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Abstract. The max-cut problem asks for partitioning the nodes V of
a graph G = (V, E) into two sets (one of which might be empty), such
that the sum of weights of edges joining nodes in different partitions is
maximum. Whereas for general instances the max-cut problem is NP-
hard, it is polynomially solvable for certain classes of graphs. For planar
graphs, there exist several polynomial-time methods determining maxi-
mum cuts for arbitrary choice of edge weights. Typically, the problem is
solved by computing a minimum-weight perfect matching in some asso-
ciated graph. The most efficient known algorithms are those of Shih et
al. [45] and that of Berman et al. [9]. The running time of the former

can be bounded by O(|V |
3

2 log |V |). The latter algorithm is more gener-
ally for determining T-joins in graphs. Although it has a slightly larger

bound on the running time of O([V |
3

2 (log |V |)
3

2 )α(|V |), where α(|V |) is
the inverse Ackermann function, it can solve large instances in practice.

In this work, we present a new and simple algorithm for determining
maximum cuts for arbitrary weighted planar graphs. Its running time

is bounded by O(|V |
3

2 log |V |), similar to the bound achieved by [45]. It
can easily determine maximum cuts in huge random as well as real-world
graphs with up to 106 nodes. We present experimental results for our
method using two different matching implementations. We furthermore
compare our approach with those of [45] and [9]. It turns out that our
algorithm is considerably faster in practice than [45]. Moreover, it yields a
much smaller associated graph. Its expanded graph size is comparable to
that of [9]. However, whereas the procedure of generating the expanded
graph in [9] is very involved (thus needs a sophisticated implementation),
implementing our approach is an easy and straightforward task.

1 Introduction

Graph partitioning problems in graphs have many relevant real-world appli-
cations. In its most basic version, the problem is to partition the nodes of a
graph into two disjoint sets such that the weight of the edges connecting them
is either minimum or maximum (assuming uniform weights in case the graph
is unweighted). The former is denoted by min-cut and the latter by max-cut.
Cut problems have many applications, e.g. in via minimization in the layout of
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electronic circuits, [7], in physics of disordered systems [24, 23, 31], or in network
reliability [2]. Furthermore, the problem is equivalent to unconstrained quadratic
0-1 optimization [11, 15]. Several important combinatorial optimization tasks
can naturally be formulated as constrained quadratic optimization problems.
Investing knowledge from the unconstrained case often drastically speeds up the
solution algorithms [12].

For nonnegative edge weights, the min-cut problem can be solved using net-
work flow techniques due to the famous duality of maximum flows and minimum
cuts in networks [18], or by the algorithm proposed in [46].

For general edge weights, the max-cut problem (and by inversion of the sign
of the edge weights also the min-cut problem) is NP-hard. We refer to [35] and
the references therein for a detailed study of different classes of instances marking
the boundary between easy and hard ones. When restricting to certain graph
classes, polynomial-time solution algorithms are known. This is true especially
for planar graphs which are the subject of this article.

In 1972 Orlova and Dorfman [39] noticed that a maximum cut in a planar
graph can be determined by finding shortest paths between odd-degree nodes in
its dual. Using this observation, they designed a branch-and-bound algorithm for
this task. Hadlock’s algorithm [22, 3] was the first (combinatorial) polynomial-
time algorithm for max-cut on planar graphs with nonnegative edge weights.
In [4, 8] Barahona proposes a max-cut algorithm for (arbitrary weighted) pla-
nar grid graphs, focussing on solving the two-dimensional planar Ising spin glass
problem from theoretical physics. Furthermore, [5, 6] present a method that re-
duces the task to the Chinese-Postman problem. The latter can be solved in
O(|V | 32 log |V |) on planar graphs. Moreover, Barahona introduced a polynomial-
time algorithm for max-cut on graphs not contractible to K5. In 1990, Mutzel
[37] proposed an algorithm using T-joins. In the T-join problem, let T ⊆ V be
a subset of nodes of graph G = (V, E). The task is to find an edge set J ⊆ E
of minimum weight such that in (V, J) all nodes in T have odd degree, and all
others have even degree. In the same year, Shih, Wu, and Kuo [45] presented a
mixed max-cut algorithm for arbitrary weighted planar graphs, which gener-
alizes the algorithm for optimal layer assignment of Kuo, Chern, and Shih [29].

It solves the problem in time bounded by O(|V | 32 log |V |) which is presently the
algorithm with the best worst-case running time. The method constructs the
dual graph. It is then expanded such that the complementary edge set of match-
ings in the latter correspond to cuts in the former. Moreover, a minimum-weight
perfect matching in the latter yields an optimum cut in the primal graph.

In this work, we follow this general algorithmic scheme which leads to an
algorithm with the same asymptotic running time as the one of Shih, Wu, and
Kuo. However, in our transformation the expanded dual graph has a simpler
structure and contains a considerably smaller number of both nodes and edges.
As the bulk of the running time is spent in the matching computation and the
latter scales with the size of the graph, the algorithm is much faster in practice.
This is reflected in the computational results to be found in Section 8. This
work is the full version of an earlier technical report [32]. The proposed max-
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cut algorithm for arbitrary weighted planar graphs is a generalization of the
methods from [47, 41]. The latter focused on the determination of minimum
cuts in two-dimensional grid graphs for determining ground states of Ising spin
glasses in physics. The methods are based on the work of Kasteleyn [26] from
the 1960s. Working independently, Schraudolph and Kamenetsky partly arrived
at a similar method (cf. the recent technical report [43].) Their approach can be
interpreted as a generalization of the work of Shih et al. [45]. They use the same
idea proposed in [45], i.e. that the complementary edge set of matchings in an
expanded dual graph yields an optimum cut in the primal graph. In contrast to
[45] they do not rely on a triangulation of the primal graph as first step, but
present an expansion rule for each dual node depending on its degree.

A max-cut on a planar graph can be found by solving the T-join (with T= ∅)
problem on the dual graph. This fact was already utilized in the 1990s by Bara-
hona and by Mutzel. Berman et al. [9] proposed an algorithm for T-joins on bi-
connected planar graphs. Using this algorithm, solutions for large instances could
be determined. The authors reduced the T-join problem to a perfect matching
problem on an auxiliary graph. Due to the studied application, they restricted
themselves to nonempty T-sets. This restriction is not satisfied when studying
max-cuts on planar graphs. However, according to our knowledge, the restriction
to nonempty T-sets does not seem necessary for the correctness of the method.
We will discuss a potential application of the algorithm [9] for determining max-
cuts in more detail in Section 5. The method of Berman et al. then amounts
to determining a perfect matching in a graph of roughly comparable size. How-
ever, the construction that we outline here is considerably easier to use and to
implement than the one suggested in [9].

In the following, we introduce some basic definitions and notations. In Section
3 we introduce and illustrate the algorithm and prove its correctness in Section
4. An analysis of the running time and space demand is presented afterwards
in Section 5. A comparison with known algorithms is given in Section 6. In
Section 7 possible algorithmic modifications are proposed. Finally, we present
running times on realistic and random instances. It turns out that the algorithm
can routinely solve the problem for random maximum planar graphs with up to
500,000 nodes and for realistic instances on planar graphs with up to 1,200,000
nodes. For grid graphs coming from the physics application, i.e. determination
of ground states for two-dimensional planar Ising spin glasses, we can solve
instances with up to 30002 nodes. Compared to the method introduced by Shih et
al. which has the best known worst-case running time, our method is considerably
faster. It reaches comparable graph sizes than the method by [9], but is much
easier to implement.

2 Preliminaries

We consider simple, undirected, planar graphs G = (V, E) with node set V
and edge set E. We assume G is connected and real-weighted, i.e. each edge
e ∈ E is assigned a weight w(e) ∈ R. Multiple edges between two nodes can
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be contracted to a single edge with weight equal to the sum of the weights
of these multiple edges. Graphs with more than one connected component can
easily be solved independently. Self-loops can be omitted, as those edges will
never be cut-edges. If not stated otherwise, we assume |V | = n and |E| = m.
Let deg(v) denote the degree of a node v ∈ V , i.e. the number of edges incident
to node v (counting self loops twice). A path, π = v1, v2, . . . , vk, vi ∈ V, i ∈
{1, . . . , k}, k ≤ n, is a sequence {v1, v2, . . . , vk} of pairwise different vi such that
(v1, v2), (v2, v3), . . . , (vk−1, vk) are edges of G. A closed path π = v1, v2, . . . , vk

with distinct vi (i = 1, . . . , k−1), (vi, vi+1) (i = 1, . . . , k−1) edges, and v1 = vk,
is called a cycle. A subgraph H of G is a graph such that every node of H is a node
of G, and every edge of H is an edge in G also. We denote with Kn the complete
graph with n nodes. Let G = (V, E) be a weighted graph. For each (possibly
empty) subset Q ⊆ V , the cut δ(Q) is the set of all edges e = (u, v) with u ∈ Q

and w ∈ V \ Q. The weight of a cut is given by w(δ(Q)) =
∑

e∈δ(Q)
w(e). A

minimum cut (min-cut) asks for a cut δ(Q) with minimum weight w(δ(Q)). As
max-cut is equivalent to min-cut by negating weights, we concentrate on the
minimization version of the problem. A connected graph G = (V, E) is called
Eulerian if and only if E can be partitioned into edge-disjoint cycles which is
equivalent to saying that each node of G has even degree. A graph G is planar
if it can be embedded in the plane in such a way that no two edges meet each
other except at a node to which they are both incident. If a graph G is planar,
then any embedding of G divides the plane into regions, called faces. One of
these faces is unbounded, and called the outer face. A geometric dual graph GD

of a planar graph G is a planar graph with the following properties: GD has a
node for each face of G, and an edge for each edge joining two neighboring faces
(including self-loops and multiple edges). A matching in a graph G = (V, E) is a
set of edges M ⊆ E such that no node of G is incident with more than one edge
in M . If some edge m ∈ M is incident with a node v ∈ V , then v is M -covered,
otherwise v is M -exposed. A matching M is perfect if every node is M -covered.
The weight of M is the sum of weights of the edges in M .

3 The Algorithm

In the following we assume we are given a planar embedding of G. At first,
we calculate its dual graph GD = (VD, ED), where the weight of a dual edge is
chosen as w(ẽ) = w(e) if ẽ ∈ ED is the dual edge crossed by e ∈ E. Subsequently,
we split all dual nodes ṽ ∈ VD with degree deg(ṽ) > 4 into ⌊(deg(ṽ)−1)/2⌋ nodes
and connect the copies by a path of new edges receiving zero weight. Let split
nodes denote nodes created by a splitting operation. Edges incident to the primal
node are equally distributed among the split nodes such that the degree of each
node is at most four, cf. Figure 1. We denote the resulting graph by Gt = (Vt, Et).

It is easy to see that after the splitting operations, no node in Gt has a
degree smaller than three. Indeed, each face in a connected planar graph G
(with n > 2) is bounded by at least two edges. Bounding a face by exactly two
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Fig. 1. (a) Node with even degree > 4 is split up in ⌊(deg(ṽ)− 1)/2⌋ nodes. Edges are
equally distributed among the split nodes. (b) Node with odd degree > 4 is split into
⌊(deg(ṽ) − 1)/2⌋ nodes, each with degree four, except one receiving degree three.

edges is only possible if G has multiple edges which contradicts its simplicity. As
GD is the dual of G, we conclude that each node in GD has degree at least three.
Furthermore, a node in the transformed graph Gt has degree three or four.

The connectedness of G and GD means that Gt is also connected. Moreover,
certain structures will never occur in Gt. For example, degree-four nodes with
all edges being self-loops contradict the connectedness of the primal graph G.
From now on, we assume that Gt does not contain degree-four nodes with only
self-loop edges.

We note that in the special case that G is a path graph of length two or three,
P2 (P3), a node with degree two having a self-loop (with degree four having two
self-loops, respectively) occurs. The algorithm we are going to present works
here as well, so we do not have to take special care of this case.

Next, we expand each node in Gt to a K4 (a so-called Kasteleyn city [26]),
while keeping the weights of the edges. Newly generated edges again receive
zero weight. A node in Gt of degree three is expanded as displayed in Fig. 2(a),
a degree-four node as shown in Fig. 2(b). Nodes with self-loops are expanded
as shown in Fig. 2(c) and (d). We denote the resulting graph by GE . Next,

(d)(c)

w(ẽ)
w(ẽ)w(ẽ)

w(ẽ)

w(ẽ)

(b)(a)

w(ẽ)w(ẽ)

w(ẽ)w(ẽ)

(b)(a)

w(ẽ)

w(ẽ)

w(ẽ)

w(ẽ)

w(ẽ)

w(ẽ)w(ẽ)

Fig. 2. Expansion of the nodes in Gt to K4’s. (a) shows the subgraph for a node with
degree three. (b) is generated in case the node has degree four. All edges in K4 receive
zero weight. Expansion for nodes having self-loops is shown in (c) and (d). (c) is the
subgraph for a node with degree four and one self-loop. (d) is generated in case the
node has degree three and one self-loop. All edges in K4 receive zero weight.

we calculate a minimum-weight perfect matching M in GE . Subsequently, we
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undo the transformation, i.e., shrink back all K4’s and all (possibly created)
split nodes, while keeping track of the matched edges. Consider the subgraph
induced by the matching edges that are still present in the dual graph after
shrinking. We will show in the next section that each node in this subgraph has
even degree. This means that it is a minimum weight Eulerian graph which yields
an optimum cut in the primal graph. We state the complete algorithm in Alg. 1.

Algorithm 1 max-cut algorithm for planar graphs

Input: Embedding of a simple, connected planar graph G
Ouput: max-cut δ(Q) of G
1. Build dual graph GD

2. Split each node v ∈ GD with deg(v) > 4 and call resulting graph Gt

3. Expand each node v ∈ Gt to a K4 and call resulting graph GE

4. Compute minimum-weight perfect matching M in GE

5. Shrink back all artificial nodes and edges while keeping track of

matched dual edges

6. Matched dual edges in GD induce optimum Eulerian subgraphs and

thus optimum max-cut δ(Q) of G
7. return δ(Q)

The following section clarifies the algorithmic flow on some small example.

3.1 Example

Consider as an example the planar drawing of a graph G = (V, E) in Fig. 3.
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Fig. 3. Planar drawing of a planar
graph G. Nodes are labeled by num-
bers. Edge weights are given as sub-
scripts. Capital letters represent faces.
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Fig. 5. The transformed dual graph
GE after expansion, together with
a minimum-weight matching (dotted
(red) edges).
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Fig. 6. After shrinking back the node
copies, we have an optimum min-cut

δ(Q) with weight w(δ(Q)) = −12. Dot-
ted (red) edges are cut-edges. Node
partitions are indicated by different
node shapes.

G consists of seven nodes V = {1, 2, . . .7} and eight faces VD = {A, B, . . . H}.
Nodes are labeled with numbers and faces with capital letters. Edge weights are
given as edge subscripts. The dual node A (representing face A) has degree
greater four, and is split into two nodes (step 2 of Alg. 1), cf. Fig. 4. No other
dual node has degree greater four; thus, no more split operations are needed.
Fig. 5 shows the graph after having expanded each node in Gt to K4’s (step
3). On the transformed and expanded graph (Fig. 5) we calculate a minimum-
weight perfect matching (dotted edges), which is step 4 of Alg. 1. Shrinking back
all artificial nodes (step 5) yields a minimum-weight Eulerian subgraph of the
dual as the dotted edges form edge disjunct cycles forming the edge set of the
induced subgraph (step 6), and thus a min-cut of the primal graph (cf. Fig. 6).

4 Correctness of the Algorithm

It is well known that there is a one-to-one correspondence between Eulerian
subgraphs in the dual and cuts in its primal graph. In fact, for a cut edge (u, v)
in G, its dual edge ‘crossing’ (u, v) is contained in the corresponding Eulerian
subgraph, and vice versa.
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(a) (b) (c) (d) (e)

w(ẽ) w(ẽ) w(ẽ) w(ẽ)w(ẽ)w(ẽ)
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Fig. 7. Different cases for matched edges in a K4 subgraph together with outgoing
edges, modulo cases in which the same number of outgoing edges is matched. (a) and
(b) show possible matchings for subgraphs representing nodes with degree three in Gt.
Figures (c), (d) and (e) show the possible matchings for subgraphs representing a node
with degree four. Dotted (blue) edges are matching edges.

In this section, we show that the edge set induced by the minimum-weight
perfect matching in GE corresponds to a minimum-weight Eulerian subgraph in
the dual and therefore to a minimum cut in the primal graph.

To this end, we first need to show that there always exists a perfect matching
M in the expanded graph GE . Then, we need to prove that the constructed
perfect matching in GE induces a subgraph in the dual in which all node degrees
are even.

We postpone for a moment the proof that a perfect matching exists. We call
edges not contained in a K4 outgoing and count the number of matched outgoing
edges on some K4 for an arbitrary perfect matching in GE . Modulo analogous
cases, we show in Figs. 7 and 8 all different possibilities for a matching covering
all nodes of a K4-subgraph in GE together with its different number of outgoing
edges. Analogous cases are those yielding the same number of outgoing matching
edges.

Clearly, any possible matching in a K4 subgraph leads to either zero, two or
four outgoing matching edges with all nodes are M -covered. An odd number of
outgoing matching edges always leaves an odd number of K4 nodes unmatched,
i.e. M -exposed, which contradicts the matching’s perfectness.

Now we prove that the transformed graph GE indeed has a perfect matching
M . We first note that the graph is connected and has an even number of nodes
(due to the inflation of each node to a K4). A trivial perfect matching exists
as in each K4 all nodes can be covered by matching edges contained in the K4

(cf. Figs. 7 (a) and (c) and 8 (a) and (c)). Therefore, a perfect matching in GE

always exists. One might ask whether there also always exists another perfect
matching in which not only artificial edges contained in the K4’s are matched.
Indeed, as we deal with a geometric dual graph GD, any two adjacent nodes in
GD (i.e., adjacent faces in G) are connected by at least one simple cycle. This
cycle is expanded but preserved during the transformation of GD to GE . Thus,
a possible nontrivial matching in GE may match the edges in the cycle and
additionally in each K4 subgraph (representing a node on the cycle in GD) an
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edge connecting two unmatched K4 nodes, as shown in Figs. 7 (b), (d) and (e).
For all other Kasteleyn cities, edges contained in the K4 can be matched. Each
K4 subgraph then has an even number of possible outgoing matching edges, cf.
Figs. 7-8.

Shrinking back the artificial nodes to the corresponding split nodes does
not affect the number of outgoing matching edges. Consequently, after having
collapsed all split nodes back to its dual nodes, each dual node has an even
number of adjacent matching edges, too. Hence the matching induced subgraph
is Eulerian and therefore defines a cut δ(Q) in the primal graph G.

Yet the minimality of the cut is to be proven. It is

w(M) =
∑

ẽ∈ED∩M

w(ẽ)

=
︸︷︷︸

w(ẽ)=w(e)

∑

e∈δ(Q)

w(e)

= w(δ(Q))

As w(M) is the weight of a minimum-weight perfect matching, the weight
of the induced Eulerian subgraph is minimum, and thus the weight of the cut
δ(Q), too. We summarize this in the next theorem.

Theorem 1. The algorithm described above computes a min-cut (or max-

cut) in an arbitrarily weighted planar graph.

5 Running-Time Analysis

After having shown the correctness of the method, we now concentrate on es-
tablishing bounds on its running time. We consider a maximum planar graph
with n nodes, i.e. a triangulated planar graph in which each face is enclosed by a
simple cycle of three edges. We will argue in the following that among all planar

(a) (b) (c) (d) (e)

w(ẽ) w(ẽ) w(ẽ)

w(ẽ) w(ẽ) w(ẽ)

w(ẽ) w(ẽ)
w(ẽ) w(ẽ) w(ẽ) w(ẽ) w(ẽ)

Fig. 8. Different cases for matched edges in a K4 subgraph representing a node with
self-loops (modulo analogous cases), together with outgoing edges. Dotted (blue) edges
are matching edges. In Figures (b) and (e) the number of outgoing matching edges is
two or four, resp., as the edge is matched that represents a former self-loop. This is in
contrast to case (d) where the number of outgoing matching edges is two.
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graphs with a specific number of nodes, the transformed graph GE contains the
maximum number of nodes and edges if G is triangulated.

Indeed, among all planar graphs with n nodes triangulated graphs have the
maximum number of faces. For this class of graphs, the algorithm does not
split any dual node. A triangulation of a face with k nodes leads to k − 2 new
faces (new dual nodes, respectively), whereas a splitting operation yields only
⌊(k − 1)/2⌋ nodes for the same face. As splitting operations result in a smaller
number of nodes, we also need fewer edges (connecting split nodes) as in the
triangulated case.

Obviously, given an embedding of a (maximum) planar graph, one can cal-
culate the geometric dual in time bounded by O(n). Furthermore, the described
expansion of the dual graph can be done in time linear in n, (there are at most
3n−6 edges). Next, the most time consuming step is performed - the calculation
of a minimum-weight perfect matching.

Edmonds [17, 16] introduced one of the fundamental results in combinato-
rial optimization, i.e. the polynomial-time blossom algorithm for computing
minimum-weight perfect matchings. In its original version the algorithm runs
in time bounded by O(mn2). Improved to O(n3) by Lawler [30] and Gabow [19]
and later on by Gabow to O(n(m + n log n) [20]. Focusing on planar graphs,

Lipton and Tarjan [33] presented an O(n
3

2 log n) divide-and-conquer algorithm
for finding maximum-weight matchings using the planar separator theorem.

As the transformed graph GE is not planar, this algorithm cannot be ap-
plied directly. However, a good separator of size O(

√
n) can be found for the

planar dual graph GD which directly implies a good separator of size O(
√

n)
for Gt. Therefore, we can use the algorithms [34, 19, 17, 16], and can calculate

a minimum-weight perfect matching in GE in time bounded by O(n
3

2 log n).
Similar arguments were already used by Shih et al. and others.

Finally, all nodes blown up in the transformation are shrunk back. Unshrink-
ing can be done again in time O(n). With these considerations we state the
following theorem.

Theorem 2. Using the method described above, a min-cut (or max-cut) in

a planar graph can be determined in time bounded by O(n
3

2 log n).

6 Comparison with Existing Algorithms

It is interesting to compare our algorithm with that of [45] as well as with that of
[9]. We show next that the method outlined above is less space demanding than
the construction of [45] and leads to an algorithm that is faster in practice. Let
F denote the set of faces of a maximum planar graph. The method constructs
a graph GE with at most |VE | = 4|F | = 4(2n − 4) nodes, as for each dual node
we create four nodes, and the number of dual nodes in a maximum planar graph
is at most 2n − 4. Its number of edges is 6|F | + |ED| = 15n − 30, as we need
to consider the original dual edges and those edges that are generated by the
transformation of each dual node to a K4 with six edges.
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The transformation by Shih, Wu, and Kuo transforms each dual node of the
triangulated primal graph to a “star” graph of seven nodes and nine edges, cf.
Fig. 9. On this graph a minimum-weight perfect matching is calculated which

e1

e2

e3

v1

v2

Fig. 9. By the method of Shih et al. every dual node of a triangulated primal graph
is transformed to a so-called star graph of seven nodes and nine edges. Original dual
edges are labeled ei, i = 1, 2, 3.

yields a maximum even-degree edge set of the dual graph, and therefore a max-

cut of the primal graph. Thus, the method of Shih, Wu, and Kuo [45], yields
an expanded dual graph with at least 7(2n − 4) nodes and 21n − 42 edges.
These bounds are sharp as the first step of Shih, Wu, and Kuo is a triangulation
of the graph. The transformation outlined above, in comparison, computes a
matching on a much smaller and sparser graph, even in the case the graph is a
triangulation. This makes the proposed method in practice faster than the latter.
Finally, the algorithm is easier to implement as we only need to take the dual
graph, expand it accordingly using easy rules, compute a matching and undo
the transformation steps again.

The star graph expansion by Shih et al. is necessary in order to enforce the
determination of non-trivial, i.e., nonempty, optimum cuts as the matching in-
duced even-degree edge set may otherwise be empty. In this case an additional
O(n) time step is needed to compute a nontrivial even-degree edge set. A modi-
fication of the “star” subgraphs is performed, and the matching is recalculated.

We note that in case the empty set is a valid optimum solution, the star graph
in [45] can be replaced by a simple K3 which also results in smaller expanded
graphs GE (with 6n− 12 nodes and 9n − 18 edges).

However, the triangulation step is still needed. Generally, GE will be of larger
size compared to the expanded graph constructed with the method proposed in
Section 3, even in the case when using K3 instead of star graphs. We show results
for the resulting algorithm in Section 8.

As mentioned in the Introduction, a max-cut on a planar graph can be deter-
mined by finding an optimum T-join (with T= ∅). Berman et al. [9] proposed a
reduction of the T-join problem on planar graphs to a perfect matching problem
in an auxiliary graph. They restrict themselves to nonempty T-sets. However,
this restriction does not seem necessary for ensuring algorithmic correctness.
Therefore, we will give a comparison between their method and the one pre-
sented here. In [9], the auxiliary graph is built by expanding all nodes to gadgets.
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Fig. 10. The dual graph of a 6 × 6 primal two-dimensional planar grid, together with
an edge orientation. For ease of presentation, edges to the outer face node are omitted.
Gray-shaded numbers indicate the orientation order of cycles.

The structure of the gadget depends on the node degree. As the construction
is rather complicated, we refer to [9] for the details. The size of the resulting
graph also depends on a so-called fan-out direction (edge orientation) which is
computed in the first step, cf. Lemma 4 in [9]. If the dual graph has nD nodes
and mD edges, the auxiliary graph has at most 2mD nodes and 6mD − 5nD

edges, (cf. Theorem 3 in [9]). Let us compare the graph sizes for maximum pla-
nar graphs which constitute the worst case for our method. Then, the number
of dual edges is mD = 3nD − 6. Our construction based on K4 gadgets leads to
a graph with 4nD nodes and 9nD − 6 edges. This has to be compared with the
size of the auxiliary graph of Berman et al. which has at most 6nD − 12 nodes
and 13nD − 36 edges.

In order to compare the sizes of the expanded graphs of our and that of
the method by Berman et al. in more detail, we compare in the following the
expanded graph sizes for two-dimensional grid graphs of size L × L.

First, we orient the edges in a straightforward way. An example is given in
Fig. 10, where a possible orientation is shown for the dual of a 6× 6 grid graph.

The orientation is chosen in the following way respecting Lemma 4 by Berman
et al.: first orient the C4 in a chessboard manner, see Figure 10. We are then
left with edges at the border of the grid and edges incident to the outer-face
node which form cycles of length 3 or 2. They can be oriented either clockwise
or counter-clockwise.

All nodes have degree 4, except that of the outer face which has degree
4(L− 1). For the outer face node, the gadget S4(L−1) has to be built recursively
using basic gadgets, cf. Lemma 5 in [9]. All other nodes are replaced by S4-
gadgets. Then, the overall number of nodes |VBer| and edges |EBer| in the
expanded graph is

|VBer| = 4L2 − 4L
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and
|EBer| = 8L2 − 6L − 5

This has to be compared to the size of the expanded graph obtained with
the transformation presented here. For two-dimensional grids of size L × L, the
expanded graphs have

|VE | = 4L2 − 4

many nodes and
|EE | = 8L2 − L − 13

many edges.
Therefore, the expanded graphs are almost equal in size. Consider for example

grid graphs of size 10 × 10 (100 × 100, 1000 × 1000). Using the orientation as
introduced above, the expanded graphs using the method by Berman et al.
consist of 360 (39 600, 3 996 000) nodes and of 735 (79 395, 7 993 995) edges.
Using the method presented here, it consists of 392 (39 992, 3 999 992) nodes
and 777 (79 887, 7 998 987) edges. It follows that our construction needs for
these sizes < 3% more nodes and edges, which is a negligible number.

This shows that the resulting auxiliary graphs are of the same order of mag-
nitude. As the largest node and edge numbers are obviously reached for different
graph classes, there is no clear winner with respect to the sizes of the graphs.
However, the major advantage of our method is that it avoids complicated graph
constructions. All expansion steps are straightforward. The correctness of the
algorithm can easily be understood. Moreover, the method is considerably eas-
ier and quicker to implement than that of [9]. Finally, our algorithm runs in

O(|V | 32 log |V |), which is faster than the running time O(|V | 32 (log |V |) 3

2 )α(|V |)
(Theorem 4) of the algorithm by Berman et al. This difference is due to the fact
that in our case the arguments from the planar separator theorem are applicable,
as noted above.

7 Algorithmic variants

In this section we present straightforward algorithmic modifications for the
computation of nonempty optimum cuts and for optimum cuts respecting fur-
ther constraints. These variants are motivated by the application of max-cut in
physics. In the latter, energy-minimum states of so-called Ising spin glasses are
determined. Additionally, some predefined nodes are forced to be in the same or
in different shores. Therefore, we need to be able to either force a certain subset
of edges to be contained in the cut or to prohibit certain edges to be contained
in it.

The first variant, which we call fce algorithm, deals with the task of de-
termining an optimum cut respecting the additional requirement that a certain
subset of edges must be contained in it. For example, this allows the calculation
of nonempty min-cuts in a graph. On the other hand, it permits to find an s− t
cut in the graph if nodes s and t are connected by an edge or can be connected
by an edge without destroying the planarity of the graph. The second variant,
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called pce algorithm, can be seen as the reverse operation. Here, we need to
determine the best cut that does not contain some specific subset of edges.

Similar results could be achieved by assigning a very large or a very small
edge weight to edges that are forced in or out of the cut. However, the methods
we propose here are more elegant and avoid numerical problems which may occur
by using such large or small edge weights.

All operations explained in the following can be performed in time linear in
n. We start with the first variant followed by a brief explanation of the second
one.

Fixed cut edges - fce algorithm In order to force an edge e = (v, w) ∈ E
to be contained in δ(Q), we let eE = (vE , wE) ∈ EGE

be the corresponding
edge in the expanded graph GE . We denote with GE \ {vE , wE} the graph that
arises from GE by deleting nodes vE and wE and all incident edges to vE and
wE . Clearly, a minimum-weight perfect matching on GE \ {vE, wE} yields a
constrained min-cut δ(Q) in G, where nodes v and w belong to different node
sets.

Theorem 3. Algorithm fce calculates a min-cut δ(Q) satisfying the constraint
e = (v, w) ∈ δ(Q).

Proof. We only need to consider the case in which e = (v, w) 6∈ δ(Q). Let
eD ∈ ED be the edge corresponding to e in GD = (VD, ED). As e ∈ δ(Q) should
hold, eD and thus eE = (vE , wE) have to be matched. Therefore, removing vE

and wE from GE and identifying edge eE as matching edge, these nodes are M -
covered. Their removal yields still a perfect matching in which each dual node
has an even degree of matching edges after the shrink operation. Being more
concrete, the following situations can occur in GE \ {vE, wE}: a K4 subgraph
is reduced to a K3 which has either one or three outgoing matching edges. A
K4 subgraph can be reduced to a K2, here again there are two possibilities
for outgoing matching edges. Either zero or two outgoing edges are matched.
Finally, a K4 subgraph can completely be removed. In all cases the sum of
removed edges eD (forced matched) and matched edges is even at each dual
node. The minimality follows directly from Theorem 1. ⊓⊔
As a direct consequence we conclude the following corollary.

Corollary 1. Running the fce algorithm m times, each time with a different
fixed cut-edge, a nonempty min-cut in G can be computed in time O(mn

3

2 log n).

Moreover, we can state

Corollary 2. Let G = (V, E) be a planar graph and s, t ∈ V two distinguished
nodes. Using the fce algorithm an s-t cut can be calculated iff s and t lie on the
same face of G.

Proof. Let s and t lie on face f of G. If e = (s, t) 6∈ E, then insert e with weight
zero to G and denote the resulting graph by G ∪ {e}. Run the fce algorithm
with e fixed on G ∪ {e}. ⊓⊔
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Prohibited cut edges - pce algorithm Algorithm pce forces certain nodes
u, r to the same partition in case either (u, r) ∈ E or the edge (u, r) can be
inserted in E without destroying planarity. Adjacent nodes u and r are forced
to be in the same cut set by excluding edge e = (u, r) from the set of potential
cut-edges. If edge e 6∈ E we can add e if u and r lie on the same face of G so
that e does not destroy planarity.

Suppose e ∈ E with the constraint δ(Q) ∩ e = ∅. Now, let eE = (uE , rE) ∈
EGE

be the corresponding edge in the expanded graph GE . We consider the
graph GE\eE that arises from GE by removing edge eE . Apparently, a minimum-
weight perfect matching will never match this edge, thus it will never be a cut-
edge. The correctness of the algorithm follows using similar arguments as for
algorithm fce.

8 Experiments

We implemented the algorithm from Section 3 and the method proposed by Shih
et al. using the ogdf library [38]. We applied the implementations to a variety
of problem instances, both realistic and randomly generated. All computational
tests were carried out on Intel R© Xeon c© CPU E5410 2.33GHz (running under
Debian Linux 4.1.1-21).

For the matching computations, we used two publicly available implemen-
tations as a black box. One implementation is Blossom IV written by Cook
and Rohe [13] which is one of the fastest state-of-the-art matching implemen-
tations. Kolmogorov [28] very recently presented Blossom V as a new matching
implementation. We discuss experimental results for our application with both
matching codes.

We verified the correctness of our programs by checking the results for smaller
sizes against those returned by the Cologne spin glass server [14], against pub-
lished results [21] coming from via minimization instances, and against results
obtained by a max-cut implementation in SCIL [44], which are all based on
different methods and programs. Moreover, we compared the results for grid
graphs with those obtained by an implementation of the algorithm of Bieche et
al. [10].

As triangulated graphs are the worst case for our method, we generated
random triangulated graphs with either uniformly distributed or Gaussian dis-
tributed edge weights, created using the Standford Graph Base [27] as part of
the graph generator rudy. The uniform distributed edge weights range between
−100 and +100.

We denote by B4 the algorithm proposed here using Blossom IV for deter-
mining optimum matchings. B5 denotes our algorithm using Blossom V instead.
SWK is our implementation of the original algorithm by Shih et al. using Blossom
V without modifications. The modified SWK algorithm using K3 in the expan-
sion steps is denoted by SWK(K3). In Table 1 average running times (in sec.) for
minimum cut computations are given for various large random maximum planar
graphs (|V | = 5, 000, 15, 000, 80, 000, 100, 000, 500, 000). We studied 100 in-
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%(w(e) < 0) 10 30 50 70 100 Gaussian
|V | B4 B5 SWK B4 B5 SWK B4 B5 SWK B4 B5 SWK B4 B5 SWK B4 B5 SWK

5,000 0.36 0.40 0.69 0.73 0.46 0.79 0.78 0.47 0.79 0.78 0.46 0.78 0.67 0.46 0.81 1.28 0.35 0.77
15,000 2.92 1.53 3.08 8.19 1.80 3.43 9.83 1.85 3.42 9.80 1.85 3.38 8.52 1.90 3.46 13.86 1.64 3.24
50,000 16.18 6.28 12.25 49.46 7.40 13.63 54.03 7.69 13.54 53.86 7.69 13.75 47.13 7.70 13.91 77.25 6.40 12.82
80,000 27.47 9.18 20.57 88.58 10.88 22.76 95.96 11.10 23.01 95.02 11.30 23.87 82.28 11.51 23.74 137.89 10.21 22.85

100,000 34.36 8.67 22.19 110.82 10.42 24.62 120.64 10.98 25.14 120.66 11.04 25.14 103.15 11.18 25.37 178.79 10.43 25.14
500,000 127.37 44.95 209.32 425.42 56.06 223.13 483.78 60.11 235.55 484.79 61.53 229.38 438.97 63.49 239.78 715.08 58.79 229.36

Table 1. Random instances. Average running times (in sec.) for various large maximum planar graphs. For the uniform edge weights,
”% (w(e) < 0)“ indicates the percentage of edges with negative weights or a Gaussian distribution. The number of edges is given by
3|V | − 6. B4 denotes the implementation of the presented algorithm using Blossom IV, B5 uses Blossom V instead, and SWK denotes
the implementation of the method by Shih et al. using Blossom V.
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stances for each choice of parameters (size and percentage of negative weights).
Here and in the following numbers written in bold always indicate the variant
with minimum CPU time. It can be seen that B5 is the fastest implementation.
The running times of B5 are clearly faster than those of B4 and SWK for every
parameter combination. We found that using the modified expansion step with
K3’s for Shih et al. (introduced in Sec. 5) the running times are faster com-
pared to the original SWK but still worse when compared to B5. For example,
on average B5 needs 10.45 (57.49) seconds on maximum planar graphs of size
100,000 (500,000). In comparison, SWK(K3) needs 14.97 (180.77) seconds. This
can be explained by the triangulation step needed first of all. For general pla-
nar graphs this step is always necessary whereas it is not for maximum planar
graphs. Maximum planar graphs are already triangulated. Therefore, one could
run SWK without the triangulation step that is otherwise necessary. Without
triangulation step, the running times of SWK(K3) are smaller and comparable
to B5, e.g. 6.83 (38.77) seconds for |V | = 100,000 (500,000).

We further applied the algorithm to a special class of planar graphs often
studied in the physics application, namely two-dimensional grid graphs. Deter-
mining maximum cuts in grid graphs is relevant for the study of so-called Ising
spin glasses. The results for grid graphs with edge weights following a bimodal
±J distribution are given in Table 2, again always averaged over 100 instances.
This kind of graphs was also used as a test bed for min-cuts by Kolmogorov [28]
when he introduced his Blossom V implementation. He used the method by Shih
et al. but with a modified expansion rule. He removed the two nodes v1 and v2,
see Fig.9. This is similar to the mentioned variant of using K3 instead of the
star graph. He compared his results for two-dimensional Ising spin glasses with
those obtained using Blossom IV. On a Pentium III machine with 1322 MHz,
the minimum cut computation took on average 645 seconds for a 400× 400 grid
[28]. This has to be compared with 30 seconds that we need for 5002 grids (B5),
respectively 98 seconds with B4, on our more modern machines (whereas the
original SWK needs 124 seconds, and in the K3 variant 68 seconds).

Bieche et al. [10] proposed an algorithm solving max-cut especially designed
for grid graphs. This exact algorithm is well-known to physicists and widely ac-
cepted as a standard routine. A main drawback of the method is that a minimum
perfect matching has to be computed in a complete graph. Hence, memory re-
quirements increase strongly with increasing system size. Therefore, heuristic
but high-quality variants of the approach are presented in the physics literature
that reduce memory problems. Using these heuristics, sizes up to 4802 [25] or
18012 grids [40] are reachable. Using the presented approach leads both to a
faster and to a less memory-consuming approach. For a comparison between the
exact approach and the heuristic variant just mentioned, see [41].

It is worth mentioning that the performance of the B4 version is compara-
ble to that of B5 for small grid graphs. However, for increasing graph sizes the
B5 implementation is considerably faster. As before, using the SWK version for
solving max-cut on grid graphs is slower than both versions. B5 is the fastest
implementation for any grid graph size. For small graph sizes B4 is comparable
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|V | B4 B5 SWK

1002 0.35 0.31 1.14
1502 0.98 0.76 3.83
2502 5.78 2.55 12.04
5002 97.53 30.04 123.99

10002 1487.90 543.48 1268.56
20002 16586.95 5900.25 13984.45
30002 59051.47 33146.23 oom

Table 2. Grid graph instances. Average running times (in sec.) over 100 instances.

Each instance with |E|
2

number of edges having weight < 0 (oom denotes “out of
memory”). B4 denotes the implementation of the presented algorithm using Blossom
IV, B5 the implementation of it using Blossom V, SWK denotes the implementation
of the method by Shih et al. using Blossom V.

to SWK and does not run into memory issues when used on the largest sizes. On
a machine with 16 GB the SWK algorithm could not solve any 30002 instance
due to its high memory requirements. This is also true for the SWK version us-
ing K3 subgraphs in the expansion steps. Using the SWK with K3’s the running
times are comparable to B4 for grid graphs of size 1002 (0.72 sec.), 1502 (1.76
sec.), 2502 (6.30 sec.), and 5002 (68.29 sec.), and worse if compared to B5. For
the largest sizes SWK in the K3 version is faster than B4 (10002 (727.50 sec.),
20002 (9138.90 sec.)) but again B5 is the fastest implementation. We conclude
that for both random planar and grid graphs method B5 yields the best perfor-
mance, compared to the method of Shih et al. in its original and its modified
version.

In order to study realistic instances, we took the tsplib library, maintained
by Gerhard Reinelt [42]. As the realistic instances represent geographic points
all edges have non-negative weights. Thus, we compute max-cuts. First, for all
geometric tsplib instances with at least 1, 000 nodes Delaunay triangulations
(using the leda library [36]) are computed and the Euclidean distance between
nodes is chosen as edge weights. Results are given in Table 3.

Again, B5 and SWK are fast and only need seconds to solve each instance. B5
again is the fastest implementation (it is on average at least a factor two faster
than SWK). For smaller instances the differences between B4 and B5 decrease
but do not vanish. Furthermore, using Kolmogorov’s new Blossom V implemen-
tation leads to a drastic speedup when compared to Blossom IV. Whereas B4
almost needs 3 hours for the most difficult instance, B5 still can solve it within
less than 10 seconds.

The Delaunay triangulated instances are almost maximum planar graphs
(only the outer face may not be triangulated). The running time results given
in Table 3 show that B5 is again the fastest implementation. Using SWK in the
K3 version on Delaunay triangulated graphs leads to shorter running times than
of the original version but is still slower than the B5 method, e.g. for pla85900
SWK using K3 needs 18.46 sec. which has to be compared to 8.31 sec. that are
needed with B5.
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instance name (|E|) B4 B5 SWK

pla85900 (257604) 10248.70 8.31 27.72
pla33810 (101367) 390.50 2.11 6.11
usa13509 ( 40503) 169.73 0.78 2.21
brd14051 ( 42128) 140.49 0.85 2.31
d18512 ( 55510) 86.50 1.48 3.08
pla7397 ( 21865) 15.11 0.49 0.96
rl11849 ( 35532) 9.87 0.83 1.66
rl5934 ( 17770) 4.56 0.33 0.89
fnl4461 ( 13359) 3.21 0.23 0.58
rl5915 ( 17728) 2.84 0.31 0.70

pr2392 (7125), dsj1000 (2981), vm1748 (4784),
rl1889 (5631)

< 2.00 < 0.12 < 0.20

rl1323 (3950), fl3795 (11326), u1060 (3153), rl1304
(3879), pcb3038 (9101), vm1084 (2869)

< 1.00 < 0.19 < 0.38

pr1002 (2972), u1432 (4204), d2103 (6290), u2319
(6869), u2152 (6312), d1291 (3845), u1817 (5386),
d1655 (4890)

< 0.40 < 0.10 < 0.23

fl1577 (4643), nrw1379 (4115), fl1400 (4138),
pcb1173 (3501)

< 0.20 < 0.10 < 0.14

Table 3. Realistic instances (tsplib). Running times (in sec.) for max-cut computation
on different realistic instances. The number of nodes is encoded in the instance name,
and the number of edges is given explicitly. B4 denotes the implementation of the
presented algorithm using Blossom IV, B5 the implementation of it using Blossom V,
SWK denotes the implementation of the method by Shih et al. using Blossom V.
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instance name (|V |, |E|) B4 B5

USA-road-d.FLA (1,070,376 nodes, 2,712,798 edges) 394937.00 166.91

USA-road-d.NW (1,207,945 nodes, 2,840,208 edges) 168239.00 61.15

USA-road-d.NY (264,346 nodes, 733,846 edges) 117997.27 11.38

USA-road-d.BAY (321,270 nodes, 800,172 edges) 90486.00 13.28

USA-road-d.COL (435,666 nodes, 1,057,066 edges) 32227.10 27.50

Table 4. Realistic instances (DIMACS). Running times (in sec.) for max-cut com-
putation on road network instances. B4 denotes the implementation of the presented
algorithm using Blossom IV, B5 the implementation of it using Blossom V.

We also studied road network maps of the USA, taken from the 9th dimacs

Implementation Challenge (Shortest Paths) [1]. From the library, we took all
instances with up to 1, 200, 000 nodes. The largest instance took around 4.5
days with B4 to compute. The running times are drastically reduced from days
to seconds when using B5. Even the most difficult instance can be solved by B5
within a couple of minutes. As a summary, for both random and realistic planar
instances the outlined method can determine optimum cuts for graphs with up
to one million nodes within minutes.

9 Conclusion

We presented a max-cut algorithm for arbitrary weighted planar graphs. The
presented approach is nifty and simpler than the methods presented earlier.
Moreover, it is easy to implement. Its worst-case asymptotic running time is the
same as that of Shih et al. [45]. Furthermore, we showed in the computational
experiments that it is very fast in practice and can compute optimum cuts in
graphs with up to a million nodes within several minutes, at most using Kol-
mogorov’s Blossom V implementation for the matching computations. Moreover,
it is faster than the method proposed by Shih et al. and easier but not slower
than that of Berman et al. An interesting question is to explore whether the
usage of planar separator strategies for the matching part could further reduce
the computation time and memory in practice.

Acknowledgments

We are grateful to Frank Baumann for verifying some of the computational
results. We would like to thank Vladimir Kolmogorov for stimulating discussions.
We are grateful to the referees for their valuable suggestions. In particular, we
thank a referee who has suggested the algorithmic variant for the method of [45]
outlined in the end of Section 5. Financial support from the German Science
Foundation is acknowledged under contract Li 1675/1-1.



21

References

1. 9th DIMACS, Implementation challenge - shortest paths,
http://www.dis.uniroma1.it/˜challenge9/download.shtml, 2005.

2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows, Prentice Hall Inc.,
1993, Theory, algorithms, and applications.

3. K. Aoshima and M. Iri, Comments on Hadlock’s Paper: “Finding a maximum cut
of a planar graph in polynomial time”, SIAM J. Comput. 6 (1977), no. 1, 86–87.

4. F. Barahona, On the computational complexity of Ising spin glass models, J. Physics
A: Mathematical and General 15, no. 10.

5. , The max-cut problem on graphs not contractible to K5, Oper. Res. Lett.
2 (1983), no. 3, 107–111.

6. , Planar multicommodity flows, max-cut, and the Chinese-Postman problem,
Polyhedral combinatorics (Morristown, NJ, 1989), DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 189–
202.
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