
Exact Algorithms for the

Quadratic Linear Ordering Problem ⋆

Christoph Buchheim1, Angelika Wiegele2, and Lanbo Zheng3

1 Institut für Informatik, Universität zu Köln, Germany.
buchheim@informatik.uni-koeln.de

2 Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Austria.
angelika.wiegele@uni-klu.ac.at

3 NICTA, The University of New South Wales, Sydney, Australia.
lanbo.zheng@nicta.com.au

Abstract. The quadratic linear ordering problem naturally generalizes
various optimization problems, such as bipartite crossing minimization
or the betweenness problem, which includes linear arrangement. These
problems have important applications in, e.g., automatic graph drawing
and computational biology. We present a new polyhedral approach to
the quadratic linear ordering problem that is based on a linearization of
the quadratic objective function.

Our main result is a reformulation of the 3-dicycle inequalities using
quadratic terms. After linearization, the resulting constraints are shown
to be face-inducing for the polytope corresponding to the unconstrained
quadratic problem. We exploit this result both within a branch-and-
cut algorithm and within an SDP-based branch-and-bound algorithm.
Experimental results for bipartite crossing minimization show that this
approach clearly outperforms other methods.

Key words: quadratic optimization, linear ordering, crossing minimization

⋆ This work was partially supported by the Marie Curie Research Training Network
504438 (ADONET) funded by the European Commission. The first author is sup-
ported by the German Science Foundation under contract BU 2313/1-1.

1 Introduction

The linear ordering problem is one of the classical NP-hard combinatorial opti-
mization problems [5]. A linear ordering of a given finite set S is a permutation of
its elements. Assuming without loss of generality that S = {1, . . . , n}, as we will
always do in the following, a linear ordering of S is just a permutation π ∈ Sn.

In the linear ordering problem, the costs of a permutation depend on the order
of the elements in a pairwise fashion: for each two elements i, j ∈ {1, . . . , n},
one may specify costs arising in the case π(i) < π(j) and costs arising in the
case π(i) > π(j). In the usual integer programming model for the linear ordering
problem, we thus have binary variables xij telling whether π(i) < π(j) or not.
Since xij + xji = 1 and xii = 0, we need only one variable for each unordered
pair of elements, thus in total we have

(

n
2

)

variables.
In this paper, we consider the quadratic version of this problem, motivated

by applications in automatic graph drawing and computational biology. We still
model the permutations in Sn, but the costs may now depend on products of
the variables, i.e., on the simultaneous satisfaction of two relations π(i) < π(j)
and π(k) < π(l). Usually, going from linear to quadratic objective functions
makes an optimization problem much harder. In the unconstrained case, the
trivial problem of optimizing a linear function over a hypercube becomes the
unconstrained quadratic binary optimization problem, which is equivalent to
the maximum cut problem [3], and thus becomes NP-hard. Even if the linear
variant of the problem at hand is already NP-hard, as in the case of linear
ordering, the practical hardness usually increases significantly. According to our
experience, in most cases polyhedral knowledge about a linear problem is rather
useless for solving the quadratic variant, since even facet-inducing inequalities
for the linear problem might become very weak constraints for the (linearized)
quadratic version of the same problem.

In order to develop cutting plane algorithms for the exact solution of lin-
ear ordering problems, polyhedral methods have been investigated intensively;
for early references see [6, 12]. Following the above model, we have to enforce
transitivity: if π(i) < π(j) and π(j) < π(k), then we need π(i) < π(k). Usually,
transitivity is modeled by the so-called 3-dicycle inequalities

0 ≤ xij + xjk − xik ≤ 1

for i < j < k. The main idea presented in this paper is to replace 3-dicycle
inequalities by quadratic equations. These are equivalent to 3-dicycle inequalities
if integrality is required, but if the integrality is dropped and the resulting LP-
relaxation is considered, the new constraints are much stronger. In fact, we can
show that the new constraints induce faces of the corresponding unconstrained
quadratic 0–1 optimization problem.

The same quadratic reformulation of 3-dicyle inequalities has been used by
Lewis et al. [10] in order to derive penalty functions for the original linear order-
ing problem. They solve the resulting quadratic problem heuristically. However,
they do not investigate polyhedral properties of the new constraints, since they
do not consider any linearization of the quadratic problem.

1

Our approach thus allows us to reduce the quadratic linear ordering problem
to unconstrained quadratic 0–1 optimization in an elegant way. In particular, we
can combine this reduction with an arbitrary polyhedral approach to the latter
problem. In this paper, we are particularly interested in comparing ILP and SDP
based methods. Experimentally, our reduction turns out to be very efficient for
both methods. The question of how to solve quadratic 0–1 optimization problems
quickly in practice has attracted a lot of interest recently. In particular, Billionnet
and Elloumi [2] experimentally compared approaches based on linearization with
those exploiting convexity of the objective function. They also compared their
results with those obtained by an SDP-approach to max-cut, see also [13].

This paper is organized as follows. In Section 2, we present the polyhedral
results motivating our approach to quadratic linear ordering. In Section 3, we
explain how these results can be exploited in ILP- and SDP-based algorithms.
Finally, in Section 4 we present an experimental evaluation of these ideas, applied
to the bipartite crossing minimization problem.

2 Polyhedral Results

For a permutation π ∈ Sn, we define a characteristic vector χ(π) ∈ {0, 1}(
n

2) as
follows: for all 1 ≤ i < j ≤ n, we set

χ(π)ij =

{

1 if π(i) < π(j)

0 otherwise .

Let LO(n) denote the linear ordering polytope on n elements, i.e., the polytope

LO(n) = conv
{

χ(π) | π ∈ Sn

}

⊆ R(n

2) .

In the following, we consider the quadratic linear ordering problem:

max x⊤Cx s.t. x ∈ LO(n) ∩ {0, 1}(
n

2) , (1)

where C is a real
(

n
2

)

×
(

n
2

)

matrix. Let I denote the set

I =
{

(i, j, k, l) | i < j and k < l and (i < k or (i = k and j < l))
}

.

In the standard linearization of Problem (1), each product xijxkl is replaced by a
new binary variable yijkl, for (i, j, k, l) ∈ I. The resulting integer program reads

max
∑

(i,j,k,l)∈I(cijkl + cklij)yijkl +
∑

i<j cijxij

s.t. x ∈ LO(n)

yijkl ≤ xij , xkl for all (i, j, k, l) ∈ I

yijkl ≥ xij + xkl − 1 for all (i, j, k, l) ∈ I

yijkl ∈ {0, 1} for all (i, j, k, l) ∈ I

xij ∈ {0, 1} for all i < j .

(2)

2

Our aim is to understand the polytope QLO(n) that is spanned by all feasi-
ble solutions of Problem (2). We will show that the condition x ∈ LO(n) can
be replaced by constraints that induce a face of the remaining unconstrained
problem. More precisely, we consider

max
∑

(i,j,k,l)∈I(cijkl + cklij)yijkl +
∑

i<j cijxij

s.t. yijkl ≤ xij , xkl for all (i, j, k, l) ∈ I

yijkl ≥ xij + xkl − 1 for all (i, j, k, l) ∈ I

yijkl ∈ {0, 1} for all (i, j, k, l) ∈ I

xij ∈ {0, 1} for all i < j ,

(3)

which is the standard linearization of an unconstrained quadratic optimization
problem over the binary variables xij . Denote by Pn the convex hull of all feasible
solutions of (3). By a well-known result of De Simone [3], the polytope Pn is
isomorphic to a cut polytope that corresponds to a graph on

(

n
2

)

+ 1 nodes.
We will show that QLO(n) is a face of Pn. To this end, we will model the

constraint x ∈ LO(n), for integer x, by a set of quadratic equations, each inducing
a face of Pn. Usually, the linear ordering problem is modeled by introducing the
3-dicycle inequalities

0 ≤ xij + xjk − xik ≤ 1 (4)

for all i < j < k. In the following, we present a different way to model transitivity,
exploiting the presence of product variables yijkl.

Lemma 1. Let (x, y) be an integer vector in Pn. Then (x, y) ∈ QLO(n) if and

only if

xik − yijik − yikjk + yijjk = 0

for all i < j < k. These equations form a minimal equation system for QLO(n).

Proof. First note that (x, y) ∈ QLO(n) is equivalent to x ∈ LO(n), as (x, y) is
integer. So assume x ∈ LO(n). Then x = χ(π) for a permutation π ∈ Sn. If π(i)
is between π(j) and π(k), we have xik − xjk = 0, otherwise xik − xij = 0. Thus

0 = (xik − xjk)(xik − xij) = xik − yijik − yikjk + yijjk

is a valid equation for x.
On the other hand, these constraints imply that x ∈ LO(n). To check this, we

have to derive transitivity. So let xij = xjk = 1. Then (xik − xjk)(xik − xij) = 0
reduces to xik − 1 = 0 and hence xik = 1. If xij = xjk = 0, we derive xik = 0.

It remains to show that the given equation system is minimal. Clearly, the
matrix defined by the equation system has full row rank, as every y-variable
appears in exactly one equation. Now consider any equation a⊤(x, y) = b that is
valid for QLO(n). For the decreasing permutation n, . . . , 1 we have π(i) = n−i+1
and therefore π(i) > π(j) for 1 ≤ i < j ≤ n. Therefore, the characteristic vector
of the decreasing permutation is the zero vector and (x, y) = 0 is a feasible
solution of Problem (2), i.e., the zero vector is contained in QLO(n). This implies
b = 0.

3

To show that a⊤(x, y) = 0 is a linear combination of the given constraints,
it suffices to show the following:

(a) aik = −
∑k−1

j=i+1 aijik = −
∑k−1

j=i+1 aikjk for all i < k
(b) aijkl = 0 for all i < j and k < l with pairwise distinct i, j, k, l
(c) aijjk = −aijik = −aikjk for all i < j < k.

For the following, let πst
ij denote the decreasing permutation n, . . . , 1 where first j

is moved t positions to the left and then i is moved s positions to the left. If t (s)
is negative, then j (i) is moved −t (−s) positions to the right.

To show (a), consider the permutations π
(k−i−1)0
ik and π

(k−i)0
ik . It is easy

to verify that a⊤χ(π
(k−i−1)0
ik) = a⊤χ(π

(k−i)0
ik) yields aik +

∑k−1
j=i+1 aijik = 0.

Analogously, a⊤χ(π
0(−k+i+1)
ik) = a⊤χ(π

0(−k+i)
ik) yields aik +

∑k−1
j=i+1 aikjk = 0.

For (b), we show ai(i+s)k(k+t) = 0 for all s, t ≥ 0 with i + s 6= k, k + t. First

assume i + s < k. In this case, a⊤χ(πst
ik) = a⊤χ(π

(s−1)t
ik) translates to

ai(i+s) +

s−1
∑

r=1

ai(i+r)i(i+s) +

t
∑

r=1

ai(i+s)k(k+r) = 0 . (5)

Using (a), we derive
∑t

r=1 ai(i+s)k(k+r) = 0. For t = 1, we get ai(i+s)k(k+1) = 0.
For t > 1, we derive ai(i+s)k(k+t) = 0 by induction. Now assume i + s > k.

If i + s < k + t, then a⊤χ(πst
ik) = a⊤χ(π

s(t−1)
ik) yields

ak(k+t) +

t−1
∑

r=1

ak(k+r)k(k+t) +

s
∑

r=1

ai(i+r)k(k+t) − aikk(k+t) = 0 .

Thus
∑s

r=1 ai(i+r)k(k+t) − aikk(k+t) = 0 by (a). By induction, ai(i+r)k(k+t) = 0
for all r < s with i + r 6= k, thus ai(i+s)k(k+t) = 0. If i + s > k + t, we get (5)
again, and as above induction over t yields ai(i+s)k(k+t) = 0.

Finally, for (c), we consider a⊤χ(π
(k−i)(k−j)
ij) = 0. Using (a), this equation

reduces to
k−i
∑

r1=1

k−j
∑

r2=1

ai(i+r1)j(j+r2) = 0

so that applying (b) we are left with
∑k−j

r2=1(aijj(j+r2) + ai(j+r2)j(j+r2)) = 0. By
induction over k − j we derive aijjk + aikjk = 0 for all k > j. Similarly, we
derive aijjk + aijik = 0. ⊓⊔

Theorem 1. We have

dim QLO(n) =

(

n

2

)

+

(
(

n
2

)

2

)

−
(

n

3

)

Proof. The polytope QLO(n) is defined in dimension
(

n
2

)

for the x-variables

plus |I| =
((n

2)
2

)

for the y-variables. By Lemma 1, a minimal equation system

for QLO(n) in this space contains
(

n
3

)

equations, hence the result. ⊓⊔

4

Lemma 2. For all i < j < k, the constraint xik − yijik − yikjk + yijjk = 0
induces a face of the polytope Pn.

Proof. It suffices to show that the inequality

xik − yijik − yikjk + yijjk ≥ 0

is valid for Pn for all i < j < k. As before, we use that

xik − yijik − yikjk + yijjk = (xik − xjk)(xik − xij) .

The result follows from the fact that either xik = xjk or xik = xij or xjk = xij ,
thus the right hand side becomes either zero or (xik − xjk)2. ⊓⊔

Theorem 2. The polytope QLO(n) is isomorphic to a face of Pn and hence to

a face of a cut polytope.

Proof. By Lemmas 1 and 2, the polytope QLO(n) is contained in the face F of Pn

that is induced by the constraints xik−yijik−yikjk +yijjk = 0. By definition, Pn

is an integer polytope. In particular, its face F is spanned by integer vectors.
Hence it remains to show that every integer vector in F is contained in QLO(n).
This is the if-part of Lemma 1. ⊓⊔

3 Solution Methods

Our aim is to exploit Theorem 2 for practical computation. In this section, we
propose two different approaches: a branch-and-cut algorithm (Section 3.1) and
a branch-and-bound algorithm based on semidefinite programming (Section 3.2).

3.1 Branch-and-cut

Theorem 2 implies that every valid inequality for QLO(n) is induced by a valid
inequality for Pn. In particular, all facets of QLO(n) are intersections of facets
of Pn with the affine space determined by the constraints of Lemma 1.

We start our branch-and-cut algorithm for quadratic linear ordering by com-
bining these constraints with any integer linear program (ILP) modeling the
cut polytope Pn. Whenever we desire to separate a vector x from QLO(n), we
ignore the fact that we have additional constraints. Instead, we feed x into any
separation algorithm for the cut polytope Pn. Any returned cutting plane will
be valid for the polytope QLO(n) as well.

From the discussion above, it is clear that if we had an exact separation
algorithm for Pn, this reduction would yield an exact separation algorithm
for QLO(n) as well, by Theorem 2. Clearly, as the maximum cut problem is
NP-hard, we do not know any exact separation algorithm for Pn in practice,
except for tiny values of n. However, the separation problem for cut polytopes
has been well-studied; see e.g. [1, 9, 11]. Theorem 2 allows us to carry over all
these results without further work.

5

3.2 Semidefinite Programming

An exact algorithm for solving the maximum cut problem based on semidefinite
programming has been introduced in [13]. This approach uses the basic semi-
definite programming relaxation for maximum cut together with the so-called
triangle inequalities in a branch-and-bound framework. More precisely, at each
node of the branch-and-bound tree the following semidefinite program (SDP) is
solved approximately in order to obtain an upper bound on the maximum cut.

zsdp-met = max{〈L,X〉 | X ∈ E , A(X) ≤ e}. (6)

Here, L is the Laplace matrix of the underlying graph, E denotes the elliptope,
i.e., the set of positive semidefinite matrices with an all-ones diagonal of appro-
priate size, and A(X) ≤ e symbolically collects the triangle inequalities. 〈L,X〉
is the trace inner product, i.e., 〈L,X〉 = tr(LX).

Since the number of triangle inequalities is of order |V |3, with V being the set
of vertices of the graph, solving (6) directly is impractical already for medium-
sized graphs. In [13] a bundle method is used to solve this SDP approximately.
To apply the bundle method, the constraints that make the problem hard to
solve, i.e., the triangle inequalities, are dualized and lifted into the objective
function, hence we obtain the Lagrangian

L(X; γ) := 〈L,X〉 + γ⊤(e −A(X)) = e⊤γ + 〈L −A⊤(γ),X〉 .

The problem to be solved now reads

zsdp-met = min
γ≥0

f(γ),

where f is the convex, but non-smooth function

f(γ) := max
X∈E

L(X; γ) = e⊤γ + max
X∈E

〈L −A⊤(γ),X〉. (7)

The triangle inequalities A(X) ≤ e are handled dynamically, i.e., in the course
of the algorithm, the set of constraints is updated from time to time: newly
violated constraints are added, whereas inequalities with a dual multiplier close
to zero are removed.

As discussed in Section 2, solving the quadratic linear ordering problem
amounts to solving a maximum cut problem with a few additional equations,
namely those given in Lemma 1. We can add these constraints as inequalities, as
one of the directions is implied by the maximum cut formulation; see the proof
of Lemma 2. Let us denote the remaining

(

n
3

)

inequalities in terms of the matrix
variable X by B(X) ≤ b. Adding these constraints to (6) and dualizing them,
introducing dual variables µ, the function to be minimized becomes

fqlo(γ, µ) = max
X∈E

L(X; γ, µ)

= e⊤γ + b⊤µ + max
X∈E

〈L −A⊤(γ) − B⊤(µ),X〉.

6

Like in [13], the bundle method can be used to minimize fqlo subject to γ ≥ 0
and µ ≥ 0. While the triangle constraints are chosen dynamically, the problem-
specific constraints B(X) ≤ b are present all the time, since the number of these
constraints is small enough.

For experimenting with applications of the quadratic linear ordering problem,
also the parameters of the algorithm in [13] have to be adjusted. This is discussed
in Section 4.

4 Computational Experiments

In order to evaluate the practical performance of our approach presented in
the previous section, we performed a computational evaluation using instances
arising in bipartite crossing minimization. Given a bipartite graph, we try to
determine a drawing of the graph where the vertices of the two layers are placed
on two parallel lines and edges are drawn as straight lines; see Fig. 1. The aim
is to minimize the number of edge crossings in such a drawing, this number is
obviously determined by the permutations of the vertices on both layers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 12 34 5 678 91011 121314

15 161718 19 20 212223 24 25 26272829

Fig. 1. Two drawings of the same graph, the second drawing is crossing-minimal

An exact algorithm for this problem has been introduced by Jünger and
Mutzel [7]. They first consider the problem variant where the permutation on one
of the two layers is fixed. Even then, the problem remains NP-hard [4]. However,
the problem now becomes a linear ordering problem: considering two edges of the
graph, the existence of a crossing between them depends on the chosen order of
their end-vertices on the free layer. Using a branch-and-cut algorithm for linear
ordering, Jünger and Mutzel are able to compute exact solutions for practical
instances very quickly, if one layer is fixed.

7

For the problem with two free layers, they use this algorithm as a black
box inside a branch-and-bound scheme. More precisely, the permutations on the
smaller layer are enumerated, while the permutations on the larger layer are
then determined by solving a linear ordering problem as above. Using intelligent
bounding techniques, the resulting algorithm was shown to be fast on sparse
instances with up to 15 vertices on the smaller layer.

Many heuristics are known and well-used for the bipartite crossing mini-
mization problem. In particular, heuristics for the case of one fixed layer can
be applied repeatedly, while alternating the layer being considered as fixed. As
Jünger and Mutzel show, the results of these heuristic approaches in general are
far away from the optimum in terms of the number of crossings. For instances
on 10 vertices per layer and 10 edges, the solutions produced by the heuristics
had between 424 % and 3214 % more crossings than the optimal solutions; for
20 edges the numbers were between 61 % and 235 %. This motivates the use of
exact solution methods.

In this section, we experimentally compare the exact algorithm of Jünger
and Mutzel for two free layers with the two approaches presented in Section 3.
Clearly, the bipartite crossing minimization problem with two free layers can be
modeled directly as a quadratic linear ordering problem, as the existence of a
crossing is determined by the order of the end-vertices on both layers.

Notice however that bipartite crossing minimization is a special case of
quadratic linear ordering: since we only have to care about the order of vertices
within one layer of the bipartite graph, we do not need an ordering variable xij

if i and j belong to different layers. Moreover, all products are taken between
ordering variables belonging to different layers. The reason for us to focus on this
special case is that it is a natural application of quadratic linear ordering, and
that there exist other algorithms for comparison. However, the general picture
does not change if we apply our approach to general instances.

In the following, we additionally give results for an implementation using
the CPLEX MIP-solver, applied to the standard linearization of the objective
function in combination with the standard integer programming formulation of
the linear ordering problem. In summary, we compared four algorithms:

– The exact algorithm introduced by Jünger and Mutzel, which is denoted by
JM in the following. We use the original implementation that was also used
for experiments in [7], except for an update to CPLEX 11.1.

– The standard linearization approach LIN, in which we apply the MIP-solver
of CPLEX 11.1 to the linearized model (2), using default parameter settings.
The constraint x ∈ LO(n) is realized by the linear 3-dicycle inequalities (4).

– The branch-and-cut algorithm ILP outlined in Section 3.1. We apply CPLEX
to the linearized model (2), using the quadratic constraints of Lemma 1. We
do not change default parameters except that cutting plane generation is
switched off. Instead, we call a separation routine for the corresponding cut
polytope. In our implementation, the latter routine generates violated cycle
inequalities, using the exact method of [1].

8

– The SDP-based branch-and-bound approach outlined in Section 3.2, denoted
by SDP in the following. Our implementation uses the software BiqMac for
unconstrained quadratic 0–1 optimization, described in [13].

In order to use BiqMac efficiently, we have to adjust the parameters according
to our problem. An important parameter is the number of outer iterations of
the bundle routine. Due to our problem sizes, we allow 30 outer iterations. The
rounding heuristic inside the algorithm in [13] works astonishingly well for max-
cut instances, and thus, in the original algorithm, it is called only twice at each
node of the branch-and-bound tree. In the presence of additional constraints,
the solution obtained by the heuristic has to be repaired, i.e., transitivity has to
be restored if necessary. This is done in a straightforward left-to-right fashion.
Since more attempts are needed to finally get to the optimal solution (and since
the heuristic is computationally cheap anyway), we call the heuristic in every
outer iteration. With this setting we hope to find the optimal solution and close
the gap already in the root node, so that branching is not necessary.

For our experiments, we create graphs in the same way as in [7]: we generate
random bipartite graphs using the function random bigraph of the Stanford
GraphBase [8]. Results are reported for graphs having n = 10, 12, . . . , 24 vertices
on each layer. For each n, we consider graphs with density d = 10, 20, . . . , 90,
if n ≤ 16, and with density d = 10, 20 otherwise. Density d means that the
number of edges is ⌊dn2/100⌋. For each pair (n, d), we report the averages over
10 random instances.

All experiments were carried out on an Intel Xeon processor with 2.33 GHz;
the results are shown in Table 1. For all (n, d) and for all four approaches tested,
we state the number of instances being solved within one cpu-hour and the
average running times for solved instances, in cpu-seconds. For the three latter
methods, we also state the average number of nodes in the enumeration tree for
solved instances. Note that all algorithms are started from scratch, so that they
both have to find optimal solutions and prove their optimality.

Our results confirm that the JM algorithm is very fast on sparse and small
graphs: it is the fastest of the compared methods for n = 10 and 20 ≤ d ≤ 80 as
well as for n = 12 and 20 ≤ d ≤ 40. However, the running time increases sharply
with density. For n = 14, the runtime limit of one hour is reached for the first
time at d = 40, while it is reached already for d = 10 if n ≥ 16.

For the LIN approach, the effect of density is even more evident. While it is
the fastest method for all n if d = 10, it is much slower than all other methods
on denser instances. Even for n = 10, two instances cannot be solved within one
cpu-hour. For n = 14, the limit is reached at d = 30, for 16 ≤ n ≤ 20 at d = 20,
and for n ≥ 22 at d = 10.

The ILP approach is considerably faster than LIN on denser instances and is
less affected by an increase in density, but it is still not able to solve large and
dense instances. However, it is obvious from the number of nodes needed in the
enumeration tree that the polyhedral results given in Section 2 are strong: for
the solved instances, branching was nearly never necessary, most instances could

9

be solved in the root node. In terms of running time, ILP clearly beats both JM

and LIN on larger instances.
However, the clear winner of our evaluation is the SDP approach. It could solve

all instances with n ≤ 14 and most instances with n ≥ 16 in time. Particularly
for denser instances, the difference between SDP and the other approaches is
impressive. E.g., for n = 14 and each 40 ≤ d ≤ 90, the solution was computed
after less than three minutes on average, while no other method was able to solve
all 10 instances in one hour.

In Table 1, one can observe a decrease of running time for very dense instances
both for LIN and ILP. The reason is that the percentage of product variables
needed is actually not proportional to d. On contrary, the expected percentage of
products with non-zero coefficient is d2−d4. This is because the expected number
of K2,2 subgraphs increases with d. Every such subgraph has exactly one crossing
in every ordering. Algebraically, the corresponding coefficients cancel out each
other. The maximum of d2 − d4 is attained at d = 1/

√
2 ≈ 70.7%, beyond which

it decreases to zero for d = 100%.
One might ask whether our polyhedral results presented in Section 2 have

a significant effect on the performance of the ILP and the SDP approach. In
other words, would the results be similar if the algorithm used the 3-dicycle
inequalities (4) instead of the linearized quadratic equations of Lemma 1? For
ILP, the quadratic reformulation significantly improves running times for harder
instances, as shown in Table 2. For sparse instances, however, the introduction
of additional variables needed for the quadratic reformulation does not pay off.

As shown in Table 2, both the linear and the quadratic problem formulation
can nearly always be solved without branching—if they can be solved at all. The
reason is that the cycle relaxation for max-cut, as mentioned above, yields a very
tight relaxation for our problem. But, on the other hand, the number of cycle
inequalities being generated is huge, so that the branch& cut algorithm spends
most of its time in the root node. Whenever branching is necessary, it is likely
that the instance cannot be solved at all. We experimented with different tailing
off strategies to avoid this effect, but this always resulted in longer running times
because of a weaker relaxation. The same was true when using heuristic instead
of exact separation of cycle inequalities.

For SDP, the effect of the quadratic reformulation is less obvious; for small
instances, we found that the difference is negligible, the bounds are still strong
enough to prevent branching and to guarantee a small number of outer itera-
tions in the root node. However, for larger instances the quadratic reformulation
clearly has a positive effect on the results: as shown in Table 3, significantly more
instances can be solved in one hour when using quadratic constraints.

In summary, we can conclude that the reformulation of 3-dicycle inequalities
by quadratic face-inducing equations often leads to significant runtime improve-
ments both in the ILP and in the SDP setting, particularly for harder instances.

10

Table 1. Results for bipartite graphs with increasing size and density (limit 1h)

n d JM LIN ILP SDP

time # time nodes # time nodes # time nodes

10 10 10 0.02 10 0.01 1.0 10 0.30 1.0 10 1.16 1.0
10 20 10 0.05 10 0.74 9.4 10 1.01 1.0 10 2.25 1.0
10 30 10 0.15 10 14.95 329.5 10 4.55 1.0 10 4.77 1.0
10 40 10 0.33 10 51.20 823.8 10 12.17 1.0 10 5.07 1.0
10 50 10 0.61 10 180.86 2922.4 10 18.31 1.0 10 4.71 1.0
10 60 10 1.14 10 738.58 12095.0 10 27.34 1.0 10 5.35 1.0
10 70 10 2.35 8 1225.62 21176.5 10 33.46 1.0 10 6.81 1.0
10 80 10 4.05 10 538.68 6959.9 10 15.64 1.0 10 5.15 1.0
10 90 10 8.86 10 86.51 560.2 10 8.59 2.0 10 6.79 1.0

12 10 10 0.20 10 0.02 1.0 10 8.07 1.0 10 9.54 1.0
12 20 10 1.52 10 5.93 79.8 10 19.00 1.0 10 18.36 1.0
12 30 10 4.53 10 140.60 1408.6 10 35.95 1.0 10 21.61 1.0
12 40 10 16.36 7 1808.35 17897.7 10 106.01 1.0 10 25.29 1.0
12 50 10 57.05 0 — — 10 440.96 1.0 10 44.84 1.0
12 60 10 102.15 0 — — 10 622.10 1.0 10 48.26 1.0
12 70 10 211.37 0 — — 10 607.73 1.0 10 40.31 1.0
12 80 10 527.75 0 — — 10 273.39 1.0 10 28.71 1.0
12 90 10 1036.30 6 1693.75 4083.2 10 73.60 1.8 10 22.21 1.0

14 10 10 15.68 10 0.33 3.4 10 19.02 1.0 10 41.03 1.0
14 20 10 110.83 10 102.07 1062.2 10 155.14 1.0 10 89.61 1.0
14 30 10 747.49 4 1267.86 9748.8 10 688.01 1.0 10 132.72 1.0
14 40 9 1432.45 0 — — 8 1667.63 1.0 10 144.03 1.0
14 50 2 2718.05 0 — — 1 1453.35 1.0 10 180.49 1.0
14 60 0 — 0 — — 1 2594.94 1.0 10 141.93 1.0
14 70 0 — 0 — — 5 2177.86 1.0 10 149.68 1.0
14 80 0 — 0 — — 7 1829.18 1.0 10 145.97 1.0
14 90 0 — 0 — — 10 398.75 1.0 10 81.27 1.0

16 10 8 328.92 10 2.77 32.9 10 190.83 1.0 10 124.57 1.0
16 20 5 2220.12 7 809.30 4125.1 9 882.19 1.0 10 309.31 1.0
16 30 0 — 0 — — 4 2112.61 1.0 10 630.77 1.2
16 40 0 — 0 — — 0 — — 9 800.87 1.2

16 50 0 — 0 — — 0 — — 7 451.09 1.0

16 60 0 — 0 — — 0 — — 9 403.82 1.7

16 70 0 — 0 — — 0 — — 8 789.62 1.2

16 80 0 — 0 — — 0 — — 10 568.55 1.0
16 90 0 — 0 — — 7 2373.15 1.0 10 362.29 1.0

18 10 7 1010.78 10 7.06 39.3 10 571.66 1.0 10 408.04 1.0
18 20 0 — 1 2166.05 10671.0 4 2563.59 1.0 10 778.86 1.0

20 10 1 1112.12 10 117.72 836.2 2 1756.11 1.0 10 1543.39 1.0
20 20 0 — 0 — — 0 — — 8 1813.87 1.0

22 10 0 — 9 546.71 2710.3 0 — — 6 2658.64 1.0

22 20 0 — 0 — — 0 — — 1 3443.81 1.0

24 10 0 — 2 2225.82 7360.0 0 — — 0 — —
24 20 0 — 0 — — 0 — — 0 — —

11

Table 2. Results for ILP with linear and quadratic constraints (limit 1h)

n d ILP (linear constraints) ILP (quadratic constraints)

time nodes root # time nodes root

10 10 10 0.01 1.0 0.00 10 0.30 1.0 0.00
10 20 10 0.07 1.2 0.00 10 1.01 1.0 0.00
10 30 10 0.97 1.1 0.00 10 4.55 1.0 0.00
10 40 10 6.83 1.2 0.00 10 12.17 1.0 0.00
10 50 10 30.35 1.0 0.00 10 18.31 1.0 0.00
10 60 10 114.19 2.2 0.27 10 27.34 1.0 0.00
10 70 10 450.18 5.2 0.71 10 33.46 1.0 0.00
10 80 10 359.64 1.0 0.00 10 15.64 1.0 0.00
10 90 10 518.22 2.4 0.27 10 8.59 2.0 0.27

12 10 10 0.04 1.0 0.00 10 8.07 1.0 0.00
12 20 10 0.43 1.0 0.00 10 19.00 1.0 0.00
12 30 10 7.15 1.0 0.00 10 35.95 1.0 0.00
12 40 10 102.33 1.0 0.00 10 106.01 1.0 0.00
12 50 9 1275.08 13.8 1.58 10 440.96 1.0 0.00
12 60 6 2081.05 1.0 0.00 10 622.10 1.0 0.00
12 70 1 332.87 1.0 0.00 10 607.73 1.0 0.00
12 80 1 2448.13 1.0 0.00 10 273.39 1.0 0.00
12 90 4 1774.03 1.5 0.00 10 73.60 1.8 0.15

14 10 10 0.11 1.0 0.00 10 19.02 1.0 0.00
14 20 10 8.45 1.3 0.00 10 155.14 1.0 0.00
14 30 10 220.41 2.4 0.05 10 688.01 1.0 0.05
14 40 8 1602.86 1.0 0.00 8 1667.63 1.0 0.00

14 50 0 — — — 1 1453.35 1.0 0.00

14 60 0 — — — 1 2594.94 1.0 0.00

14 70 0 — — — 5 2177.86 1.0 0.00

14 80 0 — — — 7 1829.18 1.0 0.00

14 90 0 — — — 10 398.75 1.0 0.00

16 10 10 0.32 1.0 0.00 10 190.83 1.0 0.00
16 20 10 64.13 1.1 0.00 9 882.19 1.0 0.00

16 30 9 1736.68 1.0 0.00 4 2112.61 1.0 0.00

16 40 0 — — — 0 — — —
16 50 0 — — — 0 — — —
16 60 0 — — — 0 — — —
16 70 0 — — — 0 — — —
16 80 0 — — — 0 — — —
16 90 0 — — — 7 2373.15 1.0 0.00

18 10 10 0.90 1.0 0.00 10 571.66 1.0 0.00
18 20 10 351.92 1.1 0.00 4 2563.59 1.0 0.00

20 10 10 7.02 2.9 0.00 2 1756.11 1.0 0.00

20 20 7 1735.38 1.0 0.00 0 — — —

22 10 10 33.32 1.2 0.00 0 — — —
22 20 0 — — — 0 — — —

24 10 10 161.44 1.3 0.00 0 — — —
24 20 0 — — — 0 — — —

12

Table 3. Results for SDP with linear and quadratic constraints (limit 1h)

n d SDP (linear constraints) SDP (quadratic constraints)

time nodes root # time nodes root

10 10 10 2.41 1.0 0.00 10 1.16 1.0 0.00
10 20 10 2.21 1.0 0.00 10 2.25 1.0 0.00
10 30 10 4.66 1.0 0.00 10 4.77 1.0 0.00
10 40 10 5.23 1.0 0.00 10 5.07 1.0 0.00
10 50 10 4.97 1.0 0.00 10 4.71 1.0 0.00
10 60 10 5.31 1.0 0.00 10 5.35 1.0 0.00
10 70 10 6.80 1.0 0.00 10 6.81 1.0 0.00
10 80 10 5.49 1.0 0.00 10 5.15 1.0 0.00
10 90 10 6.35 1.0 0.00 10 6.79 1.0 0.00

12 10 10 9.84 1.0 0.00 10 9.54 1.0 0.00
12 20 10 15.81 1.0 0.00 10 18.36 1.0 0.00
12 30 10 21.24 1.0 0.00 10 21.61 1.0 0.00
12 40 10 26.23 1.0 0.00 10 25.29 1.0 0.00
12 50 10 51.29 1.0 0.00 10 44.84 1.0 0.00
12 60 10 50.03 1.0 0.00 10 48.26 1.0 0.00
12 70 10 45.58 1.0 0.00 10 40.31 1.0 0.00
12 80 10 31.17 1.0 0.00 10 28.71 1.0 0.00
12 90 10 22.26 1.0 0.00 10 22.21 1.0 0.00

14 10 10 60.09 1.0 0.00 10 41.03 1.0 0.00
14 20 10 86.00 1.0 0.00 10 89.61 1.0 0.00
14 30 8 115.85 1.0 0.00 10 132.72 1.0 0.00
14 40 10 293.74 1.2 0.01 10 144.03 1.0 0.00
14 50 10 189.24 1.0 0.00 10 180.49 1.0 0.00
14 60 10 144.36 1.0 0.00 10 141.93 1.0 0.00
14 70 10 170.00 1.0 0.00 10 149.68 1.0 0.00
14 80 10 155.25 1.0 0.00 10 145.97 1.0 0.00
14 90 10 80.50 1.0 0.00 10 81.27 1.0 0.00

16 10 10 118.55 1.0 0.00 10 124.57 1.0 0.00
16 20 10 287.01 1.0 0.00 10 309.31 1.0 0.00
16 30 9 393.79 1.0 0.00 10 630.77 1.2 0.02
16 40 7 551.23 1.0 0.00 9 800.87 1.2 0.02

16 50 7 534.98 1.0 0.00 7 451.09 1.0 0.00

16 60 5 484.64 1.0 0.00 9 403.82 1.7 0.03

16 70 7 515.93 1.0 0.00 8 789.62 1.2 0.01

16 80 9 506.98 1.0 0.00 10 568.55 1.0 0.00
16 90 10 319.81 1.0 0.00 10 362.29 1.0 0.00

18 10 8 553.05 1.0 0.00 10 408.04 1.0 0.00
18 20 10 756.97 1.0 0.00 10 778.86 1.0 0.00

20 10 10 1184.73 1.0 0.00 10 1543.39 1.0 0.00
20 20 7 1787.55 1.0 0.00 8 1813.87 1.0 0.00

22 10 6 2704.50 1.0 0.00 6 2658.64 1.0 0.00

22 20 0 — — — 1 3443.81 1.0 0.00

24 10 0 — — — 0 — — —
24 20 0 — — — 0 — — —

13

References

1. F. Barahona and A. R. Mahjoub. On the cut polytope. Mathematical Programming,
36:157–173, 1986.

2. A. Billionnet and S. Elloumi. Using a mixed integer quadratic programming
solver for the unconstrained quadratic 0-1 problem. Mathematical Programming,
109(1):55–68, 2007.

3. C. De Simone. The cut polytope and the boolean quadric polytope. Discrete

Mathematics, 79:71–75, 1990.
4. P. Eades and N. C. Wormald. Edge crossings in drawing bipartite graphs. Algo-

rithmica, 11:379–403, 1994.
5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.
6. M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering polytope.

Mathematical Programming, 33:43–60, 1985.
7. M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: performance

of exact and heuristic algorithms. Journal of Graph Algorithms and Applications,
1(1):1–25, 1997.

8. D. Knuth. The Stanford GraphBase: A platform for combinatorial computing.
ACM Press, Addison-Wesley Publishing Company, New York, 1993.

9. M. Laurent. The Max-Cut problem. In M. Dell’Amico, F. Maffioli, and S. Martello,
editors, Annotated Bibliography in Combinatorial Optimization. Wiley, 1997.

10. M. Lewis, B. Alidaee, F. Glover, and G. Kochenberger. xQx as a modeling and
solution framework for the linear ordering problem. International Journal of Op-

erational Research, 4(6), 2008. To appear.
11. F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi. Computing exact ground states

of hard Ising spin glass problems by branch-and-cut. In A. K. Hartmann and
H. Rieger, editors, New Optimization Algorithms in Physics, pages 47–69. Wiley-
VCH, 2004.

12. G. Reinelt. The Linear Ordering Problem: Algorithms and Applications. Helder-
mann Verlag, 1985.

13. F. Rendl, G. Rinaldi, and A. Wiegele. A branch and bound algorithm for Max-Cut
based on combining semidefinite and polyhedral relaxations. In Integer program-

ming and combinatorial optimization – IPCO 2007, volume 4513 of LNCS, pages
295–309. Springer, Berlin, 2007.

14

