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Abstract. A tanglegram is a pair of trees on the same set of leaves
with matching leaves in the two trees joined by an edge. Tanglegrams
are widely used in computational biology to compare evolutionary his-
tories of species. In this paper we present a formulation of two related
combinatorial embedding problems concerning tanglegrams in terms of
CNF-formulas. The first problem is known as planar embedding and the
second as crossing minimization problem. We show that our satisfiabil-
ity formulation of these problems can handle a much more general case
with more than two, not necessarily binary or complete, trees defined on
arbitrary sets of leaves and allowed to vary their layouts.

Keywords: satisfiability, mixed Horn formula, 2-CNF, level graph, tan-
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1 Introduction

In this paper we are interested in two combinatorial embedding problems con-
cerning generalized tanglegrams on level graphs, a generalization of the well-
known binary tanglegrams. A binary tanglegram [17] is an embedding (drawing)
in the plane of a pair of rooted binary trees whose leaf sets are in one-to-one
correspondence (perfect matching), such that matching leaves are connected by
inter-tree edges. Clearly, the number of crossings between the inter-tree edges
depends on the layout of the trees. From a practical point of view, an embed-
ding with many crossings can hardly be analyzed. Fig. 1 shows an example of
a binary tanglegram coming from phylogenetic studies done by Charleston and
Perkins [5]. Thus, the first problem one can consider here consists of determining
an embedding of one or both trees such that the inter-tree edges do not cross, if
such an embedding exists. This problem is known as the planar embedding prob-
lem. If such a planar embedding is not possible, then we may want to find an
embedding with as few crossing inter-tree edges as possible. This second prob-
lem, crossing minimization, is known in the literature also as the tanglegram
layout problem [2, 3, 22].
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Both problems are motivated by the desire to find a good display of hierar-
chical structures, e.g., in software engineering, project management, or database
design. They belong to the area of graph drawing [7]. Matching and aligning
trees is also a recurrent problem in computational biology [17]. Embeddings
with fewer crossings or with matching leaves close together are useful in biolog-
ical analysis [22]. An embedding imposes an order among the leaves of the tree.
Therefore, comparing the drawings of the trees is equivalent to comparing the
permutations of the leaves. Two prominent applications are the comparison of
phylogenetic trees [5, 6, 8] and the comparison of RNA structures [14, 20].
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Fig. 1. A binary tanglegram from [5] showing phylogenetic trees for lizards (left tree)
and strains of malaria (right tree) found in the Caribbean tropics. The dashed lines
represent the host-parasite relationship. Here, the number of crossings is 7. This can
be reduced to 1 by interchanging the children of nodes a, b, c, and d.

Bansal et al. [2] analyzed generalized tanglegrams where the number of leaves
in the two binary trees may be different and a leaf in one tree may match multiple
leaves in the other tree, thus no perfect matching is required here. They pointed
out that such a generalization of the problem makes it possible to address not
only the gene tree and species tree embedding problem, but also those problems
in which the inter-tree edges between the trees can be completely arbitrary. Such
general instances arise in several settings, e.g., in the analysis of host-parasite
cospeciation [17].

Crossing minimization in tanglegrams has parallels to crossing minimiza-
tion in graphs. Computing the minimum number of crossings in a graph is NP-
complete [12]. However, it can be verified in linear time that a graph has a
planar embedding [13]. The last assertion holds also for a more special case
of level graphs [16, 19]. Computing the minimum number of crossings is fixed-
parameter tractable [3, 15]. Analogously, crossing minimization in tanglegrams
is NP-complete, as shown by Fernau et al. [10] by a reduction from the MAX-
CUT problem [11], while the special case of planarity test can be decided in linear
time [10]. Furthermore, the problem of minimizing the number of crossings where



one tree is fixed and the layout of the other tree is allowed to vary can be solved
efficiently. For binary trees with arbitrary topology, Fernau et al. [10] showed an
O(n log2(n)) solution, further improved to O(n log2(n)/ log log(n)) by Bansal et
al. [2]. Here, n gives the number of leaves in each tree. Venkatachalam et al. [22]
provided recently an algorithm working on the integer programming formulation
of the problem with the so far best-known time bound of O(n log(n)). For the
case of generalized tanglegrams, Bansal et al. [2] presented two algorithms with
running times O(m log2(m)/ log log(m)) and O(mh), where m is the number of
edges between the two trees and h is the height of the tree whose layout can
change. Based on the result of Fernau et al. [10], they also showed that the
existence of planar embedding can be verified in O(m) time.

In our generalization of the tanglegram problem we go even further than
Bansal et al. [2]. In generalized tanglegrams on level graphs we consider problem
instances with more than two trees where every tree is defined on an arbitrary
set of leaves. Notice that here the pairwise disjoint leaf sets and the correspond-
ing inter-tree edges (no perfect matching) connecting two neighboring leaf sets
constitute a level graph [19] where each level is defined by some leaf set. Thus,
each tree defined on some level implies additional constraints reducing consid-
erably the set of possible embeddings. E.g., k-ary trees with n leaves allow for

at most k!
n−1
k−1 different leaf orders implied by different orderings of the subtrees,

i.e., 2n−1 in case of binary trees, compared with n! permutations if no restric-
tions are imposed on the order of the leaves. Furthermore, in our setting we do
not restrict the tanglegrams only to binary trees.

In this paper we present formulations of the planarity test and the crossing
minimization problem on generalized tanglegrams on level graphs in terms of
CNF-formulas by incorporating the ideas used already for level graphs in [19,
21]. By doing this, the planarity test essentially reduces to testing satisfiability
of a 2-CNF formula. The crossing minimization problem has a formulation as
a PARTIAL MAX-SAT problem of a CNF formula with a mandatory part of
3- and 2-clauses that must be satisfied for the solution to be reasonable, and a
second part of 2-clauses such that its truth assignment must satisfy as many of
these clauses as possible. In the mandatory part, the 3-clauses reflect transitiv-
ity conditions forced by the genus of the surface, whereas the 2-clauses reflect
antisymmetry conditions. These clauses have to be satisfied in order to obtain a
layout. The second part of 2-clauses reflects non-crossing conditions. Each unsat-
isfied clause from this part represents one arc crossing. This formulation offers a
simple alternative for finding reasonable approximate solutions for the crossing
minimization problem. We show that the planarity test for a generalized tangle-
gram on a level graph having a total of n vertices and with k-ary trees defined
on each level, for some fixed integer k > 1, can be solved in O(n2) time by an
elementary 2-SAT algorithm. Finally, to the best of our knowledge, this is the
first time that the generalized tanglegram problem has been treated by means
of a satisfiability formulation.

The rest of the paper is organized as follows. In Section 2 we provide some
basic notation and definitions of relevant computational problems for generalized



tanglegrams on level graphs. The satisfiability-based formulation of the two main
problems on generalized tanglegrams on level graphs is given in Section 3. Finally,
in Section 4 we conclude our paper and state some open questions.

2 Preliminaries and basic notation

Formally, a level graph is a triple (G,λ, L) where G = (V,E) is a directed graph,
L = {1, ..., |L|} is the set of levels, and λ : V → L is the level-mapping, that
assigns the vertices to levels such that each arc is directed from a lower to a
higher level, i.e., ∀e = (u, v) : λ(v) > λ(u). For simplicity, we identify the
above triple by G having the other two components in mind. Observe that there
exists no arc between vertices on the same level. If in addition, for every arc
e = (u, v) ∈ E, λ(v) = λ(u) + 1 holds, then the level graph is called proper.
In the present paper we consider proper level graphs only, hence we simply
will speak of level graphs. This restriction means no loss of generality since an
arbitrary level graph can be turned into a proper one preserving the crossing
number by simply adding dummy vertices as shown in [9, 19].

Level graphs are drawn in the Euclidean x, y-plane by linear order, i.e., all
vertices on the same level j ∈ L are placed at arbitrary different positions on the
line y = j; the x-coordinate of vertex u is denoted as x(u). Arcs are represented
by straight lines between the points representing their incident vertices. Often
arrows at arc heads are omitted since the direction is implicitly fixed by the levels.
For two vertices u, v on the same level, we simply write u < v iff x(u) < x(v). One
is especially interested in level-graph drawings such that no two arc lines cross
outside their endpoints. A level graph for which such a drawing exists is called
level-planar. It is not hard to see that a level graph with |E| > 2|V | − 4 cannot
be level-planar [19]. Therefore, for most level graphs all what one can hope for
is to find a plane embedding such that the number of arc-crossings is minimized.
Moreover, by reduction from the FEEDBACK ARC SET problem [11], Eades
and Wormald [9] showed that crossing minimization in level graphs is NP-hard,
even if there are only two levels with a fixed order of nodes on one level.

In generalized tanglegrams on level graphs, we define additionally on the
nodes of each level i ∈ L of a level graph G a tree Ti with nodes of level i as
leaf set. Clearly, the presence of a tree on each level reduces the search space
of admissible embeddings considerably. More formally, a generalized tanglegram
on a level graph G is a quadruple (G,λ, L, F ) where F = {T1, ..., T|L|} is a forest
of level-trees and G, λ, and L are defined as above. We say that a rooted level-
tree is complete if all its leaves have the same depth. Given a rooted, unordered
tree T ∈ F , we write V (T ), and E(T ) to denote its node set, and edge set,
respectively. Furthermore, for two trees Ti and Ti+1 from F defined on two
adjacent levels i and i+ 1 of level graph G, we define the set of inter-tree arcs as

E(Ti, Ti+1) := {(u, v) ∈ E(G) : λ(u) = i, λ(v) = i+ 1}.

Observe that for a proper graph G holds E(G) =
⋃
i=1,...,|L|−1E(Ti, Ti+1).



For each node v ∈ V (T ), let T (v) denote the subtree of T rooted at v. Given
a tree T , we say that a linear order σ on the leaves of T is compatible with T
if for each node v ∈ V (T ) the leaves in T (v) form an interval (i.e., appear as
a consecutive block) in σ. We write u <σ v to mean that leaf u appears before
leaf v in the linear order σ on the leaves of T . Given compatible linear orders σi
and σi+1 on two trees Ti and Ti+1 from F defined on two adjacent levels i and
i+ 1 of level graph G, respectively, the number of crossings between σi and σi+1

among the inter-tree arcs E(Ti, Ti+1) is defined as

τ(σi, σi+1) :=
∣∣{{(u, a), (v, b)} ⊆ E(Ti, Ti+1) : ¬

(
(u <σi v)↔ (a <σi+1 b)

)}∣∣.
Note that a pair of arcs cross at most once (see Fig. 1). Moreover, since we
assume here that G is a proper level graph, only adjacent levels can induce
crossings. Finally, the overall number of crossings for an instance (G,λ, L, F )
and a set S := {σ1, ..., σ|L|} of compatible orders for each level in L (tree in F )
is defined as

τ(G,λ, L, F, S) :=
∑

i=1,...,|L|−1

τ(σi, σi+1).

Problem 1 (Planarity Test). Given an instance (G,λ, L, F ), verify if there exists
a planar embedding, i.e., if there exists some set S of compatible linear orders
σi for each level i ∈ L (tree Ti ∈ F ) such that τ(G,λ, L, F, S) = 0.

Problem 2 (Crossing Minimization). Given an instance (G,λ, L, F ), find a set
S of compatible linear orders σi for each level i ∈ L (tree Ti ∈ F ) such that
τ(G,λ, L, F, S) is minimized.

To complete the notation, let CNF denote the set of formulas (free of dupli-
cate clauses) in conjunctive normal form over a set V = {x1, ..., xn} of proposi-
tional variables xi ∈ {0, 1}. Each variable x induces a positive literal (variable
x) or a negative literal (negated variable x). Each formula C ∈ CNF is con-
sidered as a clause set C = {c1, ..., c|C|}. Each clause c ∈ C is a disjunction of
different literals li, and is also represented as a set c = {l1, ..., l|c|}. A clause is
termed a k-clause, for some k ∈ N, if it contains at most k literals. The number
of clauses in C is denoted by |C|. For k ∈ N, let k-CNF denote the subset of
formulas C such that each clause has length at most k. We denote by V (C)
the set of variables occurring in formula C. The satisfiability problem (SAT)
asks, whether formula C is satisfiable, i.e., whether there is a truth assignment
t : V (C) → {0, 1} setting at least one literal in each clause of C to 1. Given
C ∈ CNF, the optimization version MAX-SAT searches for a truth assignment
t satisfying as many clauses of C as possible.

3 Satisfiability formulation of crossing minimization

In the following we provide a formulation of the crossing minimization prob-
lem for generalized tanglegrams on level graphs in terms of propositional logic.



We proceed in two steps. Given a generalized tanglegram (G,λ, L, F ), we first
show the construction of CNF-formulas for the level graph (G,λ, L). In the sec-
ond step, we describe a similar construction for the forest F of the generalized
tanglegram.

Consider in a proper level graph G two subsequent levels i and i+ 1 from L,
as shown in Fig. 2. Let e = (u, a) and f = (v, b) be two arcs from E(Ti, Ti+1)
directed from level i to level i+ 1 with different tails u 6= v and different heads
a 6= b. In a drawing of G, e and f do not cross iff

u <σ v ⇔ a <σ b

for some linear order σ. Observe that arcs having the same head or tail never
cross in any drawing of G.
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Fig. 2. Adjacent levels i and i + 1 of a level graph G. Arcs e = (u, a) and f = (v, b)
have different tails and heads.

The construction of a Boolean formula CG representing the plane embedding
of G proceeds as follows:

1. For each level i ∈ L and every pair {u, v} of distinct vertices from level i,
i.e., λ(u) = λ(v) = i, create a Boolean variable uv that is true iff u <σ v for
some linear order σ.

2. Create the following Boolean subformulas:
(i) For each level i ∈ {1, ..., |L| − 1} and every two arcs e = (u, a), f = (v, b)

from E(Ti, Ti+1) having their tails u 6= v on level i and heads a 6= b on
level i+ 1, form the non-crossing preserving expression:

uv ↔ ab

(ii) For each level i ∈ {1, ..., |L|} and each pair {u, v} of distinct vertices on
level i, form the antisymmetry expression:

uv ↔ vu

(iii) For each level i ∈ {1, ..., |L|} and each triple {u, v, w} of distinct vertices
on level i, form the transitivity expression:

uv ∧ vw → uw



Observe that the formulas resulting from (i) and (ii) yield 2-CNF formulas Ci
and Cii via

a↔ b ≡ (a ∨ b) ∧ (b ∨ a).

The formula resulting from (iii) yields a Horn formula Ciii with clauses of length
3 via elementary equivalence

(a ∧ b→ c) ≡ (a ∨ b ∨ c).

Recall that each clause of a Horn formula contains at most one positive
literal. Hence the formula CG = Ci ∧ Cii ∧ Ciii encoding the plane embedding
of a level graph G is a mixed Horn formula [18]. If G has n vertices distributed
over |L| levels then CG has |V (CG)| ∈ O(n2) variables. Moreover, by counting
|Ci| ∈ O(|E(G)|2), |Cii| ∈ O(n2), and |Ciii| ∈ O(n3). Hence the number of
clauses in CG is bounded by O(n3+ |E(G)|2). As mentioned before, the maximal
number of arcs in a level-planar graph containing n > 2 nodes is at most 2n− 4.
Thus, in the case we use CG for a level planarity test, a preprocessing ensures
that only O(n2) 2-clauses in Ci are generated. The following result shows that
the level planarity test can be formulated as a satisfiability problem.

Proposition 1 ([19]). A level graph G with n vertices has a level-planar em-
bedding iff CG − Ciii is satisfiable. The test can be done in time O(n2).

According to [19], the transitivity formula Ciii is superfluous for the level
planarity test. This results in a better complexity of O(n2), since SAT for 2-
CNF formulas can be decided in linear time in the number of variables and
clauses in the input formula [1].

Minimizing the number of crossings of G is equivalent in terms of proposi-
tional calculus to determining a truth assignment which satisfies all clauses in
Cii and Ciii and which maximizes the number of satisfied clauses in Ci. This
optimization problem is known as PARTIAL MAX-SAT [4], a variant of the
MAX-SAT problem, and remains NP-hard even for (unsatisfiable) 2-CNF in-
stances. Unfortunately, it turns out that for considering crossing minimization
in terms of PARTIAL MAX-SAT, formula Ciii cannot be dropped in general [21].

Proposition 2 ([19]). Let G be a level graph and t : V (CG)→ {0, 1} be a truth
assignment satisfying all clauses of Cii and Ciii and minimizing the number τG
of violated clauses in Ci. Then τG is the minimum number of arc crossings in a
level embedding of G.

Consider now some tree Ti from F built on a level i from L. Without loss of
generality assume that Ti is a complete, k-ary tree of height d, for some integers
k, d > 1. Note that for d = 1 the edges of Ti never cross in any drawing of Ti
and the generation of a CNF formula CTi for Ti can be omitted. Let w be some
node from V (Ti) such that the height of subtree Ti(w) is at least 2. Note that
the edges of Ti(w) connecting nodes of depth 0 and 1 never cross in any drawing
of Ti(w). Therefore, let e = {u, a} and f = {v, b} be two edges from E(Ti(w))



with u 6= v having both depth 1 and a 6= b being some children of u and v,
respectively, as shown in Fig. 3. In a drawing of Ti(w), e and f do not cross iff

u <σ v ⇔ a <σ b

for some linear order σ.

w

fe

u v

a b

Fig. 3. Part of subtree Ti(w) with two non-crossing edges e and f .

We describe now the construction of a Boolean formula CTi encoding the
plane embedding of Ti. We proceed as follows:

1. For each level j = 1, ..., d of Ti and every pair {u, v} of distinct vertices from
level j, create a Boolean variable uv that is true iff u <σ v for some linear
order σ.

2. Create the following Boolean subformulas:
(iv) For each level j = 1, ..., d − 1 of Ti and every two edges e = {u, a} and

f = {v, b} from E(Ti) such that u 6= v have depth j and a and b have
depth j + 1 in Ti, form the non-crossing preserving expression:

(uv → ab) ∧ (vu→ ba)

(v) For each level j = 1, ..., d and each pair {u, v} of distinct vertices of
depth j in Ti, form the antisymmetry expression:

uv ↔ vu

Notice that the formulas resulting from (iv) and (v) yield after some elementary
transformations 2-CNF formulas CTi

iv and CTi
v , respectively, for each tree Ti. We

proceed with the generation of Boolean formulas CTi = CTi
iv ∧ CTi

v for all trees
from F and obtain finally a Boolean formula

CF =
∧
Ti∈F

CTi

encoding the plane embedding of F .
We shall now estimate the length of each formula CTi . The number of vari-

ables generated for each level j = 1, ..., d of a k-ary tree Ti is equal to
(
kj

2

)
and



thus bounded by O(k2j). If ri ≤ n is the number of vertices in level i ∈ L of
graph G, then the height of any k-ary complete tree Ti is at most dlogk(ri)e.
Hence, each CTi

has O
( r2i−1
k2−1

)
variables. Furthermore, the number of 2-clauses

contributed to formula CTi
iv by a level j ∈ {1, ..., dlogk(ri)e − 1} of Ti is at

most 2k2
(
kj

2

)
∈ O(k2+2j), what summed up over dlogk(ri)e − 1 tree levels yields

|CTi
iv | ∈ O

( r2i−k2
k2−1

)
. For the number of clauses in CTi

v we proceed similar as for the

number of variables above and obtain that |CTi
v | ∈ O

( r2i−1
k2−1

)
. Thus, the number

of 2-clauses in CTi
is bounded by O(r2i ) for some fixed integer k > 1. Notice that

in case of a tree Ti with ri leaves but of height greater than dlogk(ri)e, there
must be an inner node in V (Ti) with less than k children. That yields formulas
CTi
iv and CTi

v with less variables and clauses than for the case of the k-ary com-
plete tree with ri leaves. Similar to Proposition 1, we obtain finally the following
result for Ti:

Proposition 3. For some fixed integer k > 1, a k-ary tree Ti built on a level
i with ri vertices has a planar embedding iff CTi

is satisfiable. The test can be
done in time O(r2i ).

Since ri is the number of vertices on level i ∈ L in graph G and r1+...+r|L| =
n, it follows that |V (CF )| ∈ O(n2) and |CF | ∈ O(n2).

Corollary 1. For some fixed integer k > 1, a set of k-ary trees built on a level
graph G with n vertices has a planar embedding iff CF is satisfiable. The test
can be done in time O(n2).

Note that every satisfying truth assignment for CF induces compatible linear
orders σi on the leaves of each Ti ∈ F , and vice versa.

We are now ready to give a final satisfiability-based formulation for an in-
stance (G,λ, L, F ) of a generalized tanglegram on a level graph G. To this end,
we simply generate CNF formulas CG and CF for (G,λ, L) and F , respectively,
as described above, and combine them into a new CNF formula as follows

CGF = CG ∧ CF = (Ci ∧ Cii ∧ Ciii) ∧
∧
Ti∈F

(
CTi
iv ∧ C

Ti
v

)
.

For a level graph G with n vertices and k-ary trees F defined on its levels L,
the number of clauses in CGF is bounded by O(n3 + |E(G)|2), according to
the discussion above. Furthermore, CGF has O(n2) variables. Note that these
estimates hold only for some fixed integer k > 1.

Since CGF contains 3-clauses, it cannot in general be solved for SAT effi-
ciently. However, since the transitivity formula Ciii ∈ 3-CNF is superfluous for
the planarity test, we can remove it from CGF , thus obtaining a 2-CNF formula.
Similarly as for Proposition 1, we can now solve the planarity test for (G,λ, L, F )
in time O(n2) by applying the algorithm of Aspvall et al. [1]. Recall that the
maximal number of arcs in a level-planar graph containing n > 2 nodes is at
most 2n− 4. Hence, the number of clauses |CGF − Ciii| ∈ O(n2).



Proposition 4. Let (G,λ, L, F ) be an instance of a generalized tanglegram on
a level graph G with n vertices and k-ary trees F , for some fixed integer k > 1.
Then (G,λ, L, F ) has a planar embedding iff CGF − Ciii is satisfiable. The test
can be done in time O(n2).

Minimizing the number of crossings of (G,λ, L, F ) is equivalent to deter-
mining a truth assignment which satisfies all clauses in CGF − Ci and which
maximizes the number of satisfied clauses in Ci, thus solving an instance of the
PARTIAL MAX-SAT problem. Again, for considering crossing minimization in
terms of PARTIAL MAX-SAT, formula Ciii ∈ 3-CNF cannot be dropped.

Proposition 5. Let (G,λ, L, F ) be an instance of a generalized tanglegram on a
level graph G with n vertices and k-ary trees F , for some fixed integer k > 1, and
let t : V (CGF )→ {0, 1} be a truth assignment satisfying all clauses of CGF −Ci
and minimizing the number τ of violated clauses in Ci. Then τ is the minimum
number of arc crossings in an embedding of (G,λ, L, F ).

Observe that compatible linear orders σi for each level i ∈ L can be extracted
from a truth assignment t in time O(n2) by traversing all variables of CGF .

4 Conclusion and open problems

We have presented a satisfiability-based formulation of the planarity test and
the crossing minimization problem on generalized tanglegrams defined on level
graphs. Here, the first problem essentially reduces to testing satisfiability of a 2-
CNF formula and can be solved in O(n2) time for instances with n level vertices
and k-ary trees defined on each level, for some fixed integer k > 1. Moreover, we
have shown that the latter problem has a formulation as a PARTIAL MAX-SAT
problem. Here, the question arises whether one could derive bounds on the ap-
proximation ratio for generalized tanglegram instances. From a practical point of
view, it would be interesting to test the efficiency of our satisfiability-based ap-
proach against other techniques while solving (generalized) binary tanglegrams.
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