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Abstract

In the freight car dispatching problem empty freight cars have to be assigned to
known demands respecting a given time horizon and certain constraints. The
goal is to minimize the resulting transportation costs. One of the constraints is
that customers can specify the type of cars they want. It is possible, however,
that cars of certain types can be substituted by other cars, either in a 1-to-1
fashion or at different exchange rates. We show that these substitutions make
the dispatching problem hard to solve and hard to approximate. We model
the dispatching problem as an integral generalized transportation problem on
a bipartite graph. Using rounding techniques, the LP-relaxation can be trans-
formed to a transportation schedule violating some of the constraints slightly.
Under an additional assumption on the cost function we fix this violation and
derive a 4-approximation of the problem.

Key words: transportation, logistics, dispatching, generalized flow,
complexity, approximation, heuristic

1. Introduction

The general concern of a cargo railway company is to transport goods be-
tween different customer sites. For this, empty freight cars have to be brought
to the initial location to get loaded and have to be collected at their destination
after unloading. The transportation of different goods imposes requirements on
the freight cars (e.g. open or closed, bulk cargo or coil transport). Cars are
therefore distinguished into different car types. It is possible, however, that a
transportation demand may be served by cars of different types, as specified by
allowed substitutions. These substitutions may come in a 1-to-1 fashion or at
different ’exchange rates’. For some bulk cargo, for example, it may be that
three cars of type A have the same capacity as five cars of type B. So the rules
may allow to replace every five cars of type B by three cars of type A (and vice
versa).

If the freight cars are owned by the railway company, apart from the trans-
port of loaded freight cars, the company also has to manage the rental of its
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freight car stock. In the established work flow, the allocation of empty freight
cars is treated as a separate dispatching problem: assign the available empty
freight cars to given customer demands (or storages) with minimal total trans-
port costs. Besides various (technical or marketing-oriented) side constraints,
a valid dispatching has to respect a given freight train schedule and a set of
substitution rules.

1.1. Previous work

There is a large number of optimization problems occurring in the context
of the railroad industry. Strategic, tactical and operational topics are addressed
in the literature beginning in the 1960s (see, e.g., the survey by Newman [16]).
Within the context of the operational dispatching problem, other mid and short
termed tasks emerge such as timetabling, blocking (cf., e.g., [3]) and scheduling
problems (cf., e.g. [6, 7]). These problems are often modeled as certain network
flow problems or network design problems. A detailed review with respect to
such network models is given in [2]

One of the first approaches in literature to the distribution of empty freight
cars as an optimization problem was a time-space expanded network model by
White and Bomberault [25]. According to Gorman et al. [9, 10], CSX, one
of the major US railway companies, used a decision-support tool developed by
Turnquist and Markowicz [24] for equipment distribution until 1996 and later
implemented the first real-time, fully integrated optimization system (DCP).
On an operational level as well as on a tactical level similar systems have been
implemented for the BNSF Railway [9], the Union Pacific Railway [15], the
Swedish Railways [11, 13]) and Canadian Pacific Railway [12]. Stochastic as-
pects of the problem were introduced by Powell and Carvalho [18, 19] and later
combined with a multi-commodity flow model by Topaloglu and Powell [22].
The latter provides the basis for a (heuristic) decision support system for loco-
motive scheduling implemented at Norfolk Southern Railroad [10, 16]. A survey
of dynamic and stochastic models for the allocation of empty containers is given
by Crainic et al. [8].

Most of these approaches are based on flow models or multicommodity flow
models. In the latter case, integrality requirements lead to mixed integer pro-
gram formulations which are solved heuristically or with the help of LP-solvers,
branch & bound & cut, decomposition and relaxation approaches. They do not
consider, however, the substitution of cars. In the context of stock planning,
the influence of 1-to-1 substitution rules is discussed, e.g., in Pentico [17].

1.2. Our contribution

We consider the dispatching of freight cars where substitutions between car
types of arbitrary exchange rates are allowed. While these substitutions lead
to more flexibility in the planning process, we show that they also make the
problem hard to solve in a theoretical sense. We introduce a generalized trans-
portation problem as a model for the dispatching problem and prove that even
a restricted version of the problem cannot be approximated, unless P = NP.
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Under further assumptions, based on investigations of the fractionality of its
LP-solutions, we describe a rounding and rerouting heuristic and show that it
yields a 4-approximation.

1.3. Outline and some notation

In Section 2 we introduce the generalized transportation problem, discuss
its complexity status and the fractionality of its LP-relaxation. We explain the
freight car dispatching problem in more detail in Section 3 and show how it fits
into the framework of integral generalized transportation problems. We argue
that we obtain a fractional dispatching of bounded fractionality by transforming
the associated generalized network to a classical network. Finally, Section 4
presents two approximation algorithms based on these fractional solutions.

We use standard notations from graph theory. If not mentioned otherwise,
all graphs we consider are undirected. If e = (u, v) is an edge, u is a neighbor
of v and v is a neighbor of u. For a vertex v ∈ V , δ(v) denotes the set of all
neighbors of v and deg(v) = |δ(v)| its degree. For S ⊆ V , δ(S) is the set of all
vertices in V \ S having at least one neighbor in S.

The notions we use from complexity theory can be found in, e.g., [4]. Let
ρ ≥ 1, and let x be a feasible solution for a minimization problem. We call x
a ρ-approximation if its objective function value is at most ρ times the optimal
objective function value. The minimization problem is in the class APX if for
some ρ ≥ 1 there is a polynomial algorithm producing a ρ-approximation for all
instances of the problem.

2. Generalized Transportation

Let G = (S ∪ T,E) be a bipartite graph with the following three functions
on its edges and vertices, respectively: a cost function c : E → R, a multiplier
function m : E → R, and a balance function b : S ∪ T → R+. A generalized
transportation is a vector x ∈ RE+ such that

∑
e∈δ(v)

x(e) = b(v) for all v ∈ S (1)

∑
e∈δ(v)

m(e)x(e) ≤ b(v) for all v ∈ T (2)

Interpreting S as a set of supply vertices and T as a set of demand vertices,
a generalized transportation is a feasible solution of a transportation problem
where the amounts on the receiving side are scaled by gains or losses along the
edges. The cost c(x) =

∑
e∈E c(e)x(e) of a generalized transportation is the

same as in the usual transportation problem. An integral generalized trans-
portation is a generalized transportation x with x ∈ N.
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2.1. A reduction from a SAT-problem

By a standard construction, for given (G,m, b, c) the computation of a min-
imum cost generalized transportation can be modeled as a min-cost generalized
flow problem over a bipartite directed graph with one additional sink and source
(cf., e.g., [1]). In the continuous case, min-cost generalized flows can be com-
puted in polynomial time, even for arbitrary directed graphs (cf., e.g., Tardos
and Wayne [21]). In the integral case, however, the problem is NP-complete
for arbitrary digraphs (cf. Sahni [20]). Beygang et al. [5] observed that Sahni
proved NP-completeness already for series-parallel digraphs. In the follow-
ing we prove that even restricted versions of the min-cost integral generalized
transportation problem are NP-complete. For this, we use a reduction from the
following satisfiability problem, which was shown to be NP-complete in [23]:

[3V2L3SAT] Given a Boolean 3-SAT formula α in which each vari-
able occurs at most three times and each literal occurs at most two
times, decide whether α is satisfiable.

Let α = C1 ∧ · · · ∧ Ck with Ci = li1 ∨ li2 ∨ li3 and lit ∈ {yj ,¬yj : 1 ≤ j ≤
n} ∪ {∅} be a 3V2L3SAT-formula with n variables in k clauses. We construct a
generalized transportation instance on a complete bipartite graph G = (S∪T,E)
with m : E → {1, 2} such that there exists an integral generalized transportation
x with cost k + 5n if and only if α is satisfiable.

The set S consists of four sets SC and S1, S2, S3 corresponding to clauses
and variables in α. For each clause Ci, SC contains one vertex si and for each
variable yj , S contains three vertices s1j , s

2
j , s

3
j . The demand T contains for each

variable yj four vertices t1j , t
2
j , t̄

1
j , t̄

2
j , two for each of the literals. We set b(v) = 1

for all v ∈ SC ∪ S2 and b(v) = 2 for v ∈ T ∪ S1 ∪ S3. We set m(e) = 1 for all
edges e ∈ δ(S) \ δ(S2) and m(e) = 2 for e ∈ δ(S2). The cost of edges in the
following list is set to 1:

{(si, t1j ) : Ci is the first clause containing yj}
∪ {(si, t2j ) : Ci is the second clause containing yj}
∪ {(si, t̄1j ) : Ci is the first clause containing ¬yj}
∪ {(si, t̄2j ) : Ci is the second clause containing ¬yj}
∪ {(s1j , t1j ), (s1j , t2j ) : j = 1, . . . , n}
∪ {(s2j , t2j ), (s2j , t̄1j ) : j = 1, . . . , n}
∪ {(s3j , t̄1j ), (s3j , t̄2j ) : j = 1, . . . , n}

All other edges have cost 2.
Figure 1 illustrates the construction for variable yj occurring unnegated in

clauses Ci and Ck and negated in clause C`. The edges drawn have cost 1, all
other edges (having cost 2) are omitted. The multiplier on a bold edge is 2,
all other edges have multiplier 1. The numbers at the vertices represent their
b-value.
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Figure 1: The gadget associated with variable j occurring as yj in clauses Ci and Ck and as
¬yj in clause C`.

Since the shipping cost per unit is at least one and since we have to ship
one unit for each clause and five units for each variable, the total transportation
cost is at least k + 5n.

Lemma 1. Let x be an integral generalized transportation for the above problem
with c(x) = k+5n. Then for all 1 ≤ j ≤ n one of the following conditions holds:

(i) x(s1j , t
1
j ) = 2, x(s2j , t

2
j ) = 1 and (a) x(s3j , t̄

1
j ) = 2 or (b) x(s3j , t̄

2
j ) = 2 or

(c) x(s3j , t̄
1
j ) = x(s3j , t̄

2
j ) = 1

(ii) x(s3j , t̄
2
j ) = 2, x(s2j , t̄

1
j ) = 1 and (a) x(s1j , t

1
j ) = 2 or (b) x(s1j , t

2
j ) = 2 or

(c) x(s1j , t
1
j ) = x(s1j , t

2
j ) = 1

Proof: Let x be an integral generalized transportation with c(x) = k+ 5n.
Since we have to ship k + 5n units out of the vertices in S, they all have to be
transported at cost 1. The only way the one unit of supply at vertex s2j can

be transported at cost 1 is to ship it to either t2j or to t̄1j . In the first case, the

demand of t2j is satisfied so that the two units at s1j have to be sent to t1j . Hence
we are in case (i) and the subcases distinguish the three possibilities to ship the
supply of s3j at cost 1. With similar arguments, the second case leads to (ii).

�

Observe that in case (i) the inequalities (2) for t1j and t2j hold with equality,

while for t̄1j and t̄1j at least one has some slack. In case (ii) it is the other way
around. We identify the three cases in (i) with yj = false and the cases in (ii)
with yj = true.

Theorem 1. The formula α is satisfiable if and only if there is an integral
generalized transportation x in (G,m, b, c) with cost c(x) = k + 5n.

Proof: Let α be satisfiable and y, a satisfying truth assignment. According
to the truth values of y and the rules of Lemma 1 we ship the supply of S1 ∪S2

to T . This transportation costs 2|S1|+ |S2| = 3n. No matter what subrule we
choose, the inequalities (1) will then hold for all v ∈ S1 ∪ S2. We now specify
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which of the subrules of (i) resp. (ii) we choose. Consider clause C1. Since y is
a satisfying assignment, C1 has a literal, yj say, with yj = true. Hence we are
in case (ii). By definition, yj occurs in at most two clauses. If yj also occurs in
some clause Ci, we apply subrule (c) and set x(s1, t

1
j ) = x(s1j , t

2
j ) = 1. If C1 is

the only clause containing yj , then we apply subrule (b) and set x(s1, t
1
j ) = 2.

In both cases the inequalities (2) for t1j , t
2
j , t̄

1
j , t̄

2
j are fulfilled and the equation

(1) holds for s3j , s1 (and in subcase (c) for si). Proceeding this way, we add
another cost term of 2 for each variable and a cost term of one for each clause
and obtain an integral generalized transportation x with cost c(x) = k + 5n.

Conversely, let x be an integral generalized transportation in G = (S∪T,E)
with cost c(x) = k + 5n. By Lemma 1, x satisfies the rules (i) and (ii), and
induces a truth assignment y as before. We claim that y satisfies α. Suppose
not. Then there is a clause which is not satisfied. After some rearrangement
let C1 = y1 ∨ y2 ∨ y3 be this clause. There are only six edges in δ(s1) with cost
1, namely (s1, t

1
i ) and (s1, t

2
i ) for i = 1, 2, 3. However, since case (i) applies, the

demand of the vertices (t1i ) and (t2i ) for i = 1, 2, 3 is already saturated by rule
(i). Hence, the one unit of s1 can only be shipped at cost 2, contradicting the
assumption.

�

2.2. Complexity of a restricted version

Observe that we have a certain structure in the generalized transportation
problem used in the proof of Theorem 1. First, we have

m(s, u) = m(s, v) for all s ∈ S and all (s, u), (s, v) ∈ E. (3)

In general, this property need not hold. It may hold, however, after some
scaling. Multiplying the inequalities in (2) with w(v) > 0, v ∈ T leaves the
feasible region unaffected. We call a generalized transportation problem homo-
geneous if (after scaling with some w) we have w(u)m(s, u) = w(v)m(s, v) for
all s ∈ S and all (s, u), (s, v) ∈ E. We henceforth assume that a homogeneous
problem has already been scaled so that (3) holds. Secondly, our reduction uses
very restricted multiplier functions and balance functions. We call a problem
even if m : E → {1, 2}, the balance function b is integral and if b(t) is even
for all t ∈ T which are incident to an edge e with m(e) = 2. Finally, the cost
function fulfills the following quadrilateral inequality:

c(u, x) ≤ c(u,w) + c(v, w) + c(v, x). (4)

So we consider the following restricted generalized transportation problem:

[RestIGT] Given an even and homogeneous generalized transporta-
tion problem with multiplier function and a k ∈ N, is there an inte-
gral generalized transportation with cost at most k?

Corollary 1. RestIGT is not in APX and is NP-complete even if the cost
function satisfies (4).
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Proof: The NP-completeness follows from Theorem 1. If we replace the
cost parameter 2 by some M , we can make the gap between optimal and non-
optimal solutions of the generalized transportation problem arbitrarily large.
Hence there cannot exist an approximation algorithm with fixed approximation
ratio (unless P = NP).

�

2.3. Fractionality of solutions

If m(e) = 1 for all edges e ∈ E, the integral generalized transportation
problem is a classical flow problem. In this case, if the input values are integral,
we may assume that an optimal solution is also integral. In the case of an
arbitrary multiplier function and without an integrality requirement, it seems
natural to ask how fractional an optimal solution can be. In the context of
multicommodity flows, this question was raised and partially answered by, e.g.,
Karzanov [14].

Given a bipartite graph G = (S ∪ T,E) and a multiplier function m, the
fractionality of (G,m) is the least β ∈ N such that any generalized transporta-
tion problem with integral balance function b and arbitrary cost function c has a
1/β-fractional optimal solution. In the following, we investigate the fractionality
of homogeneous instances.

Let m be the multiplier function of a homogeneous instance. Then for all
u ∈ T m is of the form m(s, u) = ps/qs for some ps, qs ∈ N. Let p be the least
common multiple of the {ps : s ∈ S} and q be the least common multiple of the
{qs : s ∈ S}.

Lemma 2. Let (G,m, b, c) be a homogeneous instance of the generalized trans-
portation problem with b integral and p, q as above. Then (G,m) is pq-fractional.

Proof: Let (G,m, b, c) be a homogeneous instance with balance function
b ∈ NS∪T and cost function c. We define a new instance (G,m′, b′, c′) as follows:
b′(s) = ps

qs
qb(s) for s ∈ S, b′(t) = qb(t) for t ∈ T , m′(s, t) = 1 and c′(s, t) =

qs
psq

c(s, t) for all (s, t) ∈ E. Then (G,m′, b′, c′) is a transportation problem and

hence has an integral solution x′. Let x(s, t) = qs
psq

x′(s, t). Then∑
t∈T

x(s, t) =
∑
t∈T

qs
psq

x′(s, t) =
qs
psq

b′(s) = b(s)

∑
s∈S

m(s, t)x(s, t) =
∑
s∈S

ps
qs

qs
psq

x′(s, t) =
∑
s∈S

1

q
x′(s, t) ≤ b(t)

So (1) and (2) hold and x is a 1/pq-fractional generalized transportation for
(G,m, b, c) with the same objective function value. Conversely, if x is a gen-
eralized transportation for (G,m, b, c), then x′(s, t) = psq

qs
x(s, t) is a feasible

transportation for (G,m′, b′, c′) with the same objective function value. Hence,
x′ is optimal for (G,m′, b′, c′) if and only if x is optimal for (G,m, b, c) and the
claim follows.
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�

Observe that we have transformed the generalized transportation problem
into a classical transportation problem. As this is polynomially solvable, we can
obtain pq-fractional solutions in polynomial time.

3. Application: freight car dispatching

Very often in cargo railway transportation, cars are owned by some com-
pany (sometimes the railway company itself) and rented away to customers.
These customers may transport various types of goods which require different
freight cars (e.g. open or closed, bulk cargo or coil transport). Hence the rental
company offers a fleet of various car types. Since the customers are located
at different places and need various types of different cars at different points
in time, the car rental requires a dispatching where new demands for cars are
matched with cars that have been returned.

A demand is represented by a location, the type and the number of cars and
a time when they have to be available at latest. In our model, a demand is
represented by a vertex t ∈ T with demand b(t) given by the number of cars
requested. Similarly, supplies are given by a location, the type and the number
of returned cars and their earliest availability. They define vertices in S with
supply b(s). Moreover, we may have certain depot vertices in S and T where
cars can be stored temporarily.

The transportation of empty cars from a supply s to a demand vertex t is
done by attaching them to trains running on a given timetable. Based on this
timetable and the availabilities at the vertices s and t we can decide whether cars
in s can reach t in time. If yes, we also have a way to compute the transportation
cost of a single car from s to t (usually based on the distance the car travels). If
also the car types at s and t match, we introduce an edge e = (s, t) with costs
c(e). If the types do not match or the time restrictions cannot be met, s and t
are not linked by an edge.

So far, the dispatching problem can be modeled as a classical transportation
problem. However, since a demand can be satisfied by cars of several types, the
problem becomes more complicated. In its general form, substitutions are of
the form (ni, nj) specifying that ni cars of type i may replace nj cars of type j.
The substitution rules are modeled by the function m by setting m(i, j) =

nj

ni
.

This leads to a generalized transportation problem (G,m, b, c) on the bipartite
graph G = (S ∪ T,E) just defined.

As an illustration, consider two supplies s1, s2 and two demands t1, t2 at
certain locations. We assume that the time restrictions are such that cars form
both supply locations may reach both demand locations in time. s1 has a supply
of 9 cars of type A, s2 has 7 cars of type B. Demand t1 wants up to 8 cars of
type A, t2 needs up to 17 cars of type C. Type C may be substituted in a 1-to-1
fashion by type B. Moreover, every 5 cars of type C may be replaced by 3 cars
of type A. This leads to the bipartite graph in Figure 2. The weights on the
edges represent their m-values, the numbers at the vertices give their b-values.
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Figure 2: The bipartite graph associated with the example of the dispatching problem.

An integral generalized transportation is given by, e.g., x(s1, t1) = 3, x(s1, t2) =
6, x(s2, t2) = 7.

3.1. Practical dispatching problems from DB Schenker Rail Deutschland AG

In an R & D project together with the optimization group of Sven O. Krumke
(Technical University of Kaiserslautern) and DB Schenker Rail Deutschland
AG we looked into real data from freight car dispatching problems arising at
Schenker. We found that the dispatching rules used by Schenker satisfy most
of the restrictions discussed in Section 2.2.

First, the cars they use not only have some type but also one of two lengths
(”short” and ”long”). The substitution rules only allow a simple 1-to-1 re-
placement between cars of the same length and of perhaps different types or a
substitution of one long car of a certain type by two short cars of some other
type. (The reverse substitution of two short cars by one long car could be
rephrased using the previous rules.) Since this imposes substitution rules of the
form (2, 1), it is not immediately obvious that the DB-instances are homoge-
neous. Observe, however, that a vertex s ∈ S representing a long car can only
serve a demand of long cars in T . If s ∈ S represents a short car, it may 1-to-1
replace other short cars in T (with m(s, t) = 1) or 2-to-1 replace long cars (with
m(s, t) = 1

2 ). So these instances are seen to be homogeneous by setting w(t) = 2
if t ∈ T represents a long car and w(t) = 1 for short cars. This scaling gives a
new multiplier of 2 on edges (s, t) between two vertices both representing long
cars and of 1 on all other edges. Also note that after this scaling the problem
is even.

Hence, we may apply Lemma 2 with p = 2 and q = 1. This allows us
to compute half-integral generalized transportations x(s, t) in polynomial time.
More precisely, the construction in the proof of Lemma 2 shows that x(s, t) is
half-integral only if s represents a long car and integral otherwise.

Secondly, transport costs are given by costs per kilometer. Hence the cost
function c trivially satisfies the quadrilateral inequality if whenever in (4) the
edges (u,w), (v, w), (v, x) exist also the edge (u, x) exists, i.e. the supply at u
may serve the demand at x and arrives there in time. (The latter condition was
not always satysfied.)
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4. Relaxed solutions for RestIGT

In this section we assume that all instances of the generalized transportation
problem are homogeneous and even. From Section 2 we know that we cannot
expect to find polynomial time solutions with an approximation guarantee. We
are going to show, however, that we can find solutions quickly if we allow some
conditions to be violated slightly. In a second step we furthermore asssume
that the quadrilateral inequality (4) holds. In this case, the problem remains
NP-complete but we can find a 4-approximation.

4.1. A rounding heuristic

For the first step we need a technical Lemma.

Lemma 3. Let G = (S ∪ T,E) be a bipartite graph with deg(v) even for all
v ∈ S. Then E can be partitioned into a set of even-length paths and and a set
of even cycles.

Proof: Let U = {u1, . . . , uk} be the set of odd-degree vertices in G.
Obviously, k is even. Consider the graph G = (S ∪ T,E ∪ F ) where F =
{(u1, u2), . . . , (uk−1, uk)}. Then G is Eulerian and E ∪ F can be decomposed
into cycles. Let C be one of these cycles. If C ∩ F = ∅ then C is a cycle in G
and hence even. Otherwise, C \F decomposes into a set of paths, each starting
and ending in vertices in U . Then also these paths must be even.

�

Since we assume that the generalized transportation problem (G,m, b, c) is
even, we have in particular that m has values in {1, 2}. By Lemma 2, we can
find a half-integral optimal solution x in polynomial time. Let G′ = (S′∪T ′, E′)
be the subgraph of G induced by the fractional entries of x, i.e.

E′ = {(s, t) ∈ E : x(s, t) /∈ N}
S′ = {s ∈ S : x(s, t) ∈ E′ for some t ∈ T}
T ′ = {t ∈ T : x(s, t) ∈ E′ for some s ∈ S}.

As, by assumption, x satisfies the equations (1), its fractional components are
half-integral and b(v) ∈ N, deg(v) must be even for v ∈ S′. Hence, by Lemma
3, E′ can be partitioned into a set P ⊆ E′ of even-length paths and and a set
C ⊆ E′ of even cycles.

Adopting notions from Section 3.1, we call a vertex ”long” if it is incident to
some edge e with m(e) = 2, and ”short” otherwise. Recall from the constrution
in Lemma 2 that every vertex in S′ ∪ T ′ represents a long car and we have
m(s, t) = 2 for all e ∈ E′.

While trying to keep the costs low, we now transform x into an integral
vector. This vector will still satisfy the equations (1) and violate the inequalities
(2) slightly. For this, we round the half-integral entries of x along edges of a
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path and of a cycle alternatingly up and down. Since P and C partition E′, we
thus obtain an integral vector y. Obviously, the rounding leaves vertices in S′

unaffected. Hence the equations (1) still hold. Since m(s, t) = 2 for all e ∈ E′,
also all vertices in T ′ which do not occur as end-vertices of paths are unaffected.
The only vertices for which (2) may be violated are the end vertices of paths
where the incoming path edge is rounded up. Let v be such an end-vertex.
Since v ∈ U , it is the endpoint of an odd number of half-integral edges. As
b(v) is even, before rounding up we either have

∑
e∈δ(v)m(e)x(e) ≤ b(v)− 1 or∑

e∈δ(v)m(e)x(e) = b(v) and x(u, v) ≥ 1 for some u ∈ S representing a short

car. In the first case, y still satisfies the corresponding inequality (2), in the
second case we have

∑
e∈δ(v)m(e)y(e) ≤ b(v) + 1.

Consider a demand vertex t ∈ T and two supply vertices s1, s2 with (s1, t),
(s2, t) ∈ E and m(s1, t) < m(s2, t). Neglecting for a moment the equations (1),
we say that t gets a downgrade if we replace one car of s1 by one car of s2 in an
(integral) generalized transportation. For a given ν ≥ 0, we call a vector x ∈ NE
a ν-relaxed generalized transportation if it satisfies the equations (1) and∑

e∈δ(v)

m(e)x(e) ≤ b(v) + ν for all v ∈ T (5)

and after downgrading a single car for all t ∈ T with
∑
e∈δ(v)m(e)x(e) > b(v)

the inequalities (2) are satisfied.

Lemma 4. The rounded vector y ∈ NE may be chosen such that it is a 1-
relaxed generalized transportation with at most 1

2 |U | over-satisfied demands and
cost c(y) ≤ c(x).

Proof: Given a path P ∈ P or a cycle C ∈ C with a specified orientation
we still have the freedom to choose the direction of the first rounding. Let
c(P−) be the change of cost of rounding x along P by rounding the first edge
down, and c(P+) the change by rounding the first edge up. By flipping the
orientation of P if necessary, we may assume that c(P+) ≤ c(P−). Obviously,
2c(P+) ≤ c(P+) + c(P−) = 0, i.e. c(P+) ≤ 0. A similar argument shows that
we may assume c(C+) ≤ 0 for all C ∈ C. Let y ∈ NE be the result of this
rounding strategy. Then c(y) ≤ c(x).

The discussion above shows that
∑
e∈δ(v)m(e)y(e) ≤ b(v) + 1 and over-

satisfaction can occur only in one of the end-vertices of a path, i.e. in at most
1
2 |U | vertices. A vertex t ∈ U is over-satisfied only if it has an excess of half a
long car. Since y is integral, t must receive at least one long car. If we replace
this long car by a short one, the corresponding inequality (2) is satisfied.

�

Note that from a practical point of view the dispatching y may be attractive
since it generates low costs and only for some customers t ∈ T one of their
short cars is replaced by one long car. This seems acceptable unless car storage
capacity is a problem and the bound b(t) is a hard constraint.
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4.2. A 4-approximation

We are now going to fix the violations of inequality (2). In the rounding
process, instead of trying to keep the costs low, we may as well try to keep the
number of over-satisfied demands low. So, if possible, we choose the rounding
direction so that the vertex rounded up is not over-satisfied. Let u be such an
over-satisfied vertex. Let v ∈ U be the other endpoint of the path along which
we have rounded. Then, before rounding, we have

∑
e∈δ(u)m(e)x(e) = b(u)

since otherwise we could reverse the path and decrease the number of over-
satisfied vertices. By the remarks above, there is a vertex w ∈ S corresponding
to a short car with x(w, u) ≥ 1. Since the problem is homogeneous, we can now
redirect one short car from w to u and send it to v instead. Then, by Lemma
4, the inequalities (2) are satisfied both in u and v. Iterating this way, we get
an integral generalized transportation z.

Theorem 2. Let (G,m, b, c) be an instance from RestIGT satisfying the quadri-
lateral inequality (4). Then z is a 4-approximation for (G,m, b, c).

Proof: The transportation z is obtained from the generalized transporta-
tion x by rounding along paths in P and cycles in C and redirection of some
cars. As observed before, the rounding along cycles causes no over-satisfaction,
no matter what orientation we choose. So, if we choose the one with lower costs,
rounding along cycles does not increase the costs.

Consider a path P = v1, v2, . . . , v2k+1 and suppose we start with a roundup.
Let u ∈ S be the vertex from where one short car is redirected. Then the change
∆(P ) in cost is

∆(P ) = −c(u, v1) +
1

2

2k−1∑
i=1

i odd

c(i, i+ 1)− 1

2

2k∑
i=2
i even

c(i, i+ 1) + c(u, v2k+1)

≤ −c(u, v1) +
1

2
c(P ) + c(u, v2k+1)

≤ −c(u, v1) +
1

2
c(P ) + c(u, v1) + c(P ) (by (4))

≤ 3

2
c(P ).

Since x(e) ≥ 1
2 for each edge in P and the paths in P are edge-disjoint, we

get c(z) ≤ c(x) +
∑
P∈P ∆(P ) ≤ c(x) + 3

2

∑
P∈P c(P ) ≤ c(x) + 3c(x) = 4c(x).

�

Observe that the cost of z is bounded in terms of the (non-integral) gen-
eralized transportation. The gap between optimal integral and non-integral
generalized transportations may be be quite large so that the approximation
ratio may be much smaller.
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