A Graph Class related to the Structural Domination Problem

Oliver Schaudt
Institut für Informatik, Arbeitsgruppe Faigle/Schrader, Universität zu Köln
Weyertal 80, 50931 Cologne, Germany

Abstract

In the structural domination problem one is concerned with the question if a given graph has a connected dominating set whose induced subgraph has certain structural properties. For most of the common graph properties, the associated decision problem is $\mathcal{N} \mathcal{P}$-hard.

Recently, Bacsó and Tuza gave a full characterization of the graphs whose every induced subgraph has a connected dominating set satisfying an arbitrary prescribed hereditary property. Using the Theorem of Bacsó and Tuza, we derive a finite forbidden subgraph characterization of the distance-hereditary graphs that have a dominating induced tree. Furthermore, we show that for distance-hereditary graphs minimum dominating induced trees can be found efficiently. The main part of the paper studies a new class of graphs, the structural domination class, which is closely related to the structural domination problem. Among other results, we give new characterizations of certain subclasses of distance-hereditary graphs (in particular for ptolemaic graphs) and analyse the structure of minimum connected dominating sets of structural domination graphs. It turns out that many of the problems associated to structural domination become tractable on the hereditary part of the structural domination class.

Keywords: connected domination, structural domination, dominating induced trees, distance-hereditary graphs

1. Introduction

1.1. Preliminaries

All graphs considered in this paper are finite, undirected, without loops and multiple edges. Let G be any graph and $v \in V(G)$. The open neighborhood $N(v)$ of v is defined as the set vertices that v is adjacent to. The closed neighborhood of v is defined as $N[v]=N(v) \cup\{v\}$. A pendant vertex is a vertex v that has

[^0]exactly one neighbor, the so called support vertex of v. Two vertices are adjacent (non-adjacent) twins if they share the same closed (open) neighborhood. A vertex v separates G if the graph obtained from G by deleting v has more connected components than G. A dominating set of G is a subset $X \subseteq V(G)$ of its vertices such that $\bigcup_{x \in X} N[x]=V(G)$. A dominating set is a connected dominating set if the subgraph induced by X, denoted by $G[X]$, is a connected graph. A connected dominating set is minimal if it is minimal with respect to set inclusion and minimum if it is minimal with respect to cardinality. The size of any minimum connected dominating set of G is denoted by $\gamma_{c}(G)$. Note that any minimum connected dominating set is also minimal, but the converse is not true. In fact, determining if a given graph has a connected dominating set of a certain size is known to be a $\mathcal{N} \mathcal{P}$-complete decision problem (see [1]). If X is a minimal connected dominating set, any vertex of X is either separating $G[X]$ or has a private neighbor (with respect to X). This is a neighbor in $V \backslash X$ which is not adjacent to any other vertex of X. Some graphs have special names which will be used throughout the paper: The graph P_{k} is the path of k vertices. The graph C_{k} is the cycle of k vertices. The graph W_{k} is obtained from C_{k} by attaching a vertex which is adjacent to all other vertices. A hole is a cycle of length at least 5. The graphs house, antenna, mouse, domino and gem are displayed in Figure 1.

A graph G is distance-hereditary if all induced paths of G are also shortest paths. For distance-hereditary graphs, several characterizations have been found. In particular, they can be decomposed iteratively in the following way.

Theorem 1 ([2]). A graph is distance-hereditary iff any non-trivial subgraph has a pendant vertex or a pair of twins.

This theorem can be restated as follows: A graph G with $|V(G)|=n$ is distance-hereditary iff there is an ordering $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of its vertices such that v_{i} is a pendant vertex or a twin in the graph $G_{i}=G\left[\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}\right]$ for any $1 \leq i \leq n-1$. Note that $G_{1}=G$.

There is also a characterization of distance-hereditary graphs by minimal forbidden subgraphs.

Theorem 2 ([2]). A graph G is distance-hereditary iff it is house-free, hole-free, domino-free and gem-free.

A graph G is $(5,2)$-chordal if any cycle of length at least 5 has two chords. That is, G is house, hole and domino free (see [7]). Hence, any distancehereditary graph is (5,2)-chordal. A graph is ptolemaic if it is chordal and distance-hereditary. A graph is chordal bipartite if all induced cycles are of length 4.

1.2. The structural domination problem

From now on we only consider connected graphs. Since there is no danger of confusion, we say that a graph H is a subgraph of a graph G if H is connected and there is a set $X \subseteq V(G)$ with $H \cong G[X]$. For any set of graphs \mathcal{G} let

Figure 1: house, antenna, mouse, domino and gem
\mathcal{G}^{*} denote the collection of all graphs of \mathcal{G} whose every subgraph belongs to \mathcal{G} and let $\overline{\mathcal{G}}$ be the set of graphs not contained in \mathcal{G}. A non-empty set of graphs \mathcal{G} is called concise if $\mathcal{G}=\mathcal{G}^{*}$. For concise \mathcal{G} let $F b(\mathcal{G})$ be the set of minimal forbidden subgraphs of \mathcal{G}. Furthermore, let $\operatorname{Dom}(\mathcal{G})$ be the collection of all graphs having a connected dominating set inducing a graph of $\mathcal{G} . \operatorname{Dom}(\mathcal{G})$ is called the domination class of \mathcal{G}. Note that $\operatorname{Dom}(\mathcal{G})$ is concise iff \mathcal{G} is the set of all graphs. For any graph class \mathcal{G} and any graph $G \in \operatorname{Dom}(\mathcal{G})$ let

$$
\gamma_{\mathcal{G}}(G)=\min \{|X|: X \text { is a connected dominating set and } G[X] \in \mathcal{G}\}
$$

and observe $\gamma_{c}(G) \leq \gamma_{\mathcal{G}}(G)$.
As is shown in [3], for most of the common graph classes \mathcal{G} the recognition of $\operatorname{Dom}(\mathcal{G})$ and the decision problem related to $\gamma_{\mathcal{G}}$ are $\mathcal{N} \mathcal{P}$-hard. One of the aims of this paper is the development of a graph class, the structural domination class, in which $\operatorname{Dom}(\mathcal{G})$ can be recognized and $\gamma_{\mathcal{G}}$ can be computed efficiently. This aim is fulfilled with Corollary 6 of this paper.

In contrast, for all concise \mathcal{G} the class $\operatorname{Dom}(\mathcal{G})^{*}$ has a characterization in terms of forbidden subgraphs which was discovered by Bacsó [4] and Tuza [5] independently. The articulation graph of a graph F is obtained from F by simultaneously attaching a pendant vertex to any non-separating vertex of F and is denoted by $\operatorname{Art}(F)$.

Theorem 3 ([4], [5]). Let \mathcal{G} be a concise set of graphs.

$$
F b\left(\operatorname{Dom}(\mathcal{G})^{*}\right)=\{\operatorname{Art}(F): F \in F b(\mathcal{G})\} \cup\left\{C_{t+2}: P_{t-1} \in \mathcal{G}, P_{t} \notin \mathcal{G}\right\}
$$

That is, a graph belongs to $\operatorname{Dom}(\mathcal{G})^{*}$ iff it is $\{\operatorname{Art}(F): F \in F b(\mathcal{G})\}$-free and $\left\{C_{t+2}: P_{t-1} \in \mathcal{G}, P_{t} \notin \mathcal{G}\right\}$-free. For example, any subgraph of a graph G has a dominating clique iff this graph is $P_{5^{-}}$and C_{5}-free. This classical result was first stated in [6], according to our knowledge.

2. Dominating trees in distance-hereditary graphs

Let tree denote the set of all acyclic graphs. Dominating induced trees were first studied 2004 in [8] and 2007 in [9], according to our knowledge. We first proove a finite forbidden subgraph characterization of Dom (tree) in distancehereditary graphs, based on Theorem 3. Corollary 1 shows that $\operatorname{Dom}($ tree $)$ is
recognizable in polynomial time if the instances are restricted to be distancehereditary graphs and, furthermore, a minimum dominating induced tree can be computed efficiently. In contrast, the recognition of $\operatorname{Dom}($ tree $)$ is $\mathcal{N} \mathcal{P}$-complete if the instances are restricted to be regular graphs, as is shown in [9]. Our result is, in particular, an answer to the question stated in [8] that asks for graph classes allowing an efficient computation of the minimal size of a dominating induced tree.

Lemma 1. Let G be (5,2)-chordal graph and X be a minimal connected dominating set such that $G[X]$ is not a path. Then $\operatorname{Art}(G[X])$ is a subgraph of G.

Proof. Let G be a $(5,2)$-chordal graph and let X be a minimal connected dominating set such that $G[X]$ is not a path. Let $\left\{n_{x}: x\right.$ not separating $\left.G[X]\right\}$ be a set of private neighbors of the non-separating vertices of $G[X]$. Assume $\operatorname{Art}(G[X])$ is not a subgraph of G. Since G is hole-free, there is an adjacent pair $x, y \in X$ of vertices which do not separate $G[X]$ such that n_{x} is adjacent to n_{y}. Since $G[X]$ is not a path, x and y belong to an induced cycle C of $G[X]$. But $G\left[V(C) \cup\left\{n_{x}, n_{y}\right\}\right]$ is not (5,2)-chordal, as is easily seen.

In particular, for a (5,2)-chordal graph that is $\operatorname{Art}\left(C_{3}\right)$-free and $\operatorname{Art}\left(C_{4}\right)$ free, any minimum connected dominating set is a tree. However, there are $(5,2)$ chordal graphs which have a dominating induced tree but are not $\operatorname{Art}\left(C_{3}\right)$-free and $\operatorname{Art}\left(C_{4}\right)$-free, e.g. the graph obtained from $\operatorname{Art}\left(C_{3}\right)$ by attaching a vertex that is adjacent to all other vertices. Necessity holds for a slightly smaller graph class, as the following result shows.

Theorem 4. For a distance-hereditary graph G the following statements are equivalent:

1. $G \in \operatorname{Dom}($ tree $)$.
2. $G \in \operatorname{Dom}(\text { tree })^{*}$.
3. G does not contain $\operatorname{Art}\left(C_{3}\right)$ or $\operatorname{Art}\left(C_{4}\right)$ as subgraph.
4. Any minimal connected dominating set induces a tree.
5. There is a minimal connected dominating set that induces a tree.

Proof. By Theorem 3, $\operatorname{Fb}\left(\operatorname{Dom}(\text { tree })^{*}\right)=\left\{\operatorname{Art}\left(C_{3}\right), \operatorname{Art}\left(C_{4}\right), \operatorname{Art}\left(C_{5}\right), \ldots\right\}$. Hence, by Theorem 2, 2 implies 3. By Lemma 1 and since any distancehereditary graph is (5,2)-chordal, 3 implies 4 . 4 implies 5 , and 5 implies 1 clearly.

To see that 1 implies 2, assume there is a distance-hereditary graph in $\operatorname{Dom}($ tree $) \backslash \operatorname{Dom}(\text { tree })^{*}$ and choose G minimal with respect to this property. By Theorem 3, $V(G)$ admits a partition $V(G)=U \cup W$ such that $G[U]$ is the articulation graph of C_{3} or C_{4} and there is a minimal dominating set X of G inducing a tree. By minimality of $G, W \subseteq X$. Let $n=|V(G)|$. We use a decomposition $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of G which fulfills the following rule: If there is a twin $v \notin X$ in G_{i}, choose $v_{i}=v$. It follows that $X \cap V\left(G_{i}\right)$ is a connected dominating set of G_{i} for any $1 \leq i \leq n$.

Assume $G[U] \cong \operatorname{Art}\left(C_{3}\right)$. By minimality, v_{1} is a pendant vertex of $G[U]$ and of G_{1}. Thus, the neighbor c_{1} of v_{1} in $G[U]$ belongs to X. By minimality again, v_{2} is a pendant vertex of $G[U]$ and of G_{2}. Thus, there is a second vertex c_{2} of C_{3} contained in X. Since $G[X]$ is acyclic, $c_{3} \notin X$ and thus, by minimality again, v_{3} is one of the adjacent twins c_{1} and c_{2}. Furthermore, the remaining pendant vertex of $G_{3}[U]$ must be dominated, but $c_{3} \notin X$. Hence, c_{1} and c_{2} have a common neighbor in X which is a contradiction to acyclicity of $G[X]$.

Assume $G[U] \cong \operatorname{Art}\left(C_{4}\right)$ where the vertices of the C_{4} are clockwise called c_{1}, c_{2}, c_{3} and c_{4}. By minimality, v_{1} is a pendant vertex of $G[U]$ and of G_{1}. We can assume that c_{1} is the support vertex of v_{1} and so $c_{1} \in X$. By minimality again, v_{2} is a pendant vertex of $G[U]$ and of G_{2}. We can assume that c_{2} or c_{3} is the support vertex of v_{2}.

We first assume that c_{2} is the support vertex of v_{2} and so $c_{2} \in X$. Then, by minimality, v_{3} is a pendant vertex of $G[U]$ and of G_{3}. We can assume that c_{3} is the support vertex of v_{3} and thus $c_{3} \in X$. By minimality again, v_{4} is either a pendant vertex of $G[U]$ and of G_{4}, or v_{4} equals c_{1} or c_{3} (in the case that c_{1} and c_{3} are non-adjacent twins in G_{4}). The first case is impossible, since c_{4} would belong to X, in contradiction to acyclicity of $G[X]$. We can assume $v_{4}=c_{1}$. By acyclicity, $N_{G_{4}}\left(c_{1}\right)=N_{G_{4}}\left(c_{3}\right)=\left\{c_{2}, c_{4}\right\}$, and hence, by minimality, W contains no pendant vertex or twin in G_{5}. Neither the remaining pendant vertex of $G_{4}[U]$, nor c_{2} can be pendant vertices of G_{5}, since X is a connected dominating set. This is a contradiction to the existence of v_{5}.

We now assume that c_{3} is the support vertex of v_{2} and so $c_{3} \in X$. By minimality, v_{3} is a pendant vertex of $G[U]$ and of G_{3}, or v_{3} equals c_{1} or c_{3} (in the case that c_{1} and c_{3} are non-adjacent twins in G_{4}). The first case is dealt with above and we may assume the latter. By acyclicity, c_{1} and c_{3} have at most one neighbor $x \in W$. If they have, then by acyclicity $c_{2}, c_{4} \notin X$ and therefore $N_{G_{3}}(x) \cap W \neq \emptyset$. Thus, by minimality, v_{4} is a pendant vertex of $G[U]$ and of G_{4}, which is a contradiction to $c_{2}, c_{4} \notin X$. The case that c_{1} and c_{3} have no neighbor in W leads to a situation which is dealt with above.

Note that, for distance-hereditary graphs, minimum connected dominating set can be found efficiently, as is shown in [10]. Given a distance-hereditary graph G, one efficiently computes a minimum connected dominating set X. By Lemma 1 and Theorem 4, $G[X]$ is a tree iff $G \in \operatorname{Dom}($ tree $)$. Hence, the following holds:

Corollary 1. Dom(tree) can be recognized in polynomial time if the instances are restricted to be distance-hereditary graphs. Any distance-hereditary graph $G \in \operatorname{Dom}(\boldsymbol{t r e e})$ fulfills $\gamma_{\text {tree }}(G)=\gamma_{c}(G)$, and such tree can be computed efficiently.

3. The structural domination property

We say that a graph G is a structural domination graph if the following condition holds: For any connected dominating set X of G, each subgraph H
of G has a connected dominating set Y such that $H[Y]$ is a subgraph of $G[X]$. Note that, by definition of the term subgraph, not necessarily $Y \subseteq X$. A graph is a hereditary structural domination graph if every subgraph is a structural domination graph.

The structural domination class is the set of all structural domination graphs. Note that this class is not concise and that the concise part of the structural domination class is the set of hereditary structural domination graphs. It is easy to see that the structural domination class equals the set of all graphs which are contained in $\overline{\operatorname{Dom}(\mathcal{G})} \cup \operatorname{Dom}(\mathcal{G})^{*}$ for any concise graph class \mathcal{G}. That is, $\operatorname{Dom}(\mathcal{G}) \Leftrightarrow \operatorname{Dom}(\mathcal{G})^{*}$ for any concise graph class \mathcal{G}. In fact, we have the following slightly simpler formulation:

Observation 1. The structural domination class equals the set of all graphs which are contained in $\overline{\operatorname{Dom}(F-f r e e)} \cup \operatorname{Dom}(F \text {-free })^{*}$ for any graph F.

Proof. Let G be a structural domination graph, and let F be an arbitrary graph. Since the set of F-free graphs is concise, $G \in \overline{\operatorname{Dom}(F \text {-free })} \cup \operatorname{Dom}(F$-free)**.

Let $G \in \overline{\operatorname{Dom}(F \text {-free })} \cup D o m(F \text {-free })^{*}$ for all graphs F, and let \mathcal{G} be a concise class. We observe

$$
\operatorname{Dom}(F b(\mathcal{G}) \text {-free }) \subseteq \bigcap_{F \in F b(\mathcal{G})} \operatorname{Dom}(F \text {-free })
$$

and, by Theorem 3,

$$
\operatorname{Dom}(F b(\mathcal{G}) \text {-free })^{*}=\bigcap_{F \in F b(\mathcal{G})} \operatorname{Dom}(F \text {-free })^{*} .
$$

By choice of G, if $G \notin \bigcup_{F \in F b(\mathcal{G})} \overline{\operatorname{Dom}(F \text {-free })}$, then $G \in \bigcap_{F \in F b(\mathcal{G})} \operatorname{Dom}(F$-free)*. Hence, $G \in \overline{\operatorname{Dom}(F b(\mathcal{G}) \text {-free })} \cup \operatorname{Dom}(F b(\mathcal{G}) \text {-free })^{*}=\overline{\operatorname{Dom}(\mathcal{G})} \cup \operatorname{Dom}(\mathcal{G})^{*}$.

3.1. Structural domination graphs versus distance-hereditary graphs

Although there is no finite forbidden subgraph characterization of the concise part of the structural domination class, there are some small graphs that are obviously minimal forbidden subgraphs.

Observation 2. Any hereditary structural domination graph is antenna-free, mouse-free, domino-free, gem-free and W_{4}-free.

This leads us to the following connection between the concise part of the structural domination class and the distance-hereditary graphs:

Theorem 5. A graph is house-free, hole-free and a hereditary structural domination graph iff it is W_{4}-free and distance-hereditary.

Proof. To see the sufficiency, note that, by Theorem 2 and Observation 2, a house-free and hole-free hereditary structural domination graph is W_{4}-free and distance-hereditary.

To see the necessity, let $G=(V, E)$ be a W_{4}-free distance-hereditary graph. Since G is W_{4}-free, it is clear that $G \in \overline{\operatorname{Dom}\left(\left\{K_{1}\right\}\right)} \cup \operatorname{Dom}\left(\left\{K_{1}\right\}\right)^{*}$. We assume that there is a graph F such that G induces $\operatorname{Art}(F)$ but has a connected dominating set X such that $G[X]$ is F-free. That is, by Observation $1, G$ is not a structural domination graph. We furthermore assume that G is minimal with respect to this property. Let $V=U \cup W$ be a partition such that $G[U]=\operatorname{Art}(F)$. By minimality, $W \subseteq X$. Furthermore, no vertex of W separates G. Let $n=|V(G)|$. We use a decomposition $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of G which fulfills the following rule: If there is a twin $v \notin X$ in G_{i}, choose $v_{i}=v$. It is easy to see that $X \cap V\left(G_{i}\right)$ is a connected dominating set of G_{i} for any $1 \leq i \leq n$. We choose $1 \leq i \leq n$ minimal such that v_{i} is a pendant vertex with support vertex in W or a twin of a vertex of W.

Assume $w \in W$ is support vertex of v_{i}, but is not a twin of v_{j} in G_{j} for any $j \leq i$. Then w is separating in G_{i} and hence also in G, which is a contradiction. Thus, we can assume that v_{i} is a twin of w. The following cases are possible:

1. v_{i} is a non-adjacent twin of w.
2. v_{i} is an adjacent twin of w and $v_{i} \in W$.
3. v_{i} is an adjacent twin of w and $v_{i} \in U$.

In case $1 w$ is not a support vertex of v_{j} in G_{j} for any $j \leq i$. Thus, $N_{G}(w) \subseteq N_{G}\left(v_{i}\right)$. Since G is minimal, $v_{i} \notin X$. Thus, v_{i} is not a support vertex of v_{j} in G_{j} for any $j \leq i$. Furthermore, v_{i} is not an adjacent twin of v_{j} in G_{j} for any $j \leq i$ with $v_{j} \in X$. Therefore, $N_{G}\left(v_{i}\right) \cap X=N_{G}(w) \cap X$ and so $Y=(X \backslash\{w\}) \cup\left\{v_{i}\right\}$ is a connected dominating set of $G[V \backslash\{w\}]$ that does not induce F. This is a contradiction to the minimality of G.

In case $2 w$ and v_{i} are not support vertices or non-adjacent twins of v_{j} in G_{j} for any $j<i$. Thus, $N_{G}[w]=N_{G}\left[v_{i}\right]$, in contradiction to the minimality of G.

In case 3 we have to deal with the sub-cases $v_{i} \in X$ and $v_{i} \notin X$.
In the case $v_{i} \in X$ we have $N_{G}[w] \nsubseteq N_{G}\left[v_{i}\right]$ by minimality. Since w is not a support vertex of v_{j} in G_{j} for any $j<i$, there is a $j<i$ such that v_{i} is a non-adjacent twin of v_{j} in G_{j}. In the case $v_{i} \notin X, v_{i}$ is not a support vertex of v_{j} in G_{j} for any $j<i$. Hence, $N_{G}\left[v_{i}\right] \subseteq N_{G}[w]$. By minimality, $N_{G}[w] \nsubseteq N_{G}\left[v_{i}\right]$ and thus there is a $j<i$ such that v_{i} is a non-adjacent twin of v_{j} in G_{j}. Both cases lead to the following contradiction: As G is W_{4}-free, $G\left[N_{G_{j}}[w] \backslash\left\{v_{i}, v_{j}\right\}\right]$ is isomorphic to K_{n} for some $n \in \mathbb{N}$. Assume $n=1$. Then w is not separating in G_{j}, since it is not separating in G. Thus, there is a maximal index k with $j<k<i$ such that $v_{k} \in N_{G_{j}}\left(v_{i}\right)$. As $n=1, w$ is not adjacent to v_{k} and thus v_{k} is not a twin of v_{i} in G_{k}. Furthermore, v_{k} is not a pendant vertex in G_{k}, since otherwise it would be a non-adjacent twin of w in G_{k}. Hence, there is an index k^{\prime} with $k<k^{\prime}<i$ such that v_{k} is a twin of $v_{k^{\prime}}$ in G_{k}. But then $v_{k^{\prime}} \in N_{G_{j}}\left(v_{i}\right)$, which is a contradiction to the maximality of k.

Therefore, $n \geq 2$. For arbitrary $v \in N_{G_{j}}[w] \backslash\left\{v_{i}, v_{j}\right\}$ we observe that v is not a non-adjacent twin of v_{l} in G_{l} for any $l<j$, since G is W_{4}-free. Thus, $N_{G}[w] \subseteq N_{G}[v]$ and hence $v \notin X$ by minimality of G. Therefore, v is not a support vertex of v_{l} in G_{l} for any $l<j$ and so $N_{G}[w]=N_{G}[v]$. Hence,
$Y=(X \backslash\{w\}) \cup\{v\}$ is a connected dominating set of $G[V \backslash\{w\}]$ that does not induce F. This is a contradiction to the minimality of G.

Corollary 2. A graph is chordal and a hereditary structural domination graph iff it is ptolemaic.

Note that this corollary can also be read as a characterization of the class of ptolemaic graphs which was previously unknown, by the best of our knowledge.

Corollary 3. A graph is chordal bipartite and a hereditary structural domination graph iff it is bipartite and distance-hereditary.

Theorem 1 and 5 imply the following decomposition theorem for the housefree, hole-free hereditary structural domination graphs:

Corollary 4. A graph is a house-free, hole-free hereditary structural domination graph iff any non-trivial subgraph has a pendant vertex, a pair of adjacent twins or a pair of non-adjacent twins whose open neighborhood induces a disjoint union of complete graphs.

Using results of the next section, we derive the following relationship:
Observation 3. Any minimal connected dominating set of a hole-free hereditary structural domination graph induces a distance-hereditary subgraph.

Proof. Note that any hole-free hereditary structural domination graph does not induce the articulation graph of a hole, a domino or a gem. Furthermore, the articulation graph of a house contains antenna as induced subgraph and is therefore not a hereditary structural domination graph. Theorem 3 and 7 complete the proof.
3.2. Minimum connected dominating sets of structural domination graphs For any structural domination graph G let

$$
M(G)=\{F: \operatorname{Art}(F) \text { subgraph of } G\} \cup\left\{P_{k}: C_{k+2} \text { subgraph of } G\right\} .
$$

Theorem 6. For any structural domination graph G holds

$$
\gamma_{c}(G)=\max \{|V(F)|: F \in M(G)\} .
$$

Proof. Let G be a structural domination graph and let $k=\max \{|V(F)|: F \in$ $M(G)\}$. By Theorem 3 and the definition of $k, G \in \operatorname{Dom}(\{H:|V(H)| \leq k\})^{*}$. Thus, $\gamma_{c}(G) \leq k$.

Assume $\operatorname{Art}(F)$ resp. C_{k+2} is a subgraph of G. By Theorem 3, and since G is a structural domination graph, $G \notin \operatorname{Dom}\left(F\right.$-free) resp. $G \notin \operatorname{Dom}\left(P_{k}\right.$-free). Thus, any connected dominating set of G induces a graph that contains F resp. P_{k} as subgraph. Hence, $\gamma_{c}(G) \geq k$.

Corollary 5. Let G be a structural domination graph and \mathcal{G} be a concise graph class. If X is a minimum connected dominating set of G, then $G \in \operatorname{Dom}(\mathcal{G})$ iff $G[X] \in \mathcal{G}$. In particular, if $G \in \operatorname{Dom}(\mathcal{G})$, then $\gamma_{c}(G)=\gamma_{\mathcal{G}}(G)$.

Proof. Let G be a structural domination graph and \mathcal{G} be any concise graph class. As described in the proof of Theorem 6, if X is any minimum connected dominating set, then $G[X]$ contains all graphs of $M(G)$ as induced subgraphs and furthermore $G[X] \in M(G)$. Assume $G \in \operatorname{Dom}(\mathcal{G})$. Thus, $G \in \operatorname{Dom}(\mathcal{G})^{*}$, since G is a structural domination graph. By Theorem $3, M(G)$ is $F b(\mathcal{G})$-free and thus $M(G) \subseteq \mathcal{G}$. By Theorem $6, G[X] \in \mathcal{G}$ and thus $\gamma_{c}(G)=|X|=$ $\gamma_{\mathcal{G}}(G)$.

Hence, a minimum connected dominating set of a structural domination graph G contains all information about the domination classes G belongs to. Furthermore, if X and Y are two minimum connected dominating sets of a structural domination graph G, then $G[X] \cong G[Y]$.

Theorem 6 can also be used to draw a connection between minimal and minimum connected dominating sets on the class of hereditary structural domination graphs:

Theorem 7. Let G be a hereditary structural domination graph with $\gamma_{c}(G) \geq 3$, and let X be a minimal connected dominating set of G. If $G[X]$ is not a path, then $\operatorname{Art}(G[X])$ is a subgraph of G. In particular, X is a minimum connected dominating set.

Proof. Let X be a minimal connected dominating set of a hereditary structural domination graph G such that $G[X]$ is not a path. Assume that $\operatorname{Art}(G[X])$ is not a subgraph of G. Let $\left\{n_{x}: x \in X\right.$ not separating $\left.G[X]\right\}$ be a set of private neighbors of the vertices of X which do not separate $G[X]$. Let $Y \subseteq X$ be a maximum set such that any $y \in Y$ does not separate $G[X]$ and furthermore $G[Y]$ and $G\left[\left\{n_{y}: y \in Y\right\}\right]$ are complete graphs.

Assume $|Y|=1$. Choose x and y as a pair of non-separating vertices of $G[X]$ such that n_{x} is adjacent to n_{y} and x and y have minimal distance. Since $|Y|=1, x$ and y are not adjacent. Let P be a shortest path between x and y in $G[X]$. Since $G[X]$ is not a path, there is a vertex $z \in X \backslash V(P)$ with $N(z) \cap V(P) \neq \emptyset$.

Since P is a shortest path, only the following cases can occur. They are displayed in Figure 2.

1. z is adjacent to exactly three vertices u, v, w of P.
2. z is adjacent to exactly two non-adjacent vertices u, v of P.
3. z is adjacent to exactly two adjacent vertices u, v of P.
4. z is adjacent to exactly one vertex u of P.

In case $1, G[\{u, v, w\}] \cong P_{3}$. Assume that $\operatorname{dist}_{G[X]}(x, u)<\operatorname{dist}_{G[X]}(x, w)<$ $\operatorname{dist}_{G[X]}(x, v)$.

We show, that there are two vertices w^{\prime} and z^{\prime} such that w^{\prime} is a neighbor of w, z^{\prime} is a neighbor of z and w^{\prime} as well as z^{\prime} are pendant vertices in $G^{\prime}=G\left[V(P) \cup\left\{z, n_{x}, n_{y}, w^{\prime}, z^{\prime}\right\}\right]$. But then G^{\prime} is not a structural domination graph, as can be seen in the following way. We can assume that $\operatorname{dist}_{G^{\prime}}(x, u) \leq \operatorname{dist}_{G^{\prime}}(v, y)$. Let $S=V(P) \cup\{w, z\}$ and observe that this is

Figure 2: The cases 1, 2, 3 and 4. Dashed lines stand for paths of arbitrary length.
a connected dominating set of G^{\prime}. Observe that for $G^{\prime \prime}=G^{\prime}\left[V\left(G^{\prime}\right) \backslash\{u\}\right]$ any connected dominating set S^{\prime} necessarily contains w, z and all vertices that lie on the unique path between v and n_{y}. Hence, $G^{\prime \prime}\left[S^{\prime}\right]$ is not a subgraph of $G^{\prime}[S]$ and so G is not a structural domination graph.

Assume w and z are both not separating $G[X]$. Thus, they have private neighbors n_{w} and n_{z} in G. These private neighbors are non-adjacent and not adjacent to n_{x} resp. n_{y} each, since x and y were chosen to have minimal distance.

Assume w is not separating $G[X]$, but z is separating $G[X]$. By minimality, n_{w} is not adjacent to n_{x} or n_{y}. Furthermore, z has a neighbor z^{\prime} in X which is not adjacent to any vertex of $V(P) \cup\left\{n_{x}, n_{y}, n_{w}\right\}$.

The case that w is separating $G[X]$, but z is not separating $G[X]$ is dealt with in a similar way.

The case that w and z both are separating $G[X]$ is clear.
In case 2 , there is a third vertex w of P such that $G[\{u, v, w\}] \cong P_{3}$, since P is a shortest path. Similar to case $1, w$ and z have neighbors w^{\prime} resp. z^{\prime} which are not adjacent to any vertex of $V(P) \cup\left\{n_{x}, n_{y}\right\}$. If w^{\prime} and z^{\prime} are not adjacent, $G\left[V(P) \cup\left\{z, n_{x}, n_{y}, w^{\prime}, z^{\prime}\right\}\right]$ is not a structural domination graph, like in case 1. If w^{\prime} and z^{\prime} are adjacent, $G^{\prime}=G\left[V(P) \cup\left\{n_{x}, n_{y}, w^{\prime}, z^{\prime}\right\}\right]$ is not a structural domination graph. This can be seen in the following way. $V(P) \cup\left\{w^{\prime}\right\}$ is a connected dominating set of G^{\prime} such that the longest induced path of $G^{\prime}[S]$ has $|V(P)|$ vertices. Since $G^{\prime \prime}=G^{\prime}\left[V\left(G^{\prime}\right) \backslash\{u\}\right]$ is a path containing $|V(P)|+3$ vertices, any connected dominating set of $G^{\prime \prime}$ induces a path of at least $|V(P)|+1$ vertices. Hence, G^{\prime} is not a structural domination graph.

To case 3: If z is separating $G[X]$, then there clearly is a neighbor $z^{\prime} \in X$ which is not adjacent to any vertex of $V(P) \cup\left\{n_{x}, n_{y}\right\}$. If z is not separating, n_{z} is not adjacent to any vertex of $V(P)$. Since x and y are chosen to have minimal distance, n_{z} is not adjacent to n_{x} or n_{y}. But $G\left[V(P) \cup\left\{z, z^{\prime}, n_{x}, n_{y}\right\}\right]$ resp. $G\left[V(P) \cup\left\{z, n_{z}, n_{x}, n_{y}\right\}\right]$ has a dominating induced path but contains $\operatorname{Art}\left(C_{3}\right)$ as subgraph, in contradiction to Theorem 3.

To case 4: If z is separating $G[X]$, it has a neighbor $z^{\prime} \in X$ which is not
adjacent to any vertex of $V(P) \cup\left\{n_{x}, n_{y}\right\}$. But $G\left[V(P) \cup\left\{n_{x}, n_{y}, z^{\prime}\right\}\right]$ is not a structural domination graph, like in the second subcase of case 2 .

If z is not separating $G[X]$, the case that n_{z} is not adjacent to any vertex of $V(P) \cup\left\{n_{x}, n_{y}\right\}$ leads to the same contradiction as above. Hence, n_{z} is adjacent to n_{x} or n_{y}, say n_{x}. Then u is different from x and adjacent to y, since x and y were chosen to have minimal distance. If n_{z} is not adjacent to $n_{y}, G^{\prime}=G\left[V(P) \cup\left\{z, n_{z}, n_{x}, n_{y}\right\}\right]$ is not a structural domination graph. This can be seen as follows. If x is adjacent to u, G^{\prime} has the dominating set $S=V(P) \cup\{z\}$, for which $G^{\prime}[S]$ is a claw. But G^{\prime} contains the subgraph $G^{\prime \prime}=G^{\prime}\left[V\left(G^{\prime}\right) \backslash\{x\}\right] \cong C_{6}$ for which any connected dominating set induces a path of length 3. Since the claw graph is P_{4}-free, G^{\prime} is not a structural domination graph. If x is not adjacent to u, G^{\prime} is dominated by the induced path between u and n_{x} that contains x, but G^{\prime} induces the articulation graph of a claw. Hence, G^{\prime} is not a structural domination graph.

Hence, n_{z} is adjacent to n_{y}, too, and thus P consists of three vertices only. But $G^{\prime}=G\left[V(P) \cup\left\{z, n_{z}, n_{y}\right\}\right]$ is not a structural domination graph, since it has the dominating clique $\left\{n_{x}, n_{y}, n_{z}\right\}$ but contains the cycle $G^{\prime}\left[\left\{x, n_{x}, n_{z}, z, u\right\}\right]$ of length 5 .

Since all four cases lead to a contradiction we see that x is adjacent to y and hence $|Y| \geq 2$.

Assume $Y \neq X$. There is a maximal 2-connected subset Z of X that contains Y properly. Obviously there are two distinct vertices of Y, say x and x^{\prime}, which belong to an induced cycle C of Z that contains at least one vertex z that is not in Y. If C consists of more than three vertices, then $G\left[V(C) \cup\left\{n_{x}, n_{x^{\prime}}\right\}\right]$ is not a structural domination graph, as is easily seen. Hence, z is a neighbor of both, x and x^{\prime}.

Assume there is a vertex $y \in Y$ that is not adjacent to z. But $G\left[\left\{x, x^{\prime}, n_{x^{\prime}}, y, n_{y}, z\right\}\right]$ is not a structural domination graph, which is a contradiction. Thus, z is adjacent to all vertices of Y.

Assume z separates $G[X]$. There is a vertex $z^{\prime} \in X$ which is not adjacent to any vertex of Y. It is easy to see that the graph $G\left[\left\{x, n_{x}, x^{\prime}, n_{x^{\prime}}, z, z^{\prime}\right\}\right]$ is not a structural domination graph, which is a contradiction.

Assume z does not separate $G[X]$. As seen above, n_{z} necessarily has a neighbor n_{x} for some $x \in X$. Since Y is maximal, there is a private neighbor $n_{y} \notin$ $N\left(n_{z}\right)$ for some $y \in Y$. It is easy to see that the graph $G\left[\left\{x, n_{x}, y, n_{y}, z, n_{z}\right\}\right]$ is not a structural domination graph, which is a contradiction.

Therefore, $Y=X$. We have to show $\gamma_{c}(G) \leq 2$ and can therefore assume $|X| \geq 3$. Let $x \in X$ be arbitrary and assume $S=\left\{x, n_{x}\right\}$ is not a dominating set of G. Then there is a vertex $v \notin X$ which is not dominated by S. Since X is a dominating set, v has a neighbor in X, say y. Since $|X| \geq 3$, there is a third vertex $z \in X$ with private neighbor n_{z}. By the choice of Y, n_{z} is adjacent to n_{x}. Thus, $G\left(\left\{v, y, x, n_{x}, n_{z}\right\}\right)$ is either a path or a cycle of length 5 . By Theorem 3 $G \notin \operatorname{Dom}\left(\left\{K_{n}: n \in \mathbb{N}\right\}\right)^{*}$, which is a contradiction to the fact that G has the dominating complete subgraph $G[X]$.

In the case of $\gamma_{c}(G) \geq 3$, for any minimal connected dominating set X that does not induce a path holds that $\operatorname{Art}(G[X])$ is a subgraph of G. By Theorem 6,
we then have $\gamma_{c}(G) \geq|X|$ and so X is a minimum connected dominating set. In the case that X is a minimal dominating set such that $G[X]$ is a path P_{k}, either $\operatorname{Art}(G[X])$ or C_{k+2} is a subgraph of G. Hence, X is a minimum connected dominating set of G by Theorem 6 .

It is easy to see that a minimal connected dominating set can be found in polynomial time. Hence, Corollary 5 and Theorem 7 lead us to the following results about the computational complexities of the structural domination problems:

Corollary 6. In the class of hereditary structural domination graphs, the following holds:

1. Minimum connected dominating sets can be computed in polynomial time.
2. For any concise graph class \mathcal{G} which can be recognized in polynomial time, $\operatorname{Dom}(\mathcal{G})$ can be recognized in polynomial time.
3. For any concise graph class \mathcal{G}, $\gamma_{\mathcal{G}}$ can be computed in polynomial time for the graphs in $\operatorname{Dom}(\mathcal{G})$.
[1] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[2] H.-J. Bandelt, H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory B 41 (1986), pp. 182-208.
[3] O. Schaudt, R. Schrader, The complexity of connected domination and total domination by restricted induced graphs, preprint 2010.
[4] G. Bacsó, Complete description of forbidden subgraphs in the structural domination problem, Discrete Mathematics 309 (2009), pp. 2466-2472.
[5] Z. Tuza, Hereditary domination in graphs: Characterization with forbidden induced subgraphs, SIAM J. Discrete Math. 22 (3) (2008), pp. 849-853.
[6] M.B. Cozzens, L.L. Kelleher, Dominating cliques in graphs, Ann. Discrete Math. 86 (1990), pp. 101-116.
[7] A. Brandstädt, V.B. Le, J. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia, 1999.
[8] X. Chen, A. McRae and L. Sun, Tree domination in graphs, Ars Combin. 73 (2004), pp. 193-203.
[9] D. Rautenbach, Dominating and large induced trees in regular graphs, Discrete Mathematics 307 (2007), pp. 3177-3186.
[10] A. D'Atri, M. Moscarini, Distance-Hereditary Graphs, Steiner Trees, and Connected Domination, SIAM J. Comput. 17 (3) (1988), pp. 521-538.

[^0]: Email address: schaudt@zpr.uni-koeln.de (Oliver Schaudt)

