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Abstract. We devise two new integer programming models for range
assignment problems arising in wireless network design. Building on an
arbitrary set of feasible network topologies, e.g., all spanning trees, we
explicitly model the power consumption at a given node as a weighted
maximum over edge variables. We show that the standard ILP model is
an extended formulation of the new models. For all models, we derive
complete polyhedral descriptions in the unconstrained case where all
topologies are allowed. These results give rise to tight relaxations even
in the constrained case. We can show experimentally that the compact
formulations compare favorably to the standard approach.
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1 Introduction

Range assignment problems play a central role in the design of ad hoc wireless
networks. When assigning transmission ranges to the nodes of the network, it
is a natural objective to minimize the overall energy that is needed to ensure
certain connectivity properties of the network. In traditional wired networks,
the transmission costs are roughly proportional to the length of all connections
installed, so that the aim is to minimize the total length of all connections.
On the other hand, in wireless networks, the transmission costs depend on the
range assigned to the node. The main difference lies in the so-called multi-cast

advantage: if a node v reaches another node w, then it also reaches each node u

that is closer to v than w, at no additional cost.

Recently, several approaches to range assignment problems have been pre-
sented, comprising both exact algorithms [8, 9] and heuristics [1, 2, 4]. Exact ap-
proaches are often implemented by a branch-and-cut framework. The main task
here is to model the problem as an integer linear program. It is natural to model
the underlying networks by binary edge variables, where the restrictions on the
network topology are expressed by linear constraints. However, other than in the
wired case, the power consumption is not a linear function in the edge variables
any more: the power consumption in a node v is now determined by the furthest
node w that can be reached from v, i.e., by the most expensive edge vw that
is adjacent to v in the network. In other words, the objective function can now
be expressed as a sum of weighted maxima, each one taken over the variables
corresponding to edges adjacent to a given node v.

In any integer programming approach to range assignment problems, the
objective function thus has to be linearized. This is usually done by discretizing
the power consumption [1, 2, 4]: obviously, in any optimal solution the range
assigned to v equals the distance of v to some other node w. If a binary variable
is introduced for each potential range, together with the constraint that at most
one of these variables is one, the objective function becomes linear.

In this paper, we consider two more natural ways to address the nonlinear
objective function: we either introduce a continuous variable yv for each node v,
modeling directly the range assigned to v, or we introduce a single continuous
variable y representing the whole objective function. We show that the standard
model can be considered an extended formulation of both these models.

We are mainly interested in a comparison of all three models, under arbitrary
constraints on the network topologies. We first show that the two new models
have positive polyhedral properties: even if they have an exponential number
of facets in general, the separation problems can be solved in O(m log m) time,
when m is the number of potential edges in the network. At the same time,
the smaller number of variables compared to the standard model is clearly an
advantage. We present results of an experimental evaluation of all three models
for the min-power symmetric connectivity problem and the min-power multicast
problem. These results show that the more compact models lead to faster running
times in general on both problem classes.
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In the next section, we describe all three models in more detail. In Section 3,
we investigate the relation between these models. Their polyhedral properties
in the unconstrained case are discussed in Section 4. Finally, in Section 5 we
present the results of our experimental evaluation.

2 Models for Range Assignment Problems

We consider the following general formulation for range assignment problems:

min
∑

u∈V max {cuvxuv | uv ∈ E}

s.t. x ∈ X .
(1)

Here we allow an arbitrary set X ⊆ {0, 1}E of incidence vectors of edge-induced
subgraphs of G = (V,E). We assume however that an integer programming
formulation for X is known. In wireless network problems, several sets X may
be of interest, for example the set of all spanning trees in G or, more generally,
the set of all spanning k-edge-connected subgraphs of G, for k ≥ 1. In these
cases G is an undirected graph. An example for range assignment problems
on directed graphs is the multicast problem, where uni-directional connections
between a source node and one or more terminal nodes have to be established.

The cost cvw of an edge can be any nonnegative value. A typical assumption
in wireless networking is that the cost for transmitting a signal directly from
node v to node w is the square of the Euclidean distance between the two nodes,
i.e., cvw = ||v−w||2. However, in practice the cost is not necessarily determined
by the distance, so that it is useful to allow arbitrary values of cvw.

In the following, we discuss different polyhedral approaches to Problem (1).
Since the objective function in (1) is non-linear, the main modeling task is to
choose a suitable linearization of the problem. Different choices may give rise
to different polyhedral models, three of which we present and compare in the
remainder of this section. Note that in the following we do not make any use of
the underlying graph G. All results remain true if E is an arbitrary finite set,
and if X corresponds to an arbitrary set of subsets of E.

2.1 The Standard Model

The standard approach to linearizing Problem (1) found in the wireless network-
ing literature is to introduce new binary variables into the model [1, 2]. These
variables model the possible values of the non-linear terms in optimal solutions.
The resulting problem then reads

min
∑

uv∈E cuvyuv

s.t.
∑

uv∈E yuv ≤ 1 for all u ∈ V
∑

cuw≥cuv

yuw ≥ xuv for all uv ∈ E

x ∈ X

y ∈ {0, 1}E .

(2)
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In this model, the binary variable yuv is thus set to one if and only if the trans-
mission power of node u is just enough to reach node v. Note that in many
applications the first set of constraints consists of equations. This is valid if all
feasible edge-induced subgraphs are connected. In this case, every node has to
reach at least one other node. In general, this is not true, so that for some u all
variables yuv can be zero. The number of variables in this model is 2|E|.

A closely related model appearing in the literature [5] uses binary variables
in an incremental way: again, a variable y′

uv ∈ {0, 1} is used for every pair of
nodes u and v, now set to one if and only if node u can reach node v. It is easy
to see that the two models are isomorphic by the linear transformation

y′
uv =

∑

cuw≥cuv

yuw .

Because of this, the two models are equivalent from a polyhedral point of view.
Hence it suffices to consider the first model in the following.

2.2 A Mixed-Integer Model

A more direct way to derive a linear reformulation of Problem (1) is to introduce
a single new variable yv modeling the power consumption of every node v. In
other words, yv replaces the non-linear term max {cvwxvw | vw ∈ E}. This leads
to the following mixed-integer formulation:

min
∑

v∈V yv

s.t. yv ≥ max {cvwxvw | vw ∈ E} for all v ∈ V

x ∈ X

y ∈ R
V .

(3)

Compared to model (2), this formulation is more compact, it contains |E|+ |V |
variables. The constraints in (3) are non-linear, but can be replaced by

yv ≥ cvwxvw for all vw ∈ E .

Later, we will discuss a stronger reformulation of the non-linear constraints.

2.3 A Compact Mixed-Integer Model

An even more compact way to deal with the non-linear objective function in (1)
is to replace the whole objective function by a single variable y ∈ R:

min y

s.t. y ≥
∑

v∈V max {cvwxvw | vw ∈ E}

x ∈ X

y ∈ R .

(4)

This model contains only |E| + 1 variables. Again, we will show later that the
non-linear constraints in (4) can be modeled by a well-behaved class of linear
inequalities.
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3 Polyhedral Relations

In the following, we investigate the polyhedral properties of the different models
presented in Section 2. First, we show how the corresponding polyhedra are re-
lated to each other. For this, let P1(X), P2(X), and P3(X) denote the polyhedra
given as the convex hulls of feasible solutions in the models (2), (3), and (4),
respectively. In particular, we have

P1(X) ⊆ [0, 1]E × [0, 1]E ,

P2(X) ⊆ [0, 1]E × R
V , and

P3(X) ⊆ [0, 1]E × R .

Note that P1(X) is a convex hull of binary vectors, so in particular it is a polytope
and all its integral points are vertices. On the other hand, the polyhedra P2(X)
and P3(X) are unbounded by definition. It is easy to see that P2(X) arises from
the convex hull of

{

(x, y) ∈ X × R
V | yv = max {cvwxvw | vw ∈ E}

}

by adding arbitrary non-negative multiples of unit vectors for the variables yv.
Similarly, P2(X) arises from the convex hull of

{

(x, y) ∈ X × R | yv =
∑

v∈V

max {cvwxvw | vw ∈ E}
}

by adding arbitrary non-negative multiples of the unit vector for y.

Theorem 1. The convex hull of all vertices of P2(X) is a projection of an

integer subpolytope of P1(X).

Proof. Consider the projection π1 given by

yv =
∑

vw∈E

cvwyvw .

Let (x, y) ∈ X × R
V be a vertex of P2(X). Then yv = max {cvwxvw | vw ∈ E}

for all v ∈ V . Thus setting yvw = 1 for exactly one w with yv = cvw yields a
vertex of P1(X) that is mapped to (x, y) under π1. ⊓⊔

Note that in general P1(X) contains vertices that are not mapped to the con-
vex hull of vertices of P2(X). These vertices cannot be optimal for any of the
considered objective functions.

Theorem 2. The polyhedron P3(X) is a projection of the polyhedron P2(X).

Proof. It is easily checked that the projection π2 given by y =
∑

v∈V yv yields
the desired result. ⊓⊔

These results show that for every reasonable objective function the optimal
faces of all three polyhedra are projections of each other. The first model can
thus be considered an extended formulation of the second and third one, and
the second model can be considered an extended formulation of the third one.
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4 Polyhedral Properties in the Unconstrained Case

For general X ⊆ {0, 1}E , Problem (1) is known to be NP-hard. This is true,
e.g., when X models all connected subgraphs of G [3]. In this case, Problem (1)
specializes to the so-called min-power symmetric connectivity problem.

In particular, optimizing over any polyhedron P1(X), P2(X), or P3(X) is
NP-hard for general X. However, in the unconstrained case X = {0, 1}E we can
give complete polyhedral descriptions of all three polytopes. Combining these
descriptions with an arbitrary linear description of X, one obtains three different
LP-relaxations of Problem (1). All three relaxations are much tighter in general
than a standard LP-relaxation.

Let Pi = Pi({0, 1}E) for i = 1, 2, 3. First note that the LP-relaxation of the
extended formulation (2) is integer in the unconstrained case:

Theorem 3. All vertices of the polytope

P ′ =
{

(x, y) |
∑

uv∈E

yuv ≤ 1 for all u ∈ V,

∑

cuw≥cuv

yuw ≥ xuv for all uv ∈ E,

0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}

are integer. In particular, the polytope P ′ coincides with P1.

Proof. Consider the isomorphism φ defined by y′
uv =

∑

cuw≥cuv

yuw. Under φ,
the polytope P ′ is mapped onto

φ(P ′) =
{

(x, y′) | y′
uv ≥ y′

uw for all uv, uw ∈ E with cuv ≤ cuw,

y′
uv ≥ xuv for all uv ∈ E,

0 ≤ x ≤ 1, 0 ≤ y′ ≤ 1
}

,

which is the so-called incremental model. Since φ(P ′) is defined by a totally
unimodular matrix, all its vertices are integer. As φ−1 preserves integrality, the
result follows. ⊓⊔

Theorem 3 implies that optimizing an objective function with non-negative costs
over any of the polytopes P1, P2, and P3 is possible in polynomial time. In the
remainder of this section, we will show that we can actually separate from P2

and P3 in O(|E| log |E|) time. We need the following general result:

Theorem 4. Let E = {1, . . . , n} and let f : 2E → R be a submodular function

with f(∅) ≥ 0. Then the separation problem for the polyhedron

Pf = conv {(x, y) ∈ {0, 1}E × R | y ≥ f(x)}
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can be solved in O(n log n) time. The facets of Pf are either induced by trivial

inequalities 0 ≤ xi ≤ 1, i ∈ E, or by an inequality y ≥ a⊤x with

ai = f(Si) − f(Si−1) for all i = 1, . . . , n

where ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = E.

Theorem 5. For every v ∈ V and for arbitrary c ∈ R
E, the function

fv(x) = max {cvwxvw | vw ∈ E}

is submodular. In particular, the function f(x) =
∑

v∈V fv(x) is submodular.

Proof. By definition, fv is submodular if

fv(A ∪ B) + fv(A ∩ B) ≤ fv(A) + fv(B)

for arbitrary sets A,B ⊆ E. We distinguish two cases:

(a) if fv(A) ≥ fv(B), then fv(A ∪ B) = fv(A) and fv(A ∩ B) ≤ fv(B)
(b) if fv(A) ≤ fv(B), then fv(A ∪ B) = fv(B) and fv(A ∩ B) ≤ fv(A)

In both cases, it follows that fv(A ∪ B) + fv(A ∩ B) ≤ fv(A) + fv(B). Finally,
the function f(x) =

∑

v∈V fv(x) is submodular, because it is a positive sum of
submodular functions [6]. ⊓⊔

Corollary 1. The separation problem for P3 can be solved in O(|E| log |E|)
time.

The separation algorithm for P3 obtained from these results proceeds as follows:
Given a fractional point (x⋆, y⋆) ∈ [0, 1]E × R, sort the elements of E in non-
increasing order according to their value in x⋆. Starting with the empty set,
iteratively construct a chain of subsets ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = E by adding
the elements in this order. The potentially violated inequality y ≥ a⊤x is then
constructed by setting ai = f(Si) − f(Si−1).

Our next aim is to show that Corollary 1 also holds for P2. First note that
Theorem 5 yields a complete description of the polytope Pfv

, for each v ∈ V .
For the following, define

P =
⋂

v∈V

Pfv
,

where each Pfv
is trivially extended from {0, 1}E × R to {0, 1}E × R

V . Then

P2 = conv
(

(

{0, 1}E × R
V

)

∩ P
)

.

It thus remains to show that the vertices of P have integer x-entries. In other
words, the facets of P2 are precisely the facets of the single polyhedra Pfv

.

Lemma 1. For each vw ∈ E, the intersection Pfv
∩ {xvw = 0} is again of the

form Pg with g(x) = max {dvuxvu | vu ∈ E}, for suitable d.
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Proof. Set dvw = 0 and dvu = cvu for vu ∈ E with u 6= w. ⊓⊔

Lemma 2. For each vw ∈ E, the intersection Pfv
∩ {xvw = 1} is a translation

of a polyhedron Pg with g(x) = max {dvuxvu | vu ∈ E}, for suitable d.

Proof. Set dvu = max{cvu − cvw, 0} for all vu ∈ E. Then Pfv
∩ {xvw = 1} is the

translation of Pg by the vector (0, cvw). ⊓⊔

Lemma 3. If (x, y) ∈ P with x ∈ (0, 1)E, then (x, y) is not a vertex of P .

Proof. We first observe that (x, y) ∈ P implies (x, y) ∈ Pfv
for all v ∈ V .

Choose ε > 0 such that 0 ≤ xvw ± ε ≤ 1 for all vw ∈ E. Denote by 1 the
vector (1, . . . , 1) ∈ R

E . Define

c̄v = fv(E) = max {cvw | vw ∈ E} .

We claim that the points z1 = (x − ε1, y − εc̄) and z2 = (x + ε1, y + εc̄) belong
to P . It suffices to show that they belong to Pfv

for all v ∈ V .
Fix v ∈ V . The choice of ε makes sure that z1 and z2 satisfy the trivial

inequalities 0 ≤ xvw ≤ 1. It is easy to see that the remaining facet-inducing
inequalities of Theorem 4 also hold for z1 and z2: for a given inequality a⊤x ≤ yv,
we have

a⊤(x ± ε1) = a⊤x ± εa⊤1 ≤ yv ± εa⊤1 = yv ± εfv(E) ∓ εfv(∅) = yv ± εc̄v .

So (x, y) = 1

2
(z1 + z2) and z1, z2 ∈ P , thus (x, y) cannot be a vertex of P . ⊓⊔

Corollary 2. The vertices of P are exactly the points
{

(x, y) ∈ {0, 1}E × R
V | yv = max {cvwxvw | vw ∈ E}

}

.

In particular, we have P = P2.

Proof. It is clear that every such point is a vertex of P . We show that every
vertex (x′, y′) of P is of this form. Since yv is not bounded from above, every
vertex must satisfy yv = max {cvwxvw | vw ∈ E}. Now assume that at least one
component of x′ is fractional. Consider

S = {(x, y) ∈ P | xvw = 1 if x′
vw = 1, and xvw = 0 if x′

vw = 0}

=
⋂

v∈V

{(x, y) ∈ Pfv
| xvw = 1 if x′

vw = 1, and xvw = 0 if x′
vw = 0} .

By Lemma 1 and Lemma 2, the polyhedron S is isomorphic to an intersection
of polytopes Pg with g(x) = tg + max {dg

vuxvu | vu ∈ E} for suitable dg, tg.
Applying Lemma 3 to this intersection, it follows that (x′, y′) is not a vertex
of S. Consequently, (x′, y′) is not a vertex of P . ⊓⊔

Corollary 3. The separation problem for P2 can be solved in O(|E| log |E|)
time.

The separation algorithm for P2 that is obtained from these results proceeds
as follows: A sequence of subsets is constructed, as in the separation algorithm
for P3. Then, for every node v ∈ V , a potentially violated inequality yv ≥ a⊤x

is constructed independently.
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5 Experimental Results

After having compared the general range assignment models (2), (3), and (4)
from a polyhedral point of view, we next present the results of an experimental
comparison. In these experiments, we consider two different classes of network
topologies, arising in the symmetric connectivity and in the multicast scenario,
respectively; see Section 5.1 and Section 5.2. In Section 5.3, we describe the
framework of our experimental evaluation. Finally, the results of the evaluation
are presented and discussed in Section 5.4.

5.1 Min-Power Symmetric Connectivity

So far all results presented were valid for arbitrary network topologies X. If G

is an undirected graph and X is the set of all connected subgraphs of G, the
range assignment problem (1) specializes to the so-called min-power symmetric

connectivity problem, which has been studied extensively [2, 4, 9].
In this case, all three IP-formulations (2), (3), and (4) can be significantly

strengthened. First of all, the set X can be restricted to the set of spanning trees
in G without loss of generality. This is equivalent to introducing an additional
constraint

∑

e∈E xe = |V | − 1. The model remains correct: even if there may
be several edges adjacent to any given node, only the adjacent edge with the
largest weight contributes to the objective function. Thus, for each cycle C in a
connected subgraph, at least one edge of C does not have any influence on the
objective function value. When this edge is removed, the objective value does
not change and the graph remains connected. Removing edges iteratively, we
finally end up with a spanning tree without having changed the value of the
objective function. In particular, this stronger formulation does not change the
optimum of our problem, but improves the quality of the bounds obtained from
the LP-relaxations and thus reduces running time.

Another way to strengthen the model is related to the fact that in a connected
subgraph (on at least two nodes) each node has at least one adjacent edge. For
the standard model, this means that the constraints

∑

uv∈E

yuv ≤ 1 for all u ∈ V

can be strengthened to equations

∑

uv∈E

yuv = 1 for all u ∈ V .

In the mixed-integer models (3) and (4), we can effectively eliminate one variable
from every maximum term. As the transmission power for each node v has to
be at least the smallest weight cmin

v of the adjacent edges, this constant can be
extracted from the corresponding maximum term. The constraints

yv ≥ max {cvwxvw | vw ∈ E} for all v ∈ V
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of model (3) become

yv ≥ cmin

v + max {(cvw − cmin

v )xvw | vw ∈ E} for all v ∈ V ,

so that at least one entry in the maximum can be removed. Analogously, in the
compact model (4), the constraint that bounds the overall transmission power
from below,

y ≥
∑

v∈V

max {cvwxvw | vw ∈ E} ,

can be strengthened to

y ≥
∑

v∈V

(

cmin

v + max {(cvw − cmin

v )xvw | vw ∈ E}
)

.

Both replacements lead to stronger LP-relaxations if the separation algorithms
derived in Section 4 are now applied to the remaining maximum terms.

5.2 Min-Power Multicast

In the min-power symmetric connectivity problem, a link between two nodes u

and v is established if the transmission power of node v is large enough to
reach u and vice versa. If signals must be transmitted from a source to one or
more receiving nodes and it is not necessary that the recipients can send signals
back to the source, this can be modeled with a directed graph G as follows:
one of the nodes is a designated source node s and every other node of G is
either a terminal or a relay node. All nodes can receive and transmit signals.
The task is to establish uni-directional connections from s to every terminal.
These connections correspond to directed paths from s to the terminals that
may use one or more relay nodes. The single paths do not have to be disjoint.

The resulting problem is called the min-power multicast problem [8, 9]. As
special cases, it includes the min-power unicast problem, where only one terminal
node exists, and the min-power broadcast problem, where all nodes except for the
source are terminals. All these problems can again be modeled in the general
framework (1). In this case, all edges of G are directed and X is the set of all
Steiner-arborescences in G.

The given connectivity constraints can again be used to strengthen the three
different formulations, however to a lesser extent than in the symmetric case.
Relay nodes do not need to have any incoming or outgoing edges. Terminals
need to have at least one incoming edge, but this does not have a direct influence
on any maximum term. Only the fact that at least one edge has to leave the
source node provides a way to strengthen the models: in the standard model,
the constraint

∑

sv∈E

ysv ≤ 1

can be strengthened to
∑

sv∈E

ysv = 1 ,
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while the maximum

max {cswxsw | sw ∈ E}

can be replaced by

cmin
s + max {(csw − cmin

v )xsw | sw ∈ E}

in both compact models.

5.3 The Experimental Framework

To compare the performance of the three models for range assignment problems
discussed in this paper, we focus on the two problems introduced in the previous
sections, the min-power symmetric connectivity problem and the min-power mul-

ticast problem. We implemented straightforward branch-and-cut algorithms for
these problems that are based on the polyhedral results of Section 4. For the im-
plementation, we used the optimization tool SCIL [7]. For both problem classes,
we used the stronger formulations described in Section 5.1 and Section 5.2.

For the min-power symmetric connectivity problem, we modeled the spanning
tree constraint by adding the equation

∑

e∈E xe = |V | − 1 statically and by
separating subtour elimination constraints dynamically. We enforced the Steiner
arborescence constraint in the min-power multicast problem using

x(V, v) = 1 for all v ∈ T (5)

x(V, v) ≥ 1 for all v ∈ V \ (T ∪ {s}) (6)

x(V \ S, S) ≥ 1 for all S ⊆ V \ {s} with S ∩ T 6= ∅ and |S| ≥ 2 , (7)

where s is the source node, T ⊆ V \{s} is the set of terminal nodes, and x(A,B)
denotes the sum of those variables corresponding to edges with source node
in A ⊆ V and target node in B ⊆ V . Constraints (5) and (6) were added at the
beginning of the optimization process, constraints of type (7) were separated.

In the standard model, the maximum constraints are explicitly given by the
inequalities containing the y variables. For the mixed-integer models, we used
the inequalities and separation routines described in Section 4.

To ensure the comparability of all three models, no other enhancements, such
as preprocessing or primal heuristics, were implemented. For the same reason, we
did not separate any model or problem specific constraints as, e.g., the crossing
inequalities introduced by Althaus et al. in [1].

We tested all algorithms on instances that were generated as proposed in [1].
For a given number n, the n nodes were placed on a 10000×10000 grid randomly.
In this way, 50 instances of each size n were generated. The edge weights, i.e., the
costs for establishing a direct link between two given nodes v and w, were chosen
as cvw = ||v − w||2, where ||v − w|| denotes the Euclidean distance between v

and w. To cover all possible scenarios for the min-power multicast problem, we
considered the cases of transmitting from a source to a single terminal (unicast),
to k = ⌊n

2
⌋ terminals, or to all other nodes (broadcast).
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All tests were done on 2.33GHz Intel Xeon PCs. We set a cpu time limit of 10
hours per instance. Instances that could not be solved to optimality within this
time limit were not considered in the computation of averages in the following
statistics.

5.4 Results

The results of our tests are shown in Table 1. For each model, the number of
instances that could be solved to optimality is shown in the first column, followed
by the average number of subproblems in the branch-and-bound tree, the average
number of linear programs solved during the optimization, the average running
time, and the percentage of time spent on separating inequalities. The upper
part of the table reports the results for the min-power symmetric connectivity
problem, the lower part those for the min-power multicast problem. Here the
very first column not only contains the total number of nodes, but also the
number of terminals for each class of instances.

Table 1 shows that, when solving very small instances of the min-power
symmetric connectivity problem, the mixed-integer models do not perform con-
siderably better than the standard model. The average computation time needed
by the compact mixed-integer model is even significantly higher than that of the
other two models. This also holds true for larger instances and is due to the
very large number of linear programs that need to be solved in this model. Each
separation step for the maximum constraint in (4) yields at most one violated
inequality, while in model (3) up to |V | cutting planes are found per iteration,
aside from inequalities coming from network topology constraints.

For larger instances, the mixed-integer model gains a clear advantage over
the standard approach. More instances can be solved in time and considerably
less subproblems are needed on average. The time spent on separation is only
slightly higher than in the standard model, showing that the separation proce-
dure described in Section 4 is indeed fast and effective.

When solving instances of the min-power multicast problem, the dominance
of the mixed-integer models is even more apparent. Despite its drawbacks de-
scribed in the previous paragraph, the compact model works better than the
standard approach for the unicast and multicast instances with up to 15 nodes.
For larger instances, running times rise sharply, but in terms of the number of
solved instances the compact mixed-integer model still compares favorably to
the standard model.

The second model is obviously the model of choice for range assignment
problems on directed graphs. We could solve all but one instance within the time
limit, whereas with the standard approach only 42 multicast and 43 broadcast
instances could be solved to optimality for n = 20. Also running times were
generally shorter, in some cases significantly, which is also reflected in the lower
average number of subproblems needed.
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compact mixed-integer model (4) mixed-integer model (3) standard model (2)
n/|T | solved #sub #LP avg t/s %sep solved #sub #LP avg t/s %sep solved #sub #LP avg t/s %sep

10 50 42.56 1259.70 0.77 40.87 50 37.52 73.58 0.11 14.83 50 76.00 65.18 0.13 9.13
15 50 2551.92 275403.24 594.41 45.97 50 1776.28 3827.56 55.87 11.64 49 1354.10 1261.33 10.00 10.09
20 39 1690.38 565548.82 2661.91 44.40 44 3645.09 10085.43 253.23 8.23 41 8433.15 8045.54 240.40 6.65

10/1 50 29.16 316.36 0.15 21.25 50 24.64 60.32 0.05 5.38 50 201.16 268.30 0.33 1.57
10/4 50 68.08 745.14 0.47 35.15 50 48.64 105.26 0.12 12.04 50 364.28 414.48 0.82 7.17
10/9 50 81.56 919.54 0.79 45.09 50 68.52 141.96 0.23 14.98 50 203.72 203.34 0.44 11.73

15/1 50 67.20 3956.82 4.43 25.49 50 40.80 160.58 0.31 10.54 50 976.92 2010.72 9.56 6.39
15/7 50 266.80 18713.22 34.54 39.01 50 230.72 768.44 2.45 16.44 50 2322.04 2655.68 48.01 9.71
15/14 50 413.16 28133.62 69.33 46.91 50 362.52 1246.94 5.36 22.62 50 3598.36 3560.64 46.01 11.51

20/1 50 235.64 87074.96 649.63 26.46 50 136.84 687.96 2.60 7.55 50 2757.64 6193.02 61.11 3.59
20/9 48 2469.46 563046.83 2272.49 41.08 50 3756.44 16030.14 535.49 16.63 42 12746.24 16391.24 536.40 6.73
20/19 48 3008.88 679026.58 3913.96 49.78 49 2619.90 13361.43 135.99 25.01 43 9184.77 10114.53 316.92 10.86

Table 1. Experimental results for the min-power symmetric connectivity problem (top) and the min-power multicast problem (bottom)



6 Conclusion

We introduced two natural models for general range assignment problems and
compared them with the standard model. From the theoretical point of view,
the new models have two advantages: the number of variables is smaller and
the corresponding polyhedra have less vertices. On the other hand, a separation
algorithm has to be applied in order to arrive at the same LP-relaxation that
is given by a single LP in the standard model. Experimentally, the new models
lead to faster algorithms both in the symmetric connectivity case and in the
directed multicast case.

We would like to point out that our approach is in fact much more general: we
can not only deal with general weighted maxima in the objective function that
do not necessarily arise from network design problems, but we can even allow
arbitrary submodular objective functions. In other applications, the number of
possible values of each yv-variable may be much larger than |E|, so that the
discretization approach may become infeasible from a practical point of view,
while the efficiency of the new models does not depend on the number of useful
choices for yv.
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