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Abstract

The minimum k-partition (MkP) problem is the problem of partitioning the set of vertices of a
graph into k disjoint subsets so as to minimize the total weight of the edges joining vertices in the same
partition. The main contribution of this paper is the design and implementation of a branch-and-cut
algorithm based on semidefinite programming (SBC) for the MkP problem. The two key ingredients for
this algorithm are: the combination of semidefinite programming (SDP) with polyhedral results; and
the iterative clustering heuristic (ICH) that finds feasible solutions for the MkP problem. We compare
ICH to the hyperplane rounding techniques of Goemans and Williamson and of Frieze and Jerrum,
and the computational results support the conclusion that ICH consistently provides better feasible
solutions for the MkKP problem. ICH is used in our SBC algorithm to provide feasible solutions at each
node of the branch-and-bound tree. The SBC algorithm computes globally optimal solutions for dense
graphs with up to 60 vertices, for grid graphs with up to 100 vertices, and for different values of k,
providing the best exact approach to date for k > 3.

Keywords: semidefinite programming, branch-and-cut, polyhedral cuts.

1 Introduction

The minimum k-partition problem (MKP) is a well-known optimization problem encountered
in various applications such as telecommunication and physics. It is known to be A"P-hard in
general and difficult to solve in practice. The MEP is equivalent to finding a maximum k-cut,
where the weighted sum of all edges with their endpoints in distinct sets is maximized. It has
applications in network planning [12], VLSI layout design [3], micro-aggregation of statistical
data [11], sports team scheduling [23, 13], physics [19], and other areas. Several authors, includ-
ing Barahona and Mahjoub [4], Deza and Laurent [10], and Boros and Hammer [6], studied the
problem of partitioning a graph into two subsets. The special case with k=2 is known as the
max-cut problem and is equivalent to unconstrained binary quadratic optimization.

The maximum k-cut problem has received more attention in the literature than the minimum
k-partition problem, such as in Deza, Grotschel, and Laurent [9], Chopra and Rao [8] and the
book by Deza and Laurent [10]. The minimum k-partition problem is formulated by Chopra
and Rao in [7] where several valid and facet-defining inequalities are identified.

Mitchell [22] applied a linear programming (LP) based branch-and-cut algorithm to the k-
way equipartition problem with application to the National Football League (NFL). The k-way
equipartition problem is an MkP problem with an additional constraint that partitions have to
be of the same size. Computational results found the optimal solution for the NFL realignment
problem where k = 8 and n = 32, whereas a percentage gap of less than 2.5% was given for
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graphs of sizes 100 to 500. Moreover, Lisser and Rendl [20] described a telecommunication
application for the k-way equipartition problem. They investigated both semidefinite and linear
relaxations of the problem with iterative cutting plane algorithms. For graph sizes ranging from
100 to 900 vertices and k=5, 10, the SDP approach produces a gap between 4%-6% from the
optimal solution and is better than the LP approach.

For k£ = 2, linear bounds are strong. As they also can exploit sparsity, sparse instances
can usually be solved faster with linear than with SDP-based methods. On the other hand,
SDP-based methods perform better for dense instances. Both a linear [2, 19] and an SDP-based
server [1] are available in public domain. The former is especially designed for fast solutions of
instances defined on grids that have application in physics [19]. The latter can solve max-cut
instances of graphs of any structure up to 100 vertices.

While effective computational procedures that yield globally optimal solution for arbitrary
instances of 100 vertices and sparse graphs of larger sizes have been implemented for the k=2
case, to our knowledge all the procedures proposed in the literature either can’t be applied to
general k, provide no guarantee for global optimality, or enforce additional constraints.

In this work, we present an exact algorithm for the minimum k-partition problem that uses
positive semidefinite relaxations. We found experimentally that for k& > 2 they yield much
stronger bounds than linear relaxations, for both sparse and dense instances.

This paper is organized as follows. In Section 2, technical definitions and an overview over
the literature on the MEP problem are given. The SDP-based branch-and-cut algorithm and
the primal heuristic are presented in Section 3. In Section 4, the heuristic is compared to the
hyperplane rounding of Goemans and Williamson [16] and Frieze and Jerrum [14] in terms
of bounds. In addition, computational results for the branch-and-cut algorithm on several
important classes of instances, and for different values of k, are presented. The computational
results show the potential of SBC for tackling the MkP problem. Finally, conclusions and future
research directions are discussed in Section 5.

2 Problem Description and Some Related Previous Re-
sults

An instance of the minimum k-partition problem consists of an undirected graph G = (V, E) with
edge weights w;; of the edges, and a positive integer & > 2. The objective is to find a partition
of V into at most k disjoint partitions Vi, ..., V} such that Ele >
example is shown in Figure 1.

i.jev, Wij 1s minimized. An

Total Weight =0.06

Figure 1: A k-partition of a graph with |V| = 7 and k& = 3. The solution value is 0.06.

Without loss of generality the graph G' can be completed to Ky by adding zero-weight
edges. The edge set is then E = {ij | 1 <i < j < n}. Define the variable z;; as

{1 if 7 and j are in the same partition,
Zij =

0 otherwise.



Chopra and Rao considered in [8] the following integer linear programming (ILP) formulation
for MkP:

(ILPMKP) min Y wi;z; (1)
i,jEV
S.t. zin +2nj — 25 <1 Vh,i,jeV (2)
Zzij21 VQ CV where |Q| =k +1 (3)
L,JEQ
Zij € {0, 1} VZ,] ev,

where inequalities (2) and (3) are the triangle and clique inequalities, respectively. Constraint
(2) requires the values of the variables to be consistent. For example, if z;, and 2, indicate
that ¢, h, and j are in the same partition, then by transitivity the value of z;; has to reflect that
as well. Constraint (3) imposes that at least two from every subset of k + 1 vertices have to be
in the same partition. Together with the constraints (2), this implies that there are at most k
partitions. There are 3(‘?') triangle inequalities and (,lﬂ) clique inequalities.

Here we are interested in exact solutions that we generate with a branch-and-cut algorithm.
The latter is an often successful framework in combinatorial optimization. Usually, (linear pro-
gramming) relaxations are used and strengthened during the run of the algorithm. However, we
found for MEP that linear bounds obtained by relaxing the integrality constraints in (ILPMKP)
are weak in practice which could result in complete enumeration of all solutions. Furthermore,
we found experimentally that the semidefinite relaxation bound that we introduce next is much
stronger than the LP bound [15]. This motivates us to use SDP relaxations within branch-and-
cut for the MkP problem.

2.1 SDP Relaxation for the MiP Problem

Semidefinite programming relaxations of combinatorial optimization problems were pioneered
by Lovasz [21] in 1979 in order to compute the Shannon capacity of a graph. Moreover, Goe-
mans and Williamson [16] used SDP to provide a performance guarantee of an approximation
algorithm for the satisfiability and the max-cut problem. The latter lead to a rapid growth of
the field. The MEP problem was formulated in [12] using SDP as follows:

. (k - 1)Xi“ +1
min Z _wij% (4)
i,J€V, i<j
st. Xy =1 VieV (5)
-1
X =0,
where X;; = ﬁ can be interpreted as vertices ¢ and j being in different partitions and X;; =1

means that they are in the same partition. Replacing constraint (6) by k_—_ll < X <1 results
in a semidefinite relaxation. However, constraint X;; < 1 can be dropped since it is enforced
implicitly by the constraints X;; =1 and X > 0. We end up with the following SDP relaxation:

k—1DX;; +1
(SMKP) min ) wj% (7)
i,jEV, i<j
st. X =1 VieV (8)
-1
XijZm Vi,jeV,i<j 9)
X >0



The SDP relaxation can be further tightened by adding valid inequalities, i.e., inequalities
that are satisfied for all positive semidefinite matrices that are feasible for the original SDP. The
two types of valid inequalities added are the triangle and the clique inequalities formulated for
SDP. Observing that in any cycle of length three exactly zero or two edges are cut, the triangle
inequalities have the form:

Xij + X —Xin <1,

where i, j, and h € V. It is not hard to see that the clique inequalities take the form:

k
> X > —5 YQCV where [Q| =k +1.
1,JEQ, i<j
To verify validity, recall that the clique inequalities ensure that for every set @ C V with
|Q| = k + 1 at least 2 vertices have to be in the same partition. This means that at least one
Xij equals 1. Therefore,

("3)-1 )
Z Xij 21+ h VQ CV where |Q| =k + 1.
1,j€Q, <] i=1 o
E+ 1)k -1
& X >1 ~1
Z = J{ 2 ]k—l
1,J€Q, i<
D .
L W= o9
1,]€Q, i<

The validity of the triangle inequality can be verified similarly. Once the (SMKP) relaxation
is solved, one can separate violated triangle and clique inequalities. Adding them to the SDP
problem will strengthen the relaxation.

2.2 Approximation Algorithm for Max k-Cut

In the previous section we discussed how to obtain a lower bound for the MkP problem. In this
section and in Section 3.2 we give an overview over an approximation algorithm and our ICH
heuristic that can be used to obtain an upper bound for this problem.

Goemans and Williamson [16] used semidefinite programming in the design of a randomized
approximation algorithm for the max-cut problem which always produces solutions of expected
value of at least 0.87856 times the optimal value. This was the first time that a performance
guarantee could be given by semidefinite programming for an NP-hard optimization problem.
The results in [16] showed that the cut generated using the randomized algorithm was in the
range of 4% to 9% away from the semidefinite bound in practice. Hence, it is an effective
heuristic technique for generating cuts.

Frieze and Jerrum presented in [14] an extension of [16] to obtain a polynomial-time approx-
imation algorithm for the max k-cut problem. They consider the following SDP relaxation:

k-1

(MkC-SDP) max —— Y w1 - Xy) (10)
i,J€V, 1]
-1
s.t. Xij > ﬁ Vi,jeV,i<j (11)
Xij = 0. (12)

It can be easily shown that (MkC-SDP) is equivalent to the MEP formulation described earlier.
Frieze and Jerrum described a rounding heuristic based on the SDP relaxation that can be used
to obtain a feasible solution of the max k-cut problem. This method works as follows:

1. Solve (MkC-SDP) to get an optimal solution, X = (Xj;;). Find unit vectors vi, ..., v, € R”
satisfying vlv; = X;; where 4,5 € V. This can be done by computing the Cholesky
factorization VIV of X.



2. Choose k independent random vectors rq,...,7r, € R™.

3. Partition V into Vy, = {V4,...,V4} according to V; = {i : v; - r; > v; - v, for j # j'}
for 1 < j < k. For this we would additionally need || r; ||= 1Vi = 1,...,k, however this
complicates the analysis. So the kn components of r1,...,r; are chosen as independent
random variables from a standard normal distribution with mean 0 and variance 1.

The authors proved in [14] the existence of a sequence of constants a(;>2) such that:
E(w(Vk)) = arw(Vy)

where w(Vi) = > <, coch 2iev, jev, Wi, Vi determines an optimal cut, and E denotes the
expected value. In [14], it was shown that the sequence of oy, satisfies the following theorem:
Theorem 1 [14] ay, satisfies

1. ap > kk;l

2. ap — 1~ 28k

3. ag > 0.878567 as > 0.800217 ayg > 0.850304 as > 0.874243

The process of Frieze and Jerrum can be iterated by varying the random vectors r1, ..., r; and
taking the best solution (i.e., minimum upper bound). The cut obtained by this hyperplane
rounding technique may be further improved in practice by local improvement steps.

ay has the lowest value when k = 3, which is ag > 0.800217. This means that hyperplane
rounding yields the weakest guarantee for the 3-partition problem.

3 An SDP-based Branch-and-Cut Framework for the MEP
Problem

During the run of the branch-and-cut algorithm, a sequence of relaxations of the original problem
is solved at each node of the branch-and-bound tree. Cutting-planes are used to improve the
relaxations, tightening the bounds. The branch-and-bound part of the algorithm guarantees
that a globally optimum solution is obtained.

In this work, we use SDP relaxations within a branch-and-cut framework since we found
experimentally that they are stronger than the corresponding linear bounds. The root node of
the branch-and-bound tree is the original SDP relaxation (SMKP). In each iteration, we separate
valid inequalities, add them to the relaxation and resolve the SDP. If a feasible partition can be
computed in the root node, we terminate. Otherwise, when no more violated inequalities can be
generated, the algorithm branches. In the branching step, two subproblems are created by fixing
an infeasible variable (i.e., a variable that is neither 1 nor k_—jl in the optimal solution of the SDP
relaxation) to 1 in one subproblem and to k_—fl in the other. This means that in one subproblem
we force vertices ¢ and j to be in the same partition and in the other to different partitions. The
sub problems are solved recursively. The branch-and-cut algorithm stops when all subproblems
have been fathomed. A subproblem is fathomed if it is either infeasible, determines a feasible
partition, or if we can conclude that it does not contain an optimum solution. The incumbent
solution is the best solution (giving an upper bound, since we are minimizing) found so far in
the tree. After termination, the incument is a globally optimum solution.

In the following sections, we describe in detail our branch-and-cut technique using SDP as
the bounding procedure. The addition of triangle and clique inequalities at each node markedly
improves the SDP lower bound. Moreover, at each node a feasible solution is computed to get
an upper bound.

3.1 Separation of Valid Inequalities

As discussed earlier, the SDP relaxation can be further tightened by adding valid inequalities.
Once (SMKP) is solved, one can check for violated triangle and clique inequalities and add them
to the SDP problem, hence getting a better lower bound.



The number of triangle and clique inequalities added at each iteration depends on the size
of the problem. We use complete enumeration for adding triangle inequalities. The triangle
inequalities are sorted by the magnitude of the violation and added starting with the most
violated ones. If not enough triangle inequalities are violated, we add clique inequalities.

Exact separation of clique inequalities is an A“P-hard problem, and exact enumeration be-
comes intractable already for small values of k. Therefore, we design a heuristic separation
that generates inequalities that are 'important’ in practice. It does not necessarily determine a
violated inequality whenever one exists, however we find that it is fast and yields good bounds.

In order to find which clique inequalities are important in practice, we conducted several
experiments in which we enumerated and added all violated clique inequalities. We assume that
an inequality is important if it is binding at the optimum of the resolved problem, i.e. if it is
satisfied with equality. We found that the binding clique inequalities usually cover the whole
graph, and that each vertex in the graph is contained in several different clique inequalities. So
the heuristic separation is designed to imitate this behavior as follows. For each vertex v in
the graph, we grow a clique of size k + 1 containing v. Vertices are added to the cliques in a
greedy fashion. In each iteration, we add the vertex to a clique of size smaller than k + 1 that
contributes the smallest amount to the left-hand side of the corresponding clique inequality.
The heuristic is described in Algorithm 1.

Algorithm 1 Heuristic for separating clique inequalities for (SMKP-C)

1.

© ® N o o wN

Given the graph G = (V, E), let v; be a vertex of G.

Initialize j = 1.

Let Q be the set of vertices that form a clique, Q = ¢.

Add vertex v; to Q.

Choose vertex vy with the smallest ZU]‘EQ,’UJ-IGV\Q X value.

Add vertex vy to the set Q.

If |Q| < k+1 go to step 5.

If violated, add the clique inequality formed to the set of inequalities.

If j < |V| increment j, empty the clique @, and go to step 4.

The separation routine consists of two parts: first the algorithm searches for violated triangle
inequalities as described above. If no more than p triangle inequalities are added, the heuristic
is used to find violated clique inequalities. If less than p inequalities are found, we branch. In
the computational experiments of Section 4, p is set to 200. The triangle inequalities are added
first since we experimentally found that they are stronger than the clique inequalities.

3.2 ICH: An Iterative Clustering SDP-based Heuristic

The ICH heuristic is designed to find a feasible solution from the optimum solution of the SDP
relaxation at each node of the tree. It is a recursive procedure that groups vertices together to
form a graph of smaller size and then it is recursively applied on the smaller graph until the
desired partition size is reached. Given a graph G(V, E) with n vertices, weights w;; between
edges, and number of partitions k, the heuristic is described in Algorithm 2. The intuition
behind this approach is the use of aggregate information which is more reliable than single
elements of data. When we sum the X7, values on the edges between three vertices, we have
a better idea of whether or not these three vertices should be in the same partition than by
looking at each edge separately. The sorting of the data is done to take advantage of the best
information first and use the less certain information only if necessary. An illustration of the
algorithm is shown in Figure 2.



Algorithm 2 ICH Heuristic

1. Initialize a parameter r, the current number of partitions, to zero.
2. Initialize a parameter m, the current number of nodes, to n.
3. Solve the SDP relaxation with m nodes and get the optimal solution X*.
4. Take each triplet of vertices ¢, j, and h and sum the values on their edges: T}j;, = XZ-*j + X5+
%
jh
Sort the values of Tjjj.

ot

6. (a) Choose vertices 4, j, and h with Tjj, > tol to be in the same partition.

(b) If any vertices remain unassigned to a partition, choose vertices with Tj;, < tol to be in
separate partitions.

(c) Update r to be the number of current partitions.
7. Ifr >k,

(a) Aggregate the vertices that are in the same partition to form one new vertex 4’.
(b) Update the value of m and the aggregate weight matrix W.
(c) Return to step 3.

8. End.
OOO )
o ©0
o
o
o o
o

° Iteration 1——»
o ©° () © ° o
O
Aggregate Vertices
o ° o
oo
o
«—Tlteration 2
o () o0
° o
o000 o o o
()

Figure 2: The ICH heuristic example with n = 20 and k = 3.

3.2.1 The ICH Heuristic with Convex Combination

The convex combination technique to improve on the Goemans-Williamson hyperplane rounding
was proposed and implemented for k£ = 2 in [25]. Using this convex combination technique results
in a better solution than using only hyperplane rounding. This motivated us to apply the convex
combination idea to the Frieze and Jerrum [14] algorithm presented in Section 2.2.



Given the SDP solution matrix X; and the hyperplane rounding feasible solution matrix

x5l e take their convex combination to obtain the following matrix:

)(2 — O[Xik + (1 _ a)X{easible

Next we take matrix X9 and perform the hyperplane rounding technique on this matrix to get
a new feasible solution.

Similarly, we applied the convex combination technique to the ICH heuristic. Taking the
feasible solution matrix X7°**®**¢ ohtained from the ICH heuristic and the SDP solution matrix,
X7, we consider a convex combination of the following form:

Xo = aX; + (1 —a)Xx{coe,

Then we can apply the ICH heuristic to the X5 matrix to get a new feasible solution, X.
Xfeasible
2

feasible
5 .

However, we experimentally found that the new feasible solution was always identical
to X{ ™l This result is not too surprising since multiplying X7 by a only scales the values
of X;; and will not change their sorted order. In addition, since we got X '1f casible from X, they
most likely have vertices i, j, and h with the same sorted order. Once we multiply X 1f casible
by (1 — «) then this will only scale the values but will not change their sorted order. We have
Xy = aX7 + (1 — a)X{“*" 5o adding the edges values, X;;, of the three vertices using the
matrix Xy will give the same result as when we add the edges of the three vertices using the
matrix X; since the order of Tj;, values in the sorting will likely remain the same (with a
difference in the value since it is scaled and shifted). This was the case in all our computational
experiments.

Hence, the convex combination technique does not seem to improve the solution for the ICH
heuristic. This gives evidence that the heuristic is strong enough that it does not benefit from
performing the convex combination improvement technique.

A computational comparison of the ICH heuristic and the hyperplane rounding technique is
presented in Section 4.1.

3.3 Branching Rules

Part of the success of a branch-and-bound algorithm depends on the choice of the variable to
branch on. Based on the results of the analysis done by Helmberg and Rendl in [17], we decided
to use in our branch-and-cut implementation a version of their branching rule R3 which branches
on the variable that is "least decided’ in the optimal solution of the SDP relaxation of the current
node. Our branching rule works as follows:

Select the edge 1j with X[; farthest from 1 and k%ll, i.e., branch on the edge ij that minimizes
|2X;*j(k—l)—k+2|

B .
By branching on the most difficult decision X;;, we hope that the bound will improve fast.

3.4 The SBC Algorithm

We implemented the algorithms and the methods that we described in the preceding sections
into a branch-and-cut algorithm. A description of it is provided in Algorithm 3.

4 Computational Results

4.1 Comparison of Hyperplane Rounding and the ICH Heuristic

We implemented ICH and the hyperplane rounding presented in [14] using C and MATLAB
respectively. In this section, we compare the two algorithms to find a feasible solution for the
MEP problem.



Algorithm 3 SBC Algorithm

Step 1: Initialization Form the root node by using the (SMKP) problem without fixing any
variables.

Step 2: Terminating If all nodes are fathomed then terminate with the incumbent solution,
Xincumbent, as the optimal solution and the corresponding objective value v* as the optimal
objective value.

Step 3: Solving Choose a node t not yet solved. Solve the SDP relaxation of the current sub-
problem to get a solution X} and a lower bound wy.

Step 4: Adding Valid Inequalities Separate violated triangle and clique inequalities as dis-
cussed in Section 3.1. If none are violated go to Step 5. Otherwise, go to Step 3.

Step 5: Obtaining a Feasible Solution Get a feasible solution Xyeqsitie, using ICH heuristic
as discussed in Algorithm 2 and an upper bound v; as the objective value of Xeqgipe,- Try
to improve 14 locally by local exchange routines. Update the incumbent if vy < v*.

Step 6: Fathoming

1. By Solving: If the solution X} has all entries k_—_ll or 1, i.e., w; and v4 are identical. Go to
Step 2.

2. By Bound: If the SDP relaxation gives w; > v*, then branching on this node will not
improve the incumbent. Go to Step 2.

3. By Infeasibility: If the SDP relaxation doesn’t have a feasible solution. Go to Step 2.

Step 7: Branching Choose a variable that is non-feasible (i.e., not 1 or %11) and create two new

nodes by fixing the variable to 1 for one node and k_—_ll for the other node. Go to Step 2.

Since the hyperplane rounding presented by [14] is randomized, each time we run the algo-
rithm a different feasible solution might be obtained. As a result, this algorithm was run 30
times and the minimum and the average of the upper bound (UB) were computed. The average
value can be interpreted as an estimate of the expected value of the UB that this algorithm
would give. On the other hand, the minimum value is the best solution found over the 30 runs.
This minimum value is the value reported in Tables 1-3. More detailed results are presented in
[15].

In addition to randomly generated edge weights of complete graphs, we consider a set of test
problems arising in a physics application e.g., [18] provides some recent physics analysis and
introduces the physics literature. The two techniques were tested on the following three types
of graphs for k = 2 and for k£ = 3:

e Random Instances: These instances consist of complete graphs where the edge weights are
randomly generated between 0 and 9.

e Spinglass2g Instances: These instances consist of graphs that were generated using the
rudy graph generator [24]. Spinglass2g generates a toroidal two dimensional grid with
Gaussian distributed weights.

e Grid_2D Instances: These instances consist of graphs that were generated using the rudy
graph generator [24]. Grid_2D generates a planar bidimensional grid with edge weights all
equal to 1.
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Frieze & o« for Frieze & Jerrum with convex combination
|V| | SDP LB | ICH Jerrum 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k=21 30 912 912 912 912 912 912 921 927 941 925 912 912

40 | 1690.463 | 1691 1728 1728 1742 1773 1691 1691 1716 1719 1691 1691
50 | 2716.069 | 2729 2858 2848 2767 2823 2857 2815 2787 2810 2802 2855
60 | 3985.364 | 4001 4151 4054 4151 4128 4106 4172 4196 4112 4095 4159
70 | 5384.104 | 5401 5608 5667 5625 5452 5581 5654 5520 5501 5584 5557
80 | 7032.764 | 7098 7389 7389 7382 7211 7321 7363 7381 7281 7341 7230
90 | 9190.776 | 9292 9830.2 9551 9572 9595 9480 9599 9508 9450 9592 9568
100 | 11382.92 | 11496 | 11747 | 11784 11747 11881 11854 11878 11871 11878 11936 11860

k=3 || 30 493.7 557 589 614 588 611 623 598 605 580 592 558
40 925.5 992 1088 1117 1135 1108 1094 1130 1077 1101 1096 1089
50 1497.1 1656 1694 1752 1735 1725 1704 1766  1v61 1757 1706 1737
60 2351.9 2548 2724 2749 2809 2739 2774 2716 2722 2649 2692 2705
70 3223.4 3477 3679 3815 3708 3774 3706 3789 3676 3685 3615 3664
80 4293.5 4508 4848 4892 4888 4790 4809 4909 4857 4877 4892 4815
90 5420.1 5774 6132 6249 6134 6084 6054 6263 6117 6151 6139 6098
100 | 6634.2 6973 7491 7566 7661 7529 7534 7602 7561 7549 7496 7433

Table 1: Computational Results for random instances with k = 2 and 3. Numbers in bold indicate that the heuristic solution is the optimal solution.

H H ‘ ‘ Frieze & | o for Frieze & Jerrum with convex combination 1
V] SDP LB ICH Jerrum [ 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 |
k=2 3 x 3 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504 -795504
4 X 4 -592434 -592202 -592202 -592202 -592202 -592202 -592202 -592202 -592202 -592202 -592202 -536551
5 X5 -1543707 -1543707 -1451470 -1543707 -1182988 -1543707 -1543707 -1461391 -1543707 -1278662 -1543707 -1543707
6 X 6 -2846691 -2846691 -2846691 -2846691 -2554116 -2846691 -2846691 -2680268 -2846691 -2846691 -2718202 -2846691
7TX 7 -3020297 -3020297 -2818053 -2787849 -2787849 -2818053 -3020297 -3020297 -3020297 -2807370 -3020297 -3020297
8 X 8 -4489989 -4489989 -4489989 -4396002 -4489989 -4252115 -4489989 -4271661 -3702040 -4489989 -4489989 -4005560
9 x 9 -6230102 -6230102 -5522456 -6230102 -5950570 -5858896 -5522456 -5644327 -5953242 -5213005 -6230102 -6153144
10 x 10 -7872968 -7872968 -7872968 -7872968 -7760364 -7872968 -6869239 -7872968 -6480148 -7042388 -7872968 -7540716
k=3 4 x 4 -954108 -954077 -954077 -819312 -831392 -741231 -798278 -761526 -580161 -741298 -751103 -852946
5 X5 -1484348 -1367840 -1185097 -1484348 -1166946 -1103329 -1124676 -1188754 -836275 -1319361 -1175218 -966957
6 X 6 -2758520 -2758520 -2147425 -2115524 -1732624 -1802507 -1625819 -2758520 -1414849 -1872757 -1595561 -2690359
7TxX T -3282586 -3282586 -2115560 -2115560 -2115560 -2889403 -1587528 -1902404 -1841520 -2171880 -2016232 -2756529
8 X 8 -4063059 -4063059 -2705506 -2469005 -2090016 -2128793 -2219785 -2419073 -2523733 -3154943 -2896465 -2502696
9 x 9 -5236178 -4758332 -2247374 -2225260 -2324296 -1970217 -2127385 -2235664 -2026423 -2085498 -2307414 -3155256
10 x 10 -7230203 -6570984 -3150645 -3251798 -3442696 -2750327 -3124199 -3122204 -3638336 -3395681 -2941674 -3579241

Table 2: Computational results for spinglass2g with k = 2 and 3. Numbers in bold indicate that the heuristic solution is the optimal solution.



Frieze & | o for Frieze & Jerrum with convex combination

V| SDP LB | ICH | Jerrum | 0.1 0.2 03 04 05 0.6 07 08 09

k=2 3 x3 0 0 0 0 0 0 0 0 0 0 0 0
4 x4 0 0 0 0 0 0 0 0 0 0 3 0

5x%x5 0 0 0 2 0 2 0 0 0 6 6 0

6 X6 0 0 0 0 0 0 0 3 0 2 0 2

77 0 0 4 4 4 3 3 0 0 0 0 3

8 x 8 0 0 0 0 4 20 0o 4 0 0 13 0

9%x9 0 0 0 3 0o 10 2 0 38 0 0 12

10 x 10 0 0 0 0 0 10 0 3 7 0 4 0

k=3 3 x3 0 0 1 2 0 1 0 0 1 0 1 0
4 x 4 0 0 2 3 3 1 3 2 1 4 2 3

5x5 0 0 4 7 7 4 4 1 5 6 4 4

6 x 6 0 0 7 2 8 12 8 12 7 8 7 9

Tx 7 0 0 14 15 16 18 14 13 17 13 13 13

8 x 8 0 0 17 16 20 20 24 20 17 19 17 20

9%x9 0 0 22 32 29 23 24 25 25 24 26 21

10 x 10 0 0 36 39 34 33 39 37 35 39 35 33

Table 3: Computational Results for grid_2D with k = 2 and 3. Numbers in bold indicate that the heuristic solution

is the optimal solution.

From Tables 1-3, we notice that ICH is in most cases at least as good as the hyperplane
rounding minimum. Moreover, even using different values of « for the hyperplane rounding with
convex combination, the results are still not as good as those of the ICH heuristic. Therefore,
the UBs provided by ICH are generally tighter and using it at each node of the branch-and-cut
algorithm helps reducing the size of the tree.

From Table 2 we see that for spinglass2g instances where positive and negative edge weights
are present, the ICH heuristic provides a better solution than the minimum value of hyperplane
rounding for all values of a. This shows that ICH is still very effective in the presence of negative
weights unlike the hyperplane rounding (we note that the performance guarantee from Theorem
1 does not apply for these instances). Moreover, by comparing the UB provided by ICH with
the LB, we see that the ICH heuristic provides a tight bound at the root node and sometimes
immediately finds the optimal solution.

We note that for the grid_2D instances we can find a solution by inspection. For the case
k = 2 there is a unique solution, while for kK = 3 we have multiple solutions. Moreover, for k = 2
the SDP matrix X* satisfies X;; € {—1,1} while for £k = 3 the SDP matrix X* doesn’t have
its entries X;; € {—21,1} but the matrix is in practice often a convex combination of several
multiple solutions. We included the results for grid_2D instances to show that even if we don’t
have the SDP matrix with X;; € {—717,1} entries, the ICH heuristic can still extract a feasible
solution that was found to be optimal for all test cases tried, unlike the hyperplane rounding.

4.2 Computational Results for SBC Algorithm

We implemented in C the branch-and-cut SDP-based Algorithm (SBC) described in Section 3.4.
To solve the SDP, which has to be done at each node of the tree, we used the CSDP solver [5].
The computations were done on a a 1200 MHz Sun Sparc machine.
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[ [V] | Optimal Solution | Time | Number of Nodes ||

20 147 0:00:06 1
30 495 0:00:09 1
40 1183 0:02:10 1
50 2312 0:14:20 1
60 3990 0:06:41 1
70 6348 0:58:29 1

Table 4: SBC results for clique instances where & = 3. The time is given in hr:min:sec. The last
column is the number of nodes required to reach the optimal solution

4.2.1 Test Instances

The test instances consist of graphs generated using the graph generator rudy of Rinaldi [24].
The instances consist of complete graphs and two and three-dimensional grid graphs with Gaus-
sian distributed and +1 edge weights:

e Clique: generates complete graphs with edge weight of edge (i, 7) chosen as |i — j|.
e Spinglass2g: described in Section 4.1.

e Spinglass3g: generates a toroidal three-dimensional grid with Gaussian distributed weights.
The grid has size n =(rowsxcolumnsxlayers).

e Spinglass2pm: generates a toroidal two-dimensional grid with +1 weights. The grid has size
n =(rowsxcolumns). The percentage of negative weights is 50%.

e Spinglass3pm: generates a toroidal three dimensional grid with +1 weights. The grid has size
n =(rowsxcolumnsxlayers). The percentage of negative weights is 50%.

Table 4 shows the computational result for clique instances. Tables 5-6 show the computational
results for the SBC algorithm for two-dimensional and three-dimensional grid instances with
k = 3. In addition to the optimum solution value, the lower bound and the upper bound at the
root node as well as the time at the root node are presented. Moreover, the number of nodes
of the branch-and-bound tree as well as the time to reach a certain percentage gap are given in
the tables. The symbol v denotes that a gap smaller than the one written in the corresponding
column was achieved at the root node. For Table 5, we give optimum solutions for sizes up to
100 vertices (10x10 grids) and provide a feasible solution for larger sizes (up to 169 vertices)
with a percentage gap of less than 6%.

12



€1

Best Root Node Number of Nodes - Time
Solution to achieve % Gap

V| Value LB | UB | Time 0% 1% | 2% | % 10%

3x3 -449795 -449795 -449795 0:00:05 1-0:00:5 a a) a) e

4 x4 -954077 -954077 -954077 0:00:16 1-0:00:16 ) ) ) a

5% 5 -1484348 | -1484722 | -1484348 | 0:00:18 2 - 0:00:23 1-0:00:18 a a) e

6 X 6 -2865560 | -2865560 | -2865560 | 0:05:12 1-0:05:12 2 a) a) e

7T X7 -3282435 | -3282435 | -3282435 | 0:52:08 1-0:52:08 a a a) e

8 x 8 -5935341 -5935341 -5935341 | 2:21:43 1-2:21:43 a) a a e

9%x9 -4758332 | -4806178 | -4758332 | 3:35:49 4-13:41:17 | 1 - 3:35:49 a a) e

10 x 10 -6570984 | -6630202.5 | -6570984 | 10:36:23 | 6 - 18:09:41 | 1 - 10:36:23 2 a) 2

11 x 11 -8586382 | -9015701.1 | -8586382 | 5:48:50 - - - 1 - 5:48:50 a)

12 x 12 || -10646782 | -11189768 | -10646782 | 9:31:00 - - - 1-9:31:00 e
13 x 13 -11618406 | -12292274 | -11618406 | 29:33:27 - - - - 1-29:33:27
14 x 14 || -13780370 | -14607192 | -13780370 | 47:16:57 - - - - 1-47:16:57

2 x 3 x4 | -2197030 | -2197030 | -2197030 | 0:01:14 1-0:01:14 a) a) a e

2 x 3 x5 || -2026448 | -2026448 | -2026448 | 0:08:02 1 - 0:08:02 a a) a) e

2 x4 x5 | -3392038 | -3392938 | -3392938 | 0:36:18 1-0:36:18 2 a) a) e

3 x 3 x 3| -1882389 | -1882389 | -1882389 | 0:00:21 1-0:00:21 a a) a e

3 x 3 x4 | -3192317 | -3192317 | -3192317 | 0:26:52 1-0:26:52 a) a) a) e

3 x 3 x5 | -4204246 | -4209348 | -4204246 | 2:52:31 5 - 3:38:37 1-2:52:31 a a) e

3 x4 x4 | -5387838 | -5421403 | -5387838 | 0:58:15 3-1:38:51 1-0:58:15 a a) e

3 x4 x5 | -5240435 -5323788 -5049424 6:02:52 | 13 - 19:12:31 | 10 - 16:43:10 | 7 - 11:21:53 | 1 - 6:02:52 2

4 x 4 x 4| -7474525 | -7529318 | -7474525 | 3:22:37 3-10:12:11 | 1 - 3:22:37 a a) e

Table 5: SBC results for spinglass2g and spinglass3g instances where k& = 3. The time is given in hr:min:sec. The last five columns are
the number of nodes of the tree and the time required to reach the given gap.




4!

Best Root Node Number of Nodes - Time
Solution to achieve % Gap

\4 Value |LB [ UB | Time 0% 1% | 2% | 5% [ 10%

4 x 4 -13 -13 | -13 | 0:00:00 1 - 0:00:00 A 2 ) o
59X b -20 -20 | -20 | 0:00:04 1 - 0:00:04 " a 2 2

6 X 6 -29 -29 | -29 | 0:00:22 | 1 - 0:00:22 a) a) e e

7T x 7 -40 -40 | -40 | 0:01:52 1-0:01:52 2 a 2 A"

8 X 8 -59 -55 | -955 | 0:26:38 1-0:26:38 " a 2 a
9%x9 -65 -65 | -65 | 7:35:49 | 1-7:35:49 e a) e e
2x3 x4 -20 -20 | -20 | 0:00:03 1 - 0:00:03 2 2 2 2
2 x4 x4 -28 -28 | -27 | 0:03:54 | 4 - 0:01:02 e a) 1-0:20:14 |
3 x3x3 -26 -26 | -26 | 0:00:11 1-0:00:11 2 a 2 A"
3x3 x4 -36 -36 | -36 | 0:00:50 | 1 - 0:00:50 a) a) e e
3 x4 x4 -48 -48 | -48 | 0:11:59 1-0:11:59 2 a 1-2:40:22 |
3x4x5 -65 -66 | -62 | 4:38:12 | 16 - 8:55:33 | 10 - 7:09:22 | 7 - 6:04:19 | 1 - 4:38:12 |
4 x4x4 -65 -65 | -64 | 4:32:18 | 19 - 8:36:15 | 12 - 7:38:33 | 1 - 4:32:18 2 2

Table 6: SBC results for spinglass2pm and spinglass3pm instances where k = 3. The time is given in hr:min:sec
are the number of nodes of the tree and the time required to reach the given gap.

. The last five columns



Size of the graph vs. Time
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Figure 3: Size of Random instances versus computational time for £ = 3. The average is always
taken over five instances of the same size.

k=5 k=7

V| Objective Value | Time | Objective Value | Time

spinglass2g 6 X6 -2865560 0:23:41 -2865560 0:21:00
7T x 7 -3843979 0:42:31 -3864156 0:39:23

8 x 8 -5935341 2:09:07 -5935341 2:13:05

9x%x9 -5745419 2:39:38 -6026024 2:18:56

10 x 10 -6860706 19:14:02 -7644016 17:32:29

spinglass3g || 2 X 3 x 4 2212707 0:00:10 2212707 0:00:08
2X3x%x5H -2081357 0:08:07 -2081358 0:05:35

2x4x5 -3578762 0:17:00 -3578762 0:13:01

3 x3 x3 -2932403 0:00:47 -2932403 0:00:03

3 x3 x4 -3552295 0:26:58 -3559337 0:21:15

3 X3 x5 -4561622 2:04:49 -4648539 1:02:09

3 x4x4 -5371414 1:14:11 -5466518 1:18:02

4 x4x4 -7619675 9:30:19 -7646881 4:57:05

Table 7: SBC results for K =5 and 7. The time is given in hr:min:sec.
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4.2.2 Comparison and Analysis

The computational results which we have presented for spin-glass problems lead to the following
observations:

5

1.

SBC is able to determine optimum solutions for problems with Gaussian distributed and +1 edge
weights for two- and three-dimensional grids with up to n = 60 vertices, and for k=3 within reasonable
time. For 60 < n < 100 we reach a gap of 1% within a reasonable amount of time, however reaching a
0% gap takes longer.

. The remarkable tightness of the bounds obtained at the root node make it worthwhile to conduct a

branch-and-cut algorithm since the bounds will likely help reduce the number of nodes in the tree.

. Furthermore, the ICH heuristic often provides an optimal solution at the root node or after only a few

branches. Most of the times computing the lower bound is the bottleneck; often ICH obtains the global
optimal solution, but we cannot prove optimality right away.

For k = 5 and 7, our empirical analysis shows that for a given |V as k increases, the computational
time decreases. Moreover, for some test cases the objective function values of the same test instance
with different k values are the same, see Table 7. This is because the solution partitioned the vertices
into less than k partitions due to the presence of positive and negative edge weights.

Conclusions and Future Work

In this paper we presented an exact algorithm for computing minimum k-partitions. Inside a
branch-and-cut algorithm we used positive semidefinite relaxations that were further tightened
using polyhedral results. The resulting algorithm is called SBC. The SBC algorithm was im-
plemented and tested using several instances, and our computational results show the potential
of SBC in tackling the MEKP problem. We developed and implemented the novel ICH heuristic
which appears to be a promising method for generating a good feasible solution. The proposed
model often improves the upper bound and gives good feasible solutions. ICH can be applied to
the MEP problem for different values of k. When compared with other approaches in the litera-
ture such as the hyperplane rounding technique by Frieze and Jerrum [14], it provides a better
solution in practice. Moreover, the ICH heuristic was used in a SDP-based branch-and-cut
approach to provide optimal solution for MkP.

Future research will investigate the solver used to solve the SDP at each node of the tree

since it is the major bottleneck in the SBC algorithm. In particular, exploiting the structure of
the graph and its sparsity may lead to an effective way for solving the SDP relaxations. Future
work also includes adjusting the SBC algorithm and the ICH heuristic so that they can be
applied to closely related partitioning problems such as the k-way equipartition problem.
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