
Institut für Informatik Technical Report
Universität zu Köln March 2014

Single-commodity Robust Network Design Problem:
Complexity, Instances and Heuristic Solutions∗

Eduardo Álvarez-Miranda1, Valentina Cacchiani2, Andrea Lodi2, Tiziano Parriani2,
and Daniel R. Schmidt3

1 DMGI, Universidad de Talca, Merced 437, Curicó, Chile, e.alvarez@unibo.it
2DEI, University of Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy,
{valentina.cacchiani,andrea.lodi,tiziano.parriani}@unibo.it

3Institut für Informatik, Universität zu Köln, Albertus-Magnus-Platz, 50923 Köln, Germany,
schmidt@informatik.uni-koeln.de

March 24th, 2014
This preprint also appeared as technical report OR-13-14 at the University of Bologna.

We study a single-commodity Robust Network Design problem (RND) in which an undirected
graph with edge costs is given together with a discrete set of balance matrices, representing different
supply/demand scenarios. In each scenario, a subset of the nodes is exchanging flow. The goal is
to determine the minimum cost installation of capacities on the edges such that the flow exchange
is feasible for every scenario. Previously conducted computational investigations on the problem
motivated the study of the complexity of some special cases and we present complexity results on
them, including hypercubes. In turn, these results lead to the definition of new instances (random
graphs with {-1,0,1} balances) that are computationally hard for the natural flow formulation. These
instances are then solved by means of a new heuristic algorithm for RND, which consists of three
phases. In the first phase the graph representing the network is reduced by heuristically deleting
a subset of the arcs, and a feasible solution is built. The second phase consists of a neighborhood
search on the reduced graph based on a Mixed-Integer (Linear) Programming (MIP) flow model.
Finally, the third phase applies a proximity search approach to further improve the solution, taking
into account the original graph. The heuristic is tested on the new instances, and the comparison
with the solutions obtained by Cplex on a natural flow formulation shows the effectiveness of the
proposed method.

1 Introduction

Network design problems arise in many different areas, such as transportation and telecommunication. Recently,
the class of robust network design problems has received increasing attention. The term robust can represent the
capability of the network to cope with disruptions or to deal with different traffic scenarios in different times of
the day, as is the case of our work.

In this paper, we study the single-commodity Robust Network Design problem (RND) defined as follows. We
are given an undirected graph G = (V,E), a cost vector (ce) (e ∈ E) and an integer balance matrix B = (bq

i)
(i ∈V , q = 1, . . . ,K). The q-th row bq of B is called the q-th scenario.

∗We thank the Ateneo Italo-Tedesco VIGONI programme 2011-2012 for its financial support. This work was supported by a STSM
Grant from COST Action TD1207 (grant 16810).

1

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 2

For a given scenario, we call a node with nonzero balance a terminal. More specifically, a node i with positive
balance is called a source and we call the balance of i its supply. A node with negative balance is called a sink
and its balance is called demand.

Let us denote by (i, j) and (j, i) the arcs (directed from i to j and from j to i, respectively) corresponding to
edge e = {i, j} ∈ E. In addition, let us call f q

i, j ∈ Z+ the integral amount of flow that is sent along arc (i, j) from
i to j in scenario q and by f q the corresponding flow vector.

RND calls for determining integer capacities (ue) ∈ Z|E|+ (e ∈ E) with minimal costs cT u such that, for each
q (q = 1, . . . ,K), there is a directed network flow f q in G that is feasible with respect to the capacities and the
balances of the q-th scenario. In particular, the flow f q (q = 1, . . . ,K) must fulfill the following constraints:

1. f q
i, j + f q

j,i ≤ ue for all edges e = {i, j} ∈ E, which imposes that the sum of the flows going along every edge
(in both directions) must respect the installed edge capacity, for every scenario,

2. ∑{i, j}∈E(f q
i, j− f q

j,i) = bq
i for all nodes i ∈ V , which implies that the flow must satisfy the required integer

balances.

An overall natural model for RND reads as follows

min ∑
{i, j}∈E

ci jui j (1)

∑
j:{ j,i}∈E

f q
ji− ∑

j:{i, j}∈E
f q
i j = bq

i ∀i ∈V, q = 1, . . . ,K (2)

f q
i j + f q

ji ≤ ui j ∀{i, j} ∈ E, q = 1, . . . ,K (3)

f q
i j ≥ 0 ∀{i, j} ∈ E, q = 1, . . . ,K (4)

ui j ∈ Z+, ∀{i, j} ∈ E (5)

where the objective function (1) is to minimize the total cost of the installed capacities. Constraints (2) ensure
flow-conservation in each scenario and impose to satisfy the required balances. Constraints (3) model that the
capacity of an edge is at least as large as the flow it carries. Integral flows are enforced through integrality of the
capacity variables, as all balances are integral [17].
As described in [9], an example of a practical application of the considered problem is the following: some clients
wish to download some program stored on several servers. For a client, it is not important which server he or she
is downloading from, as long as the demand is satisfied. In other words, we consider servers that store identical
data: examples are video on demand or large datacentre in which one mirrors his data over several locations.
This is opposed to multi-commodity network design, in which point-to-point connections are considered, i.e.
each client requests a specific server. In addition, we consider the robust version of the problem: at different
times of the day, the demands may change (e.g. different clients show up), and the goal is to design a network
that is able to route all flow in all different scenarios. In particular, we consider a finite list of demands, i.e. we
sample different times of the day.
Contribution of the paper. Preliminary computational investigations have been performed on classical graphs
from the literature with random balances [9] and on special hypercubes with {−1,0,1} balances [2]. The results
in both papers have shown that the former instances are surprisingly easy for a general-purpose Mixed-Integer
Programming (MIP) solver on the natural flow-formulation (1)–(5), while the latter instances are structurally
difficult. The first contribution of the paper is in studying the complexity of some RND special cases1 associated
with the above instances and enlightening the reasons of the observed computational behavior. Second, based on
the complexity results, we propose a new family of randomly generated RND instances that are computationally
challenging for the natural flow formulation already for |V | = 50 and K = 10. Third, motivated by those in-
stances (available upon request from the authors), we propose new and general heuristic approaches that provide
high-quality approximated solutions for large graphs (tests are reported for |V | up to 500) in short computing
times2.

1The RND problem is strongly NP-hard [27].
2A preliminary version of the heuristic approaches described here was introduced in [2] where the first phase of the investigation on

RND, which was the topic of the “Vigoni 2011-2012” project between the University of Köln and the University of Bologna, was
summarized.

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 3

Organization of the paper. Section 2 reviews the (vast) related literature by pointing out differences and similar-
ities. In Section 3 we present the complexity results we achieved on special classes of instances, while Section 4
describes the proposed heuristic algorithm and its performance is reported in Section 5. Finally, in Section 6 we
draw conclusions and describe ideas for future research.

2 Related Literature

The work on classical (i.e., non-robust) network design goes back as far as the early 1960s where it was studied
by Chien [11] and Gomory and Hu [16, 15]. Since then, network design has evolved to a vast field of research
which we cannot fully discuss in the scope of this article. We rather refer to [10] for a complete overview and
restrict ourselves to a few exemplary related works that are of direct importance for us here.

The common theme of network design problems is installing optimum-cost capacities in a given network
topology such that a set of traffic requests can be routed through the network. In practice, however, the traffic
requests are not exactly known in advance. This can be due to measuring errors or simply because they cannot
be predicted [6]. Here, the robustness comes in: Following an idea by Soyster [29], Ben-Tal and Nemirowski [5]
coined the term of an uncertainty set that is added to the model and contains all possible (or likely) scenarios
against which the robustness should protect. Since then, robust network design has been very actively studied.
The notions of network topology, cost, capacity, traffic request and routing can vary – as well as the exact way
in which the problem is robustified.

In this paper, we study a worst-case robust model in the sense of [5]. This means that our solutions must be
feasible for all the scenarios from the uncertainty set. The uncertainty set is finite and explicitly given as part
of the input (an idea that goes back to [23]). We use an undirected graph as the network topology and allow
dynamic routing (each scenario may be routed on different paths). Furthermore, we assume linear costs for the
capacities and integer multiples of a unit capacity may be installed on each edge. Each node specifies its traffic
request by a scalar number that gives its supply or demand and each such traffic request may be routed on an
arbitrary number of paths (the routing is splittable) as long as each edge carries an integer amount of flow in
total. Therefore, the underlying flow model is a standard single-commodity, splittable network flow in our case.

To the best of our knowledge, only two prior publications on this specific problem exist. The problem was
first studied by Buchheim, Liers and Sanità [9]. They gave an exact branch-and-cut algorithm that solves a flow-
model MIP through sophisticated general-purpose cutting planes. Lately, Álvarez-Miranda et al. [2] introduced
a capacity-based MIP-model, and discussed a preliminary set of results of the biennial “Vigoni 2011-2012”
between the universities of Köln and Bologna.

Atamtürk [3] considers a variant of the non-robust single-commodity network design problem where integer
multiples of a facility with fixed capacity can be installed on each arc. Ortega and Wolsey [24] report on the
performance of general MIP solvers on various network design problems and develop an exact algorithm for the
single-commodity fixed-charge network design problem (all arcs may be bought at a fixed-charge and then be
used at full capacity).

A close variant of single-commodity RND is the multi-commodity robust network design problem. Here, the
traffic requests specify the amount di j of flow that should be exchanged among all pairs of nodes i and j. In
particular, this defines fixed source/sink pairs – which is not the case in our problem. Also, each commodity
has a single source (or sink). While this condition can also be established in the single-commodity case, it
requires the use of fixed-capacity edges and therefore, our single-commodity variant is not a true special case
of the multi-commodity problem. Sanità showed in her doctoral thesis [27] that the multi-commodity variant is
NP-hard even if there are only three scenarios, all scenarios use a unique source node and all demands are from
{−1,0,1}. This immediately implies that the single-commodity variant is NP-hard as well. The thesis contains
many further complexity results; among others Sanità gives a O(log |V |)-approximation for the multi-commodity
robust network design problem with unsplittable routing and shows that removing the integrality constraint from
the capacities makes the problem polynomial time solvable. This is also true for the single-commodity RND.
The multi-commodity RND was also first considered as a classical (non-robust) problem [8].

A vast variety of problems exists in the multi-commodity case. The case where the uncertainty set is finite
was studied by Minoux [23], though fractional capacities are assumed in [23], and in Labbé et al. [20]. Duffield
et al. [12] introduced the Hose uncertainty model in which the uncertainty set is defined by inflow and outflow
bounds on all nodes. Ben-Ameur and Kerivin [4] observed that this type of uncertainty set is a polytope and
developed an exact approach that additionally assumes static routing (i.e., in all scenarios, the flow must be

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 4

routed along the same subset of paths). This configuration is also known as the Virtual Private Network problem.
An exact approach for this problem was given in [1] under the additional constraint that each commodity may
only use a single path (unsplittable routing).

In the case of dynamic routing, an exact approach by Mattia [21] exists. Bertsimas and Sim [7] introduced
Γ-robustness as a general model for robustification. Exact approaches that apply this type of robustness to
multicommodity network design are presented in [19].

Finally, one of the most basic network design problems, the Steiner Tree problem, is the special case of the
single-commodity robust network design problem where for each pair i, j of Steiner nodes, there exists a scenario
in which exactly i and j are terminals with supply/demand of 1/− 1. If not all the Steiner node scenarios are
present, the single-commodity RND instance is instead a special case of the survivable network design problem.
Note, however, that, in general, RND does not consider the requirement of disjointness that is in Survivable
Network Design. We refer the reader to [18] for an extensive survey on this subject.

3 Complexity

In this section, we characterize the complexity of some RND special cases. The RND case in which we have
a single scenario (K = 1) corresponds to a standard polynomial time minimum cost flow problem. Already for
K = 3, RND is NP-hard (see [27]): the reduction comes from the 3-Dimensional Matching Problem for the
special case of RND in which there is the same source in each scenario and balances are {−1,0,1}.

Motivated by the computational investigations in [9, 2], in the following, we analyze some special cases:

• RND with balances different from 1 and -1;

• RND on hypercubes with all balances equal to 1, 0, or -1;

• RND on hypercubes with all balances equal to r, 0, or −r, with r integer and > 1.

The analysis is intended to show some classes of hard instances and some classes of easier instances. According
to the results that we present in the following subsections, we are able to get a better understanding of empirical
results in [9, 2], and we propose a family of randomly generated instances that are challenging for the natural
flow formulation already for |V |= 50 and K = 10.

3.1 All balances different from 1 and -1

Because instances defined on random graphs with random integer balances on the (randomly chosen) terminals
turn out to be surprisingly easy for a general-purpose MIP solver on the natural flow-formulation (1)–(5), a
natural question to ask is if this special case remains NP-hard. The following theorem answers positively through
a reduction from Hamiltonian cycle ([28]).

In order to prove that RND, defined on graph G = (V,E) (|V | ≥ 3), with balances different from 1 and -1, is
NP-hard, let us define the following RND instance IR. We use G without modification and install a cost of 1 on
each edge. We choose some arbitrary numbering of the nodes. We install |V |−1 scenarios. In scenario i, only
nodes 1 and i+1 are terminals; the node 1 gets a balance of 2 while the node i+1 has a balance of −2.

Theorem 1. A graph G = (V,E) (with |V | ≥ 3) has a Hamiltonian cycle C if and only if the described RND
instance IR has a solution with cost equal to |V |.

Proof. If G has a Hamiltonian cycle C, we build a feasible solution for IR by installing a capacity of 1 on each
edge of C. In each scenario i, both unique terminals 1 and i+1 lie on C. The node i+1 decomposes C into two
paths P1,P2 from 1 to i+1 (one clockwise, one counterclockwise). We can route one unit of flow on P1 and one
unit of flow on P2, satisfying the demands of scenario i. Thus, our solution for IR is feasible and additionally, it
has cost of |C|= |V |.

On the other hand, suppose we have a solution for IR of cost |V |. By our choice of scenarios (we have a single
source at node 1 and all other nodes are terminals in some scenario), each node must be connected to node 1.
Therefore, any feasible solution for IR must have a support S that induces a connected component of G containing
all nodes. S must contain at least |V |−1 edges, otherwise it cannot be connected. If S contains exactly |V |−1
edges, a capacity of 2 must be installed on each edge in S in order to route all demands. However, such a solution
has cost of 2 · |V |−2> |V | and therefore S must contain at least |V | edges. If some node in G[S] has a degree of 1,

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 5

then we must install a capacity of 2 on its unique incident edge. By the same argument as before, the remaining
nodes |V |−1 nodes must be connected by at least |V |−1 edges. Then again, the cost of the solution is at least
|V |−1+2 > |V |. Therefore, all nodes in G[S] must have a degree of at least 2 and because we can have at most
|V | edges in S, each node must have exactly degree 2. Together with our observation that G[S] is connected and
contains all nodes, we have a Hamiltonian cycle.

3.2 Hypercubes

The authors defined a structurally difficult class of instances in [2], based on d-dimensional hypercubes. In the
following we repeat the construction.

Definition 2. A d-dimensional hypercube Hd is the result of the following recursive construction: H0 is the
graph that consists of a single node. For d > 0, Hd is obtained by duplicating the nodes and edges of Hd−1 and
connecting each node v to its copy v′ with an additional edge {v,v′}.

Definition 3. We say that two nodes v,w are diagonally opposite on Hd iff the shortest path from v to w in Hd
has maximum length, i. e., length d.

Notice that for every node v in Hd there is exactly one node vo that is diagonally opposite to v. It is well-known
that Hd has Nd := 2d nodes and Md := d ·2d−1 edges.

We can now define a class of instances on d-dimensional hypercubes as follows. For d ∈ Z+, consider the
following instance Id of the RND problem on Hd . Observe that Hd is composed of two hypercubes Hs,Ht of
dimension d−1. Add 2d−1 scenarios to Hd . In scenario 1≤ q≤ 2d−1, assign a supply of 1 to the q-th node vq

(in some fixed numbering) of Hs and a demand of −1 to its diagonally opposite node vo
q which lies in Ht by our

construction. Set all other balances of scenario q to zero and set the costs for each edge to 1. Figure 1 shows the
construction.

1 1

1 2

12

1 2

34

3 4

12

7 8

56

3 4

12

1 2

34

5 6

78

Figure 1: The hypercubes in 1, 2, 3 and 4 dimensions. Copied nodes are displayed in gray. The node numbering
refers to the scenarios.

We denote the instance obtained in this way by H 1
d . Scaling all balances in H 1

d by r ∈ Z+, we obtain the
instance H r

d .

3.2.1 All balances equal to 1, 0, or -1

It is shown in [2] that this class of instances is difficult for MIP-based solution approaches as the integrality gap
(i.e., the ratio of an optimum integral solution value and an optimum fractional solution value) of H 1

d converges
to 2 as d→ ∞. We refer the reader to [2] for details.

3.2.2 All balances equal to r, 0, or −r, r integer and > 1

We characterize the integrality gap for r > 1. The optimum values for integer and fractional solutions are the
same, i.e. the integrality gap is 1. We need a series of Lemmata to prove this result, stated and proven at the end
of this section.

It is a well-known fact that Hd is hamiltonian for any d ≥ 2 and we shall use this fact on several occasions.
In particular, we can obtain a feasible integer solution for H 2

d by installing a capacity of 1 on each edge of a
Hamiltonian cycle in H 2

d .

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 6

Lemma 4. For any d ≥ 2, there is a feasible integer solution for H 2
d with costs 2d .

To derive the cost of this solution, recall that Hd has 2d nodes. Similarly, we can state a feasible integer
solution for H 3

d .

Lemma 5. For any d ≥ 3, there is a feasible integer solution for H 3
d with costs 3 ·2d−1.

Proof. Let d ≥ 3. Then Hd decomposes into two copies H1,H2 of Hd−1 and a set of edges F connecting H1 and
H2. We install a capacity of 1 on each edge in F . Since d−1≥ 2, we find Hamiltonian cycles C1,C2 in H1 and
H2, respectively, and install a capacity of 1 on each edge of C1 and of C2.

This solution is feasible: For any scenario i ∈ {1, . . . ,q}, let si, ti be the corresponding terminal pair. We
need to route three units of flow from si to ti. To do that, let s′i ∈ H2 and t ′i ∈ H1 be the unique nodes such that
e1 = {si,s′i} ∈ F and e2 = {t ′i , ti} ∈ F . Also, let e3 = {u,v} ∈ F with u∈H1 and v∈H2 be an arbitrary connecting
edge that is different from e1 and e2. Mark here that F contains at least four edges because d ≥ 3. Figure 2 shows
an example for the situation on H 3

4 . Now, by sending one unit of flow over each of e1,e2,e3, we have reduced
the instance to two instances on Hd−1: The first instance is defined on H1; here, si has a balance of 2 and both
u and t ′i have a balance of −1. However, these balances can be routed along the Hamiltonian C1. In the second
instance, which is defined on H2, the sink ti has a balance of −2 and both s′i and v have a balance of 1. Again,
these balances can be routed along the Hamiltonian cycle C2.

Both C1 and C2 contain exactly 2d−1 edges, each with capacity 1. There are 2d−1 edges in F , all of them
having capacity 1. This gives a total cost of 3 ·2d−1.

si

u

t′i

s′i

v

ti

Figure 2: An example for H 3
4 .

We show next that we can construct an integer feasible solution for any H r
d using the two previous ones.

Lemma 6. Let d ≥ 2 and let r = 2m+3n with m ∈ Z+ and n ∈ {0,1}. If there exists an integer feasible solution
for H 2

d with cost at most c2 and an integer feasible solution for H 3
d with cost at most c3, then there exist an

integer feasible solution for H r
d with cost at most

m · c2 +n · c3.

Proof. We can decompose H r
d into m copies of H 2

d and, if r is odd, a single copy of H 3
d . The copies have

costs of c2 and c3 each, respectively. For the i-th copy and i = 1, . . . ,m+n, we have an integer capacity vector ui

that allows for routing all scenarios. Then, u = ∑
m+n
i=1 ui is an integer capacity vector that admits a routing of all

scenarios of H r
d and has exactly cost mc2 +nc3.

To calculate the integrality gap for our solutions, we also need the value of an optimum fractional solution.
Such a solution can be obtained by installing r/d units of capacity on each edge of Hd and since Hd has d ·2d−1

edges, this gives the following result.

Lemma 7. An optimum fractional solution for H r
d has a value of r ·2d−1.

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 7

Proof. Check that a solution that installs r/d units of capacity on each edge satisfies the complementary slack-
ness optimality conditions of the cut-set formulation [2] for the problem. The corresponding dual solution has a
variable ξS for all meaningful cuts S ⊆ V [Hd]. It sets ξS := 1/2 if |δ (S)| = d and ξS = 0. The remaining part
of the proof is straight-forward if we observe that for d ≥ 3, we have |δ (S)|= d if and only if |S|= 1. The full
proof is shown in the Appendix.

We can now prove that the optimum values for integer and fractional solutions are the same:

Theorem 8. For d ≥ 3 and r ≥ 2, an optimum integer solution for H r
d has value r · 2d−1. In particular, the

integrality gap for H r
d is 1.

Proof. Let r = 2m+ 3n with m ∈ Z+ and n ∈ {0,1}. Putting together Lemma 6 with Lemma 4 and Lemma 5,
we obtain that there is an integer solution for H r

d with value cr := m ·2d +n ·3 ·2d−1. If r is even, we have n = 0
and m = r/2. Therefore, cr = r ·2d−1. On the other hand, if r is odd, we have n = 1 and m = (r−3)/2. Then,
cr = (r−3)/2 ·2d +3 ·2d−1 = r ·2d−1−3 ·2d−1 +3 ·2d−1 = r ·2d−1. By Lemma 7, this is optimal.

3.3 Challenging Instances

In the previous sections we have shown that, although computationally easy [9, 2], RND instances defined on
random graphs with random balances are difficult in theory. The explanation of this is suggested by the fact that
structurally hard instances like those defined on hypercubes and {−1,0,1} balances become theoretically easy
when balances are in r, 0, or −r, with r integer and r > 1. have an integrality gap of value one. Building on top
of those results, we concentrate on instances on random graphs with balances {−1,0,1} that turn out to be com-
putationally challenging for the natural flow formulation already for |V |= 50 and K = 10. An effective heuristic
approach for this family is described and computationally evaluated in Section 4 and Section 5, respectively.

4 Heuristic Algorithm

In this section, we present our heuristic algorithm, which, although general, is designed having in mind the class
of hard instances introduced in the precious section, i.e., random graphs with balances of {−1,0,1}. It consists
of three phases. In the first phase (constructive phase, CP), the graph is reduced by heuristically deleting a
subset of the arcs, and a feasible solution is built. The second phase (neighborhood search phase, NSP) consists
of a neighborhood search on the reduced graph in order to improve the solution found: in particular, the MIP
flow-formulation is solved, within a time limit, by the general-purpose MIP solver Cplex. Finally, the third phase
(proximity search phase, PSP) consists of iteratively applying a local search (by solving a carefully constructed
MIP) to further improve the solution, taking into account the original graph, and is based on the recent work
[13].

In the following, we describe the three phases in detail.

4.1 Constructive Phase

Initially, the graph we are dealing with is reduced, and then a solution is built. Our goal is to reduce the graph so
that we are able to quickly compute a feasible solution, and we can warm start the NSP described in 4.2. At the
same time, the graph reduction should not be too “aggressive”, because the NSP should be able to improve the
solution found. In other words, we need to find a trade-off between reducing the computing time and reducing
the solution space. Note that, since the (nonzero) balances are 1 or -1 in our problem, it is not common to have
large capacity values installed on the edges. Therefore, solutions differ mainly because of the different set of
edges on which capacity is installed. Our goal is to select a “large enough” set of edges for our reduced graph.

The following steps are executed in the CP:

1. Consider the scenarios from 1 to K and multiply all balances by a given constant F ;

2. construct a feasible solution for the new obtained RND instance (see Section 4.1.1);

3. reduce the graph by deleting all the edges that are not used in the solution found (and the nodes such that
they do not have any incident edge after edge deletion) and obtain graph G = (V ,E);

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 8

4. set back the balances to 1 and -1, and construct a feasible solution (see Section 4.1.1) for the original RND
instance on the reduce graph G.

Step 1 is used to define the search space that we want to use in the NSP. Indeed, by increasing the absolute
value of the balances, more edges are likely to be used in the solution computed in step 2 and they constitute the
neighborhood of the solution computed in step 4. The next section describes how to compute a feasible solution
for an RND instance.

4.1.1 Construction of a Feasible Solution

In the case of a single scenario, an algorithm for the Minimum Cost Flow (MCF) problem can be used to solve
RND as follows: we define a directed graph having the same set of nodes as G and two arcs for each edge of
G (one for each direction) with infinite upper bounds on the capacities. The flows that we obtain by solving the
MCF problem on the defined graph determine the edge capacities, i.e., the RND solution.

In the case of K scenarios, ordered from 1 to K, in a generic scenario q we can use for free the capacities that
have already been installed on the edges in scenarios 1, . . . ,q−1. A straightforward heuristic algorithm consists
of iteratively solving a MCF problem for each scenario (in the order from 1 to K), updating the capacities that
can be used for free after each MCF execution. In particular, we define an auxiliary directed graph Gdir = (V,A)
having the same set of nodes of G and the set of arcs defined as follows. For each edge e = {i, j} ∈ E, we
introduce four arcs ae

1, ae
2, ae

3 and ae
4: ae

1 and ae
2 are directed from i to j, while ae

3 and ae
4 are directed from j

to i. Two arcs are needed for each direction in order to take into account, in a generic scenario q, the previous
scenarios 1, . . . ,q−1: one arc has an upper bound on its capacity equal to the capacity already installed on the
corresponding edge in the previous scenarios 1, . . . ,q− 1 and has zero cost; the other arc has an infinite upper
bound on its capacity and has cost equal to the cost of the corresponding edge. More precisely, for each arc
a∈ A, we initialize the upper bounds UBa on the capacities and the costs ca as UBae

1
:= ∞, UBae

2
:= 0, UBae

3
:= ∞

and UBae
4

:= 0; cae
1

:= ce, cae
2

:= 0, cae
3

:= ce, cae
4

:= 0. A MCF problem is then solved for each scenario and the
upper bounds are updated according to the capacities installed on each arc.

The described algorithm follows a greedy approach. It would be useful if, when solving scenario q, we could
know what happens in the next scenarios q+ 1, . . . ,K so that we could choose accordingly the best capacity
installation. In addition, a MCF solution for a generic scenario q that installs capacity on more edges (at the
same cost) should be preferred: indeed, it is more likely that free capacity can be used in scenarios q+1, . . . ,K.
Therefore, a MCF solution with integer flows split over disjoint paths should be preferred with respect to a MCF
solution that sends flows along a single path.

Based on these two observations, we derive an improvement of the described heuristic algorithm. We apply
a preprocessing in which we divide each scenario q = 1, . . . ,K in R sub-scenarios gq

1, . . . ,g
q
R, where R is an

integer positive number. We consider the sub-scenarios in the order gq
1, (q = 1, . . . ,K), gq

2, (q = 1, . . . ,K), up
to gq

R, (q = 1, . . . ,K). In this way, the generic sub-scenario gq
l of scenario q can already take into account the

partial solution computed for all the scenarios 1, . . . ,K. The balances are defined as follows: bgq
1

v = bbq
v/Rc,

bgq
2

v = bbq
v/(R− 1)c, up to bgq

R
v = bq

v , v ∈ V . This means that the complete MCF solution of a generic scenario
q will more likely have a split integer flow over disjoint paths, because each sub-scenario might use different
subsets of arcs.

The improved heuristic algorithm iteratively solves a MCF problem for each sub-scenario gq
l (l = 1, . . . ,R,

q = 1, . . . ,K). Let us call uRND the RND solution that we compute with the improved heuristic algorithm. At
h = 0, uRND is initialized to be the zero vector. Let f h∗ be the MCF solution obtained at iteration h corresponding
to sub-scenario gq

l . The flows in f h∗ along the arcs with infinite upper bound determine the additional capacities
that must be installed on the corresponding edges: for each e = {i, j} ∈ E, uRND

e = uRND
e + f h∗

ae
1
+ f h∗

ae
3

. Note
that, in each sub-scenario, there will always be an optimal solution using, for each edge, only arcs in one of the
two directions: it is a single commodity flow, so we could simply do flow cancellation on cycles. In addition,
the values uRND are used to update the upper bounds on the capacities, before considering the following sub-
scenario: UBae

2
:= uRND

e and UBae
4

:= uRND
e . When all the sub-scenarios have been considered, the algorithm

returns the solution found uRND.
Note that in step 2 the described algorithm is used to define the reduced graph G: all the edges such that

uRND = 0 are deleted from G and the nodes that do not have anymore incident edges are removed as well. Step 4
is instead used to obtain a first feasible solution to our problem and is executed on the reduced graph G. Let us

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 9

call uCP the solution obtained at the end of the constructive phase.

4.2 Neighborhood Search Phase

This phase consists of solving an MIP flow-formulation for RND (1)–(5) on the reduced graph G defined in the
previous section.

Then, NSP explores the neighborhood of solution uCP by allowing the use of different edges belonging to G
and by allowing the installation of different capacities on the edges. The neighborhood is explored by solving the
proposed model, initialized with uCP, by Cplex within a given time limit. Let us call uNSP the obtained improved
solution and cNSP its cost. Since we consider the reduced graph, this phase is able to quickly obtain an improved
solution, as it will be seen in Section 5.

4.3 Proximity Search Phase

Recently, Fischetti and Monaci [13] investigated the effects of replacing the objective function of a 0-1 Mixed-
Integer Convex Programming problem with a “proximity” one, i.e., with minimizing the distance from a feasible
solution of the problem, with the aim of enhancing the heuristic behavior of a black-box solver. In particular,
they consider the Hamming distance:

∆(x, x̃) := ∑
j∈J:x̃=0

x j + ∑
j∈J:x̃=1

(1− x j), (6)

where x j ∈ {0,1}, ∀ j ∈ J, and x̃ is a feasible solution to the considered problem. The idea consists of starting with
an initial feasible solution x̃ with cost f (x̃), and iteratively searching for an improved solution by adding a cutoff
constraint that imposes the cost of the improved solution to be smaller than f (x̃) by at least a quantity θ . The
search is performed by solving with a black-box solver the new model with objective function that minimizes the
Hamming distance from x̃, until a termination condition is reached, namely, until the first improved solution has
been found. If no improved solution is found, θ is reduced. The process is then iterated by using the improved
solution found as new x̃. The algorithm is terminated when a given time limit is reached. The method can be
enhanced by providing an incumbent solution to each iteration of proximity search. This is obtained by adding
an auxiliary continuous variable z which is used to keep the cutoff constraint feasible:

f (x)≤ f (x̃)−θ + z (7)

and has a large cost M in the objective function. In this way, x̃ is a (very costly) feasible solution for the MIP it
defines. As soon as z becomes 0, an improved solution is found.

We apply this idea to RND, i.e. we deal with an MIP. We start with initial solution uNSP and we consider the
original graph G (instead of the reduced one) in order to have a higher probability of improving uNSP. Since
capacities assume integer (and not only binary) values, we need to modify the definition of distance presented in
[13]. Instead of expressing the distance as |u−uNSP|, ui j integer ∀{i, j} ∈ E, we fix upper bounds on the capacity
variables, based on the values of uNSP

i j , as follows. For each edge {i, j} ∈ E such that uNSP
i j > 0, the upper bound

is set to uNSP
i j . For all the remaining edges the upper bound is the set to be infinite. The distance is then defined

as
∑

{i, j}∈E:uNSP
i j =0

ui j + ∑
{i, j}∈E:uNSP

i j >0

(uNSP
i j −ui j). (8)

By imposing upper bounds on the capacity variable, we limit the search space and, consequently, the comput-
ing time, by using the solution found uNSP. At the same time we leave the possibility of installing capacity on
edges that were not used in the previous solution. Note that, by imposing upper bounds on the capacities, the
proximity search becomes a heuristic method for RND. Given this distance measure definition, we iteratively
solve the following proximity search model

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 10

min ∑
{i, j}∈E:uNSP

i j =0

ui j− ∑
{i, j}∈E:uNSP

i j >0

ui j +Mz (9)

∑
{i, j}∈E

ci jui j− zθ ≤ cNSP−θ , (10)

∑
j:{ j,i}∈E

f q
ji− ∑

j:{i, j}∈E
f q
i j = bq

i ∀i ∈V, q = 1, . . . ,K (11)

f q
i j + f q

ji ≤ ui j ∀{i, j} ∈ E, q = 1, . . . ,K (12)

ui j ≤ uNSP
i j ∀{i, j} ∈ E : uNSP

i j > 0 (13)

f q
i j ≥ 0 ∀{i, j} ∈ E, q = 1, . . . ,K (14)

ui j ∈ Z+ ∀{i, j} ∈ E (15)

z ∈ {0,1}, (16)

where the auxiliary variable z is to guarantee feasibility of uNSP. The objective function (9) calls for minimizing
the distance from the previous solution uNSP and for obtaining a solution with z = 0, i.e., an improved solution
that respects the cutoff constraint (10). Constraint (10) imposes to obtain a reduction in the cost of the improved
solution of at least θ . Constraints (11) and (12) correspond to the RND problem constraints. Constraints (13)
impose the upper bounds on the capacity variables. Finally, constraints (14)–(16) impose variables’ bounds.
Note that z is defined as binary as it turned out in our computational experiments that it is very effective to
impose branching priority on z, in order to quickly obtain a solution with z = 0.

Model (9)-(16) is solved by Cplex until the first feasible solution with z = 0 is obtained. In our experiments θ

was set to 1. Therefore, if z = 1 the process is stopped. On the first feasible solution found, Cplex polishing (see,
Rothberg [25]) is applied until the first improved solution is found. Formulation (9)–(16) is then solved again
by replacing uNSP with the improved solution. The proximity search phase is executed until a given time limit is
reached. When the time limit is reached, PS returns the best solution found uPSP.

5 Computational Results

In this section, we report the computational results that we achieved on instances generated on random graphs
with balances {−1,0,1}. Instances are generated as follows: n nodes are randomly located in a unit Euclidean
square. Two nodes are connected with an edge if the Euclidean distance is less than α/

√
n where α is a parameter

set to 2 in our generator. The edge cost for capacity installation is proportional to the Euclidean distance. For
each scenario, 25%, 50% or 100% of the nodes are randomly selected to be terminals. We consider 5 or 10
scenarios.

The heuristic was developed in C language, and Cplex version 12.5 with 4 threads was used as a general
purpose solver. The tests were executed on a PC 1.73 GHz, 6 GB Ram. The computing times are expressed in
seconds. The algorithm CS2 by Goldberg [14] was used for solving the Minimum Cost Flow. The following
parameter setting is used for the heuristic: a time limit of 300 seconds is given to NSP and a time limit of 600
seconds is given to PSP. The total time limit for the heuristic is fixed to 900 seconds, because the computation
time of the CP is negligible. We fix F = 100, R = 10, θ = 1 and M = 100uNSP, based on parameter tuning.

An important feature of our heuristic algorithm is that it is robust to parameter setting, i.e. the efficacy of
the algorithm is not really dependent on the specific parameter values, as long as balances are increased and
scenarios are split in sub-scenarios (i.e., F > 1 and R > 1). In particular, the difference between average gaps,
computed with respect to the solutions obtained by Cplex 5h, for different combinations of F and R (with F > 1
and R > 1) are negligible (below 1%). Among all combinations, the one that has the best balance between gap
and standard deviation is given by R = 10 and F = 100. The other parameter used in our heuristic algorithm is θ .
We choose θ = 1 as a conservative value, i.e. a value that allows us to obtain good solutions on average on all the
instances. In particular, we observed that, on the small instances (with 50 to 100 nodes), larger values for θ do
not produce high quality solutions. When the instances get larger, a more aggressive policy (e.g. with θ = 100)
can give better results. We decided to keep a conservative value, in order to avoid parameter overtuning.

In Figure 3, we show the results obtained, with a time limit of 900 seconds, by the proposed method after
each of the three phases described in Section 4. In particular, we show one graphic for each class of instances

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 11

(from 50 nodes to 500 nodes). In this graphic, the comparison is presented with respect to the solutions obtained
after the constructive phase and we show in black the percentage improvement of the solutions obtained after the
neighborhood search phase (NSP) and in gray the percentage improvement of the solutions obtained after the
proximity search phase (PSP). On the right of the figure, we also show the average and standard deviation for
each class of instances. As it can be seen, both the NSP and the PSP are effective in obtaining improvements for
all instances but six, on which only PSP is able to improve the solution found uCP after the constructive phase.
The detailed results are reported in Table 2 in the Appendix.

1 2 3 4 5 620

10

0

10

20

50
 n

od
es

Inst. Inst.s 1-620
15
10

5
0
5

10
15
20 Av. and st.dev.

7 8 9 10 11 12
15
10

5
0
5

10
15

10
0

no
de

s

Inst. Inst.s 7 - 1220
15
10

5
0
5

10
15
20

13 14 15 16 17 18
15
10

5
0
5

10
15

20
0

no
de

s

Inst. Inst.s 13 - 1820
15
10

5
0
5

10
15
20

19 20 21 22 23 24
15
10

5
0
5

10
15

30
0

no
de

s

Inst. Inst.s 19 - 2420
15
10

5
0
5

10
15
20

25 26 27 28 29 30
10

5
0
5

10

40
0

no
de

s

Inst. Inst.s 25 - 3020
15
10

5
0
5

10
15
20

31 32 33 34 35 36
10

5
0
5

10

50
0

no
de

s

Inst.

NSP PSP

Inst.s 31 - 3520
15
10

5
0
5

10
15
20

Figure 3: Comparison of the results obtained after NSP and after PSP with those obtained after CP.

In the following, we present a comparison of the results obtained by the proposed heuristic (indicated as RND
Heur.) with those obtained by Cplex applied to the MIP flow model (1)-(5) on the original graph G. In particular,
we show the results obtained when Cplex is run with a time limit of five hours (Cplex 5h) in default setting, and
the results obtained with Cplex in the effective heuristic configurations suggested in [13] (Cplex Pol. 900s), i.e.,
solution polishing is applied, and the time limit is set to 900 seconds. The proposed method, Cplex 5h and Cplex
Pol. 900s are initialized with the solution uCP constructed as explained in Section 4.1.

In Table 1, we report the results obtained by Cplex 5h, which will be used as our benchmark for comparison.
In particular, we report the data on the instances, the solution (uCP) obtained at the end of the constructive phase
and used for initializing each of the methods, the best lower bound (LB) and the best upper bound (UB) obtained
by Cplex 5h, the duality gap (Gap%), the number of branch and bound nodes (BBn), and the computing time.
As it can be seen from Table 1, the time limit is reached for all instances but the three smallest ones for which
Cplex is able to prove optimality. For the remaining instances, the duality gaps are often quite large and for seven

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 12

instances Cplex is not even able to improve the initial solution.

Cplex 5h
Inst. n t% K uCP LB UB Gap% BBn Time

1 50 25 5 22904 22438 22438 0.00 1977 6
2 50 50 5 60921 52947 52952 0.01 602223 2666
3 50 100 5 79487 66334 66340 0.01 968741 4634
4 50 25 10 52835 44129 47272 6.65 464679 18000
5 50 50 10 66781 55277 57861 4.47 374536 18000
6 50 100 10 88323 70085 71526 2.01 544735 18000
7 100 25 5 39255 36741 37031 0.78 960936 18000
8 100 50 5 89264 76498 78702 2.80 430334 18000
9 100 100 5 81126 74331 74822 0.66 675507 18000
10 100 25 10 86929 67148 71192 5.68 63827 18000
11 100 50 10 115437 92265 97246 5.12 44262 18000
12 100 100 10 132233 112062 114624 2.24 76558 18000
13 200 25 5 98497 77288 85676 9.79 67461 18000
14 200 50 5 142509 113158 122062 7.29 53440 18000
15 200 100 5 169962 139302 144508 3.60 75979 18000
16 200 25 10 134999 98358 114995 14.47 11630 18000
17 200 50 10 173335 133819 148087 9.63 9406 18000
18 200 100 10 219903 175660 184992 5.04 14684 18000
19 300 25 5 92259 73805 83302 11.40 28125 18000
20 300 50 5 139954 115164 128296 10.24 22212 18000
21 300 100 5 183689 150048 162860 7.87 22284 18000
22 300 25 10 148349 103953 148349 29.93 2927 18000
23 300 50 10 201301 151200 199456 24.19 2198 18000
24 300 100 10 271340 214577 268072 19.96 2603 18000
25 400 25 5 109241 87877 98297 10.60 14881 18000
26 400 50 5 217300 175286 190328 7.90 12671 18000
27 400 100 5 291469 234266 252987 7.40 18336 18000
28 400 25 10 158033 117143 158033 25.87 1191 18000
29 400 50 10 253648 191242 253648 24.60 1239 18000
30 400 100 10 325512 255769 325512 21.43 1278 18000
31 500 25 5 106191 75197 98778 23.87 7576 18000
32 500 50 5 189269 159465 177572 10.20 10186 18000
33 500 100 5 261922 216832 241684 10.28 8584 18000
34 500 25 10 214149 153247 214149 28.44 325 18000
35 500 50 10 262379 196930 262379 24.94 315 18000
36 500 100 10 323275 249201 323275 22.91 564 18000

Table 1: Results obtained with Cplex on the MIP flow formulation in five hours of time limit.

In order to measure the performance of the proposed method, we show in Figure 4 the comparison between
the results we obtain in 900 seconds of time limit and the results obtained by Cplex 5h and by Cplex Pol. 900s.
The detailed results are reported in Table 3 in the Appendix. In particular, we show one graphic for each class of
instances (from 50 nodes to 500 nodes). In this graphic, the comparison is presented with respect to the solutions
obtained by Cplex 5h and we show in black the percentage gap of the solutions obtained by Cplex Pol. 900s and
in gray the percentage gap of the solutions obtained by RND Heur. On the right of the figure, we also show the
average and standard deviation for each class of instances.

As it is evident from Figure 4, the three methods obtain comparable results for instances with up to 100 nodes.
However, as the instances get larger, the proposed method becomes more effective than the other ones, and it
is able to improve the results obtained by the other two methods. In particular, compared to Cplex Pol. 900s
that has the same time limit, the proposed method always obtains better solutions for instances with at least 300
nodes. It obtains solutions with a cost less or equal than those obtained by Cplex Pol. 900s for 27 out of 36
instances, and is at most 1.05% worse for a single instance. The improvement is significant (between 3% and
more than 14%) for 14 out of 36 instances. Even compared to Cplex run for five hours, the proposed method
performs on average better on instances with at least 200 nodes, especially when we have 10 scenarios. It is able

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 13

1 2 3 4 5 6
1.5
1.0
0.5
0.0
0.5
1.0
1.5

50
 n

od
es

Inst. Inst.s 1-610

5

0

5

10 Av. and st.dev.

7 8 9 10 11 12
2
1
0
1
2

10
0

no
de

s

Inst. Inst.s 7 - 1210

5

0

5

10

13 14 15 16 17 18
10

5
0
5

10

20
0

no
de

s

Inst. Inst.s 13 - 1810

5

0

5

10

19 20 21 22 23 24
20
10
0

10
20

30
0

no
de

s

Inst. Inst.s 19 - 2410

5

0

5

10

25 26 27 28 29 30
15
10

5
0
5

10
15

40
0

no
de

s

Inst. Inst.s 25 - 3010

5

0

5

10

31 32 33 34 35 36
6
4
2
0
2
4
6

50
0

no
de

s

Inst.

Cplex Pol.900s RND Heur.900s

Inst.s 31 - 3510

5

0

5

10

Figure 4: Comparison of the proposed heuristic RND (time limit of 15 minutes) with Cplex Pol. 900s and with
Cplex 5h.

to obtain better or equal solutions for 20 out of 36 instances. The average percentage improvement with respect
to Cplex 5h and Cplex Pol. 900s is 2.38% and 2.90%, respectively.

In order to further validate the results presented in Figure 4, we performed extensive computational experi-
ments on instances with n= 300 and n= 400 nodes. In particular, we considered five instances for each sub-class,
defined by selecting t ∈ {25%,50%,100%} and k ∈ {5,10}. This gives a total testbed of 60 instances. In Figure
5, we show the comparison between the three methods. The comparison is presented with respect to the solutions
obtained by Cplex in five hours. We show in black the percentage gap of the solutions obtained by Cplex Pol.
900s and in gray the percentage gap of the solutions obtained by RND Heur in 900s. Compared to Cplex Pol.
900s, that has the same time limit, the proposed method always obtains better solutions, and, compared to Cplex
5h, performs better on all instances with 10 scenarios, confirming the effectiveness of the proposed approach.

6 Conclusions and Future Research

We have presented a single-commodity robust network design problem and we have shown complexity results
for special classes of instances, including hypercubes. By the complexity analysis, we have shown that instances
with random integer balances different from 1 and -1 are NP-hard, even if computationally easy ([9, 2]). In
order to explain why, we have shown that instances defined on hypercubes with balances in {−r,0,r} (r integer,
r > 1) are theoretically easy, while instances defined on hypercubes with balances in {−1,0,1} are structurally

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 14

5-25 5-50 5-100 10-25 10-50 10-100
10

5

0

5

10

30
0

no
de

s

Inst.

Cplex Pol.900s RND Heur.900s

5-25 5-50 5-100 10-25 10-50 10-100

10

5

0

5

10

40
0

no
de

s

Inst.

Cplex Pol.900s RND Heur.900s

Figure 5: Comparison of the three methods on additional instances with 300 and 400 nodes.

hard. This has motivated us to study instances (defined on random graphs) with balances of {−1,0,1}. We
have developed a heuristic algorithm composed of three phases. The first one reduces the instance graph and
constructs a feasible solution, the second one solves an MIP flow-formulation of the problem on the reduced
graph for a given time limit, in order to improve the solution found, and the last phase applies a modified version
of the recent technique of proximity search to further improve the solution. We have tested the proposed method
on randomly generated instances with balances of {−1,0,1}, and we have compared the obtained results with
those obtained by Cplex both in 5 hours (default version) or by using the polishing algorithm to enhance its
heuristic behavior (for 900 seconds). The results show that our method is comparable with the other ones for
instances with up to 100 nodes, but obtains better solutions for larger instances. Future research can be devoted
to extend the proposed algorithm to the multi-commodity case. In addition, the proposed method takes into
account the balances of all the scenarios, but a less conservative approach could be considered, for example,
by taking into account the probability of each scenario. Other extensions could be to tackle related variants of
robust network design, such as Survivable Network Design: mostly the constructive phase needs to be modified,
as long as a good MIP formulation exists. Additional parameter tuning might be necessary as well.

Acknowledgments

Financial support is acknowledged from the Ateneo Italo-Tedesco (VIGONI programme 2011-2012). The au-
thors would like to thank Mike Jünger, Frauke Liers and Laura Sanità for their valuable comments. The third
author acknowledges the support by MIUR under the PRIN2009 grant.

References

[1] A. Altin, E. Amaldi, P. Belotti, and M.C. Pinar. Provisioning virtual private networks under traffic uncer-
tainty. Networks, 49:100–115, 2007.

[2] E. Álvarez-Miranda, V. Cacchiani, T. Dorneth, M. Jünger, F. Liers, A. Lodi, T. Parriani, and D. Schmidt.
Models and algorithms for robust network design with several traffic scenarios. In A. R. Mahjoub et al.,
editor, ISCO 2012, volume 7422 of Lecture Notes in Computer Science, pages 261–272. Springer, 2012.

[3] A. Atamtürk. On capacitated network design cut-set polyhedra. Mathematical Programming, 92:425–437,
2000.

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 15

[4] W. Ben-Ameur and H. Kerivin. Routing of uncertain traffic demands. Optimization and Engineering,
6:283–313, 2005.

[5] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations Research
Letters, 25(1):1–13, 1999.

[6] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated with
uncertain data. Mathematical Programming, 88:411–424, 2000.

[7] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.

[8] D. Bienstock, S. Chopra, O. Günlük, and C.H. Tsai. Minimum cost capacity installation for multicommod-
ity network flows. Mathematical Programming, 81(2):177–199, 1998.

[9] C. Buchheim, F. Liers, and L. Sanità. An exact algorithm for robust network design. In J. Pahl, T. Reiners,
and S. Voß, editors, INOC, volume 6701 of Lecture Notes in Computer Science, pages 7–17. Springer,
2011.

[10] C. Chekuri. Routing and network design with robustness to changing or uncertain traffic demands. SIGACT
News, 38:106–128, 2007.

[11] R. T. Chien. Synthesis of a communication net. IBM Journal of Research and Development, 4(3):311–320,
1960.

[12] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J.E. van der Merwe. A
flexible model for resource management in virtual private networks. In Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer communication, SIGCOMM ’99,
pages 95–108. ACM, 1999.

[13] M. Fischetti and M. Monaci. Proximity search for 0-1 mixed-integer convex programming. Technical
report, DEI, University of Padova, Italy, 2013.

[14] A.V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. Journal of Algo-
rithms, 22(1):1–29, 1997.

[15] R. Gomory and T. Hu. An application of generalized linear programming to network flows. Journal of the
Society for Industrial and Applied Mathematics, 10(2):260–283, 1962.

[16] R.E Gomory and T.C. Hu. Multi-terminal network flow. SIAM Journal on Applied Mathematics, 9:551–
570, 1961.

[17] L. R. Ford Jr. and D. R. Fulkerson. A simple algorithm for finding maximal network flows and an applica-
tion to the hitchcock problem. Canadian Journal of Mathematics, 9:210–218, 1957.

[18] H. Kerivin and A.R. Mahjoub. Design of survivable networks: A survey. In In Networks, pages 1–21, 2005.

[19] A.M.C.A. Koster, M. Kutschka, and C. Raack. Robust network design: Formulations, valid inequalities,
and computations. Networks, 61(2):128–149, 2013.

[20] M. Labbé, R. Séguin, P. Soriano, and C. Wynants. Network synthesis with non-simultaneous multicom-
modity flow requirements: Bounds and heuristics, 1999.

[21] S. Mattia. The robust network loading problem with dynamic routing. Computational Optimization and
Applications, 54:619–643, 2013.

[22] Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10(1):96–115, 1927.

[23] M. Minoux. Optimum synthesis of a network with non-simultaneous multicommodity flow requirements.
In Annals of Discrete Mathematics (11) Studies on Graphs and Discrete Programming, volume 59, pages
269 – 277. North-Holland, 1981.

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 16

[24] F. Ortega and L.A. Wolsey. A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-
charge network flow problem. Networks, 41(3):143–158, 2003.

[25] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS
Journal on Computing, 19:534–541, 2007.

[26] Youcef Saad and Martin H. Schultz. Topological properties of hypercubes. Technical Report
YALEU/DCS/TR389, Yale University, 1985.

[27] L. Sanità. Robust Network Design. Ph.D. Thesis. Università La Sapienza, Roma, 2009.

[28] L. Sanità. Private communication. 2013.

[29] A. L. Soyster. Convex programming with set-inclusive constraints and applications to inexact linear pro-
gramming. Operations Research, 21(5):1154–1157, 1973.

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 17

Appendix

Proof of Lemma 7

We now provide a full version of the proof of Lemma 7. Let us denote by V d and Ed the set of nodes and edges
of Hd , respectively.

Proof of Lemma 7. If we define the set

S :=
{

S⊂V d | S is connected and separates at least one vq from its partner vo
q
}
,

we can find an optimum fractional solution for H r
d with the following linear program [2].

min ∑
e∈Ed

ue

∑
e∈δ (S)

ue ≥ r for all S ∈S

ue ≥ 0 for all e ∈ E
(CAP)

If d = 2, it holds that |S| = d = 2 for all S ∈ S . Consequently, if we set ue = r/2 for all e ∈ Ed , all primal
constraints are satisfied with equality and the solution is optimal. If d ≥ 3, we introduce dual variables ξS for all
S ∈S and obtain the following dual program:

max ∑
S∈S

r ·ξS

∑
S∈S :
{i, j}∈S

ξS ≤ 1 for all {i, j} ∈ Ed

ξS ≥ 0

(CAP∗)

We consider the following pair of primal and dual solutions:

ue := r/d for all e ∈ Ed
ξS :=

{
0, if |δ (S)|> d
1/2, if |δ (S)|= d

for all S ∈S .

To prove our claim, we need to show that u and ξ are feasible and satisfy complementary slackness. Feasibility of
u follows by the first part of Lemma 9: For all S ∈S , we have |δ (S)| ≥ d and thus ∑e∈δ (S) ue = |δ (S)|(r/d)≥ r.
Observe that by the second part of Lemma 9 equality holds if and only if |δ (S)|= d. Thus, we have (∑e∈δ (S) ue−
r) ·ξS = 0 for all S ∈S , yielding primal complementary slackness. To see why ξ is feasible for (CAP∗) we need
to show that

∑
S∈S :
{i, j}∈S

ξS = ∑
S∈S :
|δ (S)|=d
{i, j}∈S

ξS ≤ 1 for all {i, j} ∈ Ed .

By applying Lemma 9, we can rewrite this as

∑
S∈S :
|δ (S)|=d
{i, j}∈S

ξS = ∑
S∈S :
|S|=1
{i, j}∈S

ξS = ξ{i}+ξ{ j} = 1 for all {i, j} ∈ Ed

which also yields that (∑S∈S :e∈S ξS− 1) · ue = 0 for all e ∈ Ed , i.e., we have dual complementary slackness.
Finally, both solutions yield the desired objective value of ∑e∈Ed r/d = d ·2d−1 · (r/d) = r ·2d−1.

The following lemma provides the missing piece for the above proof.

Lemma 9. Let d ≥ 3. Then in Hd , |δ (S)| ≥ d for all /0 (S (V d . Moreover, equality is attained if and only if
|S|= 1 or |S|= |V d |−1.

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 18

Proof. The first part of the lemma is well-known: Saad and Schultz [26, Propositions 3.2 and 3.3] proved that
for any two nodes i, j of a d-dimensional hypercube, there are at least d node disjoint paths between i and j.
By Menger’s Theorem [22], this implies that |δ (S)| ≥ d for all /0 (S (V d . Also, if S contains a single node i,
then |δ (S)| = |δ (i)| = d. It remains to show that the inequality is strict if 2 ≤ |S| ≤ |V d | − 2. Without loss of
generality, we can assume that |S| ≤ 1

2 |V
d | since δ (S) = δ (V \S).

Now, choose an arbitrary decomposition of Hd into two (d−1)-dimensional hypercubes H1 = (V1,E1),H2 =
(V2,E2) such that neither of S1 := S∩V1 and S2 := S∩V2 is empty. This is possible because S contains at least
two and at most |V |/2 nodes. It also implies that neither S1 = V1 nor S2 = V2, as otherwise S2 or S1 would be
empty, respectively.

For i = 1,2, the node set Si defines a cut δi(Si) in Hi. Since Si 6= /0 and Si 6=Vi, we know that |δi(Si)| ≥ d−1,
since Hi is a (d−1)-dimensional hypercube. Also, δ1(S1),δ2(S2)⊆ δ (S) and therefore |δ (S)| ≥ 2 · (d−1)> d
for d ≥ 3.

Tables

In Table 2, we show the results obtained by the proposed method after each of the three phases described in
Section 4. In particular, we show the instance name (Inst.), the number n of nodes in the graph G, the percentage
t% of nodes that are terminals, the number K of considered scenarios, the solution (uCP) obtained at the end of
the constructive phase, the solution uNSP obtained after the neighborhood search phase (and the corresponding
percentage improvement ImpruCP% with respect to uCP) and the final solution uPSP provided by our method by
applying proximity search (and the corresponding percentage improvement ImpruNSP% with respect to uCP). We
do not report the computing times, as the time limit of 900 seconds is reached for all instances.

In Table 3, we report the value of the best solution obtained by each method, and, for Cplex Pol. 900s and
for RND Heur., we show the percentage gap GapC5h% to the best upper bound computed by Cplex 5h. In the
last column, we also show the percentage gap GapC900s% between the solutions obtained by RND Heur. and
Cplex Pol. 900s. Finally, in the last rows of the table, we show the average (Avg.), the median (Median) and
the standard deviation (StDev.) of the percentage gaps, as well as the minimum (Min) and the maximum (Max)
percentage gap.

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 19

Inst. n t% K uCP uNSP ImpruCP% uPSP ImpruNSP %
1 50 25 5 22904 22904 0.00 22438 -2.03
2 50 50 5 60921 53443 -12.27 52952 -13.08
3 50 100 5 79487 67250 -15.39 66340 -16.54
4 50 25 10 52835 47419 -10.25 47272 -10.53
5 50 50 10 66781 58928 -11.76 58346 -12.63
6 50 100 10 88323 73352 -16.95 71530 -19.01
7 100 25 5 39255 37624 -4.15 37041 -5.64
8 100 50 5 89264 80139 -10.22 79088 -11.40
9 100 100 5 81126 76247 -6.01 75012 -7.54
10 100 25 10 86929 72399 -16.71 71694 -17.53
11 100 50 10 115437 99155 -14.10 97703 -15.36
12 100 100 10 132233 116100 -12.20 115107 -12.95
13 200 25 5 98497 87562 -11.10 86855 -11.82
14 200 50 5 142509 122543 -14.01 122032 -14.37
15 200 100 5 169962 148214 -12.80 145826 -14.20
16 200 25 10 134999 113380 -16.01 111439 -17.45
17 200 50 10 173335 148397 -14.39 147487 -14.91
18 200 100 10 219903 190824 -13.22 189406 -13.87
19 300 25 5 92259 85518 -7.31 84681 -8.21
20 300 50 5 139954 129723 -7.31 129709 -7.32
21 300 100 5 183689 164206 -10.61 163699 -10.88
22 300 25 10 148349 122424 -17.48 121953 -17.79
23 300 50 10 201301 172539 -14.29 170487 -15.31
24 300 100 10 271340 235728 -13.12 232706 -14.24
25 400 25 5 109241 98219 -10.09 98176 -10.13
26 400 50 5 217300 190677 -12.25 190492 -12.34
27 400 100 5 291469 253378 -13.07 251291 -13.78
28 400 25 10 158033 136413 -13.68 135968 -13.96
29 400 50 10 253648 253648 0.00 244109 -3.76
30 400 100 10 325512 325512 0.00 314428 -3.41
31 500 25 5 106191 93433 -12.01 93425 -12.02
32 500 50 5 189269 174540 -7.78 174082 -8.02
33 500 100 5 261922 245907 -6.11 242828 -7.29
34 500 25 10 214149 214149 0.00 209360 -2.24
35 500 50 10 262379 262379 0.00 254891 -2.85
36 500 100 10 323275 323275 0.00 315955 -2.26

Avg. -9.91 -11.02

Table 2: Results obtained by the proposed method within 900 seconds of time limit.

Álvarez-Miranda, Cacchiani, Lodi, Parriani and Schmidt 20

Cplex 5h Cplex Pol. 900s RND Heur. 900s
Inst. n t% K UB UB GapC5h% uPSP GapC5h% GapC900s%

1 50 25 5 22438 22438 0.00 22438 0.00 0.00
2 50 50 5 52952 52952 0.00 52952 0.00 0.00
3 50 100 5 66340 66546 0.31 66340 0.00 -0.31
4 50 25 10 47272 47272 0.00 47272 0.00 0.00
5 50 50 10 57861 57861 0.00 58346 0.83 0.83
6 50 100 10 71526 71526 0.00 71530 0.01 0.01
7 100 25 5 37031 37031 0.00 37041 0.03 0.03
8 100 50 5 78702 78702 0.00 79088 0.49 0.49
9 100 100 5 74822 74822 0.00 75012 0.25 0.25

10 100 25 10 71192 71189 0.00 71694 0.70 0.70
11 100 50 10 97246 98409 1.18 97703 0.47 -0.72
12 100 100 10 114624 115068 0.39 115107 0.42 0.03
13 200 25 5 85676 85947 0.32 86855 1.36 1.05
14 200 50 5 122062 122522 0.38 122032 -0.02 -0.40
15 200 100 5 144508 145770 0.87 145826 0.90 0.04
16 200 25 10 114995 116786 1.53 111439 -3.19 -4.80
17 200 50 10 148087 148138 0.03 147487 -0.41 -0.44
18 200 100 10 184992 204936 9.73 189406 2.33 -8.20
19 300 25 5 83302 87723 5.04 84681 1.63 -3.59
20 300 50 5 128296 130825 1.93 129709 1.09 -0.86
21 300 100 5 162860 168882 3.57 163699 0.51 -3.17
22 300 25 10 148349 129877 -14.22 121953 -21.64 -6.50
23 300 50 10 199456 195300 -2.13 170487 -16.99 -14.55
24 300 100 10 268072 259317 -3.38 232706 -15.20 -11.44
25 400 25 5 98297 101115 2.79 98176 -0.12 -2.99
26 400 50 5 190328 206445 7.81 190492 0.09 -8.37
27 400 100 5 252987 252842 -0.06 251291 -0.67 -0.62
28 400 25 10 158033 150661 -4.89 135968 -16.23 -10.81
29 400 50 10 253648 253648 0.00 244109 -3.91 -3.91
30 400 100 10 325512 325512 0.00 314428 -3.53 -3.53
31 500 25 5 98778 102182 3.33 93425 -5.73 -9.37
32 500 50 5 177572 177292 -0.16 174082 -2.00 -1.84
33 500 100 5 241684 251807 4.02 242828 0.47 -3.70
34 500 25 10 214149 214149 0.00 209360 -2.29 -2.29
35 500 50 10 262379 262379 0.00 254891 -2.94 -2.94
36 500 100 10 323275 323275 0.00 315955 -2.32 -2.32

Avg. 0.51 -2.38 -2.90
Median 0.00 0.00 -1.35
StDev. 3.67 5.75 3.96
Min -14.22 -21.64 -14.55
Max 9.73 2.33 1.05

Table 3: Comparison of the proposed heuristic (time limit of 15 minutes) with Cplex (time limit of 5 hours or
15 minutes).

