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Abstract. In this paper we study NP-hard weighted satisfiability op-
timization problems for the class 2-CNF providing worst-case upper
time bounds. Moreover we consider the monotone dual class consist-
ing of clause sets where all variables occur at most twice. We show that
weighted SAT, XSAT and NAESAT optimization problems for this class
are polynomial time solvable using appropriate reductions to specific
polynomial time solvable graph problems.
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1 Introduction

Weighted variants of search or decision problems are of certain importance for
computational complexity theory as they can provide a gap from easy to hard.
Consider, e.g., the satisfiability problem for propositional 2-CNF formulas (2-
SAT). As is well known 2-SAT can be decided in linear time and in positive case
even a model for an input formula C can be found in linear time [2]. But asking
for a minimum cardinality model of C, i.e., a model of least number of variables
assigned to true is an NP-hard optimization problem: 2-SAT can be regarded as
a generalization of the minimum vertex cover problem in undirected graphs (see
below). An immediate generalization of minimum cardinality 2-SAT is minimum
weight 2-SAT, where the variables of the input formula are equipped with real-
valued weights. Clearly, if each variable has weight 1, we obtain the minimum
cardinality problem. As shall be seen below, also the problem of maximum weight
2-SAT is NP-hard.
Weighted versions of satisfiability problems have applications e.g. in code gen-
eration where certain problems can be encoded in weighted satisfiability [1].
In this paper we address the NP-hard optimization problems minimum and max-
imum weight SAT for arbitrarily variable-weighted 2-CNF formulas. We provide
worst-case upper bounds of O(20.5284n) for these problems extending results
presented in [17, 19] only holding for minimum weight 2-SAT for non-negative
variable weights, respectively, maximum weight 2-SAT for non-positive weights.
The latter results are based on techniques provided for mixed Horn formulas
introduced and studied in [18]. The main variants of satisfiability, namely exact
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satisfiability and not-all-equal satisfiability for weighted 2-CNF have been shown
to be linear time solvable in [12]. Moreover, the optimization cases of XSAT for
variable weighted formulas has been shown to be solvable in time O(20.2441n)
for arbitrary CNF [13, 15], respectively, in time O(20.16254n) restricted to 3-CNF
[10, 11]. Exactly solving NAESAT for arbitrary CNF formulas (or restricted to
3-CNF) exactly in less than the trivial 2n steps remains an open problem for
the decision problem as well as for its NP-hard variable-weighted optimization
variants.
Recently also counting versions of weighted SAT have been considered: #XSAT
for variable weighted CNF formulas can be solved in time O(n2 ·‖C‖+20.40567·n)
as shown in [14, 15]. Fürer et al. [5] provided an algorithm for counting all max-
imum weight solutions of SAT for variable weighted 2-CNF formulas. Clearly,
only counting models cannot provide a solution of the underlying optimization
problem, as no solutions are generated explicitly.
We also consider the class CNF+(≤ 2), containing clauses of arbitrary length,
but each variable occurs, regarding its polarity in at most two distinct clauses.
We show that the variable-weighted optimization versions of satisfiability, ex-
act satisfiability, and not-all-equal-satisfiability restricted to CNF+(≤ 2) all are
solvable in polynomial time via reductions to specific graph problems.
Organisation of the paper: Section 2 describes basic definitions and terminology
used throughout, followed by explaining useful monotonization tools in Section
3. Section 4 discusses optimum weight 2-Satisfiability. In Section 5 we provide
polynomial time algorithms for the weighted optimizations of satisfiability and
its variants for the dual class of 2-CNF. In Section 6, we finish with some open
problems and concluding remarks.

2 Preliminaries

To fix notation, a literal is a propositional variable x ∈ {0, 1} or its negation
x := ¬x (negated variable). The complement of a literal l is l. A clause c is
the disjunction of different literals and is represented as a literal set. A CNF
formula C is a conjunction of different clauses and is represented as a clause set.
Throughout we use the term formula meaning a clause set as defined. For a given
formula C, clause c, by V (C), V (c) we denote the set of variables contained in
C, c, respectively. Similarly, given a literal l, V (l) denotes the underlying variable.
V+(C) (resp. V−(C)) denotes the set of all variables occuring unnegated (resp.
negated) in C. We distinguish between the length ‖C‖ of a formula C and the
number |C| of its clauses. Let CNF denote the set of all formulas and let CNF+

denote the set of positive monotone formulas, i.e., each clause contains only
variables, no negated variables. Recall that the intersection graph of a monotone
formula C has a vertex for each clause and an edge for each two intersecting
clauses. For each x ∈ V (C) let C(x) := {c ∈ C : x ∈ V (c)}. Let CNF(≤ k) be
the set of formulas C such that each x ∈ V (C) occurs in at most k clauses of C
regardless whether negated or unnegated. Let k-CNF, k-CNF+ denote the set
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of formulas C such that |c| ≤ k for all c ∈ C. A Horn formula is a member of
CNF such that each clause has at most one positive literal.
For X ⊆ V (C), we denote by CX the formula obtained from C by comple-
menting exactly those literals l in C with V (l) ∈ X, and we write Cx := C{x},
respectively, Cγ := CV (C). Similarly, for a truth assignment t of C let tX be
obtained from t by complementing exactly the values t(x) for all x ∈ X. Again
we write tx := t{x}, and tγ := tV (C). For C ∈ 2-CNF, we denote by P (C) its
positive monotone part.
The satisfiability problem (SAT) asks in its decision version, whether there is a
truth assignment t : V (C) → {0, 1} assigning one literal in each clause of C to 1,
such a truth assignment is called a model of C. SAT is known to be NP-complete
[3]. In the search version one has to decide whether C ∈ SAT and in the positive
case one has to find a model t of C.
Exact satisfiability (XSAT) means to find a truth assignment that assigns exactly
one literal in each clause of a formula to 1, called x-model or XSAT-model. Not-
all-equal satisfiability (NAESAT) searches for a truth assignment assigning at
least one literal in each clause of C to 1 and at least one literal to 0, called
nae-model or NAESAT-model. The decision versions of XSAT and NAESAT are
defined analogously, and are known to be NP-complete [20].
An optimization variant of SAT is obtained when weights are assigned to the
variables: Given C ∈ CNF and w : V (C) → R, MINW-SAT asks whether C ∈
SAT and in the positive case one has to find a minimum model of C, i.e., a model
t of the least weight among all models of C. The weight of a model t is defined
by w(t) =

∑
x∈t−1(1) w(x) =

∑
x∈V (C) w(x)t(x). Analogously, the optimization

problems MINW-XSAT and MINW-NAESAT are defined, which all are NP-hard
for the class CNF. Similarly we obtain the maximization versions MAXW-Π,
when searching for a maximum Π-model, for Π ∈ {SAT,XSAT,NAESAT},
correspondingly.
Given M ⊆ R, let an M -weighted formula be a pair (C,w) where C ∈ CNF
and w : V (C) → M , and let −M := {−m|m ∈ M}. For weight function w,
let −w denote the weight function obtained from w by pointwise multiplying
its values by −1. For Π ∈ {SAT,XSAT,NAESAT}, let TΠ(C) denote the set
of all Π-models of C and similarly let TΠ

µ (C,w) ⊆ TΠ(C) denote the set of all
µ-weight Π-models of (C,w), with µ ∈ {min,max}.

3 Reduction Tools for Variable-Weighted Formulas

Let us collect some useful tools for later considerations. The first assertion
slightly generalizes Lemma 7 in [15] restricted to weighted XSAT, and enabling
us to reduce maximum weight problems to minimum weight problems in specific
cases:

Lemma 1. Let Π ∈ {SAT,XSAT,NAESAT}. If there exists an algorithm A
solving MINW-Π for M -weighted members of a formula class C ⊆ CNF in
O(f(‖C‖)) time then A also solves MAXW-Π for (−M)-weighted members of C
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and vice versa. Moreover, in case M = −M , algorithm A can easily be modified
to A′ solving MAXW-Π for M -weighted members of C in O(f(‖C‖)) time.

Proof. Let C ⊆ CNF be a fixed formula class for whichA is an algorithm solving
MINW-Π for M -weighted input instances C ∈ C. We claim that TΠ

min(C,w) =
TΠ

max(C,−w). From that claim the first assertion obviously follows. Moreover, if
M = −M , given an M -weighted formula (C,w), let A′ first compute (C,−w) in
linear time which then also is M -weighted, and then A′ performs A on (C,−w)
finding an element t ∈ TΠ

min(C,−w), if existing, therefore t ∈ TΠ
max(C,w) as

required. Since A at least must have linear running time, A′ also has time
bound O(f(‖C‖)). To verify the claim let t ∈ TΠ

min(C,w), and assume t 6∈
TΠ

max(C,w′) where w′ := −w. Then there exists t0 ∈ TΠ(C) with w′(t0) > w′(t)
which is equivalent to −w′(t0) < −w′(t) meaning w(t0) < w(t) contradicting
t ∈ TΠ

min(C,w). Therefore TΠ
min(C,w) ⊆ TΠ

max(C,−w). Analogously, we obtain
TΠ

max(C,−w) ⊆ TΠ
min(C,w).

The vice versa assertion stating that an algorithm solving MAXW-Π for (−M)-
weighted members in C also solves MINW-Π for M -weighted formulas anal-
ogously follows from the claim that TΠ

max(C,w) = TΠ
min(C,−w) holds, for an

arbitrary (−M)-weighted formula (C,w), C ∈ C. This claim is shown as the
previous one. ut
Next, we state a basic proposition relating bijections between Π-model spaces to
bijections between weighted Π-model spaces, where Π ∈ {SAT,XSAT,NAESAT}.
This result is a slight generalization of the same result restricted to weighted
XSAT shown in [13, 15]:

Proposition 1. For arbitrary M -weighted formulas (C,w), (C ′, w′) (M ⊆ R),
assume that there exists a bijection

F : TΠ(C) 3 t 7→ t′ := F (t) ∈ TΠ(C ′)

such that (∗): w(t) = w′(t′)+α, where α ∈ R is a constant independent of t and t′.
Then the restricted mapping Fµ := F |TΠ

µ (C,w) is a bijection between TΠ
µ (C,w)

and TΠ
µ (C ′, w′), so we have |TΠ

µ (C,w)| = |TΠ
µ (C ′, w′)|, for µ ∈ {min,max}.

Proof. First consider the minimization case. Let t ∈ TΠ
min(C,w) and assume

that t′ := Fmin(t) 6∈ TΠ
min(C ′, w′). Then there is a Π-model t′0 ∈ TΠ(C ′) with

w′(t′0) < w′(t′). Let t0 := F−1(t′0) be the corresponding Π-model of C. Apply-
ing (∗) twice we obtain w(t0) = w′(t′0) + α < w′(t′) + α = w(t), contradicting
the assumption that t is minimum. Hence Fmin(t) ∈ TΠ

min(C ′, w′) holds for each
t ∈ TΠ

min(C,w). Conversely, let t′ ∈ TΠ
min(C ′, w′) and assume t := F−1(t′) 6∈

TΠ
min(C,w). Then there is a Π-model t0 ∈ TΠ(C) with w(t0) < w(t). Let

t′0 := F (t0) be the corresponding Π-model of C ′. As above, by (∗), we de-
rive w′(t′0) = w(t0)− α < w(t)− α = w′(t′), contradicting the assumption that
t′ is minimum. Hence F−1(t′) ∈ TΠ

min(C,w) holds for each t′ ∈ TΠ
min(C ′, w′).

Thus, F−1 restricted to TΠ
min(C ′, w′) equals F−1

min from which the assertion fol-
lows. Proving the assertion for maximum model spaces proceeds analogously. ut
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4 Optimum Weight 2-SAT

As is well known, 2-SAT, i.e., SAT restricted to 2-CNF can be decided and
solved in linear time in the length of the formula [2]. However, a straightforward
reduction from the minimum weight vertex cover problem (MINW-VC) in graphs
tells us that the weighted version MINW-2SAT is NP-hard. To that end simply
observe that the edges of the graph represent clauses of a monotone formula
whose variables correspond to the graph vertices. Obviously a minimum weight
model as defined above is equivalent to a minimum vertex cover, i.e., a smallest
weight subset of vertices covering all graph edges. Therefore, MINW-VC and
MINW-2SAT for monotone formulas are identical. In this section we provide
an algorithm for optimum weight SAT restricted to arbitrarily weighted 2-CNF
(also called quadratic) formulas.
For Horn formulas, SAT can be decided and solved in linear time which is a
well-known result [8, 9]. The minimization problem for weighted Horn formulas
can also be solved in linear time:

Lemma 2 ([17]). Minimum weight satisfiability for a Horn formula H and
weight function w : V (H) → R+, can be solved in linear time.

Observe that the maximization problem cannot be reduced to the minimization
case as only non-negative weights are allowed.
If P (C) is empty then C is a 2-CNF Horn formula, we thus obtain immediately:

Corollary 1. For C ∈ 2-CNF with P (C) = ∅, MINW-XSAT can be solved in
linear time, where w : V (C) → R+. ut

For non-negatively weighted 2-CNF formulas with n variables, MINW-SAT has
been shown to be solvable in time O(20.5284·n) [17, 19] regarding it as a specific
mixed Horn formula introduced in [18], which can be represented as the union
of an arbitrary Horn formula, and an arbitrary quadratic formula:

Lemma 3 ([19]). Minimum (resp. maximum) weight satisfiability can be solved
in O(20.5284|V (C)|) time, for formulas C ∈ 2-CNF and w : V (C) → R+ (resp.
w : V (C) → R−).

The proof uses the Johnson-Papadimitriou-Yannakakis algorithm [7] for gener-
ating all maximal independent sets in the graph with polynomial delay yielding
time bound O(20.5284n), for n vertices.
The last result can be generalized to arbitrarily weighted 2-CNF formulas resting
on the next assertion stating that optimum weight Π-models are preserved in a
certain sense when variables are complemented.

Lemma 4. Let (C,w) with C ∈ CNF, w : V (C) → R, and X ⊆ V (C) be
arbitrary. Then, for (CX , wX) with wX(x) := w(x), ∀x ∈ V (C) \ X, and
wX(x) := −w(x),∀x ∈ X, we have for each fixed Π ∈ {SAT,XSAT,NAESAT}:
(i) |TΠ(C)| = |TΠ(CX)|, given by t 7→ tX ,
(ii) |TΠ

µ (C,w)| = |TΠ
µ (Cx, wx)|, µ ∈ {min,max}.
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Proof. Let Π ∈ {SAT,XSAT,NAESAT} then t obviously is a Π-model of C
iff tX is a Π-model of CX , for each X ⊆ V (C). Indeed, let ` be a literal at
any fixed position p in C regarded as a vector of length ‖C‖, then the truth
value at position p is t(`). Now either holds V (`) ∈ X or V (`) /∈ X. In the
first case ¯̀ is the corresponding literal at position p in CX having truth value
tX(¯̀)) = 1−t(¯̀) = t(`). In the remaining case the truth value of ` is not affected.
Therefore the truth value vectors of C, t, resp. CX , tX , are identical completing
the argumentation and implying that F : TΠ(C,w) 3 t 7→ tX ∈ TΠ(CX , wX) is
a bijection of Π-model spaces, hence (i) is true. Since tX(x) = 1− t(x), for each
x ∈ X and tX(y) = t(y), for each y ∈ V (C)−X, we have

wX(tX) =
∑
x∈X

(−w(x))(1− t(x)) +
∑

x∈V (C)−X

w(x)t(x) = −w(X) + w(t)

Hence wX(tX) = w(t) + α, where α := −w(X) is a constant as X is fixed. So,
assertion (ii) can immediately be derived from Prop. 1. ut
The last observation helps us to solve minimum weight 2-SAT for arbitrarily
weighted formulas:

Theorem 1. Minimum (resp. maximum) weight satisfiability can be solved in
O(20.5284|V (C)|) time, for formulas C ∈ 2-CNF and w : V (C) → R.

Proof. Let (C,w) with C ∈ 2-CNF and w : V (C) → R be an arbitrary input
for MINW-2SAT. Define X := {x ∈ V (C) : w(x) < 0} ⊆ V (C). Then compute a
minimum weight model t of (CX , wX) due to Lemma 3 which is possible because
wX : V (CX) → R+. According to Lemma 4, tX then is a minimum model of
(C,w). So the assertion for the minimization case follows because CX , wX , and
tX can be computed in linear time O(|V (C)|) using appropriate data structures.
The maximization case follows due to Lemma 1. ut
If (C,w) is an R-weighted formula possessing a set X ⊆ V (C) such that CX is
a Horn formula, and only the variables in X are negatively weighted, then by
Lemma 1 we can solve minimum weight SAT for (CX , wX) in linear time: By
the last theorem, we then also obtain a solution for the original input C with
w : V (C) → R, because we only have to complement the model values for the
variables in X.
It should be noted that, via the above approach, we cannot improve on Theorem
9 in [19], i.e., we cannot show that minimum (resp. maximum) weight satisfi-
ability for each mixed Horn formula C with arbitrary weights can be solved
in O(20.5284|V (C)|) time. The reason is that an arbitrary mixed Horn formula
remains not mixed Horn if a certain subset of variables is complemented. But
fortunately 2-CNF formulas remain stable under complementations of arbitrary
variable sets.
XSAT resp. NAESAT are the same for 2-CNF formulas containing no unit
clauses: A formula containing unit clauses obviously does not belong to NAESAT.
However unit clauses are not critical as the corresponding literals must be set
to true regardless of variable weights. The optimization versions minimum and
maximum weight XSAT resp. NAESAT are solvable in linear time for 2-CNF,
cf. Thm. 1, [12].
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5 The Weighted Dual Class CNF+(≤ 2)

In this section MINW-Π, resp., MAXW-Π for the case of monotone weighted
input formulas (C,w), i.e. C ∈ CNF+(≤ 2), w : V (C) → R, is treated, for
each fixed Π = {XSAT,SAT,NAESAT}. Recall that, by definition, each variable
occurs in at most two distinct clauses of C, hence |C(x)| ≤ 2, for each x ∈ V (C).
Observe that CNF(≤ 2) can be regarded as dual to 2-CNF in the sense that
assigning a set Sx to each variable x ∈ V (C) defined by Sx := {c ∈ C : x ∈ V (c)}
yields “variable-clauses” of length at most 2: |Sx| ≤ 2.
The algorithmic strategy is as follows focusing first on MINW-Π, for each fixed
Π ∈ {SAT,XSAT,NAESAT}: We reduce MINW-Π in polynomial time to a cor-
responding equivalent problem on an edge weighted graph that is closely related
to the (edge-weighted) intersection graph GC of (C,w). Then we construct a
polynomial time algorithm solving this graph problem, thereby yielding a mini-
mum Π-model of (C,w) or responding that none such exists. An algorithm for
the maximization version then is provided by Lemma 1.
Recall that the intersection graph of a monotone formula C ∈ CNF+ has a vertex
for each clause, and two vertices are joined by an edge iff the corresponding
clauses have non-empty intersection. We will make use of a modification of the
intersection graph that we call the clause graph GC associated to a variable-
weighted C ∈ CNF+(≤ 2) also incorporating variables that uniquely occur in C,
i.e., in only one clause: Thus, if C admits no unique variables the clause graph
simply is the intersection graph, such that each edge is labeled by a variable
of least weight in the intersection and is weighted by that weight. In case C
admits unique variables, make a copy of its intersection graph, pose to each edge
in either copy its label and its weight as mentioned above. Finally, join each
two vertices in either copy that correspond to the same clause by an edge iff
the clause contains a unique variable; label that edge with a unique variable
of least weight, and assign to it that weight value yielding GC . The formula
graph at most has 2|C| vertices and |V (C)| edges, and can obviously be built
in O(|C2| · |V (C)|) time. Since each variable occurs in at most two clauses, i.e.
∀x ∈ V (C) : |C(x)| ≤ 2, we have |C| ≤ ‖C‖ =

∑
x∈V (C) |C(x)| ≤ 2|V (C)|. If

GC is not connected we first compute its components in linear time then treat
all components independently decreasing running times obviously.
For the case Π = XSAT, we have:

Lemma 5 ([12]). A minimum, resp. maximum, XSAT-model of (C,w) with
C ∈ CNF+(≤ 2), w : V (C) → R, can be computed, respectively, it can be
reported that none exists in time O(|V (C)|3).
The proof is based on the fact that a minimum weight perfect matching in the
clause graph is equivalent to a minimum weight XSAT-model of (C,w), if exactly
the variables that label the selected matching edges are set to true. The running
time is determined by the matching algorithm. We even have:

Theorem 2. A minimum, respectively, maximum weight XSAT-model of (C,w),
with C ∈ CNF(≤ 2), w : V (C) → R, can be computed, respectively, it can be
reported that none exists in O(|V (C)|3) time. ut
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The proof is based on a polynomial time reduction transforming (C,w) to a
weighted monotone formula (C ′, w′) such that the induced mapping FXSAT

min :
TXSAT

min (C,w) → TXSAT
min (C ′, w′) on the minimum XSAT-model spaces is a bijec-

tion. Then a minimum XSAT-solution t′0 of (C ′, w′) can be transformed into a
minimum XSAT-solution of (C,w) via t0 := FXSAT

min
−1(t′0). Hence, we arrive at

a polynomial time algorithm for MINW-XSAT on arbitrarily variable-weighted
members in CNF(≤ 2). From the latter algorithm we obtain a polynomial time
algorithm solving MAXW-XSAT according to Lemma 1.
The next results provide elementary transformation steps for eliminating pure
negative literals, complemented pairs in clauses, and negative literals that have
its positive complement in a different clause. Regarding pure literals we are done
by Lemma 4, for X = {x}:

Corollary 2. For Π ∈ {SAT,XSAT,NAESAT}, and (C,w), with C ∈ CNF,
w : V (C) → R, let x ∈ V (C) be a variable only occuring negated in C. Then for
(Cx, wx), where wx : V (C) → R be defined as w except for wx(x) := −w(x) we
have |TΠ

µ (C,w)| = |TΠ
µ (Cx, wx)|, µ ∈ {min,max}.

Lemma 6 ([13, 15]). For C ∈ CNF with w : V (C) → R, holds TXSAT = ∅ if
there is c ∈ C containing more than one complemented pairs. Let c ∈ C contain
exactly one complemented pair x, x, and let Cc be the formula obtained from
C by removing c and assigning all literals to 0 that occur in c′ := c − {x, x}
(which can be empty), and by finally removing all duplicate clauses. Let wc be
the restriction of w to V (Cc) = V (C)−V (c′), then there is a bijection providing
|TXSAT

µ (C,w)| = |TXSAT
µ (Cc, wc)|, µ ∈ {min,max}. Moreover the transformation

(C,w) to (Cc, wc) as well as the XSAT-model space bijection can be computed in
polynomial time. ut

Lemma 7 ([13, 15]). Let C ∈ CNF, w : V (C) → R such that no clause con-
tains a complemented pair. Let ci = {x} ∪ u, cj = {x} ∪ v ∈ C where x ∈ V (C)
and u, v are literal sets. Let Cij be obtained from C as follows:
(1) Cij := C − {ci, cj} ∪ {u ∪ v}
(2) set all literals in u ∩ v to 0, then remove all duplicate clauses from the re-
sulting formula.
Let wij := V (Cij) → R be the following weight function: For each y ∈ V (Cij)−
V (u⊕ v), set wij(y) := w(y), and moreover, only in case that u⊕ v 6= ∅, define:
(1’) if V+(u⊕ v) ∩ V−(u⊕ v) = {z}, then set

wij(y) :=

 w(y) , if y ∈ V (u⊕ v)− {z}
w(z) + w(x), if z = y and z ∈ u, z ∈ v
w(z)− w(x), if z = y and z ∈ u, z ∈ v

(2’) if V+(u⊕ v) ∩ V−(u⊕ v) = ∅, then set

wij(y) :=

 w(y) , if y ∈ V (v − u)
w(y) + w(x), if y ∈ V−(u− v)
w(y)− w(x), if y ∈ V+(u− v)
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Then we have:
(i) V (Cij) = V (C)− [{x} ∪ V (u ∩ v)], Cij ∈ CNF(≤ 2), and |Cij | ≤ |C| − 1,
(ii) |TXSAT

µ (C,w)| = |TXSAT
µ (Cij , wij)|, for µ ∈ {min,max}.

Moreover the transformation (C,w) to (Cij , wij) as well as the XSAT-model
space bijection can be computed in polynomial time. ut

Next, consider Π = SAT: Since C is monotone we can set to true each variable
that is weighted non-positively, and remove all clauses that are satisfied thereby.
All variables that are removed from the formula and are not yet set have strictly
positive weights and appear only in clauses already satisfied, therefore we can set
them to false. Moreover if the remaining formula has clauses containing unique
variables only, remove these clauses and set to true exactly one variable of least
weight and to false all other variables. All steps above can obviously be done
in linear time O(‖C‖). It remains a monotone formula (C ′, w′) such that each
variable has strictly positive weight and occurs in at most two clauses, no clause
exclusively has unique variables. Therefore the clause graph contains no isolated
vertices.
Recall that an edge cover in a graph G = (V,E) of no isolated vertices is a subset
F ⊆ E such that each vertex x ∈ V is incident to at least one edge in F . It is not
hard to see that a minimum weight edge cover F in the clause graph GC′ yields
a minimum weight SAT-model of (C ′, w′) by setting exactly those variables to
true that label the edges in F .
It is well known that the minimum cardinality of an edge cover in G is closely
related to the matching number ν(G) of G, i.e., the cardinality of a maximum
matching according to the relation |F | = |V |−ν(G). This is easy to see: all 2ν(G)
vertices in a maximum matching are covered already, all remaining vertices are
independent from each other and only have neighbours in the covered set. So,
for each remaining vertex we have to choose exactly one edge not contained in
the matching.
There is no immediate connection as above between maximum weight match-
ings and minimum weight edge covers. However, let (G, w) be a connected edge
weighted graph with w : E → R+ − {0}. Transforming the edge weights w(e) to
ŵ(e), for each e = x− y ∈ E, according to

(∗) ŵ(x− y) := −w(x− y)+min{w(x− z)|z ∈ N(x)}+min{w(y− z)|z ∈ N(y)}

where N(v) ⊂ V denotes the set of all neighbours of v ∈ V in G, yields weight
function ŵ : E → R, cf. e.g. [4]. Now, perform a general maximum weight
matching algorithm, for arbitrarily edge-weighted graphs, on (G, ŵ); and let
M ⊆ E such that ŵ(M) = max{ŵ(M ′)|M ′ ⊂ E matching in G}, be its result.
Let V (M) ⊂ V denote that part of the vertices in G incident to an edge in
M . Then we claim (i): for each x ∈ V − V (M) there exists an edge x − y with
y ∈ V (M), and (ii): selecting one such edge of least weight for each x ∈ V −V (M)
collected in M ′ provides a minimum weight edge cover M∪M ′ in (G, w). Observe
that ŵ = w in case w is a constant function, and by the procedure described we
obtain a minimum cardinality edge cover as explained above. To verify the first
claim, let x ∈ V −V (M) be such that all its neighbours are members in V −V (M)
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and let E(x) denote the set of corresponding edges. Let e = x− y ∈ E(x) such
that w(e) = min{w(e′)|e′ ∈ E(x)}. Therefore, with (∗)

ŵ(e) := −w(e) + w(e) + min{w(y − z)|z ∈ N(y)} > 0

because at least x ∈ N(y). Hence, e would enlarge w(M) and must be contained
in M yielding a contradiction.
For (ii), clearly an edge e = x − y is included into M only if ŵ(e) ≥ 0, hence
in view of (∗) e is the edge of least weight covering x and y, as all w-values are
strictly positive. Similary, for each x ∈ V − V (M), by (i) there is an edge x− y
of least weight w(x − y) and y ∈ V (M). It remains to show that such an edge
is a cover of least weight for x if there is also e′ = x− z with y ∈ V − V (M) of
least w-weight among all such egdes. Indeed, because e′ is independent of M we
have ŵ(e′) ≤ 0 therefore, by (∗), follows w(e′) > 0. Thus, we have verified that
M ∪M ′ provides an edge of least weight for each x ∈ V and has least possible
cardinality, therefore it is a minimum weight edge cover in (G, w).
Observe that transformation w → ŵ can be carried out in time O(|V | · |E|).
Moreover, it is well known that a maximum weight matching in G can be com-
puted relying on Edmonds blossom algorithm for perfect weighted matchings in
O(|V 2| · |E|) time [4]. Hence, a minimum weight edge cover in (G, w) of strictly
positive edge weights can be computed in O(|V 2| · |E|) time. Recalling that the
clause graph has O(|C|) vertices, O(|V (C)|) edges, and |C| ≤ 2|V (C)|, we obtain
in summary:

Theorem 3. A minimum, resp. maximum weight SAT model of (C,w), C ∈
CNF+(≤ 2), w : V (C) → R, can be computed in time O(|V (C)|3). ut

Finally, we consider NAESAT, which for the unweighted case has been solved
in [16] based on Euler tour techniques. Unfortunately, in the weighted case this
approach does not apply.
Let G = (V,E) be a connected graph, and for fixed F ⊆ E let F (x) denote the
set of edges incident to x ∈ V . Now let f, g : V → Z be two functions such
that f ≤ g. Recall that a f-factor in G is a set M ⊆ E such that for each
x ∈ V holds |M(x)| = f(x), which in general does not exist. E.g., for f = 1, an
f -factor is a perfect matching. More generally, an [f, g]-factor in G is M ⊆ E
with |M(x)| ∈ [f(x), g(x)] for each x ∈ V . For an edge-weighted graph (G, w)
with w : E → R an optimum weight [f, g]-factor, is an [f, g]-factor M of optimal
weight w(M).
Let (C,w) with C ∈ CNF+(≤ 2) containing no unit clauses (otherwise the
formula a priori admits no NAESAT-models) and w : V (C) → R. Each c ∈
C containing exclusively unique clauses can be minimally NAESAT-satisfied
independently: If c has only variables of non-negative weights, then set exactly
one of the smallest weight to 1 and all other variables to 0. If c has only variables
of non-positive weights, then set exactly one of the greatest weight to 0 and all
other variables to 1. Observe that also the case is included where all variables
have weight 0, and we have the convention that the variable with the smallest
(largest) index then, by definition, is that of smallest (largest) weight. In all
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remaining cases c contains at least one strictly positive-weighted and at least one
strictly negative-weighted variable, so we set all the latter to 1 and the remaining
variables to 0. It is obvious that so we have minimal NAESAT-satisfied clauses
containing unique variables only which hence can be omitted from the formula.
Next consider a clause c in the remaining formula that contains more than one
unique variable collected in U ⊂ V (c). We intend to assign truth values to all
except one of these unique variables such that the remaining fragment of the
clause is indepent w.r.t. minimum weight NAESAT: If all variables in U have
non-negative weights, set to 0 all except for exactly one of the smallest weight,
which will not yet be assigned. If all variables in U have non-positive weights,
set to 1 all except for exactly one of the greatest weight, which will not yet be
assigned. In all remaining cases c has at least one variable of strictly positive
weight and at least one of strictly negative weight. Set all the latter variables to
1, and set to 0 all of the remaining (non-negative) variables except for exactly
one of the smallest weight, which will not yet be assigned. From each such clause
c remains a fragment c′ containing only one unique variable.
Observe that the resulting formula (C ′, w′), where w := w′|V (C ′), yields an
edge-weighted clause graph GC′ such that each vertex has at least degree 2.
Moreover, each variable in (C ′, w′) labels a unique edge in the clause graph,
and vice versa. Finally, the earlier eliminated unique variables had, for each
clause containing them, been set appropriately. Now it easily follows that a
minimum weight NAESAT-model of (C ′, w′) is provided by setting to 1 exactly
the variables labeling the edges in a minimum weight [1,deg]-factor, if existing, in
GC′ . Here deg : V (GC′) → Z denotes the degree function, i.e., deg(x) = |N(x)|,
for each x ∈ V (GC′).
With standard linear programming techniques one can solve a related problem
in polynomial time, namely the maximum weight [f, g]-matching problem [4]:
Given an edge-weighted graph (G = (V,E), w), and f, g as above, one searches
for µ : E → Z such that for each x ∈ V holds

∑
y∈N(x) µ(x − y) ∈ [f(x), g(x)]

and
∑

e∈E µ(e)w(e) is maximal. The maximum weight [f, g]-factor problem ob-
viously gets the maximum weight [f, g]-factor problem if, one poses the further
constraint 0 ≤ µ(e) ≤ 1 for each e ∈ E, then µ(E) is the characteristic vector
of a matching. Hence the latter problem also can be solved in polynomial time.
The minimization version can be derived easily from the maximization version
in the same manner as described in Lemma 1. So we arrive at:

Theorem 4. A minimum, resp. maximum, NAESAT-model of (C,w) with C ∈
CNF+(≤ 2), w : V (C) → R, can be computed, respectively, it can be reported
that none exists in polynomial time. ut

6 Concluding Remarks and Open Problems

We proved that minimum (and also maximum) weight SAT for 2-CNF formulas
of n arbitrarily weighted variables can be solved in time O(20.5284n). So an open
problem is to construct a faster algorithm for optimum weight 2-SAT. Clearly,
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for monotone formulas minimum weight 2-SAT is the same as minimum weight
vertex cover. Thus the question arise whether one can provide an appropriate
polynomial time monotonization scheme also reducing general minimum weight
2-SAT to minimum vertex cover such that the formula does not increase. How-
ever, the monotonization methods discussed in Section 5 unfortunately do not
apply, because simple resolution fails.
Regarding the second part, we leave open the question whether there can be
constructed monotonization schemes, as valid for XSAT [13, 15], solving the op-
timization versions of SAT and NAESAT even for arbitrary, i.e., not necessarily
monotone members of CNF(≤ 2). What is missing, is a weighted version of the
simple resolution rule for the SAT and NAESAT cases (holding in the unweighted
case [16]).
Indeed only simple resolution is missing, because pure literal elimination already
is provided by Lemma 2. And regarding complemented pairs in clauses we have:

Proposition 2. For Π ∈ {SAT,NAESAT} and C ∈ CNF, w : V (C) → R,
assume there is c ∈ C containing complemented pairs, where W := V (C)−V (C−
{c}), i.e., the set of variables only occuring in c which may be empty. Let Ĉ be
the relevant part of C obtained from C by setting to 0 all x ∈ W with w(x) = 0,
let ŵ be the restriction of w to V (Ĉ). Let Ĉc := Ĉ − {c} and let ŵc be the
restriction of ŵ to V (Ĉc), then we have TΠ

µ (Ĉ, ŵ) 6= ∅ iff TΠ
µ (C,w) 6= ∅, and

TΠ
µ (Ĉ, ŵ) ⊆ TΠ

µ (C,w); moreover, there is a bijection providing |T̂Π
µ (Ĉ, ŵ)| =

|TΠ
µ (Ĉc, ŵc)|, µ ∈ {min,max}. Finally, the transformation (C,w) to (Ĉc, ŵc) as

well as the Π-model space bijection can be computed in polynomial time.

Proof. We distinguish two cases. (1): W = ∅, i.e., each variable in V (c) also
occurs in Cc, then C = Ĉ, w = ŵ, and obviously each t ∈ TΠ(C) also is
a member of TΠ(Cc) and vice versa, for Π ∈ {SAT,NAESAT} providing a
bijection (namely the identity) between the Π model spaces. As w = wc, in that
case, we also have (∗) of Prop. 1; so we are done.
(2): W 6= ∅. Since c contains at least one complemented pair x, x̄, c is Π-satisfied
by any truth assignment. Therefore, and because the variables in W do not occur
in C − {c}, we can set to 0 all x ∈ W with w(x) = 0 implying TΠ

µ (Ĉ, ŵ) 6= ∅ iff
TΠ

µ (C,w) 6= ∅, and TΠ
µ (Ĉ, ŵ) ⊆ TΠ

µ (C,w). Thus it suffices to consider (Ĉ, ŵ)
in the following. If Ŵ denotes the set of all remaining variables in W we have
V (Ĉc) = V (Ĉ)− Ŵ , and claim that

FΠ : TΠ
min(Ĉ, ŵ) 3 t 7→ FΠ(t) := t|V (Ĉc) ∈ TΠ

min(Ĉc, ŵc)

is a bijection if the reverse is defined as the extension of t′ ∈ TΠ
µ (Cc, wc) to

V (Ĉ) by assigning to 1 exactly all variables in Ŵ with w(x) < 0 and the others
to 1, hence ŵ(Ŵ ) = w(W ) is minimal. It is easy to see that FΠ is one-to-one,
and indeed is a bijection of minimum Π-model spaces. The maximization case
proceeds analogously. The running time assertions are obvious. ut
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10. G. Plagge, Über Variablen-Gewichtete X3SAT Optimierungs-Probleme, Diploma

Thesis, Univ. Köln, 2006.
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