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Abstract This paper is concerned with computing global optimal solutions for max-
imum k-cut problems. We improve on the SBC algorithm of Ghaddar, Anjos and
Liers in order to compute such solutions in less time. We extend the design princi-
ples of the successful BiqMac solver for maximum 2-cut to thegeneral maximum
k-cut problem. As part of this extension, we investigate different ways of choosing
variables for branching. We also study the impact of the separation of clique inequal-
ities within this new framework and observe that it frequently reduces the number
of subproblems considerably. Our computational results suggest that the proposed
approach achieves a drastic speedup in comparison to SBC, especially whenk= 3.
We also made a comparison with the orbitopal fixing approach of Kaibel, Peinhardt
and Pfetsch. The results suggest that while their performance is better for sparse
instances and larger values ofk, our proposed approach is superior for smallerk
and for dense instances of medium size. Furthermore, we usedCPLEX for solv-
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technique de Montréal, Montŕeal, QC, Canada H3C 3A7, e-mail: anjos@stanfordalumni.org

Bissan Ghaddar
Centre for Operational Research and Analysis, Defence Researchand Development Canada, De-
partment of National Defence, 101 Colonel By Drive, Ottawa, Ontario, Canada, K1A 0K2, e-mail:
bghaddar@uwaterloo.ca

Lena Hupp
Department Mathematik, Friedrich-Alexander Universität Erlangen-N̈urnberg, Cauerstraße 11,
91058 Erlangen, Germany, e-mail: lena.hupp@math.uni-erlangen.de

Frauke Liers
Department Mathematik, Friedrich-Alexander Universität Erlangen-N̈urnberg, Cauerstraße 11,
91058 Erlangen, Germany, e-mail: frauke.liers@math.uni-erlangen.de

Angelika Wiegele
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ing the ILP formulation underlying the orbitopal fixing algorithm and conclude that
especially on dense instances the new algorithm outperforms CPLEX by far.

1 Introduction

The maximumk-cut (max-k-cut) problem is a graph partitioning problem concerned
with finding an optimalk-way partitioning of the set of nodes of an undirected sim-
ple graph with weights on the edges. An edge is cut if its endpoints are in different
sets of the partition, and a partition is also called a cut of the graph. Thus the weight
of a cut is equal to the sum of the weights on the edges cut by itscorresponding
partition. There are a number of different versions of graphpartitioning problems in
the literature, depending on the number of sets allowed in a partition, on the types
of edge weights allowed, and on the possible presence of additional side constraints
such as restrictions on the number of nodes allowed in each partition. Most versions
are known to be NP-hard. Graph partitioning problems have myriad applications
in areas as varied as telecommunications network planning [20], VLSI circuit de-
sign [9], sports scheduling [45, 21], and statistical physics [39].

The special case of max-k-cut with k=2 is known as the max-cut problem. The
max-cut problem has been extensively studied; in particular it is known to be equiv-
alent to quadratic unconstrained binary optimization. Among the numerous refer-
ences for max-cut, we point out Barahona and Mahjoub [10], Deza and Laurent [18],
and Boros and Hammer [12]. A prominent application of max-cut is in determin-
ing energy-minimum states, i.e., ground states, of Ising spin glasses. The first exact
branch-and-cut approach for its solution was presented in [9] and developed fur-
ther in [39]. Extending the number of shores tok > 2, maximumk-cuts need to be
computed when determining ground states of Potts glasses. In the physics literature,
ground states are usually computed heuristically, but morereliable conclusions can
be drawn by analyzing exact solutions.

The max-k-cut problem is sometimes also called the minimumk-partition prob-
lem by noting that maximizing thek-cut is equivalent to minimizing the sum of
the weights of the edges connecting nodes in the same partition. It was studied by
Chopra and Rao in [14] who identified several valid and facet-defining inequalities
for the k-partition polytope. Further results can be found in Chopraand Rao [15]
and Deza, Gr̈otschel, and Laurent [17].

Armbruster et al. [8] consider the minimum bisection problem, wherek= 2 and
the number of nodes in both partitions has to be less than a given valueF ≤ n

2. The
caseF = ⌈n

2⌉ corresponds to a minimum equipartition problem since the sizes of
both partitions then have to be (as close as possible to) equal. Alternatively, this
latter constraint added to the max-cut problem gives the equicut problem which can
be motivated by an application to Coulomb glasses in theoretical physics. Motivated
by this application, Anjos et al. [5] recently proposed an enhanced branch-and-cut
algorithm for equicut based on an approach proposed by Brunetta et al. [13].
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More generally, thek-way equipartition problem is a minimumk-partition prob-
lem with the additional constraint that thek partitions have to be of the same size.
Mitchell [44] applied a branch-and-cut algorithm based on linear programming (LP)
to thek-way equipartition problem with application to a sports league realignment
problem. Lisser and Rendl [41] considered an application ofk-way equipartition in
telecommunications and investigated both semidefinite andlinear relaxations of the
problem with iterative cutting plane algorithms.

Strong approximation guarantees have been obtained for several of these NP-
hard problems. A famous example is the randomized approximation algorithm for
max-cut proposed by Goemans and Williamson [25] that uses a semidefinite pro-
gramming (SDP) relaxation. Frieze and Jerrum [23] extendedthe approach of Goe-
mans and Williamson to max-k-cut and obtained a polynomial-time approximation
algorithm and a corresponding rounding technique. In particular, they proved the
existence of constantsαk, k≥ 2, such that

E(w(Vk))≥ αkw(V
∗

k )

wherew(Vk) = ∑1≤r<s≤k ∑i∈Vr , j∈Vs wi j , V ∗
k determines an optimal cut, andE de-

notes the expected value. For small values ofk, the best-known lower bounds for
these constants are given by de Klerk et al. [16]. The improved SDP relaxation for
max-cut of Anjos and Wolkowicz [7] provides very tight bounds for max-cut and
perfectly captures the faces of dimension 1 of the cut polytope [6]. This ability
to capture portions of the structure of the underlying polytope was proved for the
whole Lasserre hierarchy by Laurent [34]. Eisenblätter [20] used an SDP relaxation
for the minimumk-partition problem and proved that all the feasible solutions for
the SDP problem cannot violate the (facet-defining) triangle and clique inequalities
for thek-partition polytope by more than a small amount, thus showing that an SDP
relaxation can closely approximate the structure of thek-partition polytope.

Our interest is in computing global optimal solutions for max-k-cut problems.
Computationally speaking, SDP relaxations often yield stronger bounds than LP
relaxations. However, this strength usually comes at the expense of long running
times. Thus, it is not clear beforehand whether linear or semidefinite relaxations
lead to best performance.

For max-cut, sparse instances can usually be solved efficiently with LP-based
methods for large graphs. The web-based Spin Glass Server [4] is especially de-
signed for fast solutions of instances defined on grids that arise in statistical
physics [39]. For instance, for a two-dimensional lattice with L ≤ 80 and periodic
boundary conditions, one ground-state computation takes less than two minutes on
average on a SUN Opteron (2.2 GHz) machine; for 1202 lattices the computation
takes 28 minutes [40]. On the other hand, SDP-based methods perform better for
dense instances of max-cut [46]. The SDP-based web server BiqMac [1] can solve
max-cut instances with arbitrary structure with up to 100 vertices [48].

For thek-way equipartition problem, the LP-based branch-and-cut algorithm of
Mitchell [44] found the optimal solution for the NFL realignment problem where
k= 8 andn= 32, whereas a percentage gap of less than 2.5% was given for graphs
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of sizes 100 to 500. Lisser and Rendl [41] found that for graphsizes ranging from
100 to 900 vertices and fork = 5 andk = 10, the SDP approach produced a gap
between 4%-6% from the optimal solution and had overall better performance than
the LP approach.

For sparse instances of minimum bisection, the computational results of Arm-
bruster et al. [8] suggest that SDP relaxations are superiorto the corresponding LP
relaxations. On the other hand, Anjos et al. [5] compared basic LP and SDP re-
laxations for the equicut problem, and found that linear bounds can be competitive
with the semidefinite ones and can be computed much faster. While their results
appear to contradict the above observations, it is important to note that they focus
on dense instances coming from the physics application, andthat their specialized
relaxation includes constraints that are not valid for the minimum bisection polytope
in general.

In this paper, we focus on max-k-cut for k ≥ 3. Our motivation is that while
effective computational procedures that yield globally optimal solution for arbitrary
instances with up to 100 vertices and sparse graphs of considerably larger sizes
have been implemented for thek=2 case, to the best of our knowledge, most of the
procedures proposed in the literature either cannot be applied for generalk, provide
no guarantee of global optimality, or enforce additional constraints.

Among the exceptions, Kaibel, Peinhardt and Pfetsch [31, 32] applied a symmetry-
breaking method called orbitopal fixing (OF) to graph partitioning problems within
an LP-based branch-and-cut. Symmetry arises in graph partition problems because
different feasible solutions may represent the same partition. The feasible set of
the problem can thus be partitioned into orbits so that all the solutions in an orbit
represent the same partition. This structure is exploited by OF through choosing
one representative solution from each orbit, namely the lexicographically maximal
one, and the branching and pruning steps are adjusted to restrict the enumeration
to only such solutions. This is a specialization to partition problems of the isomor-
phism pruning technique of Margot [42, 43]. The authors present results for the
minimumk-partition problem in sparse graphs with up to 50 nodes and a few hun-
dred edges [31].

Another exception is the SDP-based branch-and-cut algorithm for the minimum
k-partition problem proposed by Ghaddar, Anjos and Liers [24]. Their SBC algo-
rithm combines the SDP relaxation proposed by Eisenblätter [20] with valid inequal-
ities for thek-partition polytope and with a novel iterative clustering heuristic (ICH)
that finds feasible solutions using the SDP optimal solution. The computational re-
sults reported in [24] show that ICH consistently provides feasible solutions that are
better than those obtained using the hyperplane rounding techniques of Goemans
and Williamson (fork = 2) and of Frieze and Jerrum (fork ≥ 3). Ghaddar et al.
presented results showing that SBC computes globally optimal solutions for dense
graphs with up to 60 nodes, for (sparse) grid graphs with up to100 nodes, and for
different values ofk≥ 3.

In this paper, we combine the approach of Ghaddar et al. with the design prin-
ciples of BiqMac [48] to compute globally optimal solutionsfor max-k-cut more
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efficiently. We refer to this new approach as bundleBC. Although straightforward in
principle, this combination raises several challenges, including the following:

• branching decisions may lead to subproblems that are infeasible or that have no
interior (this can be avoided for max-cut by appropriate switching and shrinking
steps);

• a wider variety of cutting planes needs to be generated and managed dynamically;
and

• the constraints of the SDP relaxation itself need to be handled differently, i.e., we
relax the lower bound constraints of the initial SDP relaxation and treat them as
cuts.

Our computational results suggest that bundleBC achieves adrastic speedup in com-
parison to SBC, especially whenk= 3. Furthermore, a comparison with the results
reported by Kaibel et al. [31], suggests that fork = 3 and medium-sized dense in-
stances (30 nodes), our approach performs better than theirOF approach, whereas
their performance is better for sparse instances and for larger values ofk. Addition-
ally, we used CPLEX to evaluate the ILP model underlying the OF approach.

This paper is organized as follows. In Section 2 we state the formal definition
of the max-k-cut problem and briefly summarize the relevant formulations and re-
laxations in the literature. The proposed exact algorithm is described in Section 3.
Section 3.1 is concerned with the upper bound computation using a bundle to solve
the SDP relaxations, and Section 3.2 is described the heuristic we use for computing
lower bounds. Section 3.3 describes the 6 branching rules that we tested, and how
we handle the possibility that branching sometimes yields SDP subproblems that
are infeasible or that have no interior. Section 4 presents the basic implementation
details of bundleBC. Computational results are reported inSection 5. Section 5.1
describes the benchmark sets of instances that we used, Section 5.2 reports the per-
formance of the 6 branching rules that we considered, and Section 5.3 studies the
impact of clique inequalities on the performance of bundleBC. Section 5.4 presents
comparisons of bundleBC with SBC, and Section 5.5 compares the performance
of bundleBC with the orbitopal fixing approach and presents the CPLEX results.
Section 6 concludes the paper.

2 Problem Description, Formulations and Relaxations

An instance of the max-k-cut problem is specified by fixing an undirected graph
G = (V,E) with edge weightswi j of the edges, and a positive integerk ≥ 2. The
objective is to find a partition ofV into at mostk disjoint partitionsV1, ...,Vk such
that the sum of the weights of edges joining different partitions is maximized. We
assume without loss of generality thatG is a complete graph (missing edges can be
added with a corresponding weight of zero).

From a semidefinite perspective, the max-k-cut problem can be formulated as:
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max ∑
i, j∈V, i< j

wi j
(k−1)(1−Xi j )

k
(1)

s.t.Xii = 1 ∀i ∈V (2)

Xi j ∈ {
−1

k−1
, 1} ∀i, j ∈V, i < j (3)

X � 0,

whereXi j =
−1
k−1 if verticesi and j are in different partitions, andXi j = 1 if they are

in the same partition. Replacing the binary constraint (3) by −1
k−1 ≤ Xi j ≤ 1 results

in a semidefinite relaxation. However, the constraintXi j ≤ 1 can be dropped since
it is enforced implicitly by the constraintsXii = 1 andX � 0. We end up with the
following SDP relaxation:

(SMkC) max ∑
i, j∈V, i< j

wi j
(k−1)(1−Xi j )

k
(4)

s.t.Xii = 1 ∀i ∈V (5)

Xi j ≥
−1

k−1
∀i, j ∈V, i < j (6)

X � 0

or, alternatively, using the Laplace matrixL of the graph and rewriting the con-
straintsXii = 1, we end up with

(SMkC) max
k−1
2k

〈L,X〉 (7)

s.t. diag(X) = e (8)

Xi j ≥
−1

k−1
∀i, j ∈V, i < j (9)

X � 0

with ebeing the vector of all ones of length|V|. Note that if we fixk= 2 in (SMkC),
we obtain the SDP relaxation used for max-cut by Goemans and Williamson [25].

The relaxation (SMkC) was first used by Frieze and Jerrum [23]; it is the basis of
the SBC algorithm of Ghaddar et al. [24]. In that algorithm, the SDP relaxation was
further tightened by adding valid inequalities. The two types of valid inequalities
used in SBC are the triangle and the clique inequalities. Thetriangle inequalities are
based on the observation that if any two nodesi and j are in the same partition, andj
and another nodek are in the same partition, then also nodesi andk necessarily have
to be in the same partition. For the SDP formulation, the 3

(|V|
3

)

triangle inequalities
have the form:

Xi j +Xjh −Xih ≤ 1, (10)
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wherei, j, andh∈V. The
( |V|

k+1

)

clique inequalities ensure that for every subset of
k+1 nodes, at least two of the nodes must belong to the same partition:

∑
i, j∈Q, i< j

Xi j ≥−
k
2

∀Q⊆V where|Q|= k+1.

Together with the constraints (10), this implies that thereare at mostk partitions.

3 Proposed Exact Algorithm

We use a branch-and-bound framework to solve the max-k-cut problem to global
optimality. To set up the framework, the following three issues must be addressed:

• how to obtain upper bounds;
• how to obtain lower bounds, i.e., high-quality cuts; and
• how to branch.

The computation of the upper bounds is the subject of Section3.1. Computing lower
bounds is discussed in Section 3.2, and the question how to branch is addressed in
Section 3.3. Algorithm 1 gives the steps as they are executedat each node of the
branch-and-bound tree.

3.1 Computing Upper Bounds

It is well known that the bounds obtained by the LP relaxationof the ILP formu-
lation are often weaker than the bounds obtained using the SDP relaxation (see
e.g. [20, 24]). However, their computation is usually time consuming. In this work,
we focus on an approach that maintains the strength of the relaxations using a fast
approximation procedure to speed up computing times.

To this end, we make use of the SDP relaxation (SMkC) tightened by facets of
the partition polytope. Specifically we use triangle and clique inequalities. Solving
the resulting relaxation is not trivial because the number of inequalities (for large
graphs) is too large and the SDP problem becomes intractablefor interior point
methods. Thus we need an alternative machinery to obtain this bound, namely a
dynamic version of the bundle method.

3.1.1 Bundle Methods

The bundle method was first proposed by Lemarechal [37], and later on further
investigated and refined by several authors, e.g., [33, 50, 38]. It has been developed
for finding the approximate minimizer of a non-smooth convexfunction f (γ) over
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γ ∈ Rn. In order to apply the bundle method it is necessary to be ableto obtain for
any givenγ the function valuef (γ) and a subgradientg ∈ ∂ f (γ). We assume that
an oracle is available to return these values (see Section 3.1.3 for the specifics of
the oracle that we use). This information is collected for differentγs in a so-called
“bundle” and used to construct a minorizing cutting plane model f̂ of f .

To find a new value ofγ, the displacement from the current pointγ̂ is penalized
by adding a term proportional to‖γ − γ̂‖ to the cutting plane model̂f . Thus, the
bundle algorithm requires minimizing

f̂ (γ)+
1

2σ
‖γ − γ̂‖ (11)

with σ being some suitably chosen weight. Solving this problem is done by solving
a sequence of convex quadratic problems of “small” dimension, i.e. dimension equal
to the size of the bundle. The minimizer gives a new trial point γ̃ for which the oracle
supplies the function value and a subgradient. This new information is added to the
bundle and used to improve the cutting plane model. Then the whole process is
repeated until the subgradient at the current point is sufficiently close to zero.

The bundle method as a tool for solving SDP problems has already been used
by Poljak and Rendl [47] for solving the basic SDP relaxationfor max-cut. Later
on, the spectral bundle method has been introduced [29, 27].In [26] a variant of
the spectral bundle method is developed that allows adding and deleting of cutting
planes on the fly, and convergence of this method is proved.

Here we follow the concept of Fischer et al. [22]. Their idea is to apply the
bundle method to the partial Lagrangian dual function, partial in the sense that only
some of the constraints are dualized and lifted into the objective function by using
Lagrangian multipliers, whereas constraints that are considered to be “easy” are
handled directly inside the oracle. In other words, an oracle call amounts in solving
a semidefinite program having only “easy” constraints.

In contrast to interior point methods, bundle methods are capable of solving
semidefinite programs with a few thousand constraints. The price one pays for this
is in the accuracy of the solution. However, the results in [22] demonstrate that the
bundle algorithm often returns a reasonably accurate approximation.

3.1.2 Conic Bundle

Our aim is to solve the semidefinite program

(SMkCstrengthened) max
(k−1)

2k
〈L,X〉 (12)

s.t. diag(X) = e (13)

A (X)≤ b (14)

X � 0
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where we collect inA (X)≤ b all the bound constraints, i.e.,Xi j ≥
−1
k−1, ∀i, j ∈V, i <

j, the set of triangle-inequalities and the set of clique-inequalities. Dualizing all the
inequality constraints, we obtain the partial Lagrangian:

L (X;γ) =
(k−1)

2k
〈L,X〉+ γ⊤(b−A (X))

= b⊤γ +
〈

(k−1)
2k

L−A
⊤(γ),X

〉

,

and the dual functional reads

f (γ) = max
X�0,diag(X)=e

L (X;γ) (15)

= b⊤γ + max
X�0,diag(X)=e

〈

(k−1)
2k

L−A
⊤(γ),X

〉

The number of inequality constraints is too large to handle even after they are du-
alized. Our approach is to include all the bound constraints, and to add only those
inequalities that are active at the optimum. Since this information is not known at
the beginning, the choice of triangle- and clique-inequalities is updated in the course
of the algorithm, as described below in Section 3.1.4.

The function (15) is then minimized overRn
≥0 using the bundle method. We use

the Conic Bundle software of Helmberg [2]. This implementation of the bundle
method supports the minimization of the function arising from a Lagrangian dual,
as in our case, i.e., it allows to generate primal solutions.Furthermore it offers the
possibility of adding and removing constraints in the course of the algorithm, as
needed for our purposes.

3.1.3 Oracle

As already mentioned, in each bundle iteration an oracle is called to compute the
function value and a subgradient at the currentγ. The function evaluation amounts
to solving the SDP problem

(SMCbasic) max

〈

(k−1)
2k

L−A
T(γ),X

〉

s.t.Xii = 1 ∀i ∈V

X � 0.

The optimal solutionX̃ of this SDP is then used to compute the function value

f (γ) = b⊤γ +
〈

(k−1)
2k

L−A
⊤(γ), X̃

〉

and a subgradient
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g(γ) = b−A (X̃).

Note that the cost matrix depends onγ and therefore changes at each iteration. The
feasible set of (SMCbasic) is the so-called elliptope, which has been well studied,
see e.g. [36, 35]. The problem (SMCbasic) can thus be solved efficiently by interior
point methods, even for large dimension. We implemented theprimal-dual interior
point method proposed in [30].

After branching, we have to add equality constraints of the form Xi j =
−1
k−1 to

(SMCbasic), as explained in Section 3.3 below. Since the number of these constraints
is small, we can still use an interior point method to solve the SDP problem. How-
ever, we may end up with a problem having no interior, for example if we have
a k-clique for which all the edge variablesXi j =

−1
k−1. If this happens, we solve the

SDP problem using CSDP [11] since its infeasible interior point algorithm runs well
in this situation.

3.1.4 Adding Valid Inequalities

Once the SDP relaxation (SMkC) is solved, one can look for violated inequalities
and add them to the relaxation, hence improving the upper bound. Triangle and
clique inequalities are added at each iteration of the bundle algorithm and non-
binding inequalities are detected and removed. Looking forviolated triangle in-
equalities by complete enumeration is not computationallyexpensive. We describe
in Section 4.1 how we manage the search and addition of violated triangle inequali-
ties.

On the other hand, exact separation of clique inequalities is anN P-hard prob-
lem, and complete enumeration becomes intractable alreadyfor small values ofk.
Therefore, we use a separation heuristic that generates inequalities that are promis-
ing. It does not necessarily determine a violated inequality whenever one exists,
however the algorithm is fast and yields good bounds.

The clique inequalities that are binding at optimality usually cover the whole
graph, and each vertex in the graph is contained in several different clique inequali-
ties. The separation heuristic is designed to have a similarbehaviour. For each vertex
v in the graph, the algorithm grows a clique of sizek+1 containingv. Vertices are
added to the cliques in a greedy fashion. In each iteration, avertex is added to a
clique of size smaller thank+ 1 that contributes the smallest amount to the left-
hand side of the corresponding clique inequality. The heuristic is described in detail
in [24]. For a graph withn vertices, this procedure generatesn clique inequalities.
Violated ones are added to the problem formulation.
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3.2 Lower Bound Heuristic

Using the conic bundle we can generate approximate primal solutions in the course
of the minimization algorithm. We use a heuristic method to compute a feasiblek-
cut from these approximate primal matricesX∗. This way we produce lower bounds
which are useful for fathoming in the branch-and-cut tree.

There are two heuristics for extractingk-cuts from a primal solutionX∗. The
first one is the heuristic proposed by Frieze and Jerrum [23] and called FJ in the
following. It works as follows:

1. Compute unit vectorsv1, . . . ,vn ∈ R
n satisfyingvT

i v j = X∗
i j wherei, j ∈V.

2. Randomly generatek vectorsr1, . . . , rk ∈ R
n with their kn components drawn

from independent and identically distributed random variables with a standard
normal distribution with mean 0 and variance 1.

3. PartitionV into Vk = {V1, . . . ,Vk} according to

Vj = {i : vi · r j ≥ vi · r j ′ , for j 6= j ′} for 1≤ j ≤ k.

The second heuristic is called ICH. It was proposed by Ghaddar et al. [24] and
used in their SBC algorithm. ICH works by aggregating information fromX∗ cor-
responding to subgraphs ofG. Specifically, ICH sums theX∗

i j values on the edges
between each of the

(n
k

)

subsets ofk vertices, then sorts the resulting list of val-
ues, and places a subset ofk vertices all in the same partition (or all in different
partitions) when the sum is one of the largest values (or one of the smallest). The
intuition behind this approach is that aggregated information is more reliable than
single elements of data.

The implementation of the lower bound computation is described in Section 4.2
below.

3.3 Branching

The final ingredient of a branch-and-bound algorithm is how to subdivide the set of
feasible solutions. It is well known that part of the successof a branch-and-bound
algorithm depends on the choice of the branching variableXi j .

3.3.1 Branching Rules

We use the information in the solutionX∗ of the SDP relaxation of the current node
to choose a branching variableX∗

i j . We adapt the rules R1-R4 of [28] for max-cut in
order to derive different choices for branching variables.

There are two important differences with respect to the max-cut case in [28]
that we must address. First, while for max-cut the entries inX∗ are all in the in-
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terval [−1,1], the SDP relaxation (SMkC) restricts the entries inX∗ to the interval
[− 1

k−1,1]. Second, since we dualize the bound constraintsX∗
i j ≥− 1

k−1, some values
of X∗

i j may lie outside this interval. We considered different waysto deal with these
differences.

Rules R1 and R3 are adapted most easily. Rule R1 chooses the “most decided”
variable, i.e., we simply branch on the edgei j that is closest to− 1

k−1 or to 1. By
choosing an edge that seems to be already decided, the hope isthat for the opposite
decision the node will be fathomed quickly. This results in adeep but narrow branch-
and-bound tree.

Rule R3 branches on the variable that is “least decided”, i.e., we branch on the
edgei j for whichX∗

i j is closest to the middle of the interval[− 1
k−1,1]. If all the vari-

ables are either nearly 1 or less than or equal to− 1
k−1, we choosei j corresponding

to the minimum value ofX∗
i j . By branching on the most undecided edge, we hope

that the upper bounds will improve quickly.
Rules R1 and R3 do not distinguish between the variables withvalues outside the

interval[− 1
k−1,1] and the others.

Rules R2 and R4 are more elaborate. Instead of working with individual entries,
these rules are based on the closeness of the rows of the matrix X∗ to {− 1

k−1,1}
vectors.

Rule R2 looks for the two rowsi′ and j ′ that are closest to a{− 1
k−1,1} vector.

Let mdenote the middle of the interval[− 1
k−1,1]. The branching edgei′, j ′ is chosen

as

i′ = argmin1≤i≤n

n

∑
r 6=i,r=1

((1−m)−|X∗
ir −m|)2

j ′ = argmin1≤ j≤n, j 6=i′

n

∑
r 6= j,r=1

((1−m)−|X∗
jr −m|)2

.

Rule R4 looks for rowsi′ and j ′ such thati′ is closest to a{− 1
k−1,1} vector

wherasj ′ is farthest from being feasible. Herei′ and j ′ are chosen such that

i′ = argmin1≤i≤n

n

∑
r 6=i,r=1

((1−m)−|X∗
ir −m|)2

j ′ = argmin1≤ j≤n

n

∑
r 6= j,r=1

(X∗
jr −m)2

.

Concerning the variables that are outside the interval[− 1
k−1,1], we investigated

two options for each of R2 and R4. The first option is to treat them just like the others
(this corresponds to our rules R2 and R4). The second option for R2 is our rule
R2a according to which we do not consider these variables as branching candidates
unless all the variables inside the feasible interval are equal to 1 or− 1

k−1. When this
is the case, rule R2a selects the variable outside the interval with the smallest value.
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Similarly, rule R4a works just as R4 but first considers only variables with values
in the interval[− 1

k−1,1] as candidates. If all those variables are already equal to 1

or− 1
k−1, R4a selects the variableX∗

i j with the smallest value.

3.3.2 Shrinking and SDP Relaxations Without Interior

In the case where we fixXi′ j ′ = 1 at a particular node of the branch and bound tree,
the resulting problem is equivalent to maximumk-cut of dimensionn−1. Hence we
can shrink the graph, i.e., we reduce the graph size by eliminating the vertexj ′. The
Laplacian matrixL̃ for the shrunken graph has entriesl̃ i j , i, j ∈ {1, . . . ,n}\{ j ′}, as
follows:

l̃ i j =



















l i j if i, j 6= i′

l ii ′ + l i j ′ if i 6= i′, j = i′

l i′ j + l j ′ j if i = i′, j 6= i′

l i′ i′ +2l i′ j ′ + l j ′ j ′ if i, j = i′

When we fixXi j =
−1
k−1, we cannot shrink the graph immediately, but we could

shrink the graph as soon as there is ak-clique with all the values on its edges fixed
to −1

k−1. However, performing this shrinking would require either expensive clique
searches or more than two branches at each node of the branch-and-bound tree. Nei-
ther possibility is attractive, and moreover good cuts found on the shrunken graph
cannot be extended to the original graph in a straightforward way. Therefore we omit
these shrinkings, but as a consequence the SDP relaxation tobe solved by the oracle
may have no interior. When this happens, we solve the relaxations using CSDP [11]
as mentioned earlier in Section 3.1.3.

Algorithm 1 One node of the branch-and-bound algorithm

1. Initialize γ and solve (SMCbasic) using the oracle. Obtain a primal matrixX∗ and an upper
boundub.

2. Apply a heuristic to the currentX∗ to obtain ak-cut and a lower boundlb.
3. Separate triangle inequalities.
4. While progress is made

a. Do a descent step, i.e., obtain improvedub.
b. If number of descent stepsmod10= 0, apply a heuristic to the currentX∗ to obtain a

k-cut and a lower boundlb..
c. If lb ≥ ub then stop: return and fathom node.
d. Remove triangles and cliques if non-binding.
e. Separate triangle and clique inequalities.

5. Apply a heuristic to the currentX∗ to obtain ak-cut and a lower boundlb.
6. If lb ≥ ub then stop: return and fathom node.
7. Choose an edge for branching and return.
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4 Implementation Details

In this section we explain how we set various parameters for the overall algorithm.
We used the Conic Bundle with its default settings. In particular, the relative pre-

cision requirement for successful termination was set to the default value of 10−5.
The following subsections describe the preliminary experiments we performed to

decide on a strategy for adding triangle inequalities and possibly clique inequalities,
and a heuristic for computing lower bounds. In principle, there are several different
parameter values and their combinations to test. We focusedon the instances on
complete graphs with Gaussian or bimodal distribution, andalways averaged over
five instances of the same size. In the course of our experiments we found that the
resulting settings also worked well for the other types of graphs.

4.1 Adding Triangle Inequalities

In the course of the bundle iterations we have to find a good setof triangle inequal-
ities to add. Since enumeration of all triangle inequalities is cheap, we do this after
every descent step of the bundle algorithm. The tolerance for considering an in-
equality as violated is 10−3, and we build a heap of (at most) 5000 most-violated
triangle inequalities.

Then we want to addm violated inequalities. We experimented with doing this
in three different ways:

• selectingm inequalities randomly among the 5000;
• selecting them

2 most violated ones andm2 randomly from the remaining;
• selecting them most violated.

It turned out that none of these options clearly stood out from the others, though the
second option seemed to be slightly better. Thus we chose thesecond strategy for
our algorithm.

As for the choice ofm, we ran experiments withm= 500 andm= 1000. Again
there was no clear winner butm= 500 was slightly better so we chose this value.

4.2 Computing Lower Bounds

As mentioned in Section 3.2 we have two candidates for computing lower bounds,
namely the heuristics ICH and FJ. While the computational results for minimum
k-partition in [24] suggest that ICH consistently provides betterk-cuts than FJ, its
running times are much longer. For this reason, and because we want to solve large
instances of max-k-cut, we choose to use FJ.

We experimented with how often to run the heuristic at each node of the branch-
and-bound tree. While calling the heuristic often is time-consuming, not having a
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good lower bound at hand can cause the tree to be much larger. We tried three
different settings for the frequency of the heuristic callsat each node:

• after every descent step;
• after every 10th descent step;
• only at the beginning and at the end.

The computational results did not give strong evidence thatone of above mentioned
options is better than the others. The second setting improved slightly over the oth-
ers, therefore this was our choice for our algorithm.

5 Computational Results

Our 32-Bit executables were run on 2.3 GHz Intel Xeon processors with 32 GB
memory. For each instance, we allowed a maximum CPU time of 10hours. We
refer to our new algorithm as bundleBC.

5.1 The Benchmark Sets of Instances

We used the following sets of instances for our computational results:

Set A To have instances with varying number of vertices, we generated graphs
with |V| ranging from 10,20, . . . ,50. Edges are chosen randomly such that we
yield graphs with edge densities 25%,50%, and 100%. The weights on the edges
are randomly chosen, either following a Gaussian or a bimodal ±1 distribution.
For each combination of|V| and edge density, we generated 5 different instances
and we always report averages over the 5 instances with the same values of|V|,
edge density, and weight distribution.

Set B We also considered the instances from [3] for our numerical experiments.
The first two classes of instances consist of complete graphs. Edge weights are
either chosen as|i − j| for edge(i, j), or are drawn randomly in{0,1, . . . ,9}.
A different class of instances stems from an application in physics in which
energy-minimum states of so-called Potts glasses need to bedetermined. In
this application, instances are regular two- or three-dimensional grids with edge
weights that are either Gaussian distributed around zero having variance one, or
they are taken from{±1}, where 50% of the weights are negative. These in-
stances were generated using rudy graph generator [49].
The name of an instance encodes its size followed by the distribution of the
weights and the random seed that initializes rudy. For example, the instance
2g 3 93 denotes a two-dimensional grid with Gaussian distributed weights of
size 32 and random seed 93, whereas instance 3pm234 234 denotes a three-
dimensional grid with±1 weights of size 2×3×4 and random seed 234.
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Set C Finally, we take the set of instances from [31]. They generate instances with
|V| = 30 and different number of edgesm, namelym= 200 (sparse),m= 300
(medium), andm= 400 (dense). Furthermore they consider graphs with|V|= 50
andm= 560. Edges are chosen uniformly at random until the specifiednumber
of edges is reached. The weights on these edges are drawn independently and
uniformly at random from{1, . . . ,1000}. For each|V| and each edge density
three instances are generated.

The values ofk were chosen ask= 3 andk= 5. For instances from [3] we tested
additionallyk = 7, and for the instances from [31] we considerk ∈ {3,6,9,12} to
allow a comparison with the results in [31].

5.2 Choosing a Branching Rule

We implemented the six branching rules R1, R2, R2a, R3, R4, and R4a as they
were explained in Section 3.3 and ran experiments using the instances described in
Section 5.1. The different types of instances all display a similar behavior; thus we
restrict our presentation to the results on the instances ofbenchmark set A.

We use performance profiles as proposed by Dolan and Moré [19] to facilitate
the comparison of the branching rules. We set up our profiles as follows. LetP
be the set of parameters we want to compare (for example the set of all different
branching rules) and letI be the set of instances for which we ran our experiments
with the different parameter settingsp∈ P. For each instancei and parameterp∈ P
the performance ratio for the running time is calculated as

PRtime
i,p =

RunningTimei,p

min{ RunningTimei,p : p∈ P}
,

and the performance ratio for the number of subproblems is obtained as

PRsub
i,p =

# subproblemsi,p
min{# subproblemsi,p : p∈ P}

.

If an instancei could not be solved for parameter settingp within the given time
limit of 10h= 36,000s then we setPRtime

i,p = PRtime
max andPRsub

i,p = PRsub
max for suitably

large values. (The specific choice of these does not affect the resulting profiles.) Our
performance profiles are defined by the empirical distribution function

F(pr) = P(i ∈ I : log2(PRi,p)≤ pr)

where we use a log2 scale for ease of visualization.
Unlike the observations in Sections 4.1 and 4.2, we found that the choice of

branching rule has a strong influence on the computing times.Indeed the CPU times
sometimes differ by more than two orders of magnitude between different rules.
The main observation is that branching rule R2a is best, and that R2 is usually the



k-way Graph Partitioning 17

second best. This dominance of R2a and R2 is independent of the size of the graph,
its density, and the value ofk. On the other hand, R1 usually leads to the worst
performance.

The performance profiles of the CPU time for the different options of choosing
a branching variable are shown in Figure 1. The top figures represent the time com-
parison for complete graphs, the bottom figures for graphs with 25% and 50% edge
density. Figures on the left refer tok= 3, figures on the right tok= 5.

These results demonstrate that the impact of the different branching strategies is
greater fork= 3 than fork= 5. In other words, fork= 5 the lines in the profile are
closer to each other. Considering complete graphs versus graphs with edge densities
25% and 50%, the performance profiles indicate that the branching strategy has a
greater impact on the run time for complete graphs.
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Fig. 1 Performance profiles for the 6 branching rules with respect to the running times for complete
graphs (top profiles) and graphs with edge density 25% and 50% (bottom profiles). Edge weights
follow a Gaussian or a bimodal distribution.
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Fig. 2 Performance profiles for the 6 branching rules with respect to the number of nodes in the
branch-and-bound tree for complete graphs (top profiles) and graphs with edge density 25% and
50% (bottom profiles). Edge weights follow a Gaussian or a bimodaldistribution.

The number of nodes in the branch-and-bound tree is clearly related to the time
needed for solving the problem. However, since in each iteration of the bundle algo-
rithm we obtain a valid upper bound, we may be able to stop the bound computation
after very few bundle iterations. This usually happens if anedge seems to be already
decided whether it is cut or not: the opposite decision should lead to fathoming the
node quickly. Therefore a larger number of nodes in the branch-and-bound tree may
still lead to shorter overall run times if the bound computation can be stopped early
in many of the nodes.

We looked at the influence of the different branching strategies on the number of
nodes in the branch-and-bound tree. The performance profiles are given in Figure 2.
We do not observe any significant differences in the performance profiles showing
the CPU time (Figure 1) and those referring to the number of nodes in the branch-
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and-bound tree (Figure 2). Indeed, R2a is again the best performer and R2 is usually
second best. Concerning the different characteristics of the problem, once more the
impact of the branching rule is greater fork = 3 than fork = 5, and is less evident
for instances having edge density 25% and 50%.

For all subsequent results, we fixed the branching rule to R2abecause it usually
gives the best results.

5.3 Separating Cliques

In this section we study the impact of clique separation on the performance of
bundleBC. We first compared bundleBC with and without cliqueseparation for
k = 3,5 for the benchmark set A of randomly generated graphs with varying edge
density. The performance profiles comparing the CPU time andthe number of nodes
in the branch-and-bound tree for the entire benchmark set A are presented in Fig-
ure 3.

For the bimodal instances we report detailed results in Tables 1 and 2. (Detailed
results for the instances with Gaussian distributed weights with clique separation
turned on are reported in Table 4 of Section 5.5, where they are used for the com-
parison with the results from an integer LP model.) Tables 1 and 2 report the average
CPU time (in seconds) and the average number of subproblems (# subs) for solv-
ing the instances to optimality. The results in each line correspond to the average
over five different instances or over those instances that could be solved within the
time limit. The columns entitled nrinst report the number ofinstances that could be
solved within the time limit.

The profiles in Figure 3 show that while run times do not differsignificantly, the
number of subproblems is smaller when clique separation is turned on. These re-
sults are explained by the fact that a subproblem takes longer to solve when clique
separation is turned on than when it is turned off. However, investing this additional
CPU time may pay off if the bounds are sufficiently tighter to reduce the number
of subproblems, and hence the running time of the algorithm.This effect is par-
ticularly observable for the bimodal instances in Tables 1 and 2. We see there that
in most cases the number of subproblems is considerably reduced by using clique
separation, and the computational time may also improve, especially for instances
with edge density 25% and 50%. Moreover, there is one instance (of type|V|= 40
with 50% edge density) that can only be solved within the timelimit when clique
separation is used.

We also compared bundleBC with and without clique separation for k = 3,5,7
for the benchmark set B from [3]. The detailed results are reported in Table 3. These
results support the same conclusions, namely that the number of subproblems is
often reduced when clique separation is turned on, and the computational time fre-
quently improved. Furthermore, three of the instances can only be solved within
the time limit if clique separation is turned on (data2g 8 37, data2g 8 648, and
datarandom40 k=3).
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In summary, there are several instances for which the numberof subproblems
is not improved by the use of cliques in bundleBC. Although the heuristic separa-
tion of cliques is fast, for these cases the overall running time is obviously longer
than without using cliques. On the other hand, for several instances the separation
of cliques reduces the number of subproblems considerably.Furthermore, certain
instances can only be solved within the time limit if clique separation is used. We
conclude that it is beneficial to use clique separation in bundleBC, and we use it for
all subsequent computations.
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Fig. 3 Performance profiles concerning clique separation with respect to running time (top pro-
files) and the number of subproblems (bottom profiles) for the entire benchmark set A.
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without cliques with cliques
|V| k time (sec.) # subsnrinst time (sec) # subsnrinst
10 3 0 1 5 0 1 5
20 3 0.6 3.4 5 2.2 4.2 5
30 3 35.6 45 5 35.6 29.4 5
40 3 377.2 225.4 5 728.4 279.8 5
50 3 12,925.0 4,340.2 5 10,758.82,467.4 5

10 5 0.0 1.0 5 0.0 1.0 5
20 5 7.0 14.6 5 9.0 14.6 5
30 5 818.6 666.2 5 640.8 473.8 5
40 5 28,198.012,076.0 2 23,435.09,457.0 2

Table 1 Results for instances of benchmark set A with 100% edge density andedge weights
following a bimodal distribution.

edge density without cliques with cliques
|V| in % k time (sec.) # subsnrinst time (sec) # subsnrinst
10 50 3 0 1 5 0 1 5
20 25 3 0 1.4 5 0 1.4 5
20 50 3 0.8 3.0 5 0.2 2.2 5
30 25 3 9.4 5.8 5 8.8 3.8 5
30 50 3 26.2 28.2 5 22.4 15 5
40 25 3 169.4 60.6 5 151.6 37.8 5
40 50 3 479.0 221.0 5 846.8 185.4 5
50 25 3 3,326.6 722.2 5 2,201.6 352.6 5
50 50 3 8,851.62,630.6 5 8,277.81,519.8 5

10 50 5 0 1 5 0 1 5
20 25 5 0.2 1.4 5 0 1.4 5
20 50 5 8.8 13.4 5 14.4 19.4 5
30 25 5 18.4 9.4 5 13.2 5.8 5
30 50 5 513.6 368.2 5 321.6 209.8 5
40 25 5 3,242.81,033.8 5 2,865.8 804.6 5
40 50 5 6,844.52,092.0 2 18,451.35,151.7 3
50 25 5 427.0 47.0 1 1,480.0 185.0 1
50 50 5 – – 0 – – 0

Table 2 Results for instances of benchmark set A with varying edge density(25% and 50%) and
edge weights following a bimodal distribution.

5.4 Comparison with SBC

In this section we present some comparisons of the performance of bundleBC with
that of SBC [24]. For this purpose we use the results in Table 3where we solved
the instances of benchmark set B to optimality fork = 3, k = 5, andk = 7 using
bundleBC. In contrast to SBC, we now solve the SDP-relaxations approximately in
a shorter time using a bundle method. It is therefore interesting to compare SBC and
bundleBC in terms of the quality of the bounds as well as the CPU times necessary
to compute them. We use the percentage gap calculated with respect to the value of
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without cliques with cliques
k= 3 k= 5 k= 7 k= 3 k= 5 k= 7

instance cpu #subs cpu #subs cpu #subs cpu #subs cpu #subs cpu #subs
data2g 3 93 0 11 0 25 1 45 0 11 0 25 0 43
data2g 4 164 0 3 5 601 1 7 1 21 16 359 18 1,059
data2g 5 25 2 7 17 29 3 3 6 47 38 57 8 7
data2g 6 366 19 27 6 5 191 81 6 45 24 13 37 11
data2g 6 66 25 15 245 77 87 35 30 21 77 23 72 21
data2g 6 701 7 17 6 3 5 3 9 47 21 13 6 3
data2g 7 1034 13 3 388 85 833 243 33 7 186 39 177 23
data2g 7 491 6 3 22,66117,339 – – 5 3 5,724 3,623 – –
data2g 7 77 27 7 127 29 567 91 44 17 193 29 52 11
data2g 8 37 792 47 1,979 261 – – 111 9 2,355 231 30,370 6,703
data2g 8 648 381 29 141 7 – – 104 5 3,035 389 169 9
data2g 8 88 28 7 2,595 253 393 33 39 7 89 7 1,439 113
data2g 9 819 214 9 1,128 27 12,874 627 380 17 1,106 39 150 5
data2g 9 9211 1,768 75 523 13 2,418 65 169 5 2246 51 11,607 691
data2g 10 1001 106 5 – – – – 182 7 – – – –
data2g 10 824 104 5 – – – – 201 11 – – –
data2pm 4 44 0 1 1 0 0 1 0 1 0 1 0 1
data2pm 5 55 0 1 0 1 0 1 0 1 0 1 0 1
data2pm 6 66 16 5 10 3 7 1 11 3 11 3 11 3
data2pm 7 777 1 1 115 17 93 13 0 1 266 29 56 7
data2pm 8 888 254 21 493 21 309 11 116 7 245 11 303 13
data2pm 9 999 576 21 7,215 337 3,369 127 789 29 2,507 51 963 23
data3g 234 234 0 3 28 47 4 5 0 3 6 7 1 3
data3g 244 244 16 15 11 7 9 7 20 11 19 17 45 43
data3g 333 333 1 5 10 7 21 25 0 3 26 21 13 11
data3g 334 334 23 27 84 27 51 9 16 19 40 13 36 11
data3g 344 344 4 13 456 119 66 5 4 13 48 5 89 7
data3g 444 444 198 7 979 37 1,678 81 222 11 1,548 73 868 29
data3pm 234 234 0 1 0 1 0 1 0 1 0 1 0 1
data3pm 244 244 3 1 6 1 29 7 3 1 6 1 12 7
data3pm 333 333 3 7 0 1 0 1 0 3 0 1 0 1
data3pm 334 334 39 13 156 19 81 9 8 3 141 35 91 27
data3pm 444 444 11,094 887 11,955 341 11,315 303 23,667 875 12,956 429 9,843 423
data3pm 344 344 160 21 1,618 205 1,240 191 102 13 2,269 349 2,493 413
data3pm 345 345 162 11 3,787 303 576 41 625 53 909 39 724 57
dataclique 20 0 1 0 1 3 21 0 1 0 1 1 9
dataclique 30 0 1 4 7 15 41 0 1 3 7 5 15
dataclique 40 1 3 20 13 3 5 1 3 6 5 13 17
dataclique 50 9 9 4 3 44 27 2 3 17 9 76 45
dataclique 60 3 3 7 3 91 33 4 3 9 3 79 29
dataclique 70 36 11 17 3 152 31 20 7 78 13 276 53
datarandom20 k=3 0 11 1 1 9 51 0 3 0 1 13 67
datarandom30 k=2 39 275 614 3,231 340 1,111 32 217 588 2,673 269 825
datarandom30 k=3 32 317 1,009 5,671 944 3,339 10 73 932 3,991 1,104 3,327
datarandom40 k=2 255 1,493 – – 2,889 5,747 130 521 – – 4,994 9,653
datarandom40 k=3 29 145 9,057 23,877 – – 32 137 7,925 18,24332,16857,489
datarandom50 k=2 2,606 8,267 – – – – 5,248 14,337 – – – –
datarandom50 k=3 5,248 14,337 – – – – 3,963 10,741 – – – –

Table 3 Number of subproblems and running times for solving the instances of benchmark set B
to optimality using bundleBC fork = 3, k = 5, andk = 7. Instances that could not be solved to
optimality within the time limit are indicated by -.
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the best known primal solution prim as the ratio

gap=

∣

∣

∣

∣

bound at root−prim
prim

∣

∣

∣

∣

.

We first comment on the quality of the bounds and the running times of bundleBC
at the root node only, i.e., before any branching is done. Theroot node bounds for
SBC are typically zero or close to zero for two- and three-dimensional grids so
that branching rarely takes place [24]. However, their computation can take very
long. For example, it took SBC more than ten hours to reach a gap of 1% at the
root node for an instance withk = 3 on a 102 grid with Gaussian distributed edge
weights [24, Table 5], while bundleBC solved the instances from [3] defined on 102

grids to optimality within at most 4 minutes and needing onlyup to 11 subproblems
(see Table 3). Hence, while the bounds computed by bundleBC are weaker than
those determined by SBC, their calculation is much faster and this makes them
more useful within a branch-and-bound procedure.

Turning to the solution of instances to optimality, we recall from [24] that SBC
almost never has to branch. However, several instances could not be solved within
24 hours of computation time. While it is not surprising that bundleBC branches
more often than SBC, bundleBC gains from the fact that the number of subproblems
is often in the order of several hundreds only for this set of instances. Because
computing one subproblem is much faster for bundleBC than for SBC for smallk,
bundleBC achieves a drastic speedup over SBC. On the other hand, the instances
get more difficult for bundleBC ask increases, unlike what we observed for SBC
in [24].

5.5 Comparison with [31]

Kaibel et al. [31] report experimental results on max-k-cut instances for an LP-
based branch-and-cut algorithm using orbitopal fixing (OF). Furthermore, some of
the instances in [3] were addressed in the more recent paper [32]. In particular,
several of the Gaussian distributed instances defined on regular grids were solved
using OF in very short computing times.

We evaluated bundleBC (with clique separation active) on the benchmark set
C of instances from [31]. Our results are reported in Table 4 where the first three
columns indicate for each line the number of nodes (|V|), the number of edges (|E|)
and the value ofk of the instances averaged. The subsequent two columns report the
number of subproblems and the CPU time of bundleBC for solving the instances
to optimality. Similarly to what was done in [31], averages were taken over three
instances for each row unless some of the instances could notbe solved to optimality
within the time limit, in which case the number of instances over which the average
is taken is denoted in the last column.
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bundleBC
|V| |E| k time (sec.) # subs nrinst
30 200 3 60.6 99.0 3
30 300 3 41.0 102.3 3
30 400 3 13.6 50.3 3
50 560 3 17,497.510,167.0 2
30 200 6 472.7 681.0 3
30 300 6 324.3 558.3 3
30 400 6 627.7 1,691.0 3
50 560 6 – – 0
30 200 9 – – 0
30 300 9 1,514.7 2,610.3 3
30 400 9 1,181.3 2,554.3 3
50 560 9 – – 0
30 200 12 – – 0
30 300 12 – – 0
30 400 12 462.0 898.3 3
50 560 12 – – 0

Table 4 Results for the instances of benchmark set C.

We first compare the performance of bundleBC with that reported in [31]. The
instances classified as ‘easy’ in [31] with|V| = 30, |E| = 200 need almost always
zero time with the OF approach for all considered values ofk, whereas for bundleBC
not all of these instances are easy. In fact, fork= 9 andk= 12, bundleBC timed out
on all three instances. On the other hand, for the instances with |V|= 30, |E|= 400
that are denser and more difficult for [31], it is clear that bundleBC needs fewer
subproblems than OF. Moreover, the average number of subproblems for OF are
9,864(k= 3), 159,298(k= 6), 70,844(k= 9), and 2,098(k= 12). The fact that for
bundleBC these numbers are almost always at least one order of magnitude lower
shows that our bounds are considerably stronger than those generated by OF.

Computation times are trickier to compare because we used different modern
machines from [31]. Nevertheless, it seems that fork = 3 and the medium-sized
instances with 30 nodes our approach performs better than OF, especially for denser
graphs. On the other hand, their performance is better for larger values ofk as OF
can exploit symmetries well, while these instances are moredifficult for bundleBC.
Finally, we cannot solve the most difficult instances from [31] that can be solved
within several hours of computing time with OF.

Even though we do not have the implementation of the algorithm from [31] at
hand, we implemented their integer LP model with variablesxip specifying whether
node i is contained in partitionp or not. This formulation is polynomially-sized
in the xip variables. As a comparison with our approach, we solve this integer LP
problem with CPLEX 12.1 using the standard parameter settings and 6 cores per
job. For each job a real time limit of 10 hours was imposed. Forlarger values of
k, the integer LP model is not effective in practice because ofthe symmetries that
are present. However, for small values ofk such ask = 3 andk = 5, the speedup
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achieved by using OF is not so significant and hence the results are likely more
representative of the behaviour of OF [31].

We used our benchmark set A of instances to test this model. The results for both
CPLEX and bundleBC on the subset of instances that have Gaussian distributed
edge weights are reported in Tables 5 and 6 where we average for each row over 5
instances or the number of instances that finished within thetime limit. It turned out
that CPLEX ran out of memory even for relatively small instances; for example, for
an instance withk = 3 and|V| = 40, CPLEX ran out of memory after more than
8000 seconds and still had a gap of 43%. The results of CPLEX for the instances
with bimodal edge weights have a similar outcome, as shown inTables 7 and 8. This
is in marked contrast with bundleBC that solved many of theseinstances within a
few minutes to optimality.

CPLEX bundleBC
|V| k real time(sec.)nrinst real time(sec) # subsnrinst
10 3 0.03 5 0 1 5
20 3 17.96 5 4.2 15.8 5
30 3 8,113.31 5 72.4 38.2 5
40 3 – 0 375.6 119.8 5
50 3 – 0 8228.0 1582.3 3

10 5 0.14 5 0.2 7.0 5
20 5 6,674.24 3 16.8 37.4 5
30 5 – 0 1,126.8 807.0 5
40 5 – 0 11,489.02,919.0 3

Table 5 Results for instances of benchmark set A with 100% edge density andedge weights
following a Gaussian distribution.

6 Conclusion

We extended the SBC algorithm of Ghaddar, Anjos and Liers forminimum k-
partition using the design principles of the successful BiqMac solver for maximum
2-cut to obtain bundleBC, a new algorithm for computing global optimal solutions
for maximumk-cut problems. As part of this extension, we investigated different
ways of choosing variables for branching. We also studied the impact of the separa-
tion of clique inequalities within this new framework and observed that it frequently
reduces the number of subproblems considerably. The computational results sug-
gest that bundleBC achieves a significant speedup in comparison to SBC, especially
whenk= 3. A comparison with the results reported from the application of the OF
technique by Kaibel, Peinhardt and Pfetsch suggests that while their performance
is better for sparse instances and larger values ofk, bundleBC is superior fork = 3
and for dense instances of medium size. Solving the ILP formulation for max-k-cut
used by Kaibel, Peinhardt and Pfetsch with CPLEX clearly demonstrates the advan-
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edge density CPLEX bundleBC
|V| in % k time (sec.)nrinst time (sec) # subsnrinst
10 50 3 0.02 5 0.0 20.6 5
20 25 3 0.03 5 1.0 17.0 5
20 50 3 1.69 5 4.6 30.6 5
30 25 3 2.61 5 11.4 8.2 5
30 50 3 184.48 5 24.6 18.2 5
40 25 3 95.90 5 108.8 147.8 5
40 50 3 – 0 265.0 455.0 5
50 25 3 9,763.68 3 2,833.4 5,774.2 5
50 50 3 – 0 10,237.617,323.8 5

10 50 5 0.03 5 0.4 80.2 5
20 25 5 0.08 5 16.0 174.6 5
20 50 5 7.07 5 4.4 9.4 5
30 25 5 85.94 5 50.6 28.6 5
30 50 5 – 0 124.2 67.8 5
40 25 5 – 0 1,609.2 1,672.2 5
40 50 5 – 0 2,081.6 606.6 5
50 25 5 – 0 3,780.724,272.3 3
50 50 5 – 0 – – 0

Table 6 Results for instances of benchmark set A with varying edge density(25% and 50%) and
edge weights following a Gaussian distribution.

CPLEX
|V| k time (sec.)nrinst
10 3 0.03 5
20 3 88.76 5
30 3 6,053.06 5
40 3 – 0
50 3 – 0

10 5 0.26 5
20 5 – 0
30 5 – 0
40 5 – 0

Table 7 Results for instances of benchmark set A with 100% edge density andedge weights
following a bimodal distribution. The results for solving these instances with bundleBC are given
in Table 1.

tage of our semidefinite approach. The strength of bundleBC is especially evident
on dense instances and small values ofk.
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edge density CPLEX
|V| in % k time (sec.)nrinst
10 50 3 0.02 5
20 25 3 0.05 5
20 50 3 2.40 5
30 25 3 4.48 5
30 50 3 1,215.32 5
40 25 3 1,504.37 5
40 50 3 – 0
50 25 3 29,817.4 1
50 50 3 – 0

10 50 5 0.04 5
20 25 5 0.27 5
20 50 5 405.55 5
30 25 5 1624.80 4
30 50 5 4459.24 1
40 25 5 5299.18 3
40 50 5 – 0
50 25 5 – 0
50 50 5 – 0

Table 8 Results for instances of benchmark set A with varying edge density(25% and 50%)
and edge weights following a bimodal distribution. The resultsfor solving these instances with
bundleBC are given in Table 2.
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