70 trials, LL amounts were uniformly spaced between 20.5 € and 80 €,  whereas 

in the remaining 70 trials LL amounts were uniformly spaced around each estimated 

indifference point per delay (based on the pre-test discount rate). If indifference points were 

larger than 80€, only uniformly-spaced LL amount were used. Trials were presented in a 

pseudorandomized order. Participants were informed that after task completion, one trial would 

be randomly selected and paid immediately in cash (smaller-sooner choice) or via a timed bank 

transfer (larger-but-later choice). 

 

Deep brain stimulation  

DBS was applied to the anterior limb of the internal capsule and nucleus accumbens region. 

Details on electrode placement (including reconstruction of electrode positions), surgical 

procedure and adjustment of stimulation parameters are available elsewhere20. Final stimulation 

amplitudes ranged from 2.6 to 4.8 volt and pulse-width was set between 60 and 150 µs (see 

Supplemental Table S2 for details). The frequency of DBS was 130 Hz except for two patients 

who received 150 Hz stimulation.  

	

Computational Modeling 

To assess inter-temporal preferences, applied a standard single-parameter hyperbolic 

discounting model:  

𝑆𝑉(𝐿𝐿!) =
𝐴

1 + exp(𝑘) ∗ 𝐷						(𝐸𝑞. 1) 

Here, A is the numerical reward amount of the LL option. The discount-rate (k) models the 

steepness of the hyperbolic discounting curve, with greater values corresponding to steeper 

discounting. Delay D of the LL option is expressed in days. To improve numerical stability of 

the estimation, k was estimated and is reported in logarithmic space. SV then corresponds to the 

subjective (discounted) value of the delayed option. We then used softmax action selection27 

(Eq. 2) to model the probability of selecting the LL option on trial t. Here, 𝛽 is an inverse 

temperature parameter, modeling choice stochasticity. For 𝛽 = 0, choices are random, and as 

𝛽 increases, choices become more dependent on option values: 

𝑃(𝐿𝐿!) =
exp7𝛽 ∗ 𝑆𝑉(𝐿𝐿!)8

exp7𝛽 ∗ 𝑆𝑉(𝑆𝑆)8 + exp7𝛽 ∗ 𝑆𝑉(𝐿𝐿!)8
							(𝐸𝑞. 2) 
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Hierarchical Bayesian parameter estimation 

Models were fit to all trials from all participants, separately per group and time point, using a 

hierarchical Bayesian modeling approach. We included separate group-level gaussian 

distributions for log(k) and 𝛽 for patients and controls, and/or T1 and T2 time points. Parameter 

estimation was performed using Markov Chain Monte Carlo as implemented in the JAGS 

software package (Plummer, 2003) (Version 4.3) in combination with R (Version 3.4) and the 

R2Jags package. For group-level means, we used uniform priors defined over numerically 

plausible parameter ranges ([-20, 3] for log(k); [0, 10] for 𝛽). We initially ran 2 chains with a 

burn-in period of 400k samples and thinning of two. Chain convergence was then assessed via 

the Gelman-Rubinstein convergence diagnostic 𝑅; and sampling was continued until 1 ≤ 𝑅; ≤

1.01 for all group-level and individual-subject parameters. 10k additional samples were then 

retained for further analysis. We then show posterior group distributions for all parameters of 

interest as well as their 85% and 95% highest density intervals (HDIs). For group comparisons 

(T1 vs. T2 or patients vs. controls) we report Bayes Factors for directional effects for the 

hyperparameter difference distributions, estimated via kernel density estimation using R 

(Version 4.01) via RStudio (Version 1.3) interface.  

 

Analysis of group differences 

To characterize differences between patients and controls, changes from T1 to T2 or within T2 

(e.g. on/off DBS) we show posterior difference distributions and the corresponding 85 % and 

95 % highest density intervals. We then report Bayes Factors for directional effects. These were 

computed as the ratio of the integral of the posterior difference distribution from 0 to +∞ vs. 

the integral from 0 to -∞. Using common criteria 28, we considered Bayes Factors between 1 

and 3 as anecdotal evidence, Bayes Factors above 3 as moderate evidence and Bayes Factors 

above 10 as strong evidence. Bayes Factors above 30 and 100 were considered as very strong 

evidence. 

 

Bootstrap analyses - test-retest reliability 

We analyzed the group-level reliability of inter-temporal choice (log[k]) from T1 to T2 (long-

term stability) and within a week at T2 (short-term stability). Distributions of test-retest 

correlation coefficients were estimated via bootstrapping 29. To this end, pairs of individual-

participant median log(k) values were sampled with replacement 15k times.  We then report 

the mean and 95 % HDI of the resulting bootstrap-distribution of correlation coefficients. 
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  Due to differences in group size and the relative and absolute range of log(k) values in 

patients we performed additional control analyses. Specifically, we repeated this bootstrap 

analysis for all sub-samples of N=9 controls with adjacent log(k) values, yielding twenty 

bootstrap correlations corresponding to sub-samples of the control group with maximally 

similar log(k) values.  Results are shown in Supplemental Figure S2. 

 

Model-based choice inconsistency  

For both model-based and model-agnostic within-participant changes, we leveraged the fact 

that participants completed the exact same 140 choices at each testing session. To examine 

model-based changes in preferences, we extracted individual-participant median discount-rates 

log(k) and decision noise parameters (softmax β) from our hierarchical Bayesian model 

estimated on T1 data. We then used these parameters to compute choice probabilities for each 

T1 choice. To examine model-based preference changes from T1 to T2, we then subtracted the 

T1 choice probability from the corresponding observed choices at T2 (0 for smaller-sooner and 

1 for larger-later choices). We then computed a choice inconsistency score as the mean of the 

absolute differences between T1 choice probabilities and T2 choices. Across the whole sample 

controls showed lower decision noise when compared to patients with OCD (see Supplemental 

Figure S1) which was also reflected in an overall reduced model fit in patients (Supplemental 

Table S6). To account for this in the model-based inconsistency analysis, we additionally 

matched groups on β. This eliminated group differences in model fit (Supplemental Table S6) 

but critically did not affect group differences in model-based inconsistency (Supplemental 

Figure S4).  

 

Model free analysis of indifference points 

Model-based analyses rely on specific mathematical assumptions regarding the shape of the 

discounting function. Furthermore, they can be affected by potential group differences in model 

fit. Therefore, we additionally examined a model-agnostic measure of within-participant 

changes in preferences. To this end, we fit sigmoid functions (see Eq. 3) to the choice data of 

each delay D per participant and time point T: 

𝑃7𝐿𝐿",$8 =
%

%&'()*+*,!,#	+./∗1/
	(𝐸𝑞. 3). 

 

That is, we modeled the probability to choose the delayed reward for delay D at time point T 

for each participant as a sigmoid function of the absolute LL reward amount A. Here, c is the 

inflection point of the sigmoid (corresponding to the indifference point, i.e. the point of 
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subjective equivalence between the delayed reward and the immediate reward at the respective 

delay D), and b is the slope. 

For delays with only larger-later choices, the indifference point was set to the midpoint 

between the immediate reward (20€) and the smallest available LL reward. For delays with 

only smaller-sooner choices, the indifference point was conservatively set to max(LL). These 

rules were also applied in cases where there was only a single noisy LL or SS choice for a given 

delay. Using this procedure, we computed 196 indifference points in controls and 63 

indifference points in patients. Six indifference points in controls and two in OCD patients 

could not be estimated. We then computed the mean absolute deviation in indifference points 

between T1 and T2 as a model-agnostic measure of preference consistency.  

Individual-participant choice data for each session and estimated indifference points are 

plotted in Supplemental Figure S5 (patients) and S6 (controls). 

 

Permutation-based group comparisons 

Model-based and model-agnostic consistency measures (see previous sections) were compared 

between groups using permutation tests. To this end, we compared the observed group 

difference in preference consistency to a null-distribution of preference consistency that was 

obtained by randomly shuffling the group labels 10k times, and computing the group difference 

for these shuffled data. Significance was assessed using a two-tailed p-value of 0.05. 
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Supplemental Material 

Supplemental Table S1. Demographic data. Scores are Mean (SD). 

Long-term reliability Controls (n = 28) Patients (n = 9) Group Comparison 

Age (yrs) 40.2 (9.0) 41.4 (11.6) t(11.223) =-0.30, p = 0.77 

Sex (F/M) 14/14 4/5 X2
(1)  < 0.001,  p = 1 

Education (yrs) 11.9(1.4) 10.7(1.4) t(13.325) = 2.34, p = 0.04 

Short-term reliability Controls (n = 27) Patients (n = 15)  

Age (yrs) 40.1 (9.1) 47.4 (11.3) t(21.944)= -2.08, p = 0.05 

Sex (F/M) 13/14 8/7 X2
(1)  = 0, p = 1 

Education (yr) 11.9 (1.4) 10.8 (1.5) t(24.4) = 2.26,  p = 0.03 

Long-term (β-matched) Controls (n = 14) Patients (n = 9)  

Age (yrs) 41.6 (9.9) 41.4 (11.6) t(14.305) =.044, p = 0.97 

Sex (F/M) 9/8 5/4 X2
(1)  < 0.001,  p = 1 

Education (yrs) 11.35 10.8 T(27.577) = 0.96, p = 0.34 

 

Supplemental Table S2.  Overview of sex, age, disease duration before surgery and stimulation 

parameters (monopolar, case anode, all bilateral, except for patient 13) of DBS patients with OCD. DBS, 

deep brain stimulation; F, Female; Hz, Hertz; L, Left; M, Male; µs, microsec; OCD, obsessive-

compulsive disorder; R, Right. 

ID Sex Age Years 
of 

OCD 

Electrode 
contacts 

Frequ
ency 

Amplitude Pulse-
width 

Sessions 

1 W 26 21 L: 0- 1- 
R: 8- 9- 

130 Hz 5.3 V 120 µs Pre/On 

2 M 25 14 L: 3- 1- 
R: 11-, 10- 

150 Hz 2.6 V 120 µs Pre/On/Off 

3 F 50 25 L: 3- 2- 
R: 11-, 10- 

130 Hz 4.7 V 150 µs Pre/On/Off 

4 F 34 18 L: 3- 2- 
R: 11- 10- 

150 Hz 4.3 V 120 µs Pre/On/Off 

5 M 47 20 L: 3- 2- 
R: 11- 10- 

130 Hz 3.3 V 120 µs Pre/On/Off 

6 M 45 37 L:2- 1- 
R: 10- 9- 

130 Hz 4.8 V 150 µs Pre/On/Off 

7 F 54 47 L: 3- 2- 
R: 11-, 10-  

130 Hz 4.6 V 90 µs Pre/On/Off 

8 W 36 10 L: 3-, 2- 
R: 11- 10- 

130 Hz 4.7 V 150 µs Pre/On 

9 M 56 36 L: 3- 2- 
R: 11- 10- 

130 Hz 3.5 V 60 µs Pre/On/Off 
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10 M 48 6 L: 0- 1- 
R: 8- 9- 

130 Hz 6.5 V 150 µs On/Off 

11 F 34 18 L: 3- 2- 
R: 11- 10- 

90 Hz 2.5 V 180 µs On/Off 

12 F 36 27 L: 3- 2- 
R: 11- 10- 

130 Hz 4.2 V 120 µs On/Off 

13 M 64 28 L: 3- 2- 
R: 11- 10- 

130 Hz 5 V 120 µs On/Off 

14  F 57 37 L: 3- 2- 
R: 11- 10- 

130 Hz 4.5 V 120 µs On/Off 

15 
 

M 59 48 L: 0- 1- 2-   
R. 8- 9- 10- 

130 Hz 6 V 150 µs On/Off 

16 F 54 48 L: 3- 2- 
R: 11- 10- 

130 Hz 4 V 150 µs On/Off 

 
 

Supplemental Table S3. Posterior log(k) differences. We report mean posterior differences (Mdiff) and 

Bayes factors for directional effects.  

Group comparison  Mdiff dBF 

Controls T1 (n = 28) < patients T1 (n = 9)  -1.13 35.75 

Controls T2 (n = 28) < patients T2 (n = 9)  -1.29 15.85 

Controls S2  <  controls S3 (n = 27)  0.15 0.73 

Controls T1 < controls T2 (n = 28)  -0.68 4.15 

Patients DBS on < patients DBS off (n = 15)  0.08 0.90 

Patients pre-DBS < patients post DBS (n = 9)  -0.84 10.87 

 
 
Supplemental Table S 4. Bootstrapped correlation coefficients and highest density intervals  

Group comparison Mean 95% HDI 

controls T1 - controls T2 (n = 28) .80 .61 – .96 

controls S2 - controls S3  (n = 27) .90 .82 – .98 

controls T1 – controls T2 range matched (n = 9) .67  .37 – .96 

controls T1 – controls T2 high OCI-R (n = 14) .95  .87 –  1.0 

patients DBS on - patients DBS off (n = 15) .96 .90 – 1.0  

patients DBS on vs. DBS off matched (n = 7) .95  .86 – 1.0 

patients pre-DBS - patients post DBS (n = 9) -.44 -.92 – 0.0 
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Supplemental Table S5. Pearson correlations for model-based and model-agnostic choice 

inconsistency measures with demographic/clinical variables of interest.  

 Patients (n=9) Controls (n=28) 

MB inconsistency vs. years of education r = -0.18, p = 0.63 r = -0.01, p = 0.94 

MA inconsistency vs. years of education r = -0.43, p = 0.24 r = -0.17, p = 0.37 

MB inconsistency vs. pre-post YBOCS r = -0.01, p = 0.99 - 

MA inconsistency vs. pre-post YBOCS r = -0.13, p = 0.73 - 

MB inconsistency vs. OCD duration (yrs) r = -0.25, p = 0.51 -  

MA inconsistency vs. OCD duration (yrs) r = -0.20, p = 0.60 - 

MB  inconsistency vs. T1-T2 interval (d) r = -0.03, p = 0.94 r = -0.07, p = 0.74  

MA inconsistency vs T1-T2 interval (d) r = -0.36, p = 0.73 r = -0.02, p = 0.91 

 

 

Supplemental Table S6. Mean (SD) proportion of correctly predicted choices of the hierarchical 

Bayesian model (hyperbolic discounting + softmax). At T1 the model performed better in controls than 

in patients. This difference was not significant at T2. This difference also trivially disappeared when 

groups were matched on decision noise (softmax β).  

Predicted choices Patients (n=9) Controls (n=28) Group Comparison 

T1  0.80 (0.07) 0.88 (0.07) t(13.839) = 2.73; p = 0.02 

T2  0.82 (0.09) 0.87 (0.08) t(12.833) = 1.65; p = 0.12 

  Controls matched on β (cut-off = 0.5, n=17) 

T1  0.80 (0.07) 0.84(0.06) t(13.656) = 1.35; p =0.20 

T2  0.82 (0.09) 0.85(0.06) t(14.044) = 0.96; p =0.35 

  Controls matched on β (cut-off = 0.41, n=14) 

T1  0.80 (0.07) 0.83(0.06) t(13.656) = 1.18; p =0.26 

T2  0.82 (0.09) 0.83(0.07) t(14.606) = 0.51; p =0.62 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.12.11.417337doi: bioRxiv preprint 

143

https://doi.org/10.1101/2020.12.11.417337
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
	

	
Supplemental Figure S1. Group differences and temporal changes in softmax β. a/d, On the group 

level, OCD patients exhibited lower β values than controls	(a: T1, controls < patients; directional Bayes 

Factor (dBF) = 0.003, d: T2, controls < patients; directional Bayes Factor (dBF) = 0.0009). β values 

show inconsistent changes from T1 to T2 (b: controls; c: patients), or at T2 within each group (e: 

controls, f: patients). Thin (thick) horizontal lines denote the 95% (85%) highest density intervals. 

	

	
Supplemental Figure S2. Bootstrap analysis across the whole range of log(k) values in controls. y-axis: 

mean value of each strata´s bootstrap distribution of correlation coefficients with 95 % HDI. In a, stratas 

are ordered according to the mean log(k) value of the strata. In b, stratas are ordered according to the 

mean bootstrap correlation coefficient.	
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Supplemental Figure S3. Comparison of T2 lab and T2 online sessions. Participants that performed 

the task in an online-version at T2 (6 months after T1) and participants that completed T2 testing in the 

lab showed a similar long-term test-retest reliability.  

 

	
Supplemental Figure S4. a, Individual-subject softmax β parameters (mean of T1 and T2 posterior 

medians) modelling decision noise. To account for effects of group differences in β, in additional 

analyses, controls matched on β to the patients were selected across various β cut-offs (β=0.5: red dotted 

line, n=17; β=0.41: green dotted line, n=14; β=0.7: blue dotted line, n=19). b, Individual-subject model-

based T1-T2 choice inconsistency in β-matched controls (β cutoff = 0.5) and patients. c-e, Permutation 

test results for group differences in model-based choice inconsistency (histograms of group differences 

with 10k randomly shuffled group labels) across all cut-offs (c: β=0.5, d: β=0.41, e: β=0.7). In line 

with the analysis across the whole sample, patients showed significantly increased model-based 

inconsistency for all cut-offs (c: p = 0.018, d: p = 0.023, e: 0.01). Vertical lines in c-e denote the 

observed group difference, horizontal red lines denote the 95% HDI of the null distribution. 
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Supplemental Figure S2. Single-subject choice data for all n=9 patients with pre- and post DBS data. 

Green and red points represent LL and SS choices, respectively, across LL amounts (y-axis) and delays 

(x-axis). Black circles show estimated indifference-points. 
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Supplemental Figure S3. Single-subject choice data for all n=28 controls. Green and red points 

represent LL and SS choices, respectively, across LL amounts (y-axis) and delays (x-axis). Black circles 

show estimated indifference-points. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.12.11.417337doi: bioRxiv preprint 

147

https://doi.org/10.1101/2020.12.11.417337
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

General Discussion 

The present work assessed intertemporal choice, that is the process of value-based 

decision-making between two temporally exclusive outcomes. In general humans and other 

animals discount delayed rewards (Samuelson 1937; Mazur and Coe 1987; Peters and Büchel 

2011). Cognitive processes like reward valuation, reward learning and motivation to work for 

reward largely depend on DAergic structures, i.e. the mesolimbic DA system (Schultz 2013, 

2015; Berridge 2016; Berke 2018; Westbrook et al. 2021) . Besides this, the DAergic system is 

implicated in nearly all psychiatric diseases, and basically all neuroleptic drugs available for 

treatment target the DA system (Ayano 2016; Meiser et al. 2013; Beaulieu et al. 2015).  

The Research Domain Criteria (RDoC) framework of the National Institute of Mental 

Health called out research to find new and liable tools that measure continuous dimensions of 

human function. The aim of this initiative is to foster our understanding of the dimensions 

underlying mental health (Insel et al. 2010; Kozak and Cuthbert 2016; U.S. Department of 

Health and Human Services, National Institutes of 2016). Research on intertemporal choice, 

while existing for more than 100 years, has recently gained traction given multiple research 

groups (Lempert et al. 2019; Bickel et al. 2019) acknowledged its potential as a transdiagnostic 

marker and potential diagnostic tool that fits within the RDoC framework.  

Another promising decision-making construct that was additionally assessed in Study 2 

within this dissertation targets the differentiation of so-called MF and MB contributions to RL. 

While a MF agent learns stimulus-reward associations, a MB agent additionally takes the 

structure of the environment into account (Daw 2011). Impairments in MB RL have been 

associated with habitual tendencies, a lack of goal-directed control and might constitute a 

general impairment across a range of compulsive disorders (Voon et al. 2015; Gillan et al. 2016; 

Gillan et al. 2020). Studies in this dissertation contributed to our understanding of such 

important decision-making constructs in the following ways. 

Effects of the D2-Receptor Antagonist Haloperidol in Healthy Participants 

In Study 1 Dopaminergic Modulation of Intertemporal Choice: a Diffusion Model Analysis 

using the D2 Receptor Antagonist Haloperidol revealed substantially smaller 

discount-rate parameters (decreased discounting) under haloperidol vs. placebo consistently in 

two different magnitude conditions. These results challenge one prior study where an effect of 

haloperidol was absent (Pine et al. 2010), but line up with other studies investigating the effects 

of moderate increases in DA neurotransmission on discounting (Wit 2002; Hamidovic et al. 

2008; Weber et al. 2016). Our data strengthen the view that modulating DA neurotransmission 
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via lower doses of a D2-receptor antagonist, here haloperidol, likely enhances DA release by 

predominantly binding at presynaptic D2 autoreceptors (Schwarz et al. 2004; Chen et al. 2005; 

Frank and O'Reilly 2006). This interpretation is supported by an unrelated memory task during 

fMRI that participants completed prior to the temporal discounting task. Here, the analyses 

revealed an overall main effect of drug condition on trial onset-related activity in the caudate 

nucleus, that is caudate activity was increased under haloperidol (Clos et al. 2019). Further, our 

DDM approach revealed substantially shorter non-decision times (~ 180ms) in the haloperidol 

group when contrasted to the placebo group. A substantial increase in RT components is more 

compatible with an increase in DA neurotransmission (Weed and Gold 1998; Guitart-Masip et 

al. 2011; Beierholm et al. 2013).  

Our results are further theoretically plausible with new perspectives and computational 

models on DAs role in cost-benefit decision-making (Collins and Frank 2014; Westbrook and 

Braver 2016; Westbrook et al. 2020; Westbrook et al. 2021). Here enhanced DS DA synthesis 

capacity or elevated DA neurotransmission via methylphenidate and a D2 receptor antagonist 

was associated with an increased willingness to invest in effort for receiving reward (Westbrook 

et al. 2020). A DDM analyses revealed that these subjects increasingly focused on the benefits 

(reward information) in contrast to the cost (effort information) of their decisions (Westbrook 

et al. 2021). Note, our results are only compatible with these findings if one defines delay  as 

costs  and higher reward  as benefits  of decision options. Limitations and open questions 

of this perspective are discussed below. 

Contextual Effects of Gambling Environments 

In Study 2 Gambling Environment Exposure Increases Temporal Discounting but 

Improves Model-based Control in Regular Slot-Machine Gamblers

contextual modulation of temporal discounting (Lempert et al. 2019; Bickel et al. 2019) and 

MB control (Gillan et al. 2020; Gillan et al. 2016) in regular slot machine gamblers. Regular 

slot machine gamblers have previously been characterized by high levels of temporal 

discounting (Wiehler and Peters 2015) and reduced MB control (Wyckmans et al. 2019). Our 

results here show that these putatively transdiagnostic traits are modulated in different ways. 

First, gambling environment exposure increased temporal discounting. A finding in line with 

lab experiments on gambling cue exposure. In these studies the exposure to gambling cues, i.e. 

pictures of gambling venues/machines, or sounds increased delay discounting (Miedl et al. 

2014; Dale et al. 2019; Genauck et al. 2020). We further replicated a similar finding of Dixon 

et al. (2006) where regular bet facility visitors showed increased discounting in the context of 
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betting facilities in contrast to neutral (cue-free) locations (Dixon et al. 2006). Importantly, we 

further link our findings of increased discounting to maladaptive control beliefs. That is, 

gamblers who`s discount-rates increased to a greater extend were likewise characterized by 

higher scores on the Gambling Related Cognition Scale (GRCS) (Raylu and Oei 2004). Taken 

together this suggests that some underlying mechanism contributes to both, gambling cognition 

and choice impulsivity in gambling environments. Secondly, we consistently observed 

increased MB control and reduced MF control of behavior when gamblers performed the RL 

task in the gambling environment. Importantly, this finding contrasted with our a-priori 

hypothesis of reduced MB control in the gambling context. Addiction is generally thought to 

rely on extensive habit formation (Robbins and Everitt 1999; Barry J Everitt and Trevor W 

Robbins 2005) and cue exposure is believed to trigger those habits (Antons et al. 2020).  

However, if one renders MF control of RL as habitual and MB control as goal directed, 

a common interpretation (Daw 2011; Gillan et al. 2016), our findings contrast with these 

assumptions. Thus, our results are important experimental findings for the understanding of 

addiction. In fact, critics of habit theory emphasized that addiction might be associated with 

excessive goal-directed behavior, in particular in the presence of addiction-related cues 

(Hogarth 2020). Our data supports this latter perspective. Overall, these context effects suit the 

perspective of incentive salience /incentive sensitization theory (Robinson and Berridge 1993; 

Robinson and Berridge 2008). Further evidence for this interpretation stems from the 

observation of increased subjective craving in this environment. Increased craving / wanting 

fits likewise well with incentive sensitization theory (Robinson and Berridge 1993; Robinson 

and Berridge 2008), which proposes that addiction-related environments exert their influence 

on behavior in part via a potentiation in dopamine release (Berridge 2016; Anselme and 

Robinson 2013; Robinson and Berridge 2001), but see section on limitations below. Increases 

in DA neurotransmission has also been associated with increased MB- (Wunderlich et al. 2012; 

Sharp et al. 2016) and decreased MF control (Kroemer et al. 2019). The gambling context might 

thus enhance goal-directed control via an improved construction and/or utilization of the task 

transition structure potentially modulated by DA. This interpretation furthermore resonates with 

the computational assumptions of OPAL (Collins and Frank 2014) and experimental findings 

assuming that DA enhances the willingness to spend cognitive effort (Westbrook and Braver 

2016; Westbrook et al. 2020; Westbrook et al. 2021). 

 Given the latter interpretation and our findings from Study 1, it is not straightforward 

why discounting is modulated differently given a suggested increase in DA in both studies. One 

possible explanation is, that besides modulating the willingness to promote effort and focus on 
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the benefits of decision outcomes (Westbrook et al. 2021; Mikhael et al. 2021; Schwartenbeck 

et al. 2015), DA also signals opportunity costs. These opportunity costs, in theory, do track the 

average rate of reward in the environment and are suggested to be reflected in VS dopamine, 

while the willingness to exert and focus on benefits was suggested to be associated with DS DA 

(Westbrook et al. 2021; Collins and Frank 2014).  

Being speculative, these high opportunity costs in the context of gambling environments might 

modulate performance on intertemporal choice task and RL strategies in the Two Step Task 

differently. While performance in the Two Step Task can yield bigger reward, performance on 

the intertemporal choice task does not immediately pay off. Further, all participants performed 

on the intertemporal choice task first. It is possible that the effects of cue exposure / incentive 

salience decreased over time, because participants habituated to the environment. Such 

differential effects are compatible with the perspective of an inverted-U-function of DA where 

the effects of DA on decision-making differ depending on the degree of DA enhancement 

(Cools and D'Esposito 2011; Maia and Frank 2017).  

Moreover, mechanism like future imagination  or self-control (see section on 

Theoretical Background) contribute to intertemporal choice (Peters and Büchel 2010b, 2011). 

While the willingness to invest in cognitive effort might be increased, spontaneous future 

imagination might be decreased in the presence of addiction related cues and high opportunity 

costs. Future prospection has been shown to attenuate temporal discounting in a range of 

settings (Rösch et al. 2021). While a general impairment of future imagination was not found 

in gamblers under lab conditions (Wiehler et al. 2015), it is still possible that future imagination 

is decreased in the context of gambling venues. Gambling venues are designed in a specific 

way, i.e. they have no windows, subtle lighting and other features that make customers focus 

on the present and their gambling activities (Sulkunen et al. 2021). Interestingly, it was recently 

proposed that while higher levels of tonic DA in rodents should generally decrease discounting 

(promote selection of the larger reward), this relationship is reversed when time perception is 

distorted (Mikhael and Gershman 2021). Further, participants with vulnerabilities for addiction 

might in general tend to focus on the present, while under the influence of cues or contexts 

endowed with high levels of incentive salience (Flagel et al. 2009).  

In total our findings show that two computational trans-diagnostic markers with high 

relevance to gambling disorder in particular and addiction more generally are modulated in 

opposite ways by exposure to real-life gambling environments. These findings posit a challenge 

for habit/compulsion theories of addiction. Ecologically valid testing settings such as those 

investigated here can thus yield novel insights into environmental drivers of maladaptive 
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behavior underlying mental disorders, i.e. effect sizes during naturalistic cue exposure (e.g. the 

present study and Dixon et al., 2006) were substantially larger than during lab-based exposure 

in previous studies (Miedl et al. 2014; Genauck et al. 2020; Dale et al. 2019). 

Intertemporal Choice in Patients with Tourette Syndrome 

In Study 3 Temporal Discounting in Adolescents and Adults with Tourette Syndrome

we examined intertemporal preferences in adolescent and adult patients with TS. TS is a 

complex neuropsychiatric disorder associated with developmental disturbances in DAergic 

neurotransmission. These DAergic anomalies are believed to either cause, enable or enhance 

tics like sudden movements, muscle contractions or phonic and repetitive sounds (Bloch and 

Leckman 2009; Denys et al. 2013; Maia and Conceição 2018). Moderate pharmacological 

increases in DA neurotransmission have been associated with decreased discounting (see 

above). However, studies showed that patients with TS show impairments in RL tasks, likely 

caused by DA associated reward sensitivity (Palminteri and Pessiglione 2013; Palminteri et al. 

2009). To date, effects of the suggested DA hyperinnervative state in TS (Maia and Conceição 

2018) on intertemporal preferences are unclear [but see: (Vicario et al. 2020)].  

Our results here suggest that the proposed pathophysiology of TS does not give rise to 

substantial changes in temporal discounting in adult patients with TS. However, in a second 

study, where adolescent patients with TS performed a experiential discounting task 

[comparable with (Mischel et al. 1988; Mischel et al. 1989; Johnson 2012)] we found evidence 

for decreased discounting in TS patients, contrasting with another recent study (Vicario et al. 

2020). Functional and structural frontostriatal connectivity undergoes maturation until early 

adulthood (van den Bos et al. 2015; Jackson et al. 2015; Anandakumar et al. 2018). We 

speculate that this process might be strengthened in adolescence with TS. Patients with TS are 

constantly faced by tics and the need to control their motor output. Learning to inhibit tics might 

foster the ability to inhibit other impulses, thereby strengthening cognitive control more 

generally (Muraven 2010). However, our adult and adolescent sample performed different 

tasks. Demands for experiential tasks (adolescents) with delay in the range within 60 seconds 

and hypothetical tasks (adults) with delays upon months might substantially differ. This is 

because the delay in the experiential task is directly experienced and the time horizon is 

substantially different. In consequence, the need for specific subprocesses involved in 

intertemporal choice, i.e. future imagination, might be less pronounced in the a task where a 

small delay (in seconds) is experienced immediately. 
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 It is likewise possible that TS pathophysiology in general affects decision subprocesses 

differently, i.e. effects of a hyperresponsive valuation network [as proposed by: (Palminteri and 

Pessiglione 2013; Palminteri et al. 2009)] and effects of regions associated with self-control 

might offset  contribution to discounting. However, it was not possible to further 

disentangle these processes in our study design. Future studies would benefit from adopting a 

consistent longitudinal approach to further elucidate the developmental trajectory TS and its 

association with decision-making subprocesses involved in intertemporal choice. 

Effects of Chronic Deep Brain Stimulation 

In Study 4 Chronic Deep Brain Stimulation Disrupts the Stability of Intertemporal 

Preferences effects of acute and chronic DBS in 

OCD patients. OCD is characterized by impulsions, compulsions and pathophysiology in CSTC 

loops (Robbins et al. 2019; Kashyap et al. 2012). DBS is one treatment option for otherwise 

therapy refractory patients and studies report that DBS is effective in restoring pathological 

activity in CSTC loops (Figee et al. 2013; Wu et al. 2020). Our results show that ALIC /NAcc 

DBS disrupts the long-term (but not short-term) stability of inter-temporal preferences. While 

in general intertemporal preferences are relatively stable over time (Kirby 2009) preferences 

changed significantly more in patients after long-term DBS than in controls. We therefore 

conclude that long-term ALIC/NAcc DBS (Denys et al. 2010) can disrupt relatively stable 

choice preferences. Earlier reports noted effects of acute stimulation on risk-taking and 

impulsivity (Nachev et al. 2015; Luigjes et al. 2011) , however, effects of chronic DBS on the 

stability of choice preference processes have not been observed to date. 

 The exact cellular mechanisms underlying changes via DBS are still not completely 

resolved (Lozano and Lipsman 2013; Figee et al. 2013; Robbins et al. 2019) and potential 

effects range from DBS acting as an informational lesion, to changes in inter-regional functional 

connectivity and pathological circuitry (Lozano and Lipsman 2013; Figee et al. 2013). 

However, our data does not suggest a specific direction or association with changes in OCD 

symptoms and therefore insights and associations with DBS pathophysiology are somewhat 

limited. Nevertheless, our results suggest a contribution of the human NAcc region to the 

maintenance of preference stability over time. In consequence, our findings suggest that long-

term DBS can modulate higher cognitive functions that rely on the same CSTC-loops that are 

affected in OCD (Robbins et al. 2019). Further studies should use this knowledge and thus more 

carefully monitor subtle long-term effects of DBS on human behavior.   
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Computational Cognitive Modelling 

In Study 1 and Study 2 we applied a recent class of value-based sequential-sampling 

models based on the drift diffusion model (DDM) (Pedersen et al., 2017; Fontanesi et al., 2019; 

Shahar et al., 2019; Pete ; see Methods). In both of these studies 

comprehensive RT-based analysis extended previous studies via a detailed decomposition of 

the decision process. In our study on DAergic modulation of intertemporal choice in healthy 

participants this analysis revealed that, beside changes in the discount-rate the haloperidol 

group was characterized by substantial reductions (~ 180ms) in non-decision time (motor 

components of the decision process). Thus, our computational assessment of the data allowed 

for further implications regarding the drug effects of haloperidol as such robust enhancement 

of lower-level motor and/or perceptual RT components are more compatible with an increase 

in DA transmission (e.g. Weed and Gold, 1998). An inspection of parameter correlations 

suggested that both parameters (discount-rate log[k] and non-decision time t0) might capture 

aspects of the decision process with an coherent underlying mechanism. Moreover, this finding 

resonates with previous studies suggesting a DAergic enhancement of RT-based response vigor 

(Guitart-Masip et al. 2011). Our computational modelling results raise evidence for a pre-

synaptic effect of D2-antagonism given low doses of haloperidol. Importantly, these 

implications would have not been possible via standard modelling approaches (e.g. softmax 

action selection). 

 The same DDM approach enabled us to detect that contextual effects on intertemporal 

choice in Study 2 are associated with an attenuation in non-decision time, which mirrors effects 

of pharmacological enhancement of dopamine transmission in Study 1. In contrast to these 

results, we observed a substantial increase in maximum drift rate in the gambling context, 

reflecting increased value sensitivity of RTs. Pharmacological effects of D2-antagonism and 

contextual effects of gambling environments though differ in how they affect latent decision 

components, i.e. value sensitivity and non-decision time. We further applied our comprehensive 

RT-based analysis to each stage of the Two Step RL task (Shahar et al. 2019). Our analysis here 

revealed that latent decision processes (DDM parameters) were largely unaffected by 

environmental context. Thus, we hypothesize that the gambling venue primarily affected the 

weighting of MF and MB contributions to evidence accumulation. In consequence we can be 

more certain that gambling venues most exclusively enhance MB RL strategies, instead of 

changing other aspects of the decision process. Importantly, model comparison and posterior 

predictive checks of single subject data showed that in both studies a DDM with non-linear 

trial-wise drift rate scaling captured the relationship of decision conflict (SS - subjective LL 
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value differences) and RTs best (Peters and D'Esposito 2020; Wagner et al. 2020; Fontanesi et 

al. 2019). We further report extensive parameter recovery analyses of our data in Study 1 and 

confirm that group-level parameters recovered well (Peters and D'Esposito 2020). In detail, 

recovery of individual-subject baseline parameters (100 condition) was excellent, 

whereas recovery of parameters modeling condition effects (20  was ok. 

Overall, in both studies the DDM-based modeling approach allowed us to examine the 

dynamics underlying decision-making much more comprehensively than in previous human 

pharmacological or cue-reactivity studies (Hamidovic et al. 2008; Wit 2002; Pine et al. 2010; 

Weber et al. 2016; Petzold et al. 2019; Dixon et al. 2006; Miedl et al. 2014; Genauck et al. 

2020; Dale et al. 2019). 

Computational modelling in Study 3 and Study 4 followed more standard protocols, i.e. 

softmax-action selection and logistic regression. This decision was due to task constrains, that 

in consequence rendered RTs not suitable for a similar DDM analysis. However, central 

findings are: First, data of the experiential discounting task in adolescent patients with TS in 

Study 3 was best fit by an exponential discounting function. We propose this to be a 

consequence of the specific task design. Decisions on the experiential task in adolescents 

unfolded within seconds upon to a minute, whereas decision outcomes in the adults task 

unfolded after the task and up to weeks and months in the future. 

 Secondly, in our analysis in Study 4 it was necessary to quantify long-term change in 

intertemporal preferences while controlling for decision noise (softmax[ ]). In detail, changes 

in long-term stability of intertemporal preferences were quantified via changes in trial-wise 

choice probability for one or the other choice option. However, when both the control and DBS 

group differ in the decision-noise parameter (softmax[ ]), long-term changes in the trial-wise 

choice probabilities could be caused by changes or a baseline difference in choice stochasticity 

itself. Therefore one needs to match both groups on decision noise. In this case we decided to 

only use controls that fall in the same range on stochasticity as patients. This was done because 

the control group was substantially larger (n = 30 vs. n = 9 patients in the DBS group). Said 

differently, the substantial aim of this study was to analyze changes in choice preference. 

Moreover, a more accurate decomposition of the decision process would have complicated the 

interpretation of the results, simply because it would be unlikely to find consistent effects within 

such a low number of data points in the DBS group. Unfortunately, it is extremely difficult to 

find a substantial amount of patients participating on cognitive tasks prior to DBS electrode 

implantation. Nevertheless, in the ideal case one would prefer to rely on a substantial larger 

sample size, obtain RTs and further decompose the decision processes via a more 
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comprehensive analysis. Taken together, studies in this dissertation demonstrate the advantage 

of sophisticated computational modelling. These methods can draw implications from 

behavioral data alone and therefore support conclusions (contextual effects or aspects of 

pharmacological modulation) that would have been much harder to infer without those 

methods. Further, in some cases it might be useful to analyze data using more standard 

approaches, i.e. when sample size is limited or data needs to be constrained in specific ways. 

Limitations 

Aside from the limitations already mentioned above some further limitations and open 

questions remain. First, we did not directly measure DAergic activity during task performance 

and therefore our interpretations of DAergic effects are based on pharmacological studies, 

computational assessment and further implications based on other research and prominent 

theories in the literature. To illustrate the complexity: While there is evidence that small doses 

of the D2-antagonist haloperidol (and likewise amisulpride and sulpiride) increase DA 

neurotransmission (Frank and O'Reilly 2006; Westbrook et al. 2020; Clos et al. 2019), it is 

unlikely that these effects are exclusive to specific regions. On the one hand, research suggests 

a higher ratio of D2 receptors are found in the DS (Ford 2014; Seamans and Yang 2004). This 

is also in line with activation patterns following haloperidol administration prior to task 

performance in our study (Clos et al. 2019) and further theoretically plausible with DAs effect 

on benefits vs. costs (Westbrook et al. 2020). However, it was also suggested that D2-

antagonists primarily modulate phasic DA (Benoit-Marand et al. 2011), but see (Zhang et al. 

2009), and the ratio of phasic vs. tonic DA is believed to be highest in the VS, especially the 

NAcc area (Tsai et al. 2009). These degrees of freedom can further complicate the exact 

regional consequences of D2 antagonism. Moreover, D2-autoreceptors are commonly found in 

the amygdala and hippocampus area (Ford 2014; Beaulieu and Gainetdinov 2011), implying 

the possibility of an effect on processes associated with MTL regions, like future imagination 

or emotional valence. Thus, neuronal effects of haloperidol on intertemporal choice might be 

region specific (Wächtler et al. 2020)

to intertemporal choice. If we want to understand the exact effects of modulating intertemporal 

choice via D2-autoreceptor antagonism this needs to be evaluated carefully. 

Intertemporal choice / delay discounting has proven to be a reliable construct with high 

long-term stability (Kirby 2009; Lempert et al. 2019), however, it is still unknown if this 

translates to MB control in the Two Step Task assessed in Study 2. While split-half reliability 

proved to be quite good (Shahar et al. 2019), to date likewise one study reported relatively low 
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overall reliability (Enkavi et al. 2019). Future research needs to clarify if the Two Step Task 

measures a reliable trait-like construct or is better described as a state-like construct (for trait-

state effects in intertemporal choice please see Peters and Büchel [2011]). In Study 2 we further 

report a robust increase in impulsive choice and MB RL strategies from the neutral to the 

gambling environment. While we have some evidence that this finding is associated with 

gambling cues and exclusive to participants susceptible to these cues (we report an association 

with GRCS and gambling severity compound scores and observed increased craving in the 

gambling context; see above) it is not clear if these effects are absent in other subjects, i.e. in a 

matched control group without prior gambling experience. Said differently, it remains unknown 

if these context effects are caused by other environmental differences that modulate decision-

making independent of gambling cue-reactivity. For example, other context depended changes 

like novelty effects [novelty and excitement both modulate DA neurotransmission: e.g. (Schultz 

2016; Duszkiewicz et al. 2019; Linnet et al. 2011)], a general interest in gambling/ motivation 

to gamble or arousal (McClelland et al. 1987) might modulate task performance via effects on 

DA neurotransmission. Moreover, gambling machines are designed to attract attention and 

might thus constitute salient stimuli to controls (Ungless 2004; Winton-Brown et al. 2014; 

Duszkiewicz et al. 2019; Linnet et al. 2011; Schultz 2016). Therefore the inclusion of a control 

group and a careful assessment of other constructs (i.e. novelty, general interest in gambling) 

that theoretically modulate DA neurotransmission could contribute to our understanding of the 

underlying mechanisms.  

This study is a first step in the direction of ecologically valid testing settings. Context 

effects such as those investigated here can yield novel insights into environmental drivers of 

behavior and mental disorders. However, while human behavior is generally shaped by real-

world environment it is overly harder to disentangle the unique factors that modulate behavior 

in such complex environments. For example, the number of customers present varied across 

participants and context, affecting noise levels like auditory gambling cues. Lighting conditions 

and environmental cues were not matched and differed between environments. Future work is 

needed to dissociate important environmental elements that modulate task performance from 

those irrelevant to decision-making. 

With respect to our assessment of intertemporal choice in patients with TS in Study 3 it 

is important to note that different discounting tasks and incentives might rely on different 

mechanisms. While some studies do report correlations of experiential and hypothetical tasks 

(Steele et al. 2019), others do not (Smits et al. 2013; Patt et al. 2021). This limitation precludes 

direct comparisons of the discount-rate between age groups. It is therefore not clear if 
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adolescents with TS show decreased discounting in a hypothetical task with much longer delay 

periods. Future studies should assess discounting across age groups using identical task designs 

and if applicable assess further constructs like future imagination or self-control. Directly 

examining effects of DAergic medication on these processes in TS can further shape our 

understanding. This is especially important in complex pathophysiologies like TS (Bloch and 

Leckman 2009) where the contribution of individual subprocesses, i.e. valuation, learning and 

others (Garcia Lorca 2019), might be differentially modulated by age, course of disease, 

medication and comorbidities (Hirschtritt et al. 2015). It is therefore essential to adopt a 

consistent longitudinal approach to further elucidate the developmental trajectory of DAergic 

disturbances in TS (Singer et al. 2002; Ernst et al. 1999; Buse et al. 2013; Maia and Conceição 

2018) and their contributions to decision-making processes like intertemporal choice. 

Finally, the results regarding the effects of DBS on preference changes are a bit 

preliminary. First, the exact cellular mechanism underlying DBS remain unclear (Figee et al. 

2013; Lozano and Lipsman 2013). In consequence the mechanism and importance of exact 

location of DBS electrodes are unknown. To clearly resolve contribution of long-term 

stimulation of ALIC / NAcc area future studies are necessary. Ideally, those manage to recruit 

more participants and test for cognitive functioning, i.e. intertemporal preference and if 

applicable subprocesses (valuation, future imagination, self-control) prior to DBS electrode 

implantation. With more knowledge about the state prior to DBS, research could expand our 

knowledge of subtle long-term changes, due to chronic DBS.  
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Outlook 

Understanding the continuous dimensions of human functioning sounds promising, but to 

approximate this promise, even just for  many future 

studies are needed. To resolve the exact role of DA I find it useful to examine, if recently 

developed theoretical models of DAs role in other decision-making domains or intertemporal 

choice in rodents hold valuable predictions for human data (Collins and Frank 2014; Mikhael 

and Gershman 2021; Westbrook et al. 2021). 

For example, OPAL (Collins and Frank 2014) and supportive experimental findings 

suggest that increased baseline DA synthesis capacity or enhancements of DS DA biases 

decision-making to benefits in contrast to costs in a cognitive effort task (Westbrook et al. 2020; 

Westbrook et al. 2021). As mentioned above, our results are compatible with this view. 

However, f

further 

clarify if the effects of D2 are primarily associated with DS DA. Interestingly, Westbrook et al. 

(2021) also find that enhancement of DA in the VS decreases the willingness to invest in 

cognitive effort and suggest that VS DA signals opportunity costs (average reward rate in the 

environment). To date OPAL´s formalism (Collins and Frank 2014) and the data on cognitive 

effort (Westbrook et al. 2020) primarily focus on the DS (actor in OPAL) while the role of DA 

in the critic (VS; state value and opportunity costs) is less formalized. Thus, future research 

needs to clarify if VS and DS DA modulate intertemporal preferences differently. Further, it is 

important to resolve how and if different DA drugs primarily modulate DA in specific brain 

regions. Said differently, are the observed differences of L-DOPA on intertemporal choice (Pine 

et al. 2010) or impulsive behavior in general (Voon 2017; Canário et al. 2019) and D2 

antagonists (Hamidovic et al. 2008; Weber et al. 2016) associated with regional effects of DA 

neurotransmission?  

A new theory suggests that other animals do behave as if they discount rewards because 

they underestimate the average reward rate of the LL options (Mikhael and Gershman 2021). 

DA in this Bayesian-framework is suggested to moderate the effects of context (prior for the 

reward rate) and temporal and reward estimates (likelihood) via an effect on encoding precision 

[for DAs effect on encoding precision see also (FitzGerald et al. 2015)]. Here, higher DA levels, 

under high temporal precision, should optimize the reward rate and thus promote the selection 

of the LL reward (Mikhael et al. 2021). Our findings in Study 1 are compatible with this view. 

However, details differ and it is unclear if one can directly translate this framework to human 

data. First, humans already choose smaller rewards in the absent of repeated choices, that 
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renders the computation of a reward rate meaningful. The tasks used in the studies of this 

dissertation and human tasks in general often use hypothetical rewards or pay out one randomly 

selected reward. Thus, participants only experience one pre- and post-reward delay. Delays in 

these tasks are substantially longer than in tasks used in rodents (days to weeks and months vs. 

seconds to a minute). Nevertheless, the view that also humans compute a reward rate would be 

accurate if one assumes that humans act as if they will have repeated opportunities to choose in 

the task (Myerson and Green 1995; Mikhael and Gershman 2021). Another possibility would 

be that humans assume (belief) that they will encounter a relatively low reward rate in the near 

future. Being speculative, even if income is relatively high (Green et al. 1996), humans could 

believe that the average-rate reward will be low and in consequence discount more. However, 

future research needs to carefully translate this framework to human intertemporal choice tasks. 

It would be interesting if one could bridge the gap of DAs effects on encoding precision 

(Mikhael and Gershman 2021), to opportunity costs (theoretically related to the prior/context) 

and effects of DA on benefits vs. costs of decision outcomes (Westbrook et al. 2020). For 

example, is there a relationship of encoding precision and future imagination? Does DA affect 

future imagination, i.e. the noisiness of simulations? If DA reduces simulation noise, future 

benefits might be more accessible to the individual and in consequence influence decision-

making to a greater degree (Westbrook et al. 2020).  

Another promising perspective that would complement the work in this dissertation is 

the focus on environmental context. Human behavior is deeply context-associated (Dixon et al. 

2006; Nakahara et al. 2004; Schelp et al. 2017; Waskom et al. 2017), however the specific 

influence of real-life environments on intertemporal choice beyond gambling, is understudied. 

While, for example specific demographic factors, emotions or social factors like income (Green 

et al. 1996) fear (Harris 2012) and trust (Michaelson et al. 2013; Jachimowicz et al. 2017) have 

shown to modulate discounting, it is unclear how these interact within real-world situations. 

Moreover, its unknown how and if these individual demographic and emotional factors (see 

above) contribute to the construction of higher order beliefs (e.g. internal models of external 

uncertainty) and in consequence affect intertemporal preference. For example, people might 

believe that imagining the future does not guarantee things to play out in line with this 

imagination. Said differently, participants might a-priori assume that uncertainty increases with 

temporal distance. Finally, it would be interesting to test the influence of a-priori 

models/predictors of external uncertainty on specific decision components in a DDM analysis 

or the prior mean in a model that quantifies delay discounting primarily with respect to 

increasing simulation noise [in accordance with: (Gershman and Bhui 2020)]. 
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Conclusion 

This dissertation examined contextual, pharmacological and neurological effects on 

intertemporal decision-making. The discounting of delayed rewards has been suggested to 

constitute a transdiagnostic trait and therefore the functional and contextual effects that 

modulate this process are of valuable interest for the understanding of human functioning and 

mental health. In addition we examined contextual effects on RL strategies associated with 

goal-directed control. The results of our computational analysis confirm and extend previous 

research. Using sequential sampling models in combination with established discount-functions 

and RL rules has proven essential to provide substantial insight to drug and context effects on 

individual decision-components. Further, simulating from these models reproduced 

fundamental patterns in the data. Our results strengthen the notion that the discounting of 

delayed rewards is under DAergic control. Interestingly, small doses of an D2 antagonist 

(enhancement of DA neurotransmission) decreased discounting, while an implicated increase 

of DA in the presence of addiction related cues (incentive salience) had the opposite effect 

(increased discounting) but improved MB control. A valuable finding for the understanding of 

addiction in context. Furthermore, we conclude that there are no general changes in 

intertemporal choice in patients with TS, a population characterized by DAergic 

hyperinnervation (increased DA neurotransmission). Finally, our data implicates that long-term 

DBS in regions under DAergic control, i.e. the NAcc area, can modulate higher cognitive 

function like choice preference. Taken together, intertemporal preferences change as a function 

of DAergic medication, environmental context and prolonged neurostimulation. 

 

Future research should attempt to further disentangle the subprocesses that contribute to 

choice impulsivity. For example, how does DA (pharmacological or contextual manipulation) 

modulate valuation, self-control or future imagination individually? Under which contextual- 

or regional constraints does DA modulate encoding precision, opportunity costs or cause 

subjects to focus on the benefits rather than the costs of decision outcomes? In addition, it is 

proposed to aim at developing a unified model of DAergic action. For this purpose, it might be 

useful to derive testable hypotheses from theoretical frameworks of DA neurotransmission in 

other decision-making domains. Resolving these issues will further contribute to the 

understanding of an important aspect of human functioning, namely trading off the future 

against the presence, and might elevate the potential for intertemporal decision-making to 

become an important diagnostic tool and potential treatment target that benefits the individual.  
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