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Abstract. Proposing a fibre view on propositional clause sets, we in-
vestigate satisfiability testing for several CNF subclasses. Specifically, we
show how to decide SAT in polynomial time for formulas where each pair
of different clauses intersect either in all or in one variable.
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1 Introduction

The intention of the present paper is to investigate certain structural properties
of clause sets representing CNF formulas. Exploiting these properties we also
search for subclasses of clause sets for which satisfiability is testable in polyno-
mial time.

As the main topic, via introducing some concepts, we propose to regard
clause sets from a slightly different perspective, namely as pairs of mutually
set-complemented formulas with respect to the total clause set over a common
intrinsic hypergraph called the base hypergraph. This yields no new structure
from the logical point of view, because each clause set defined as usual and not
behaving trivial regarding satisfiability can easily be seen to correspond to such a
clause set pair. The hope is that this perspective may help to gain new structural
insight into clause sets and even new algorithmic concepts. To supply such a
hope we develop the basic theory around the concepts introduced and provide
some new clause set classes that we prove to be polynomial time solvable via
the methods presented. So e.g. satisfiability of CNF formulas, where every two
distinct clauses share exactly one common variable or all (neglecting negations)
can be decided in polynomial time, cf. Theorem 3. In order to establish our theory
we have to introduce new concepts and notions, and we are not aware of a similar
approach representing our view at satisfiability in a convenient framework.

There are several polynomial time SAT-testable classes known, as quadratic
formulas, (extended and q-)Horn formulas, matching formulas etc. [1, 3, 4, 6, 7,
9, 10, 15, 16]. The classes studied in this paper, as far as we inspected, appear
not to belong to one of these classes. On the other hand, mixing polynomial-
time classes, in general, yields classes for which SAT becomes NP-complete, as
alraedy is the case for Horn and quadratic formulas [12], cf. also [8].



2 Stefan Porschen and Ewald Speckenmeyer

To fix notation let CNF denote the set of duplicate-free conjunctive normal
form formulas over propositional variables x ∈ {0, 1}. A positive (negative) literal
is a (negated) variable. The negation (complement) of a literal l is l̄. Each formula
C ∈ CNF is considered as a clause set, and each clause c ∈ C is represented as
a literal set free of {x, x̄}. For formula C, clause c, literal l, by V (C), V (c), V (l)
we denote the variables contained (neglecting negations), correspondingly. L(C)
is the set of all literals in C. The length of C is denoted by ‖C‖. For U ⊂ V (C),
let Ĉ(U) := {c ∈ C : V (c) ∩ U 6= ∅}, for U ′ ⊂ L(C), set C(U ′) := {c ∈ C :
c ∩ U ′ 6= ∅}. For n ∈ N, let [n] := {1, . . . , n}, the power set of a set M is 2M .
The satisfiability problem (SAT) asks, whether input C ∈ CNF has a model,
which is a truth assignment t : V (C) → {0, 1} assigning at least one literal in
each clause of C to 1. For, C ∈ SAT, let M(C) be the space of all (total) models
of C, and UNSAT := CNF−SAT. It turns out to be convenient to identify truth
assignments with vectors in the following simple way: Let x0 := x̄, x1 := x.
Then we can identify a truth assignment t : V → {0, 1} with the literal set
{xt(x) : x ∈ V }, and, for b ⊂ V , the restriction t|b is identified with the literal
set {xt(x) : x ∈ b}. We call WV , the collection of the literal sets obtained in the
described way by running through all total truth assignments V → {0, 1}, the
hypercube formula (over V ), since its clauses correspond 1:1 to the vertices of a
hypercube of dimension |V |. E.g., for V = {x, y} we have WV = {xy, x̄y, xȳ, x̄ȳ}
writing clauses as literal strings. For a clause c we denote by cγ the clause in
which all its literals are complemented. Similarly, let tγ = 1 − t : V → {0, 1} ∈
WV , Cγ := {cγ : c ∈ C}, and for C ⊆ CNF, let Cγ := {Cγ : C ∈ C}. We
call C symmetric if C = Cγ , and asymmetric if for each c ∈ C holds cγ 6∈ C.
Sym(Asym) ⊂ CNF, denotes the set of all symmetric (asymmetric) formulas.

2 A Fibre-View on Clause Sets: Basic Concepts and

Results

The fibre-view essentially corresponds to a projection of clauses on their under-
lying sets of variables via neglecting negations yielding monotone base clauses.
A formula then appears to be the collection of all its fibres-subformulas, each of
which is composed of all clauses projecting on the same monotone base. In order
to exploit this rather natural perspective on formulas with regard to its impact
on CNF satisfiability testing, let us formulate it in somewhat precise terms.

A (variable-) base hypergraph H = (V, B) is a hypergraph whose vertices
x ∈ V are regarded as Boolean variables. So the set B of (hyper)edges can be
considered as a positive monotone clause set. It is required throughout that each
vertex x ∈ V is contained in at least one edge b ∈ B. For each b ∈ B, Wb denotes
the hypercube formula over b, which therefore consists of all possible clauses over
variable set b. Therfore KH :=

⋃

b∈B Wb is the set of all possible clauses over
H, and is called the total clause set over H. Regarding each b as a point in the
space B, we obtain the following mapping

π : KH ∋ c 7→ V (c) ∈ B
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recalling that V (c) is the set of variables in clause c. We call π−1(b) = Wb the
fibre of KH over b. Obviously the fibres are mutually disjoint, w.r.t. clause-points,
and π is surjective, thus is a projection.

A formula over H (or H-formula) is any subset C ⊂ KH such that C ∩Wb 6=
∅ for each b ∈ B, implying that the restriction πC := π|C of π to C also is a
projection πC : C → B. Let Cb := π−1

C (b) ⊆Wb denote the fibre(-subformula) of
C over b. Note that any C ∈ CNF can be viewed in the framework above, for it is
has the base hypergraph H(C) := (V (C), B(C)) with B(C) := {V (c) : c ∈ C}).

For each C ⊂ KH having the property (∗): Wb − Cb 6= ∅, for all b ∈ B,
we define its (H-based) complement formula C̄ via C̄ :=

⋃

b∈B(Wb − Cb). By
construction C̄ has the same base hypergraph as C.1 A fibre-transversal (f-
transversal) of KH is a H-formula F ⊂ KH meeting each fibre in exactly one
point: |F ∩Wb| = 1, for each b ∈ B.2 Let the unique clause of fibre π−1(b) con-
tained in F be refered to as F (b). Let F(KH) denote the set of all f-transversals
of KH. The notion of f-transversals also carries over to a H-formula C different
from the total clause set. To that end a f-transversal of C is restricted to those
fractions of the fibres belonging to C. Let F(C) denote the set of f-transversals
of C. The next definition introduces some complementary types of f-transversals,
namely compatible and diagonal ones. The first are related to satisfiable formulas
and the latter turn out to be always unsatisfiable.

Definition 1 Let H = (V, B) and KH as defined above.
(1) F ∈ F(KH) is called compatible if

⋃

b∈B F (b) ∈ WV , meaning that F con-
tains each variable of V as a pure literal. Let Fcomp(KH) be the collection of all
compatible f-transversals of KH.
(2) F ∈ F(KH) is called diagonal if for each F ′ ∈ Fcomp(KH) holds F ∩F ′ 6= ∅,
hence meeting each compatible f-transversal in at least one (clause-)point. Let
Fdiag(KH) be the collection of all diagonal f-transversals of KH.
(3) For any H-based formula C ⊆ KH, let Fcomp(C) := F(C)∩Fcomp(KH) and
Fdiag(C) := F(C) ∩ Fdiag(KH).

As a simple example for a compatible f-transversal consider the base hypergraph
H with variable set V := {x1, x2, x3} and base points {x1, x2}, {x1, x3}, {x2, x3}.
Then e.g. the clauses c1 := {x̄1, x2}, c2 := {x̄1, x̄3}, and c3 := {x2, x̄3} form
a compatible f-transversal of the corresponding KH, because c1 ∪ c2 ∪ c3 =
{x̄1, x2, x̄3} ∈WV .

Whereas compatible f-transversals always exist as the example indicates, it
is, in advance, not clear whether diagonal transversals exist at all, a question

1 Clearly, any hypercube formula is unsatisfiable, therefore in case that C does not
have property (∗) it is unsatisfiable trivially, which therefore can be ruled out. More
precisely, it can be treated by a simple preprocessing checking in linear time whether
there is b ∈ B such that Wb = Cb.

2 KH can be viewed as a hypergraph having all literals over V as vertex set. So, a
fibre-transversal should not be mixed up with a hypergraph-transversal which, as
usually defined, is a subset of its vertex set meeting all its edges, thus is a hitting
set.
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that will be addressed below. However, if there are diagonal transversals, then
each fixed compatible transversal in turn meets all diagonal transversals.

We have some simple observations regarding the f-transversals introduced.

Proposition 1 (1) Fcomp(KH) ∼= WV (means isomorphism),
(2) Fdiag(KH) = {F ∈ F(KH) : ∀t ∈WV ∃b ∈ B : F (b) = t|b},
(3) Fcomp(KH)γ = Fcomp(KH),
(4) Fdiag(KH)γ = Fdiag(KH),
(5) Fdiag(KH) ∩ Fcomp(KH) = ∅.

Proof. Assertion (1) is easily obtained by observing that

ϕ : Fcomp(KH) ∋ F 7→
⋃

b∈B

F (b) ∈WV

is a bijection with [ϕ−1(t)](b) := t|b for each t ∈ WV , b ∈ B, recalling that by
assumption

⋃

b∈B b = V . (2) immediately follows from (1).
Assertion (3) is obvious, and implies ϕ(F γ) = ϕ(F )γ , for F ∈ Fcomp(KH).
Let F ∈ Fdiag(KH) and assume there is F ′ ∈ Fcomp(KH) such that F ′(b) 6=

F γ(b) for all b ∈ B equivalent to F ′γ(b) 6= F (b) for all b ∈ B, by (3) contradicting
that F is diagonal yielding (4).

Assume F ∈ Fdiag(KH)∩Fcomp(KH), then by (3) also F γ ∈ Fcomp(KH) but
F γ(b) 6= F (b) for each b ∈ B therefore F 6∈ Fdiag(KH) yielding a contradiction
implying (5). ⊓⊔

The next assertion essentially states that a formula C is satisfiable if and
only if its H-based complement formula admits a compatible f-transversal:

Theorem 1 For H = (V, B), and KH let C ⊂ KH be a H-formula such that
C̄ ⊂ KH also is a H-formula (hence B(C) = B = B(C̄)), we have:
(i) C ∈ SAT if and only if Fcomp(C̄) 6= ∅.
(ii) If C ∈ SAT then M(C) ∼= Fcomp(C̄).

Proof. We claim that if C ∈ SAT, hence WV ⊇ M(C) 6= ∅, then Fcomp(C̄) =
ϕ−1(M(C)γ), where ϕ is defined as in the proof of Prop. 1 (1). From this claim
(ii) follows, as obviously M(C)γ ∼= M(C) and ϕ is a bijection. Further (i) follows:
If M(C) is empty then also Fcomp(C̄) must be empty, otherwise by the claim
holds ϕ(F )γ ∈ M(C), for any F ∈ Fcomp(C̄), yielding a contradiction. The
reverse direction of (i) is immediately implied by the claim.

So it remains to verify the claim: Let t ∈M(C) be chosen arbitrarily. Clearly,
Ft := ϕ−1(tγ) ∈ Fcomp(KH) by definition of ϕ. Suppose there is b ∈ B such that
Ft(b) = tγ |b ∈ C. Clearly, t|b is a total truth assignment of the hypercube
formula Wb satisfying all of its clauses except (t|b)γ = tγ |b ∈ C thus t 6∈ M(C)
contradicting the assumption. Therefore Ft(b) ∈ C̄, for all b ∈ B, hence Ft ∈
Fcomp(C̄) thus ϕ−1(M(C)γ) ⊆ Fcomp(C̄). Conversely, let F ∈ Fcomp(C̄) then
we claim that tF := ϕ(F )γ ∈ M(C) ⊆ WV . Indeed, supposing the contrary,
there is b ∈ B with tγF |b ∈ C equivalent to F (b) = ϕ(F )|b 6∈ C̄ contradicting the
assumption and finishing the proof because ϕ−1(tγF ) = F . ⊓⊔
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Proposition 2 Let F ∈ F(KH), then holds

(1) F ∈ Fdiag(KH)⇔ F ∈ UNSAT

(2) F ∈ Fcomp(KH)⇒ F ∈ SAT

Proof. By Theorem 1 (i), we have F ∈ UNSAT iff Fcomp(F̄ ) = ∅ iif ∀F ′ ∈
Fcomp(KH) there is b ∈ B such that F ′(b) = F (b) ∈ F iif F ∈ Fdiag(KH), hence
(1). (2) is implied by (1) due to Prop. 1 (5); moreover for F ∈ Fcomp(KH),
ϕ(F ) ∈WV specifically satisfies F . ⊓⊔

Thus, we have three types of possible f-transversals composing F(KH), namely
compatible f-transversals which always are satisfiable formulas, diagonal ones
(which may not exist) which always are unsatisfiable, and, finally, f-transversals
that are neither compatible nor diagonal but always are satisfiable.

Definition 2 A formula D ⊆ KH is called a diagonal formula if for each F ∈
Fcomp(KH) holds F ∩D 6= ∅.

Obviously each F ∈ Fdiag(KH) (if existing) is a diagonal formula. Since a diag-
onal formula D contains a member of each compatible f-transversal the comple-
ment formula D̄ cannot have a compatible f-transversal. Therefore D ∈ UNSAT
due to Theorem 1, and we have:

Proposition 3 A formula is unsatisfiable iff it contains a subformula that is
diagonal. ⊓⊔

Consider a simple application of the concepts above: Recall that a hypergraph
is called Sperner (or sometimes also called simple) if no hyperedge is contained in
another hyperedge [2]. Clearly, a formula C, regarded as a hypergraph (L(C), C)
over its literal set, that is non-Sperner can be turned into a SAT-equivalent
one having that property: For clauses c, c′ with c ⊂ c′ we can remove c′ from
C because c already has to be satisfied implying satisfiability of c′. Let C be
Sperner then its base hypergraph H(C) = (V (C), B(C)) can either be Sperner
or non-Sperner, assume H(C) = H(C̄). Clearly, if H(C) is Sperner then so is
C̄. Specifically, all these objects are Sperner if all clauses have the same length.
However, if H(C) is non-Sperner, C̄ can be Sperner or non-Sperner. For the first
case, i.e., C and C̄ Sperner butH(C) = H(C̄) non-Sperner, consider the following
example (simply representing clauses as strings of the literals contained):

C = {xy, xȳz, x̄yz, x̄ȳz, xȳz̄, x̄yz̄, x̄ȳz̄}

C̄ = {xȳ, x̄y, x̄ȳ, xyz, xyz̄}

B(C) = {xy, xyz}

Theorem 2 Let C ∈ CNF be Sperner such that its base hypergraph H(C) is
non-Sperner but the complement formula C̄ is Sperner: Then both C and C̄ are
unsatisfiable.

Proof. According to Theorem 1 we show that C̄ cannot have a compatible
f-transversal under the assumptions stated above. Because H(C) non-Sperner
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there are b, b′ ∈ B(C) with b ⊂ b′ and b 6= b′. Now for each f-transversal F ∈
F(C̄) holds F (b) 6⊂ F (b′) as C̄ is assumed to be Sperner. That means there is
x ∈ b such that x ∈ F (b), x̄ ∈ F (b′) or vice versa, hence F (b) ∪ F (b′) ⊃ {x, x̄}
is not compatible implying that C ∈ UNSAT. By exchanging the roles of C and
C̄ we also obtain that C̄ cannot be satisfiable. ⊓⊔

Corollary 1 If C is Sperner and satisfiable then either
(i) H(C) and C̄ both are Sperner or
(ii) H(C) and C̄ both are non-Sperner and for each two b1 ⊂ b2 ∈ B(C) there
are c1 ⊂ c2 ∈ C̄ such that V (ci) = bi, i = 1, 2.

Remark 1 The criterion in (ii) of the Corollary is not sufficient for satisfi-
ability of C: Let b1 ⊂ b ∈ B(C) such that c1 ⊂ c ∈ C̄ and moreover let
b′1 ⊂ b′ ∈ B(C) such that c′1 ⊂ c′ ∈ C̄ where V (c) = b, V (c′) = b′, V (c1) = b1,
and V (c′1) = b′1. Now assume that b ∩ b′ 6= ∅, and that c, c′ are the only clauses
over b, b′ in C̄. Clearly, if c|b∩b′ 6= c′|b∩b′ then there is no compatible f-transversal
of C̄ hence no model of C.

Returning to the general discussion, let H = (V, B) be a non-empty base hy-
pergraph, then clearly Fcomp(KH) is not empty we even have |Fcomp(KH)| =
2|V | due to Prop. 1 (1). However, a priori it is not clear whether also holds
Fdiag(KH) 6= ∅ in any case. It turns out that this depends strongly on the struc-
ture of the base hypergraph H: To that end, let us consider an interesting and
guiding example regarding satisfiability of certain formulas over (exactly) linear
base hypergraphs. In [13, 14] linear formulas (variable sets of distinct clauses have
at most one member in common) are discussed in more detail and satisfiability
of exactly linear formulas is shown by simple matching techniques.

Lemma 1 [13] Each exactly linear formula C is satisfiable.

From the last result we immediately conclude that if the base hypergraph H =
(V, B) is exactly linear then for the corresponding total clause set holdsFdiag(KH)
= ∅. Indeed, then no unsatisfiable f-transversal can exist, as each is exactly lin-
ear and we are done by Proposition 2. This answers the earlier stated question
whether there are hypergraphs admitting no diagonal f-transversal. The reverse
question, namely are there hypergraphs at all such that the total clause sets has
diagonal f-transversals, also is answered positive: In [13, 14] it is shown that there
are unsatisfiable linear formulas, these formulas must be f-transversals hence cor-
respond to diagonal f-transversals of the total clause set over the underlying base
hypergraph:

Fact 1 The notion of (diagonal) f-transversals immediately generalizes the no-
tion of (unsatisfiable) linear formulas.

However formulas having an exactly linear base hypergraph in general may not
be satisfiable, because they can contain a diagonal subformula (which cannot be
a f-transversal):
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Theorem 3 Let H = (V, B) be an exactly linear base hypergraph with corre-
sponding total clause set KH. Let C ⊆ KH be any H-formula. Then we can
check in polynomial time whether C contains a diagonal subformula, i.e., whether
C ∈ UNSAT.

Proof. Recall that Cb ⊂Wb denotes the fibre subformula of C over b ∈ B, and
that Cb(l) ⊂ Cb is the subformula of Cb of all clauses containing literal l, where
V (l) ∈ b. Let l be an arbitrary literal occuring in C, and first observe that, if
b ∈ B is an edge containing the underlying variable V (l) ∈ b, then the clauses
in Cb cover (i.e., have intersection with) exactly µ(l) := µ(l, b) := |Cb(l)| · 2n−|b|

of all 2n−1 truth assignments containing l, where n := |V |.
We intend to determine the number of truth assignments met by the clauses in

the input formula C. This essentially is organized by performing two independent
runs of a Procedure ComputeCoverNumber(l, p), one for l = x and a second one
for l = x̄. Here x is the maximum variable that together with the determined
edges b1, b

′
1 ∈ B (smallest index if ambigous), has to be computed first according

to

µ(x, b1) + µ(x̄, b′1) = max{µ(y, b) + µ(ȳ, b′) : y ∈ L(Cb), ȳ ∈ L(Cb′), b, b
′ ∈ B}

here µ(l, b) = |Cb(l)| · 2n−|b| is computed for all (l, b) ∈ L(V ) × B such that
Cb(l) 6= ∅. It is possible that b1 = b′1.

Both executions of Procedure ComputeCoverNumber(l, p) are initiated only if
µ(l) < 2n−1 meaning that the fibre subformula corresponding to the maximum
does not cover all 2n−1 possible truth assignments containing l. Finally, the
corresponding cover numbers returned in p are added, and the algorithm returns
unsatisfiable iff the total value equals 2n. Clearly, the runs of the procedure for
x and x̄ can be processed independently because both compute coverings in
different ranges in the set of all truth assignments

Now procedure ComputeCoverNumber(l, p) consists of two main subproce-
dures. A first is entered only if there is at least one fibre subformula Cb con-
taining l besides Cb1 and computes all additional truth assignments containing
x covered by these fibre subformulas. The second subprocedure is entered only
in case there are any remaining fibre subformulas not containing l, and the sub-
procedure is devoted to determine all additionally covered truth assignments
containing l covered by these subformulas.

The first subprocedure proceeds as follows: W.l.o.g. (otherwise relabel the
members in B) let {Cb2 , . . . , Cbs

}, for s ≥ 1, denote the collection of all remaining
fibre subformulas with V (l) ∈ bi, 2 ≤ i ≤ s. Assume that its members are ordered
due to decreasing cardinalities of its subsets |Cbj

(l)| containing l, for 2 ≤ j ≤ s.

For simplicity let mj := |Cbj
(l)| and m′

j := |Wbj
(l) − Cbj

(l)| = 2|bj|−1 −
|Cbj

(l)|, for 1 ≤ j ≤ s. Then the number of truth assignments containing l
covered by the subformulas in Cl is given by:

(∗) m′
1

s
∑

j=2

[

mj · 2
n+(j−1)−

Pj
q=1 |bq| ·

j−1
∏

k=2

m′
k

]
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where, as usual,
∏k

i=b ai := 1, for k < b.

Clearly, number (∗) can be determined performing a simple loop recalling
that by assumption mj > 0, for all 1 ≤ j ≤ s:

z ← m′
1 ·m2 · 2n+1−|b1|−|b2|

p← z
for j = 2 to s− 1 do

z ← z ·m′
j ·

mj+1

mj
· 21−|bj+1|

p← p + z
od

So finally, we have to check whether the resulting value p = 2n−1. In order
to avoid calculations with possibly large number 2n it is sufficient instead to
compute p′ := p/2n and finally checking whether p′ = 1/2. Observe that the
second subprocedure needs to be started only if the answer is negative.

For explaining the second subprocedure, let c be any clause of a fibre sub-
formula over b ∈ B −B(x), then c covers a truth assignment containing l if and
only if for each bi ∈ B(x) there are ci ∈ Wbi

− Cbi
(x) with c ∩ ci 6= ∅. Observe

that none of these truth assignments is covered by those computed in the first
subprocedure, because each of the latter ones fixes all literals of at least one
complete clause in any x-fibre subformula whereas each of the newly as covered
determined truth assignments are composed of missing clauses in each hypercube
formula Wb(l)−Cb(l), for all e ∈ B(x). So each corresponding truth assignment
is different to each detected in the first subprocedure in at least one position.

W.l.o.g. (which always can be achieved via relabeling), let C(x) := {Cbs+1, . . . ,
Cbs+r

}, for r ≥ 1, be the collection of all fibre subformulas neither containing x
nor x̄, hence it has exactly one member for each edge in B−B(x). For Cbs+1 ∈ C ′

x

and c ∈ Cbs+1 , let {yi} = V (c) ∩ Cbi
, 1 ≤ i ≤ s, which are uniquely determined

because of exact linearity. Assume that li ∈ c is the corresponding literal with
V (li) = yi 6= x, where clearly |c| ≥ s and each variable in c different from yi,
1 ≤ i ≤ s, cannot occur in any member of Cl.

Let nl :=
∑j

q=1 |bq| − (s − 1) be the number of variables already fixed by
bi, 1 ≤ i ≤ s. Let λi(c) := |c ∩ [Wbi

(l) − Cbi
(l)]| be the number of occurences

of literal li in Wbi
(l)−Cbi

(l) which is the fibre complement of Cbi
(l). Clearly li

occurs in exactly 2|bi|−2 clauses in Wbi
(l). So, if li occurs ti times in Cbi

(l), we
obvioulsy have

λi(c) = 2|bi|−2 − ti

Now the clauses in Cbs+1 exactly cover the following number of additional truth
assignments containing l:

2n−nl−(|bs+1|−s)
∑

c∈Cbs+1

s
∏

j=1

λj(c)
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Therefore, we obtain for the number of covered truth assignments containing l
by all members of C ′

x,

r
∑

k=1



2n−nl−
Pk

j=1 f(j)
∑

c∈Cbs+k





s+k−1
∏

j=1

λj(c)









where

f(j) := |bs+j| −

∣

∣

∣

∣

∣

s+j−1
⋃

i=1

(bs+j ∩ bi)

∣

∣

∣

∣

∣

∈ {0, . . . , |bs+j| − s}

1 ≤ j ≤ r.

Having processed ComputeCoverNumber(l, p) for l := x we again check whether
p′ = 1/2 and only in the positive case we run ComputeCoverNumber(l, p) for
l := x̄, because otherwise not all truth assignments containing x are covered,
immediately enabling us to conclude that C ∈ SAT. ⊓⊔

Obviously, the method above is not able to solve the search problem, we only
obtain a decision whether C is satisfiable, but in positive case we are not aware
of a model.

So, there are cases where no diagonal f-transversal of the total clause set ex-
ists, but unsatisfiable formulas C ⊂ KH can exist although, so we conclude that,
despite of Proposition 2, in general C ∈ UNSAT is not equivalent to F(C) 6= ∅.
However, things may be different if H is structured such that Fdiag(KH) 6= ∅.
So, we next pose the question whether under this assumption holds C ∈ UNSAT
iff Fdiag(C) 6= ∅. Observe that the implication ⇐ holds because if C admits a
diagonal f-transversal then C̄ cannot have a compatible f-transversal therefore
C ∈ UNSAT due to Theorem 1 (i).

Definition 3 Let H = (V, B) be a base hypergraph.
We call H a diagonal base hypergraph if Fdiag(KH) 6= ∅.
H is called strictly diagonal if it is diagonal, and additionally:

(∗) : ∀C ⊂ KH : B(C) = B = B(C̄) : C ∈ UNSAT⇔Fdiag(C) 6= ∅

We first consider the question whether the class of strictly diagonal base hy-
pergraphs coincides with the class of all diagonal base hypergraphs. To give an
answer constructively: Start with a linear hypergraph H = (V, B) that admits
an unsatisfiable polarization hence admits a diagonal f-transversal and there-
fore H is diagonal. Assume that H results by a block construction over a base
block hypergraph H′ = (V ′, B′) with V ′ ⊂ V, B′ ⊂ B as shown in [13]. Then
we claim that we can construct a (small) unsatisfiable formula C ′ ⊂ KH′ with
π′(C ′) = B′ = π′(C̄ ′). Now we claim that it is possible to add to C ′ exactly one
member of each fibre of π−1(b), forall b ∈ B−B′ such that the resulting formula
C has the property that each of its f-transversals is satisfiable, hence cannot
be diagonal. Thereofore the above stated question gets a negative answer. The
question whether there exist strictly diagonal hypergraphs is still open.
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Lemma 2 For H strictly diagonal holds that each f-transversal meeting all di-
agonal f-transversals is compatible, formally:

Fcomp(KH) = {F ∈ F(KH) : ∀F ′ ∈ Fdiag(KH) : F ∩ F ′ 6= ∅}

Proof. Let F ∈ F(KH) meeting all members of Fdiag(KH) then clearly F
cannot be diagonal as F γ is diagonal. If F is compatible we are done. So assume
that F is neither compatible nor diagonal, then specifically F̄ ∈ UNSAT due to
Theorem 1. Since H is strictly diagonal it is implied that Fdiag(F̄ ) 6= ∅ meaning
there is F ′ ∈ Fdiag(KH) such that F ∩ F ′ = ∅. ⊓⊔

We next provide some further considerations, besides the discussion of diag-
onality: For H = (V, B), again let C ⊂ KH such that B(C) = B = B(C̄). If
C ∈ SAT then due to Prop. 1 (1) each t ∈M(C) satisfies ϕ−1(t) ∈ Fcomp(KH).
We now address the question in which case each model t of C even satisfies
ϕ−1(t) ∈ Fcomp(C), i.e., corresponds to a compatible f-transversal of the for-
mula itself.

Lemma 3 If C ∈ CNF∩SAT, B(C) = B(C̄), such that for each t ∈M(C) holds
ϕ−1(t) ∈ Fcomp(C) then C̄ ∈ SAT and ϕ(F ) ∈ M(C̄) for each F ∈ Fcomp(C̄);
and vice versa.

Proof. Let F ∈ Fcomp(C̄) be arbitrary with t := ϕ(F ) ∈ WV , then according
to the proof of Theorem 1 (ii) tγ is a model of C. By assumption there is
F ′ ∈ Fcomp(C) such that tγ = ϕ(F ′). Hence, again by Theorem 1 (ii), t is a
model of C̄ as claimed, specifically C̄ ∈ SAT. The vice versa assertion follows by
exchanging the roles of C and C̄. ⊓⊔

Next we provide a formula class admitting the assumption of the last lemma.
Recall that a symmetric formula satisfies C = Cγ Clearly, if C ∈ Sym then also
C̄ ∈ Sym, since for c ∈ C̄ holds c 6∈ C thus cγ 6∈ C implying cγ ∈ C̄.

Lemma 4 Let C ∈ CNF such that B(C) = B(C̄) and C̄ ∈ Asym. Then C ∈
SAT implies C̄ ∈ SAT and each t ∈M(C) satisfies ϕ−1(t) ∈ Fcomp(C); and vice
versa.

Proof. Let t ∈M(C) 6= ∅ then for each b ∈ B(C) t|b satisfies all of Wb except
for (t|b)γ which thus must be a clause of C̄. And C̄ ∈ Asym implies that t|b ∈ C
for each b ∈ B(C). Hence {t|b : b ∈ B(C)} is a compatible f-transversal of C.
It follows that C̄ ∈ SAT and that for each t ∈ M(C) holds ϕ−1(t) ∈ Fcomp(C).
The vice versa assertion follows by exchanging the roles of C and C̄. ⊓⊔

Corollary 2 Let C ∈ Asym such that also C̄ ∈ Asym and B(C) = B(C̄). Then
C ∈ SAT if and only if C̄ ∈ SAT. ⊓⊔

A formula is satisfiable if and only if the complement formula admits a com-
patible f-transversal. Therefore the specific class of formulas C such that every
f-transversal of C is compatible is of interest, because then any f-transversal
gives rise to a model of C̄, and vice versa. To provide a characterization of that
very specific class, for C ∈ CNF, let I(C) := {r = b ∩ b′ : b 6= b′ ∈ B(C)}, and
let C[r] = {c ∈ C : r ⊆ V (c)}, for each r ∈ I(C).
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Lemma 5 Let C ∈ CNF such that B(C) = B(C̄). Then Fcomp(C) = F(C),
i.e., any f-transversal of C is compatible iff (∗): for each fixed r ∈ I(C) holds
c|r = c0|r, ∀c ∈ C[r] and arbitrary fixed c0 ∈ C[r].

Proof. Consider the hypergraph B̃ := B(C)∪ I(C) having V (C) as vertex set.
Similarly consider C̃ := C∪{c∩r : c ∈ C, r ∈ I(C)} then it is easy to see that (∗)
is equivalent to: For each r ∈ I(C) holds |C̃r| = 1 where C̃r := {c ∈ C̃ : V (c) = r}
is the fibre of C̃ over r, from which the assertion immediately follows. ⊓⊔

So we obtain a class of satisfiable formulas recognizable in polynomial time:
Let CNFcomp denote the class of all formulas C ∈ CNF with B(C) = B(C̄), and
such that F(C̄) = Fcomp(C̄). As an example for C ∈ CNFcomp, let H = (V, B)
with V = {q, r, s, t, u, v, x, y}, B = {b1 = xy, b2 = yuv, b3 = vxr, b4 = rst, b5 =
txq} where brackets for edges are omitted, then the following (linear) formula is
maximal w.r.t. to membership in CNFcomp, i.e., any additional clause over any
b ∈ B disturbs that membership, of course polarity of variables in V (I(C)) can
be chosen differently:

C̄ = xȳ ȳuv vxr rst̄ t̄xq

ȳūv rs̄t̄ t̄xq̄

arranged fibrewise. It is obvious that any f-transversal of C̄ is compatible, hence
C = KH − C̄ ∈ CNFcomp.

Theorem 4 We can check in polynomial time whether an input formula C ∈
CNF belongs to CNFcomp 6= ∅ and in positive case, implying that C is satisfiable,
a model can be provided in polynomial time.

Proof. Clearly, if C ∈ CNFcomp, then we only need to select a clause cb ∈
Wb−Cb for each b ∈ B(C) ensuring that

⋃

b∈B(C) cγ
b ∈ M(C) due to Theorem 1

(ii). For fixed b = {bi1 , . . . , bi|b|}, the selection can be performed e.g. by ordering

the members c = {b
εi1(c)
i1

, . . . , b
εi|b|(c)

i|b|
} in Cb by lexicographic order of the vectors

(εi1(c), . . . , εi|b|(c)) ∈ {0, 1}|b|.
To decide whether C ∈ CNFcomp, according to the discussion above, first

compute I(C) and V (I(C)) i.e., all variables occuring in members of I(C). Then
check whether each x ∈ V (I(C)) occurs in C̄ with a fixed polarity, only in the
positive case holds C ∈ CNFcomp. ⊓⊔
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