
Solving Two-Stage Stochastic Steiner Tree
Problems by Two-Stage Branch-and-Cut?

Immanuel Bomze1, Markus Chimani2, Michael Jünger3∗,
Ivana Ljubić1??, Petra Mutzel4∗, and Bernd Zey4

1 Faculty of Business, Economics and Statistics, University of Vienna
{immanuel.bomze,ivana.ljubic}@univie.ac.at

2 Institute of Computer Science, Friedrich-Schiller-University of Jena
markus.chimani@uni-jena.de

3 Department of Computer Science, University of Cologne
mjuenger@informatik.uni-koeln.de

4 Department of Computer Science, TU Dortmund
{petra.mutzel,bernd.zey}@tu-dortmund.de

Abstract. We consider the Steiner tree problem under a two-stage
stochastic model with recourse and finitely many scenarios. In this prob-
lem, edges are purchased in the first stage when only probabilistic infor-
mation on the set of terminals and the future edge costs is known. In
the second stage, one of the given scenarios is realized and additional
edges are puchased in order to interconnect the set of (now known) ter-
minals. The goal is to decide on the set of edges to be purchased in the
first stage while minimizing the overall expected cost of the solution. We
provide a new semi-directed cut-set based integer programming formula-
tion, which is stronger than the previously known undirected model. We
suggest a two-stage branch-and-cut (B&C) approach in which L-shaped
and integer-L-shaped cuts are generated. In our computational study
we compare the performance of two variants of our algorithm with that
of a B&C algorithm for the extensive form of the deterministic equiva-
lent (EF). We show that, as the number of scenarios increases, the new
approach significantly outperforms the (EF) approach.

Keywords: stochastic Steiner tree, stochastic integer programming, branch-
and-cut, Benders decomposition

1 Introduction

Motivation. The classical Steiner tree problem in graphs is a quite well-
studied combinatorial optimization problem and has a wide range of
? M.J. and P.M. gratefully acknowledge the hospitality they enjoyed during their stay

as visiting research professors at the University of Vienna; much of this research was
done during this stay

?? Supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation
(FWF)

applications: from the planning of various infrastructure networks (e.g.,
communication or energy supply) to the study of protein-interaction net-
works in bioinformatics. Given an undirected graph G = (V,E) with edge
weights (costs) ce ≥ 0, for all e ∈ E, and a subset of required vertices
(terminals) R ⊆ V , the problem consists of finding a subset of edges that
interconnects all the terminals at minimum (edge installation) cost.
In practice, however, network planners are often faced with uncertainty
with respect to the input data. The actual demand patterns become
known only after the network has been built. In that case, networks found
by solving an instance in which it is assumed that the complete knowledge
of the input is known up-front, might not provide appropriate solutions
if deviations from the assumed scenario are encountered. Stochastic opti-
mization is a promising way to take uncertainties into account.

Our problem. We consider the two-stage stochastic Steiner tree problem
(SSTP) with fixed recourse and finitely many scenarios in which the ter-
minal set and the edge installation costs are subject to uncertainty. In this
model, some edges are purchased in the first stage when only probabilis-
tic information about the second stage is known. In the second stage, one
of the given scenarios is realized and additional edges are purchased in
order to interconnect the (now known) terminal nodes. The costs of these
edges in the second stage are higher than their costs in the first stage.
Our goal is to make a decision about edges to be purchased in the first
stage, while minimizing the expected cost of the solution, which is given
as the sum of the purchased edges in the first-stage plus the expected
costs of purchasing additional edges in the second stage.

Previous work. Gupta et al. started a series of papers on approximation
algorithms for the SSTP. E.g., they have provided a constant factor ap-
proximation algorithm for the SSTP in the case that the second stage
costs are determined from the first stage costs by multiplication with a
fixed inflation factor [5]. The algorithm is based on a primal-dual algo-
rithm that is guided by a relaxed integer linear programming (ILP) solu-
tion. For the general case that we consider, Gupta et al. [4] have shown
that the problem becomes as hard as Label Cover (which is Ω(2log1−ε n)-
hard). We are not aware of any computational study concerning the SSTP.

Our Contribution. The ILP model used in [5] is based on an undirected
cut-set formulation for Steiner trees. We suggest a new semi-directed ILP
model and show that it is stronger than the undirected one. We show
that the recourse function decomposes into a set of independent restricted

2

Steiner arborescence problems. To solve the problem, we use a Benders-
like decomposition method. We nest a branch-and-cut framework for solv-
ing the subproblems [8] into a branch-and-cut master approach in which
L-shaped and integer-L-shaped cuts are generated [2,7]. In our computa-
tional experiments, we study the behaviour of our two-stage branch-and-
cut (B&C) algorithm for two differently decomposed variants of our semi-
directed ILP model and compare it to solving the deterministic equivalent
(EF) directly. It is the first time that the stochastic Steiner tree problem
is studied computationally. We report optimal results for SSTP instances
with up to 165 vertices and 274 edges.

2 ILP models

2.1 Problem definition

We consider the following two-stage stochastic Steiner tree problem. Let
G = (V,E) be an undirected network with a selected root r and with
known first-stage edge costs ce ≥ 0, for all e ∈ E; let Vr := V \ {r}. The
set of terminals, as well as the costs of edges to be purchased in the second
stage, is known only in the second stage. These values together form a
random variable ξ, for which we assume that it has a finite support. It
can therefore be modeled using a finite set of scenarios K = {1, . . . ,K},
K ≥ 1. The realization probability of each scenario is given by pk > 0,
k ∈ K; we have

∑
k∈K pk = 1. Denote by qke ≥ 0 the cost of an edge

e ∈ E if it is bought in the second stage, under scenario k ∈ K. Denote
the expected second stage cost of an edge e ∈ E by q∗e :=

∑
k∈K pkq

k
e .

We assume that q∗e > ce, for all e ∈ E. Furthermore, let Rk ⊆ Vr be
the set of terminals under the k-th scenario. We denote by E0 the set of
edges purchased in the first-stage, and by Ek the set of additional edges
purchased under scenario k, k ∈ K.
The SSTP problem can then be formulated as follows: Determine the
subset of edges E0 ⊆ E to be purchased in the first stage, so that the
overall cost defined as ∑

e∈E0

ce +
∑
k∈K

pk
∑
e∈Ek

qke ,

is minimized, while E0 ∪ Ek spans Rk for all k ∈ K.
Obviously, the optimal first-stage solution of the SSTP is not necessarily
a tree [5]. In fact, the optimal solution might contain several disjoint
fragments, depending on the subsets of terminals throughout different
scenarios, or depending on the second-stage cost structure.

3

2.2 Undirected model, deterministic equivalent

A deterministic equivalent (in extensive form) of the stochastic Steiner
tree problem has been originally proposed in [5]. The authors developed
an undirected ILP formulation as a natural extension of the undirected
cut-set model for Steiner trees. We briefly recall this model here. The
following two sets of binary variables are used in this model:

Xe =

{
1, if e ∈ E0

0, otherwise
and Y k

e =

{
1, if e ∈ Ek
0, otherwise

∀e ∈ E

For D ⊆ E, let (X + Y k)(D) =
∑

e∈D(Xe + Y k
e). For S ⊆ V , let δ(S) =

{{i, j} ∈ E | i ∈ S and j /∈ S}. A deterministic equivalent of the SSTP
can then be written as:

(SSTPu) min
X∈{0,1}|E|,Y ∈{0,1}|K||E|

{
∑
e∈E

ceXe +
∑
k∈K

pk
∑
e∈E

qkeY
k
e |

(X + Y k)(δ(S)) ≥ 1,∀S ⊆ Vr, S ∩Rk 6= ∅, ∀k ∈ K}

Gupta et al. [5] have shown that the LP-solution of the above model can
be rounded to a feasible solution with value of at most 40 times that of
the optimal solution, if the edge costs in the second stage are given by
qke = σkce, for all e ∈ E, k ∈ K, for some fixed scalar σk.

2.3 Semi-directed model, deterministic equivalent

It is well known that directed models for Steiner trees provide better
lower LP-bounds (see, e.g., [3]), and therefore the natural question arises
whether we can extend the model (SSTPu) by bi-directing the given
graph G and replacing edge- by arc-variables in the same model. The
main difficulty with the stochastic Steiner tree problem is that the arcs
of the first-stage solution cannot be derived using this technique. It is
not difficult to imagine an instance in which an edge {i, j} ∈ E is used
in direction (i, j) for one scenario, and in the opposite direction (j, i) for
another scenario.

Cut-set formulation. Despite the difficulty mentioned above, we can model
SSTP using oriented edges to describe the second stage solutions. In other
words, we are looking for the optimal first-stage solution (an undirected
subgraph of G) such that each solution of scenario k represents a Steiner
arborescence rooted at r, whose arcs are built upon all the (already in-
stalled) first stage edges and additional second-stage arcs. In order to

4

derive the new model, we first bi-direct graph G by defining the set of
arcs A = {(i, j) ∪ (j, i) | {i, j} ∈ E, i, j 6= r} ∪ {(r, i) | {r, i} ∈ E}. Denote
by Ak the arcs of the optimal solution of scenario k, k ∈ K. For each sce-
nario k ∈ K, we now introduce binary arc-variables zkij , for all (i, j) ∈ A.
A variable zkij is set to 1 iff the final solution after the second stage in
scenario k uses the arc (i, j). Note that for edges bought in the first stage,
each scenario solution has to select one of its corresponding arcs.
The new semi-directed deterministic equivalent (EF) of the SSTP can
then be written as:

(EF) min
∑
e∈E

ceXe +
∑
k∈K

pk
∑

e={i,j}∈E

qke (zkij + zkji −Xe)

s.t. zk(δ−(S)) ≥ 1, ∀S ⊆ Vr, S ∩Rk 6= ∅, ∀k ∈ K (1)

zkij + zkji ≥ Xe, ∀e = {i, j} ∈ E, ∀k ∈ K (2)

zkij ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ K (3)

0 ≤ Xe ≤ 1, ∀e ∈ E, ∀k ∈ K (4)

Here, δ−(S) = {(i, j) ∈ A | i /∈ S, j ∈ S}. Constraints (1) ensure that for
each terminal v ∈ Rk, there is a directed path (using the second stage
arcs) from r to v. Inequalities (2) are capacity constraints ensuring that
at least one second stage arc is installed for every edge purchased in the
first stage. Proofs for the following two lemmata can be found in the
Appendix.

Lemma 1. Formulation (EF) models the deterministic equivalent of the
stochastic Steiner tree problem correctly. In particular, in every optimal
solution of the model, variables Xe take value 0 or 1.

Obviously, the semi-directed formulation (EF) for the stochastic Steiner
tree problem is at least as strong as the undirected formulation. We can
show that the new formulation is even strictly stronger.

Lemma 2. Denote by ProjX,Y (EF) the projection of the polytope defined
by the LP-relaxation of (EF) onto the space of X and Y variables in
which Y k

e = zkij + zkji −Xe, for all e = {i, j} ∈ E, for all k ∈ K. Let Pu
be the polytope defined by the LP-relaxation of (SSTPu). Then for any
instance of SSTP we have ProjX,Y (EF) ⊆ Pu and there are instances for
which strict inequality holds and the optimal LP-relaxation value of (EF)
is strictly larger than the corresponding LP-relaxation value of (SSTPu).

5

3 Algorithmic Framework

3.1 Decomposition of the (EF) model

The large number of decision variables makes the extensive form (EF)
very difficult to solve when considering many scenarios. However, we can
rewrite the (EF) formulation as:

min
X∈{0,1}|E|

ctX +Q(X)

in which the so-called recourse function Q(X) decomposes into K inde-
pendent problems, i.e., Q(X) = EQ(X, ξ) =

∑
k∈K pkQ(X, k). For a fixed

vector X̃, the k-th subproblem Q(X̃, k) corresponds to the following NP-
hard restricted Steiner arborescence problem:

(STPk
sd) min

∑
e={i,j}∈E

qke (zkij + zkji − X̃e)

s.t. zk(δ−(S)) ≥ 1, ∀S ⊆ Vr, S ∩Rk 6= ∅ (5)

zkij + zkji ≥ X̃e, ∀e = {i, j} ∈ E (6)

zkij ∈ {0, 1}, ∀(i, j) ∈ A (7)

Due to the integrality restrictions on the second stage variables, the re-
course function Q(X) is non-convex and discontinuous.

3.2 A two-stage Branch-and-Cut approach.

The key idea is to apply a nested Branch-and-Cut approach: a Benders-
like decomposition method determines the Master Branch-and-Cut Frame-
work. Let the following problem be the relaxed master problem (RMP):

(RMP) min
X∈[0,1]|E|,Θk≥0

{ctX +Θ | Θ =
∑
k∈K

pkΘk,

a set of L-shaped cuts and integer L-shaped cuts}.

For a given first stage solution in X, the variables Θk are estimated sec-
ond stage costs of scenario k needed for purchasing additional arcs in the
second stage in order to interconnect the terminals from Rk. As optimal-
ity cuts we use L-shaped and integer L-shaped cuts [2,7] to guarantee the
convergence of the algorithm as described below. Observe that no feasibil-
ity cuts are needed, since we are dealing with the problem with complete
recourse, i.e., every first-stage solution is feasible.

6

Step 0: Initialization. UB = +∞ (global upper bound, corresponding
to a feasible solution), ν = 0. Create the first pendant node. In the
initial (RMP), the set of (integer) L-shaped cuts is empty.

Step 1: Selection. Select a pendant node from the B&C tree, if such
exists, otherwise STOP.

Step 2: Separation. Solve (RMP) at the current node. ν = ν + 1. Let
(Xν , Θν1 , . . . , Θ

ν
K) be the current optimal solution, Θν =

∑
k∈K pkΘ

ν
k .

(2.1) If ctXν +Θν > UB fathom the current node and goto Step 1.
(2.2) Search for violated L-shaped cuts:
For all k ∈ K, compute the LP-relaxation value R(Xν , k) of (STPk

sd).
If R(Xν , k) > Θνk : insert L-shaped cut (8) into (RMP).
If at least one L-shaped cut was inserted goto Step 2.
(2.3) If X is binary, search for violated integer L-shaped cuts:

(2.3.1) For all k ∈ K s.t. zk is not binary in the previously com-
puted LP-relaxation, solve (STPk

sd) to optimality. Let Q(Xν , k) be
the optimal (STPk

sd) value. If
∑

k∈K pkQ(Xν , k) > Θν insert integer
L-shaped cut (9) into (RMP). Goto Step 2.

(2.3.2) UB = min(UB , ctXν +Θν). Fathom the current node and
goto Step 1.

Step 3: Branching. Using a branching criterion, create two nodes, ap-
pend them to the list of pendant nodes, goto Step 1.

The algorithm described above is a B&C approach in which each of the
subproblems (STPk

sd) is solved to optimality using another B&C. This
explains the name two-stage branch-and-cut.

L-shaped cuts. To solve the LP-relaxation of the (EF) formulation via the
models (STPk

sd) given above, we will relax the integrality constraints (7)
to 0 ≤ zkij , for all (i, j) ∈ A, for all k ∈ K. Only a small number among
the exponential number of cuts will be needed to solve the LP-relaxations
(cf. cutting plane method). Therefore, in the corresponding dual problems
only those dual variables associated to cuts found in the cutting plane
phase will be of interest. We associate dual variables αkS to constraints (5)
and βke to (6).
Denote by (α̃k, β̃k) the optimal solutions of the dual of the k-th subprob-
lem. Instead of inserting one optimality cut per iteration, we will consider
the multicut version of the L-shaped method for this problem [1]. This
multicut approach applies a disaggregation of optimality cuts per each
single scenario. Therefore, the number of master iterations may be signif-
icantly reduced, which is of great importance if the number of scenarios
is large, or the recourse function Q(X̃, k) is difficult to solve. For a fixed

7

first-stage solution (X̃, Θ̃1, . . . , Θ̃K), we will solve LP-relaxations of all K
scenarios, and insert the following L-shaped cuts:

Θk +
∑
e∈E

(qke − β̃ke)Xe ≥
∑

S⊆Vr:S∩Rk 6=∅

α̃kS , (8)

for all k ∈ K where Θ̃k < R(X̃, k).

Integer L-shaped cuts. Let Xν be a binary first stage solution with its
corresponding optimal second stage value Q(Xν) =

∑
k∈K pkQ(Xν , k).

Let Iν := {e ∈ E : Xν
e = 1} be the index set of the edge variables

chosen in the first stage, and the constant L be a known lower bound of
the recourse function. The general integer optimality cut in the L-shaped
scheme [7] cuts off the solution (Xν , Θν) and can be written as:

Θ ≥ (Q(Xν)− L)

 ∑
e∈Iν

Xe −
∑

e∈E\Iν
Xe − |Iν |+ 1

 + L. (9)

Solving the subproblems. Each of the K subproblems is solved using a
Subproblem Branch-and-Cut Framework for the restricted Steiner arbores-
cence problem. The subproblems are solved using the algorithm given in
[8], augmented with (6). Cuts found during the separation of one sub-
problem are then stored in a pool where they can be reused by other
subproblems (if applicable).

3.3 Reformulation with negative edge costs in the first stage

Alternatively to above, we can consider the following two objective func-
tions when decomposing the problem: min

∑
e∈E(ce−q∗e)Xe+

∑
k∈K pkΘk

for the (RMP) formulation. The second stage subproblem is then decom-
posable into the following subproblems:

(STPk
sd∗) Q(X̃, k) = min{

∑
ij∈A

qk{i,j}z
k
ij | zkij satisfies (5)–(7)}.

In this formulation, variables Θk denote the expected costs for intercon-
necting terminals from Rk plus purchasing all edges from X̃ in the second
stage. The difference in using this decomposition, rather than the one de-
scribed before, is that the edge costs in the first stage become negative
and the initial iterations of the master B&C will therefore select many
instead of few edges. The generated L-shaped cuts are then written as

Θk −
∑
e∈E

β̃keXe ≥
∑

S⊆Vr:S∩Rk 6=∅

α̃kS . (10)

8

We will see that, from the computational point of view, this second ap-
proach significantly outperforms the previous one.

4 Computational Results

All experiments were performed on an Intel Core-i7 2.67GHz Quad Core
machine with 12 GB RAM, under Ubuntu 9.04. Each run was performed
on a single core. We used ABACUS 3.0 as a generic B&C framework; for
solving the LP relaxations we used the commercial package IBM CPLEX
(version 10.1) via COIN-Osi 0.102.
Depending on the used decompositions (STPk

sd) and (STPk
sd∗), we denote

the implementations of the two-stage B&C algorithms by 2BC and 2BC∗,
respectively. Thereby, we use following primal heuristic at the root node
of the B&C tree (after each iteration, until we obtain the first upper
bound): Round the fractional solution X ′ to a binary solution X ′′. If X ′′

is cycle free, solve all K subproblems to optimality and obtain a valid
upper bound UB = ctX ′′ +

∑
k∈KQ(X ′′). For solving (EF) directly, we

implemented a branch-and-cut approach analogous to the one given in [8];
we denote the algorithm by EF .

4.1 Benchmark Instances

The benchmark instances used in our study are derived from deterministic
inputs taken from the following two sources.

K and P Groups of Instances. These graphs are instances of the prize-
collecting Steiner tree problem, originally generated in [6]. Our inputs
are graphs obtained by applying several reduction procedures as explained
in [8]. The reduced instances contain up to 91 nodes and 237 edges and
are available online [9].

lin Instances. These graphs are instances borrowed from the Stein-
Lib [10]. The graphs contain up to 165 nodes and 274 edges with up to
14 terminals. Although for the deterministic Steiner tree problem these
instances appear to be solvable by preprocessing or by dual ascent heuris-
tics, the same techniques cannot be applied straight-forwardly to the cor-
responding SSTP problems.

Converting Deterministic into Stochastic Inputs. Deterministic Steiner
tree input graphs G = (V,E) with edge costs ce, e ∈ E are transformed
into the SSTP instances as follows:

9

1. We generate K scenarios. To obtain scenario probabilities pk, we dis-
tribute 1000 points (corresponding to the probability of 1h, each)
among these scenarios randomly (ensuring that each scenario has at
least probability 1h).

2. For each scenario k, we construct Rk by independently picking each
terminal or Steiner node with probability 0.3 or 0.05, respectively.

3. Each second stage edge costs qke is randomly (independent, uniform)
drawn from [1.1ce, 1.3ce].

4.2 Comparing the Deterministic Equivalent vs. Two-Stage
Branch-and-Cut Approaches

For the K and P instance groups, we focus on comparing the time to obtain
provably optimal solutions, required by our two decomposition-based al-
gorithms 2BC, 2BC∗ and the standard approach EF. Figure 1 shows the
running times in seconds, averaged over all instances of the correspond-
ing group. We observe that decomposing the problem is not worthwhile
for instances with less than 20 scenarios. However, as the number of sce-
narios increases, the benefit of decomposing is obvious: already with 100
scenarios, EF needs 10 times the running time of the two-stage B&C ap-
proaches. In additional experiments with 500 scenarios, EF is not able
to solve 6 out of 11 instances within two hours, whereas the two-stage
approach 2BC∗ needs only 510 seconds on average.
We also observe that 2BC∗ always outperforms 2BC. In particular for
the group K instances with 100–500 scenarios, it is 1.8 times faster. This
is because the L-shaped cuts generated by 2BC∗ are sparser (β̃ke are often
0) and numerically more stable than the corresponding cuts generated by
2BC (cf. Section 3.1).
Table 1 shows the comparison between EF and the two-stage approach
2BC∗. Instances lin01–lin06 were used to generate inputs with K ∈
{5, 10, 20, 50} scenarios. Column |Ravg| gives the average number of ter-
minals in each scenario; OPT* gives the optimal values (or the best upper
bound, if the time limit of 2 hours is reached). We compare the running
time in seconds (t[s]), the number of branch-and-bound nodes (b&b), the
final gap obtained after the time limit of two hours, as well es the overall
number of iterations in the B&C (#iter). We observe that, as the number
of scenarios increases, the number of iterations decreases for 2BC∗. This
is due to the larger number of multi-cuts inserted in each primal iteration.
In contrast to this, the number of iterations for EF increases drastically
with the number of scenarios, which explains why instances with more
than 20 scenarios are not solvable within the time limit.

10

0

400

800

1200

1600

2000

2400

5 10 20 50 100 200

ru
nt

im
e

[s
ec

.]

#scenarios

EF

2BC

2BC*

(a) K group: 11 instances.

0

400

800

1200

1600

2000

5 10 20 50 100

ru
nt

im
e

[s
ec

.]

#scenarios

EF

2BC

2BC*

(b) P group: 5 instances.

Fig. 1. Average running times in seconds for both two-stage branch-and-cut algorithms
2BC and 2BC∗, and for the extensive formulation of the deterministic equivalent EF.

5 Extensions and Future Work

Gupta et al. [5] also consider the SSTP in which the first stage solution
is a tree. Using our above ideas and bi-directing G already for the first
stage, we can deduce an even stronger fully directed model that ensures
that the first-stage solution is a rooted Steiner arborescence as well. It
will be interesting to evaluate the potentially arising benefits.
Along the lines of the algorithm engineering cycle, our above approach
leaves multiple areas for further improvements: The integration of stronger
primal heuristics may lead to further significant speed-ups. A broader set
of specifically designed benchmark instances may allow a better insight in
the dependencies between input properties and solvability; e.g., it seems
to be hard to generate SSTP instances that require integer L-shaped cuts
in practice. It is also an open question how to integrate further known
strong arborescence constraint classes like flow-balance constraints, as
they are not directly valid in our SSTP setting.

References

1. J.R. Birge and F. Louveaux. A multicut algorithm for two-stage stochastic linear
programs. European Journal of Operational Research, 34:384–392, 1988.

2. J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,
New York, 1997.

3. S. Chopra and M. R. Rao. The Steiner tree problem I: Formulations, compositions
and extension of facets. Mathematical Programming, 64:209–229, 1994.

4. A. Gupta, M. Hajiaghayi, and A. Kumar. Stochastic steiner tree with non-uniform
inflation. In APPROX and RANDOM 2007, volume 4627 of LNCS, pages 134–148,
2007.

11

EF 2BC∗

Instance K |Ravg| OPT* t[s] b&b gap #iter t[s] b&b gap #iter

lin01 53 80 5 4.6 797.0 0.2 1 — 34 2.2 1 — 61
lin01 53 80 10 4.2 633.2 0.7 3 — 59 2.5 3 — 50
lin01 53 80 20 4.6 753.9 5.7 3 — 63 6.9 3 — 52
lin01 53 80 50 4.7 768.9 33.4 3 — 70 10.4 3 — 36

lin02 55 82 5 4.6 476.2 0.1 1 — 24 1.1 1 — 45
lin02 55 82 10 5.3 739.1 1.0 1 — 33 3.0 1 — 47
lin02 55 82 20 5.3 752.2 4.9 1 — 69 4.3 1 — 37
lin02 55 82 50 5.1 732.6 31.2 1 — 70 10.7 1 — 35

lin03 57 84 5 4.4 653.0 0.5 1 — 80 1.9 1 — 55
lin03 57 84 10 5.2 834.7 3.8 7 — 90 8.7 7 — 91
lin03 57 84 20 5.8 854.9 10.8 1 — 92 7.3 1 — 41
lin03 57 84 50 5.5 895.7 103.1 3 — 106 21.3 3 — 43

lin04 157 266 5 10.4 1922.1 140.4 3 — 315 959.2 47 — 567
lin04 157 266 10 9.8 1959.1 415.8 7 — 244 989.2 7 — 339
lin04 157 266 20 9.3 1954.9 5498.7 11 — 833 3016.7 13 — 575
lin04 157 266 50 9.8 2097.7 (2h) 1 19.5 185 5330.2 11 — 269

lin05 160 269 5 10.2 2215.5 282.0 53 — 722 2681.2 35 — 1558
lin05 160 269 10 11.4 2210.2 1866.7 5 — 1130 4096.0 35 — 1502
lin05 160 269 20 11.1 2412.2 (2h) 11 5.6 1060 (2h) 17 4.7 890
lin05 160 269 50 11.6 2297.0 (2h) 1 21.3 210 3627.4 1 — 159

lin06 165 274 5 11.0 1975.8 212.8 53 — 797 760.9 19 — 834
lin06 165 274 10 10.6 1918.7 501.7 5 — 260 808.4 3 — 306
lin06 165 274 20 14.0 2457.6 (2h) 11 — 1099 3222.9 11 — 459
lin06 165 274 50 12.6 2186.8 (2h) 1 22.5 221 2795.5 11 — 215

Table 1. Results for lin instances: within the time limit of two hours, EF was not
able to solve most of the instances with 50 scenarios.

5. A. Gupta, R. Ravi, and A. Sinha. LP rounding approximation algorithms for
stochastic network design. Math. of Operations Research, 32(2):345–364, 2007.

6. D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting Steiner tree prob-
lem: Theory and practice. In Proc. 11th ACM-SIAM SODA, pages 760–769. SIAM,
2000.

7. G. Laporte and F.V. Louveaux. The integer L-shaped method for stochastic integer
programs with complete recourse. Oper. Res. Lett., 13:133–142, 1993.

8. I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An
algorithmic framework for the exact solution of the prize-collecting Steiner tree
problem. Mathematical Programming, 105(2-3):427–449, 2006.

9. PCSTP Benchmark: homepage.univie.ac.at/ivana.ljubic/research/pcstp/.
10. Steinlib: steinlib.zib.de/steinlib.php.

12

homepage.univie.ac.at/ivana.ljubic/research/pcstp/
steinlib.zib.de/steinlib.php

Appendix

Proof of Lemma 1.

Proof. We only show that in any optimal solution of (STPsd), values
of Xe variables will not be fractional. So assume that there exists an
optimal solution X such that there exists e ∈ E, such that 0 < Xe < 1.
Inequalities (2) imply that for all scenarios k ∈ K zkij + zkji = 1. The term
in the objective function corresponding to edge e is:

ceXe +
∑
k

pkq
k
e (1−Xe) = ceXe + q∗e(1−Xe) = (ce − q∗e)Xe + q∗e .

Since ce − q∗e < 0, we can obviously reduce the value of the objective
function by setting Xe := 1, which is a contradiction to X being the
optimal solution.

Proof of Lemma 2.

Proof. It is not difficult to see that the ⊆-relationship holds. To show the
strict inequality, consider the following example.

◦5 ◦2 // ◦3

�r

OO ppppppppppppp

NNNNNNNNNNNNN

◦1 // ◦4

Fig. 2. A network used in the example below. All edge costs are equal to one.

For the network given in Figure 2, we assume that scenarios are assigned
a constant inflation factor, σk, for all k ∈ K, so that qke = σkce, for all
e ∈ E. The following scenario values are given:

Scenario 1: σ1 = 1.5, p1 = 1/4, R1 = {1, 2, 3},
Scenario 2: σ2 = 1.5, p2 = 1/4, R2 = {1, 2, 4},
Scenario 3: σ3 = 3, p3 = 1/2, R3 = {5}.

The optimal LP-solution of (SSTPu) sets Xr5 = Y 1
23 = Y 2

14 = 1 and
Y l
r2 = Y l

r1 = Y l
12 = 1/2, for l = 1, 2. The other variables are set to zero.

Therefore, υLP ((SSTPu)) = 2 7/8.
On the other hand, this solution is not feasible for the model (STPsd),
which proves the strict inequality in Lemma 2.

13

	Solving Two-Stage Stochastic Steiner Tree Problems by Two-Stage Branch-and-Cut

