
Clause set structures and satisfiability

Stefan Porschen and Ewald Speckenmeyer

Institut für Informatik, Universität zu Köln, D-50969 Köln, Germany.
{porschen,esp}@informatik.uni-koeln.de

Abstract. We propose a new perspective on propositional clause sets
and on that basis we investigate (new) polynomial time SAT-testable
classes. Moreover, we study autarkies using a closure concept. A specific
simple type of closures the free closures leads to a further formula class
called hyperjoins that is studied w.r.t. SAT.

Key Words: CNF satisfiability, hypergraph, fibre-transversal, autarky, closure
operator

1 Introduction

The intention of the present paper is to investigate certain structural properties
of clause sets representing CNF formulas. Exploiting these properties we also
search for subclasses of clause sets for which satisfiability is testable in polyno-
mial time.

As the main topic, via introducing some concepts, we propose to regard
clause sets from a slightly different perspective, namely as pairs of mutually
set-complemented formulas with respect to the total clause set over a common
intrinsic hypergraph called the base hypergraph. This yields no new structure
from the logical point of view, because each clause set defined as usual and
behaving not trivial regarding satisfiability can easily be seen to correspond to
such a clause set pair. To the best of our knowledge this approach is new, and the
hope is that this perspective may help to gain new structural insight into clause
sets and even new algorithmic concepts. To supply such a hope we develop the
basic theory around the concepts introduced and provide some new clause set
classes that we prove to be polynomial time solvable via the methods presented.
So e.g. satisfiability of CNF formulas, where every two distinct clauses share
exactly one common variable or all (neglecting negations) can be decided in
polynomial time, cf. Theorem 3. In order to establish our theory we have to
introduce new concepts and notions, and we are not aware of a similar approach
representing our view at satisfiability in a convenient framework.

There are several polynomial time SAT-testable classes known, as quadratic
formulas, (q-)Horn formulas, matching formulas etc. [3, 4, 6, 7, 9, 10, 1, 15]. More-
over it is known that mixing polynomial-time classes, in general, yields classes
for which SAT becomes NP-complete, cf. e.g. [8, 12].

2 Stefan Porschen and Ewald Speckenmeyer

As a second topic considering autarkies we introduce the notion of an autarky
closure (hull), helping to restrict the subsets of the variable set of a given formula
that have to be tested for autarky. The simplest class of such hulls are so-called
free hulls; we show that in a given formula existency of free hulls can be checked
in polynomial time, and also whether such a free hull indeed admits an autark
assignment for the formula. A specific class of formulas, so-called hyperjoins, is
defined and studied in the last section. Such formulas Such formulas have a well-
behaved free-hull-structure and might be taken as playground candidates for
studying more complex autarky hulls than the free ones. We show that SAT for
hyperjoins can be decided in polynomial time using the results provided before.

To fix notation let CNF denote the set of formulas (free of duplicate clauses)
in conjunctive normal form over propositional variables xi ∈ {0, 1}. A variable
x induces a positive literal (variable x) or a negative literal (negated variable:
x̄). The complement of a literal l is l̄. Each formula C ∈ CNF is considered as
a set of its clauses C = {c1, . . . , c|C|} having in mind that it is a conjunction of
these clauses. Each clause c ∈ C is a disjunction of different literals, and is also
represented as a set c = {l1, . . . , l|c|}. A clause c ∈ C is called unit iff |c| = 1.
For a given formula C, clause c, by V (C), V (c) we denote the set of variables
occuring (negated or unnegated) in C resp. c. For a variable x, l(x) ∈ {x, x̄}
denotes a fixed literal over x. Similarly, L(C) denotes the set of all literals in C.
The length of a formula C is denoted by ‖C‖ whereas |C|, as usual, denotes the
number of its clauses.

CNFε, ε ∈ {+,−}, denotes the set of ε-monotone (CNF-)formulas, i.e., for
ε = + (resp. −) all clauses are positive (resp. negative) monotone. For k ∈ N,
let k-CNF denote the subset of formulas such that each clause has length at
most k. We consider some subformulas of a formula C. For U ⊂ V (C), we
define Ĉ(U) := {c ∈ C : V (c) ∩ U 6= ∅} and similarly, for U ′ ⊂ L(C), we set
C(U ′) := {c ∈ C : c∩U ′ 6= ∅}. If U = {x} resp. U ′ = {l}, we simply write Ĉ(x)
resp. C(l). Moreover, for n ∈ N, let [n] := {1, . . . , n}, and for a set M denote its
power set by 2M , and its k-sets by

(
M
k

)
.

The satisfiability problem (SAT) asks in its decision version, whether a given
CNF instance C is satisfiable, i.e., whether C has a model, which is a truth
assignment t : V (C)→ {0, 1} assigning at least one literal in each clause of C to
1. We will assume throughout that clauses do not contain complemented literals,
as such clauses are trivially satisfiable and could be removed from a formula in
linear time. For, C ∈ SAT := {C ∈ CNF : C has a model}, let M(C) be the
space of all (total) models of C, and UNSAT := CNF − SAT. For convenience
we allow the empty set to be a formula: ∅ ∈ CNF which is always satisfiable. In
its search version SAT means to find a model t if the input formula is satisfiable.

It turns out to be convenient to identify truth assignments with vectors in
the following simple way: Assume variables are enumerated according to V =
{x1, . . . , xn}, and let x0 := x̄, x1 := x. Then we can identify a truth assignment
t : V → {0, 1} with the ordered literal set {xt(x1)

1 , . . . , x
t(xn)
n }, and, for b ⊂ V , the

restriction t|b of t to b is identified with the (ordered) literal set {xt(x) : x ∈ b}.
Let WV denote the collection of the literal sets obtained in the described way by

Clause set structures and satisfiability 3

running through the set of all total truth assignments V → {0, 1}. Interpreting
its members as clauses, we call WV the hypercube formula (over V) because its
clauses are in 1:1-correspondence with the vertex set of a hypercube of dimension
|V |. E.g., for V = {x, y} we have WV = {xy, x̄y, xȳ, x̄ȳ} where we used the
convention to write clauses as strings of the contained literals.

For a clause c we denote by cγ the clause in which all its literals are com-
plemented. Regarding truth assignments t as above as clauses also tγ makes
sense, which in the identification above, corresponds to the truth assignment
tγ = 1 − t : V → {0, 1}. For formula C let Cγ := {cγ : c ∈ C}, and given a
formula class C ⊆ CNF let Cγ := {Cγ : C ∈ C}. A formula C ∈ CNF is called
symmetric if C = Cγ , thus for each clause c ∈ C holds cγ ∈ C. Similarly, we call
a formula C ∈ CNF asymmetric if for each c ∈ C holds cγ 6∈ C. Let Sym ⊂ CNF,
resp. Asym ⊂ CNF, denote the collection of all symmetric, resp. asymmetric,
formulas. It is obvious that an arbitrary C ∈ CNF has a unique decomposition
C = CS ∪ CA where CS ∈ Sym is the largest symmetric subformula contained
in C and CA = C \ CS ∈ Asym is the remaining asymmetric subformula.

2 A New View on Clause Sets: Basic Concepts and
Results

A (variable-) base hypergraph H = (V,B) is a hypergraph whose vertices x ∈ V
are regarded as Boolean variables such that for each x ∈ V there is a (hyper)edge
b ∈ B with x ∈ b, so B can be considered as a positive monotone clause set.
As above, for any b ∈ B, Wb is the hypercube formula over b. KH :=

⋃
b∈B Wb

denotes the set of all possible clauses over H, and is called the total clause set
over H. Regarding each b as a point in the space B, we obtain the following
mapping

π : KH 3 c 7→ V (c) ∈ B

recalling that V (c) is the set of variables in clause c. We call π−1(b) = Wb the
fibre of KH over b. Obviously the fibres are mutually disjoint and π is surjective,
thus is a projection.

A formula over H (or H-formula) is any subset C ⊂ KH such that C ∩
Wb 6= ∅ for each b ∈ B, implying that the restriction πC := π|C yields a
projection πC : C → B, let Cb := π−1

C (b) ⊆ Wb denote the fibre(-subformula)
of C over b. Note that a C ∈ CNF is a formula over the base hypergraph
H(C) := (V (C), B(C)) with B(C) := {V (c) : c ∈ C}). For each C ⊂ KH such
that (∗): Wb − Cb 6= ∅, for all b ∈ B, the H-based complement formula C̄ of
C is defined by C̄ :=

⋃
b∈B(Wb − Cb). By construction C̄ has the same base

hypergraph as C.1 A fibre-transversal (f-transversal) of KH is a subset F ⊂ KH
such that |F ∩Wb| = 1, for each b ∈ B. Hence F contains exactly one clause

1 Clearly, any hypercube formula is unsatisfiable, therefore in case that C does not
have property (∗) it is unsatisfiable trivially, which therefore can be ruled out. More
precisely, it can be treated by a simple preprocessing checking in linear time whether
there is b ∈ B such that Wb = Cb.

4 Stefan Porschen and Ewald Speckenmeyer

of each fibre π−1(b) of KH, let that clause be referenced by F (b).2 Let F(KH)
denote the set of all f-transversals of KH. Similarly, for a specified formula C
over H, F(C) (resp. F(C̄)) denotes the set of f-transversals of C (resp. C̄).

Definition 1 Let H = (V,B) and KH as defined above.
(1) F ∈ F(KH) is called compatible if

⋃
b∈B F (b) ∈ WV , meaning that F con-

tains each variable of W as a pure literal. Let Fcomp(KH) be the collection of all
compatible f-transversals of KH.
(2) F ∈ F(KH) is called diagonal if for each F ′ ∈ Fcomp(KH) holds F ∩F ′ 6= ∅.
Let Fdiag(KH) be the collection of all diagonal f-transversals of KH.
(3) For any H-based formula C ⊆ KH, let Fcomp(C) := F(C)∩Fcomp(KH) and
Fdiag(C) := F(C) ∩ Fdiag(KH).

A priori it is not clear whether diagonal transversals exist at all, a question that
will be addressed below. However, if there are diagonal transversals, then each
fixed compatible transversal in turn meets all diagonal transversals.

We have some simple observations:

Proposition 1 (1) Fcomp(KH) ∼= WV ,
(2) Fdiag(KH) = {F ∈ F : ∀t ∈WV ∃b ∈ B : F (b) = t|b},
(3) Fcomp(KH)γ = Fcomp(KH),
(4) Fdiag(KH)γ = Fdiag(KH),
(5) Fdiag(KH) ∩ Fcomp(KH) = ∅.

Proof. Assertion (1) is easily obtained by observing that

ϕ : Fcomp(KH) 3 F 7→
⋃
b∈B

F (b) ∈WV

is a bijection with [ϕ−1(t)](b) := t|b for each t ∈ WV , b ∈ B, recalling that by
assumption

⋃
b∈B b = V . (2) follows immediately from (1).

Assertion (3) is obvious, and implies ϕ(F γ) = ϕ(F)γ , for F ∈ Fcomp(KH).
Let F ∈ Fdiag(KH) and assume there is F ′ ∈ Fcomp(KH) such that F ′(b) 6=

F γ(b) for all b ∈ B equivalent to F ′γ(b) 6= F (b) for all b ∈ B, by (3) contradicting
that F is diagonal yielding (4).

Assume F ∈ Fdiag(KH)∩Fcomp(KH), then by (3) also F γ ∈ Fcomp(KH) but
F γ(b) 6= F (b) for each b ∈ B therefore F 6∈ Fdiag(KH) yielding a contradiction
implying (5). ut

The next assertion essentially states that a formula C is satisfiable if and
only if its complement formula admits a compatible f -transversal:

Theorem 1 For H = (V,B), and KH let C ⊂ KH be a H-formula such that
C̄ ⊂ KH also is a H-formula (hence B(C) = B = B(C̄)), we have:
(i) C ∈ SAT if and only if Fcomp(C̄) 6= ∅.
(ii) If C ∈ SAT then M(C) ∼= Fcomp(C̄).
2 KH can be viewed as a hypergraph having all literals over V as vertex set. So, a

fibre-transversal should not be mixed up with a hypergraph-transversal which, as
usually defined, is a subset of its vertex set meeting all its edges, thus is a hitting
set.

Clause set structures and satisfiability 5

Proof. We claim that if C ∈ SAT, hence WV ⊇ M(C) 6= ∅, then Fcomp(C̄) =
ϕ−1(M(C)γ), where ϕ is defined as in the proof of Prop. 1 (1). From this claim
(ii) follows, as obviously M(C)γ ∼= M(C) and ϕ is a bijection. Further (i) follows:
If M(C) is empty then also Fcomp(C̄) must be empty, otherwise by the claim
holds ϕ(F)γ ∈ M(C), for any F ∈ Fcomp(C̄), yielding a contradiction. The
reverse direction of (i) is immediately implied by the claim.

So it remains to verify the claim: Let t ∈M(C) be chosen arbitrarily. Clearly,
Ft := ϕ−1(tγ) ∈ Fcomp(KH) by definition of ϕ. Suppose there is b ∈ B such that
Ft(b) = tγ |b ∈ C. Clearly, t|b is a total truth assignment of the hypercube
formula Wb satisfying all of its clauses except (t|b)γ = tγ |b ∈ C thus t 6∈ M(C)
contradicting the assumption. Therefore Ft(b) ∈ C̄, for all b ∈ B, hence Ft ∈
Fcomp(C̄) thus ϕ−1(M(C)γ) ⊆ Fcomp(C̄). Conversely, let F ∈ Fcomp(C̄) then
we claim that tF := ϕ(F)γ ∈ M(C) ⊆ WV . Indeed, supposing the contrary,
there is b ∈ B with tγF |b ∈ C equivalent to F (b) = ϕ(F)|b 6∈ C̄ contradicting the
assumption and finishing the proof because ϕ−1(tγF) = F . ut

Proposition 2 Let F ∈ F(KH), then holds

(1) F ∈ Fdiag(KH)⇔ F ∈ UNSAT
(2) F ∈ Fcomp(KH)⇒ F ∈ SAT

Proof. By Theorem 1 (i), we have F ∈ UNSAT iff Fcomp(F̄) = ∅ iif ∀F ′ ∈
Fcomp(KH) there is b ∈ B such that F ′(b) = F (b) ∈ F iif F ∈ Fdiag(KH), hence
(1). (2) is implied by (1) due to Prop. 1 (5); moreover for F ∈ Fcomp(KH),
ϕ(F) ∈WV specifically satisfies F . ut

Thus, we have three types of possible f-transversals composing F(KH), namely
compatible f-transversals which always are satisfiable formulas, diagonal ones
(which may not exist) which always are unsatisfiable, and, finally, f-transversals
that are neither compatible nor diagonal but always are satisfiable.

Definition 2 A formula D ⊆ KH is called a diagonal formula if for each F ∈
Fcomp(KH) holds F ∩D 6= ∅.

Obviously each F ∈ Fdiag(KH) (if existing) is a diagonal formula. Since a diag-
onal formula D contains a member of each compatible f-transversal the comple-
ment formula D̄ cannot have a compatible f-transversal. Therefore D ∈ UNSAT
due to Theorem 1, and we have:

Proposition 3 A formula is unsatisfiable iff it contains a subformula that is
diagonal. ut

Consider a simple application of the concepts above: Recall that a hypergraph
is called Sperner (or sometimes also called simple) if no hyperedge is contained in
another hyperedge [2]. Clearly, a formula C, regarded as a hypergraph (L(C), C)
over its literal set, that is non-Sperner can be turned into a SAT-equivalent
one having that property: For clauses c, c′ with c ⊂ c′ we can remove c′ from
C because c already has to be satisfied implying satisfiability of c′. Let C be
Sperner then its base hypergraph H(C) = (V (C), B(C)) can either be Sperner

6 Stefan Porschen and Ewald Speckenmeyer

or non-Sperner, assume H(C) = H(C̄). Clearly, if H(C) is Sperner then so is
C̄. Specifically, all these objects are Sperner if all clauses have the same length.
However, if H(C) is non-Sperner, C̄ can be Sperner or non-Sperner. For the first
case, i.e., C and C̄ Sperner butH(C) = H(C̄) non-Sperner, consider the following
example (simply representing clauses as strings of the literals contained):

C = {xy, xȳz, x̄yz, x̄ȳz, xȳz̄, x̄yz̄, x̄ȳz̄}
C̄ = {xȳ, x̄y, x̄ȳ, xyz, xyz̄}

B(C) = {xy, xyz}

Theorem 2 Let C ∈ CNF be Sperner such that its base hypergraph H(C) is
non-Sperner but the complement formula C̄ is Sperner: Then both C and C̄ are
unsatisfiable.

Proof. According to Theorem 1 we show that C̄ cannot have a compatible
f-transversal under the assumptions stated above. Because H(C) non-Sperner
there are b, b′ ∈ B(C) with b ⊂ b′ and b 6= b′. Now for each f-transversal F ∈
F(C̄) holds F (b) 6⊂ F (b′) as C̄ is assumed to be Sperner. That means there is
x ∈ b such that x ∈ F (b), x̄ ∈ F (b′) or vice versa, hence F (b) ∪ F (b′) ⊃ {x, x̄}
is not compatible implying that C ∈ UNSAT. By exchanging the roles of C and
C̄ we also obtain that C̄ cannot be satisfiable. ut

Corollary 1 If C is Sperner and satisfiable then either
(i) H(C) and C̄ both are Sperner or
(ii) H(C) and C̄ both are non-Sperner and for each two b1 ⊂ b2 ∈ B(C) there
are c1 ⊂ c2 ∈ C̄ such that V (ci) = bi, i = 1, 2.

Remark 1 The criterion in (ii) of the Corollary is not sufficient for satisfi-
ability of C: Let b1 ⊂ b ∈ B(C) such that c1 ⊂ c ∈ C̄ and moreover let
b′1 ⊂ b′ ∈ B(C) such that c′1 ⊂ c′ ∈ C̄ where V (c) = b, V (c′) = b′, V (c1) = b1,
and V (c′1) = b′1. Now assume that b ∩ b′ 6= ∅, and that c, c′ are the only clauses
over b, b′ in C̄. Clearly, if c|b∩b′ 6= c′|b∩b′ then there is no compatible f-transversal
of C̄ hence no model of C.

Returning to the general discussion, let H = (V,B) be a non-empty base hy-
pergraph, then clearly Fcomp(KH) is not empty we even have |Fcomp(KH)| =
2|V | due to Prop. 1 (1). However, a priori it is not clear whether also holds
Fdiag(KH) 6= ∅ in any case. It turns out that this depends strongly on the struc-
ture of the base hypergraph H: To that end, let us consider an interesting and
guiding example regarding satisfiability of certain formulas over (exactly) linear
base hypergraphs. In [13, 14] linear formulas (variable sets of distinct clauses have
at most one member in common) are discussed in more detail and satisfiability
of exactly linear formulas is shown by simple matching techniques.

Lemma 1 [13] Any exactly linear formula C is satisfiable.

From the last result we immediately conclude that if the base hypergraph H =
(V,B) is exactly linear then for the corresponding total clause set holds Fdiag(KH)

Clause set structures and satisfiability 7

= ∅. Indeed, then no unsatisfiable f-transversal can exist, as each is exactly lin-
ear and we are done by Proposition 2. This answers the earlier stated question
whether there are hypergraphs admitting no diagonal f-transversal. The reverse
question, namely are there hypergraphs at all such that the total clause sets has
diagonal f-transversals, also is answered positive: In [13, 14] it is shown that there
are unsatisfiable linear formulas, these formulas must be f-transversals hence cor-
respond to diagonal f-transversals of the total clause set over the underlying base
hypergraph:

Fact 1 The notion of (diagonal) f-transversals immediately generalizes the no-
tion of (unsatisfiable) linear formulas.

However formulas having an exactly linear base hypergraph in general may not
be satisfiable, because they can contain a diagonal subformula (which cannot be
a f-transversal):

Theorem 3 Let H = (V,B) be an exactly linear base hypergraph with corre-
sponding total clause set KH. Let C ⊆ KH be any H-formula. Then we can
check in polynomial time whether C contains a diagonal subformula, i.e., whether
C ∈ UNSAT.

Proof. Recall that Cb ⊂Wb denotes the fibre subformula of C over b ∈ B, and
that Cb(l) ⊂ Cb is the subformula of Cb of all clauses containing literal l, where
V (l) ∈ b. Let l be an arbitrary literal occuring in C, and first observe that, if
b ∈ B is an edge containing the underlying variable V (l) ∈ b, then the clauses
in Cb cover (i.e., have intersection with) exactly µ(l) := µ(l, b) := |Cb(l)| · 2n−|b|

of all 2n−1 truth assignments containing l, where n := |V |.
We intend to determine the number of truth assignments met by the clauses in

the input formula C. This essentially is organized by performing two independent
runs of a Procedure ComputeCoverNumber(l, p), one for l = x and a second one
for l = x̄. Here x is the maximum variable that together with the determined
edges b1, b

′
1 ∈ B (smallest index if ambigous), has to be computed first according

to

µ(x, b1) + µ(x̄, b′1) = max{µ(y, b) + µ(ȳ, b′) : y ∈ L(Cb), ȳ ∈ L(Cb′), b, b′ ∈ B}

here µ(l, b) = |Cb(l)| · 2n−|b| is computed for all (l, b) ∈ L(V) × B such that
Cb(l) 6= ∅. It is possible that b1 = b′1.

Both executions of Procedure ComputeCoverNumber(l, p) are initiated only if
µ(l) < 2n−1 meaning that the fibre subformula corresponding to the maximum
does not cover all 2n−1 possible truth assignments containing l. Finally, the
corresponding cover numbers returned in p are added, and the algorithm returns
unsatisfiable iff the total value equals 2n. Clearly, the runs of the procedure for
x and x̄ can be processed independently because both compute coverings in
different ranges in the set of all truth assignments

Now procedure ComputeCoverNumber(l, p) consists of two main subproce-
dures. A first is entered only if there is at least one fibre subformula Cb con-
taining l besides Cb1 and computes all additional truth assignments containing

8 Stefan Porschen and Ewald Speckenmeyer

x covered by these fibre subformulas. The second subprocedure is entered only
in case there are any remaining fibre subformulas not containing l, and the sub-
procedure is devoted to determine all additionally covered truth assignments
containing l covered by these subformulas.

The first subprocedure proceeds as follows: W.l.o.g. (otherwise relabel the
members in B) let {Cb2 , . . . , Cbs}, for s ≥ 1, denote the collection of all remaining
fibre subformulas with V (l) ∈ bi, 2 ≤ i ≤ s. Assume that its members are ordered
due to decreasing cardinalities of its subsets |Cbj (l)| containing l, for 2 ≤ j ≤ s.

For simplicity let mj := |Cbj (l)| and m′
j := |Wbj (l) − Cbj (l)| = 2|bj |−1 −

|Cbj (l)|, for 1 ≤ j ≤ s. Then the number of truth assignments containing l
covered by the subformulas in Cl is given by:

(∗) m′
1

s∑
j=2

[
mj · 2n+(j−1)−

Pj
q=1 |bq| ·

j−1∏
k=2

m′
k

]

where, as usual,
∏k

i=b ai := 1, for k < b.
Clearly, number (∗) can be determined performing a simple loop recalling

that by assumption mj > 0, for all 1 ≤ j ≤ s:

z ← m′
1 ·m2 · 2n+1−|b1|−|b2|

p← z
for j = 2 to s− 1 do

z ← z ·m′
j ·

mj+1
mj
· 21−|bj+1|

p← p + z
od

So finally, we have to check whether the resulting value p = 2n−1. In order
to avoid calculations with possibly large number 2n it is sufficient instead to
compute p′ := p/2n and finally checking whether p′ = 1/2. Observe that the
second subprocedure needs to be started only if the answer is negative.

For explaining the second subprocedure, let c be any clause of a fibre sub-
formula over b ∈ B −B(x), then c covers a truth assignment containing l if and
only if for each bi ∈ B(x) there are ci ∈ Wbi − Cbi(x) with c ∩ ci 6= ∅. Observe
that none of these truth assignments is covered by those computed in the first
subprocedure, because each of the latter ones fixes all literals of at least one
complete clause in any x-fibre subformula whereas each of the newly as covered
determined truth assignments are composed of missing clauses in each hypercube
formula Wb(l)−Cb(l), for all e ∈ B(x). So each corresponding truth assignment
is different to each detected in the first subprocedure in at least one position.

W.l.o.g. (which always can be achieved via relabeling), let C(x) := {Cbs+1 , . . . ,
Cbs+r}, for r ≥ 1, be the collection of all fibre subformulas neither containing x
nor x̄, hence it has exactly one member for each edge in B−B(x). For Cbs+1 ∈ C ′

x

and c ∈ Cbs+1 , let {yi} = V (c) ∩ Cbi
, 1 ≤ i ≤ s, which are uniquely determined

because of exact linearity. Assume that li ∈ c is the corresponding literal with
V (li) = yi 6= x, where clearly |c| ≥ s and each variable in c different from yi,
1 ≤ i ≤ s, cannot occur in any member of Cl.

Clause set structures and satisfiability 9

Let nl :=
∑j

q=1 |bq| − (s − 1) be the number of variables already fixed by
bi, 1 ≤ i ≤ s. Let λi(c) := |c ∩ [Wbi(l) − Cbi(l)]| be the number of occurences
of literal li in Wbi(l)−Cbi(l) which is the fibre complement of Cbi(l). Clearly li
occurs in exactly 2|bi|−2 clauses in Wbi(l). So, if li occurs ti times in Cbi(l), we
obvioulsy have

λi(c) = 2|bi|−2 − ti

Now the clauses in Cbs+1 exactly cover the following number of additional truth
assignments containing l:

2n−nl−(|bs+1|−s)
∑

c∈Cbs+1

s∏
j=1

λj(c)

Therefore, we obtain for the number of covered truth assignments containing l
by all members of C ′

x,

r∑
k=1

2n−nl−
Pk

j=1 f(j)
∑

c∈Cbs+k

s+k−1∏
j=1

λj(c)


where

f(j) := |bs+j | −

∣∣∣∣∣
s+j−1⋃

i=1

(bs+j ∩ bi)

∣∣∣∣∣ ∈ {0, . . . , |bs+j | − s}

1 ≤ j ≤ r.
Having processed ComputeCoverNumber(l, p) for l := x we again check whether

p′ = 1/2 and only in the positive case we run ComputeCoverNumber(l, p) for
l := x̄, because otherwise not all truth assignments containing x are covered
immediately enabling us to conclude that C ∈ SAT. ut

Obviously, the method above is not able to solve the search problem, we only
obtain a decision whether C is satisfiable, but in positive case we are not aware
of a model.

So, there are cases where no diagonal f-transversal of the total clause set ex-
ists, but unsatisfiable formulas C ⊂ KH can exist although, so we conclude that,
despite of Proposition 2, in general C ∈ UNSAT is not equivalent to F(C) 6= ∅.
However, things may be different if H is structured such that Fdiag(KH) 6= ∅.
So, we next pose the question whether under this assumption holds C ∈ UNSAT
iff Fdiag(C) 6= ∅. Observe that the implication ⇐ holds because if C admits a
diagonal f-transversal then C̄ cannot have a compatible f-transversal therefore
C ∈ UNSAT due to Theorem 1 (i).

Definition 3 Let H = (V,B) be a base hypergraph.
We call H a diagonal base hypergraph if Fdiag(KH) 6= ∅.
H is called strictly diagonal if it is diagonal, and additionally:

(∗) : ∀C ⊂ KH : B(C) = B = B(C̄) : C ∈ UNSAT⇔Fdiag(C) 6= ∅

10 Stefan Porschen and Ewald Speckenmeyer

We first consider the question whether the class of strictly diagonal base hy-
pergraphs coincides with the class of all diagonal base hypergraphs. To give an
answer constructively: Start with a linear hypergraph H = (V,B) that admits
an unsatisfiable polarization hence admits a diagonal f-transversal and there-
fore H is diagonal. Assume that H results by a block construction over a base
block hypergraph H′ = (V ′, B′) with V ′ ⊂ V,B′ ⊂ B as shown in [13]. Then
we claim that we can construct a (small) unsatisfiable formula C ′ ⊂ KH′ with
π′(C ′) = B′ = π′(C̄ ′). Now we claim that it is possible to add to C ′ exactly one
member of each fibre of π−1(b), forall b ∈ B−B′ such that the resulting formula
C has the property that each of its f-transversals is satisfiable, hence cannot
be diagonal. Thereofore the above stated question gets a negative answer. The
question whether there exist strictly diagonal hypergraphs is still open.

Lemma 2 For H strictly diagonal holds that each f-transversal meeting all di-
agonal f-transversals is compatible, formally:

Fcomp(KH) = {F ∈ F(KH) : ∀F ′ ∈ Fdiag(KH) : F ∩ F ′ 6= ∅}

Proof. Let F ∈ F(KH) meeting all members of Fdiag(KH) then clearly F
cannot be diagonal as F γ is diagonal. If F is compatible we are done. So assume
that F is neither compatible nor diagonal, then specifically F̄ ∈ UNSAT due to
Theorem 1. Since H is strictly diagonal it is implied that Fdiag(F̄) 6= ∅ meaning
there is F ′ ∈ Fdiag(KH) such that F ∩ F ′ = ∅. ut

We next provide some further considerations, besides the discussion of diag-
onality: For H = (V,B), again let C ⊂ KH such that B(C) = B = B(C̄). If
C ∈ SAT then due to Prop. 1 (1) each t ∈M(C) satisfies ϕ−1(t) ∈ Fcomp(KH).
We now address the question in which case each model t of C even satisfies
ϕ−1(t) ∈ Fcomp(C), i.e., corresponds to a compatible f-transversal of the for-
mula itself.

Lemma 3 If C ∈ CNF∩SAT, B(C) = B(C̄), such that for each t ∈M(C) holds
ϕ−1(t) ∈ Fcomp(C) then C̄ ∈ SAT and ϕ(F) ∈ M(C̄) for each F ∈ Fcomp(C̄);
and vice versa.

Proof. Let F ∈ Fcomp(C̄) be arbitrary with t := ϕ(F) ∈ WV , then according
to the proof of Theorem 1 (ii) tγ is a model of C. By assumption there is
F ′ ∈ Fcomp(C) such that tγ = ϕ(F ′). Hence, again by Theorem 1 (ii), t is a
model of C̄ as claimed, specifically C̄ ∈ SAT. The vice versa assertion follows by
exchanging the roles of C and C̄. ut

Next we provide a formula class admitting the assumption of the last lemma.
Recall that a symmetric formula satisfies C = Cγ Clearly, if C ∈ Sym then also
C̄ ∈ Sym, since for c ∈ C̄ holds c 6∈ C thus cγ 6∈ C implying cγ ∈ C̄.

Lemma 4 Let C ∈ CNF such that B(C) = B(C̄) and C̄ ∈ Asym. Then C ∈
SAT implies C̄ ∈ SAT and each t ∈M(C) satisfies ϕ−1(t) ∈ Fcomp(C); and vice
versa.

Clause set structures and satisfiability 11

Proof. Let t ∈M(C) 6= ∅ then for each b ∈ B(C) t|b satisfies all of Wb except
for (t|b)γ which thus must be a clause of C̄. And C̄ ∈ Asym implies that t|b ∈ C
for each b ∈ B(C). Hence {t|b : b ∈ B(C)} is a compatible f-transversal of C.
It follows that C̄ ∈ SAT and that for each t ∈ M(C) holds ϕ−1(t) ∈ Fcomp(C).
The vice versa assertion follows by exchanging the roles of C and C̄. ut

Corollary 2 Let C ∈ Asym such that also C̄ ∈ Asym and B(C) = B(C̄). Then
C ∈ SAT if and only if C̄ ∈ SAT. ut

A formula is satisfiable if and only if the complement formula admits a com-
patible f-transversal. Therefore the specific class of formulas C such that every
f-transversal of C is compatible is of interest, because then any f-transversal
gives rise to a model of C̄, and vice versa. To provide a characterization of that
very specific class, for C ∈ CNF, let I(C) := {r = b ∩ b′ : b 6= b′ ∈ B(C)}, and
let C[r] = {c ∈ C : r ⊆ V (c)}, for each r ∈ I(C).

Lemma 5 Let C ∈ CNF such that B(C) = B(C̄). Then Fcomp(C) = F(C),
i.e., any f-transversal of C is compatible iff (∗): for each fixed r ∈ I(C) holds
c|r = c0|r,∀c ∈ C[r] and arbitrary fixed c0 ∈ C[r].

Proof. Consider the hypergraph B̃ := B(C)∪ I(C) having V (C) as vertex set.
Similarly consider C̃ := C∪{c∩r : c ∈ C, r ∈ I(C)} then it is easy to see that (∗)
is equivalent to: For each r ∈ I(C) holds |C̃r| = 1 where C̃r := {c ∈ C̃ : V (c) = r}
is the fibre of C̃ over r, from which the assertion immediately follows. ut

So we obtain a class of satisfiable formulas recognizable in polynomial time:
Let CNFcomp denote the class of all formulas C ∈ CNF with B(C) = B(C̄), and
such that F(C̄) = Fcomp(C̄). As an example for C ∈ CNFcomp, let H = (V,B)
with V = {q, r, s, t, u, v, x, y}, B = {b1 = xy, b2 = yuv, b3 = vxr, b4 = rst, b5 =
txq} where brackets for edges are omitted, then the following (linear) formula is
maximal w.r.t. to membership in CNFcomp, i.e., any additional clause over any
b ∈ B disturbs that membership, of course polarity of variables in V (I(C)) can
be chosen differently:

C̄ = xȳ ȳuv vxr rst̄ t̄xq

ȳūv rs̄t̄ t̄xq̄

arranged fibrewise. It is obvious that any f-transversal of C̄ is compatible, hence
C = KH − C̄ ∈ CNFcomp.

Theorem 4 We can check in polynomial time whether an input formula C ∈
CNF belongs to CNFcomp 6= ∅ and in positive case, implying that C is satisfiable,
a model can be provided in polynomial time.

Proof. Clearly, if C ∈ CNFcomp, then we only need to select a clause cb ∈
Wb−Cb for each b ∈ B(C) ensuring that

⋃
b∈B(C) cγ

b ∈M(C) due to Theorem 1
(ii). For fixed b = {bi1 , . . . , bi|b|}, the selection can be performed e.g. by ordering

the members c = {bεi1 (c)
i1

, . . . , b
εi|b|(c)

i|b|
} in Cb by lexicographic order of the vectors

(εi1(c), . . . , εi|b|(c)) ∈ {0, 1}|b|.

12 Stefan Porschen and Ewald Speckenmeyer

To decide whether C ∈ CNFcomp, according to the discussion above, first
compute I(C) and V (I(C)) i.e., all variables occuring in members of I(C). Then
check whether each x ∈ V (I(C)) occurs in C̄ with a fixed polarity, only in the
positive case holds C ∈ CNFcomp. ut

3 Some Aspects of Autarkies

The concept of autarkies has been introduced in [11]. Since then it has been used
in automated theorem proving and was also subject of theoretical investigations.
However there are many questions open concerning the structure of autarkies
in a given CNF formula and also concerning their algorithmical usefulness. This
section is devoted to provide some structural aspects regarding autark variable
sets.

Given C ∈ CNF and U ⊂ V (C), let CU be the substructure of C, called the
U -retract of C, defined by

CU := {c|U : c ∈ C}

So, CU consists of the restrictions c|U of the clauses c ∈ C to literals over U .
In contrast to Ĉ(U), CU , in general, is no subformula of C. However, clearly,

CU = Ĉ(U) is a subformula if and only if U = V (Ĉ(U)). Let us say a retract CU

is a k-retract if for each c ∈ CU holds |c| ≤ k and if there is at least one c ∈ CU

with |c| = k.
Informally, an autark set of variables can be removed from a formula without

affecting its satisfiability status, more precisely:

Definition 4 For C ∈ CNF, we call U ⊆ V (C) an autark set, if there exists a
(partial) truth assignment α : U → {0, 1} satisfying Ĉ(U); in which case α is
called an autarky.
A family U1, . . . , Ur ⊆ V (C) of autark sets is called an autark cover for C if⋃

i Ĉ(Ui) = C. If in addition, for k ∈ N, holds |Ui| ≤ k, 1 ≤ i ≤ r, we speak of a
k-autark cover of C. Let At (resp. Atk) denote the set of all formulas for which
an autark cover (resp. k-autark cover) exists.

Clearly, for each C ∈ At with covering U1, . . . , Ur there exists a smallest k ≥ 1
such that C ∈ Atk. By definition holds Atk ⊂ Atj for each j ≥ k. For the
monotone fomula classes holds CNFε ⊂ At1 for ε ∈ {+,−}.

The following assertions provide some basic properties of autarkies that are
not hard to verify, so the proofs are omitted.

Lemma 6 For C ∈ CNF, let αi : Ui → {0, 1}, i = 1, 2, be autarkies of C. Then
α1|α2 : U1 ∪ U2 → {0, 1} and α2|α1 : U1 ∪ U2 → {0, 1} defined by

αi|αj(x) :=
{

αi(x);x ∈ Ui

αj(x);x ∈ Uj − Ui

where i 6= j ∈ {1, 2}, also are autarkies of C. ut

Clause set structures and satisfiability 13

Lemma 7 Let C ∈ CNF and U ⊆ V (C) be arbitrary. If α : W → {0, 1} is an
autarky of C, then the restriction α|W∩[C−Ĉ(U)] is an autarky of C − Ĉ(U). ut

Lemma 8 For C ∈ Atk and U ⊆ V (C) holds C − Ĉ(U) ∈ Atk. ut

Lemma 9 Atk ⊂ SAT for k ≥ 1. ut

Lemma 10 For C ∈ CNF, U ⊆ V (C) is an autark set iff CU is satisfiable. ut

Proposition 4 Given C ∈ CNF, k ∈ N, k < |V (C)| =:, in time O(k‖C‖nkT (k-
SATk)), one can test whether C ∈ Atk and if, find a model for C, where T (k-
SATk) denotes the time for solving the k-SAT problem for an input instance of
k variables.

Proof. For each set U ⊂ V (C) with |U | ≤ k compute the retract CU in time
O(k · · · ‖C‖). Obviously, CU ∈ k-CNF and |V (CU)| = |U | ≤ k, hence we can
check in time T (k-SATk) whether CU ∈ SAT. There are O(nk) subsets of V (C)
of at most k elements yielding the claim. ut
Problem: The bound stated above is polynomial for fixed k but clearly yields
no fixed-parameter tractability characterization [5] for SAT restricted to Atk

with respect to parameter k. So, the question arises whether Atk-SAT ∈ FPT.
Below we intend to provide some structural features concerning autarkies

which could be used to approach an answer to this question, which however is
not given in this paper.

First regarding autarkies in linear formulas [13] a first simple observation is:

Lemma 11 For linear C ∈ CNF containing no unit clauses and no pure literals,
a set U ⊂ V (C) can be autark only if |U | ≥ 1 + min{|C(l)| : l ∈ L(C)}.

Proof. Assume the assertion does not hold, and let α : U → {0, 1} be an
autarky of C with |U | < 1 + min{|C(l)| : l ∈ L(C)}. For convenience we regard
each value α(x) as a literal, namely α(x) := x if x is assigned true and α(x) := x̄
otherwise. Since, by assumption, there is no pure literal in C we must have |U | ≥
2. For x ∈ U all clauses in C(α(x)) are satisfied. Since x is no pure literal each
clause in C(α(x)) 6= ∅ still has to be satisfied by literals over variables in U−{x}.
Because all these clauses have x in common we need |C(α(x))| ≥ 1+min{|C(l)| :
l ∈ L(C)} further variables in U , but |U | − 1 < min{|C(l)| : l ∈ L(C)}. Hence α
cannot be an autarky yielding the lemma via contradiction. ut

3.1 Autarky Closures

In this section we study which subsets of V (C) need to be tested for autarky,
for which a certain hull concept, defined next, turns out to be useful. Given
C ∈ CNF, then for every U ⊆ V (C) we define the set HC(U) ⊆ V (C) as

HC(U) := {x ∈ V (Ĉ(U)) : x 6∈ V (C − Ĉ(U))}

14 Stefan Porschen and Ewald Speckenmeyer

Recall that Ĉ(U) = {c ∈ C : V (c) ∩ U 6= ∅}. Obviously, we also have:

(∗) HC(U) = V (C)− V (C − Ĉ(U))

We call HC(U) the autarky closure or autarky hull of U , which is justified due
to the following observation.

Lemma 12 For each fixed C ∈ CNF, the map HC : 2V (C) → 2V (C) as defined
above is well formulated and is a (finite) closure operator.

Proof. Clearly each subset U ⊆ V (C) yields the unique subformula Ĉ(U) of the
fixed formula C ∈ CNF. Moreover for every x ∈ V (Ĉ(U)) either x ∈ V (C−Ĉ(U))
or not, hence HC(U) is a unique subset of V (C) hence HC is a well formulated
total map, where HC(∅) = ∅.
To verify that HC is a closure operator, recall that a closure operator σ : 2M →
2M has the following defining properties: (i) ∀S ⊆ M holds S ⊆ σ(S), (ii)
∀S1, S2 ⊆ M with S1 ⊆ S2 holds σ(S1) ⊆ σ(S2), and (iii) ∀S ⊆ M we have
σ(σ(S)) = σ(S).
(i) obviously holds true for HC . Let U1, U2 ⊆ V (C) with U1 ⊆ U2, then Ĉ(U1) ⊆
Ĉ(U2), hence V (C− Ĉ(U2)) ⊆ V (C− Ĉ(U1)). Now suppose there is x ∈ HC(U1)
with x 6∈ HC(U2), then by definition x ∈ V (C−Ĉ(U2)) and therefore x ∈ V (C−
Ĉ(U1)) contradicting the assumption, thus (ii) holds. Finally, let Q := HC(U),
for U ∈ 2V (C). We have Ĉ(Q) = Ĉ(U) since no variable of Q occurs outside
Ĉ(U), yielding HC(Q) = Q which is (iii). ut

Lemma 13 Given C ∈ CNF.
1.) For U1, U2 ⊂ V (C), U1 ∼ U2 : ⇔ Ĉ(U1) = Ĉ(U2) defines an equivalence
relation on 2V (C) with classes [U].
2.) The quotient space 2V (C)/ ∼ is in 1:1-correspondence to {HC(U) : U ∈
2V (C)}.

Proof. The first part is obvious. For proving the second part we claim that for
each U1, U2 ∈ 2V (C) holds

HC(U1) = HC(U2) ⇔ U1 ∼ U2

from which 2.) obviously follows. Now U1 ∼ U2 means Ĉ(U1) = Ĉ(U2) implying
HC(U1) = HC(U2). For the reverse direction we observe that Ĉ(HC(U)) =
Ĉ(U), for each U ⊆ V (C). Therefore, HC(U1) = HC(U2) implies Ĉ(U1) =
Ĉ(HC(U1)) = Ĉ(HC(U2)) = Ĉ(U2) thus U1 ∼ U2. ut

Lemma 14 Let C ∈ CNF and U ⊆ V (C), then HC(U) is autark if U is autark.

Proof. Suppose U is autark. Since Ĉ(U) = Ĉ(HC(U)) any truth assignment
α : U → {0, 1} satisfying Ĉ(U) also satisfies Ĉ(HC(U)), thus HC(U) is an autark
set, for any extension α∗ of α to HC(U). ut

Therefore, instead of checking all subsets of V (C) for autarky, it suffices to
check the hulls only. Indeed, there can be left no autark set because if U is autark
then also HC(U) is. Supposing no autarky hull is autark, then there is no autark
set at all, because otherwise its hull must have been checked positive for autarky.

Clause set structures and satisfiability 15

Proposition 5 Given C ∈ CNF, k ∈ N, for checking whether C has an autark
set it suffices to test the members in {HC(U) : U ∈ 2V (C)}. ut

But this yields an improvement only in cases where {HC(U) : U ∈ 2V (C)} can
be enumerated without enumerating 2V (C).

Given C ∈ CNF and U = {xi1 , . . . , xik
} ⊂ V (C), for simplicity let H(U) =

H(xi1 , . . . , xik
) := HC(U).

Lemma 15 Let x, y ∈ V (C) and U,Q ⊂ V (C) then:
(1) H(x) = H(y) iff for each c ∈ C holds x ∈ V (c) ⇔ y ∈ V (c) then H(x) =
H(x, y) = H(y).
(2) H(H(U) ∪H(Q)) = H(U ∪Q).
(3) If H(U) = H(Q) then H(U) = H(U ∪Q) = H(Q).

Proof. ⇐ direction of the first equivalence in (1) is obvious. For the reverse
direction assume H(x) = H(y) from which follows y ∈ H(x) and x ∈ H(y)
implying that for each c ∈ C holds x ∈ V (c)⇔ y ∈ V (c). The latter is equivalent
to Ĉ(x) = Ĉ(x, y) = Ĉ(y) implying H(x) = H(x, y) = H(y) finishing the proof
of (1).

(2) is an immediate consequence of closure operator properties of H: Since
U∩Q ⊆ H(U)∪H(Q) it follows H(U∪Q) ⊆ H(H(U)∪H(Q)). Similarly, because
H(U) ⊆ H(U ∪Q) and H(Q) ⊆ H(U ∪Q) we have H(U) ∪H(Q) ⊆ H(U ∪Q)
therefore H(H(x) ∪H(y)) ⊆ H(H(U ∪ Q)) = H(U ∪ Q) using idempotency of
closures yielding (2).

With (2) holds H(U ∪ Q) = H(H(U) ∪ H(Q)) = H(H(U)) = H(U), if
H(U) = H(Q), hence (3). ut

We call an autarky hull in C ∈ CNF free if it does not contain a non-empty
subset that is a hull, called subhull for short. A hull U is called i-hull if there is
a smallest set Q ⊂ V (C) with |Q| = i such that H(Q) = U . Observe that often
holds |H(Q)| > i.

Lemma 16 A hull U ⊂ V (C) in C is free iff H(x) = U for each x ∈ U .

Proof. For each x ∈ U we have H(x) ⊆ H(U), so if U is free we have H(x) =
H(U) = U . Reversely, assume there is a non-empty hull Q ⊂ U in C and
H(x) = U for each x ∈ U . Because x ∈ Q implies H(x) ⊂ H(W) = Q 6= U we
have H(x) 6= U yielding a contradiction. ut

Because H(x) = U for a free hull U and each x ∈ U we have:

Lemma 17 Each free hull in C ∈ CNF is a 1-hull. There exist at most |V (C)|
distinct free hulls in C. ut

Theorem 5 For C ∈ CNF, we can check in polynomial time which hulls in C
are free or whether there is none. Moreover, a free hull U ⊂ V (C) in C can be
checked for autarky in linear time O(‖C‖).

Proof. Since each free hull is a 1-hull we focuse on 1-hulls and first compute
H(x) for all x ∈ V (C) which can be done in time O(n·‖C‖). Since |H(x)| ∈ O(n)

16 Stefan Porschen and Ewald Speckenmeyer

for each x ∈ V (C) where n := |V (C)|, in O(n2) we can check whether a given hull
contains one of the n− 1 other hulls yielding an overall time of O(n · ‖C‖+ n3).

For the second assertion it suffices to show that if U is a free hull then the
retract CU is a subset of the hypercube formula WU . Indeed, in that case we
have CU 6∈ SAT if and only if CU = WU . So, testing a free hull for autarky
simply means checking, whether |CU | = 2|U | holds. Computing CU from Ĉ(U)
can be achieved by inspecting C due to appropriate data structures in linear
time.

It remains to verify CU ⊆ WU for which we claim that U ⊆ V (c), for each
c ∈ Ĉ(U). Suppose this does not hold, then there is c ∈ Ĉ(U) and x ∈ U not
contained in V (c). Hence c 6∈ Ĉ(x) but c ∈ Ĉ(U), therefore Ĉ(x) 6= Ĉ(U). On
the other hand, as U is free we must have H(y) = U , for each y ∈ U , thus
Ĉ(x) = Ĉ(U) yielding a contradiction. ut

Free subhulls in a hull are disjoint:

Lemma 18 Let C ∈ CNF and U be a hull in C. If U1, U2 are two distinct free
subhulls of U in C then U1 ∩ U2 = ∅.

Proof. Assume S := U1 ∩ U2 6= ∅ then H(S) ⊆ H(Ui) = Ui, i = 1, 2. Because
U1 6= U2 we have H(S) 6= Ui, i = 1, 2 contradicting that Ui are free for i = 1, 2.

ut

Lemma 19 For fixed positive integer j, let C ∈ CNF be such that each U ⊂
V (C) with |U | ≤ j is a hull in C. Then, for each Q ⊂ V (C) with |Q| ≥ n − j,
the subformula Ĉ(Q′)′ = C− Ĉ(Q′) consists of exactly the variables in Q, where
Q′ := V (C) − Q and n = |V (C)|. Moreover Ĉ(Q′)′ = CQ iff Ĉ(Q) and Ĉ(Q′)
are independent components of C.

Proof. Clearly, no y ∈ V (Q′) can occur in Ĉ(Q′)′. Moreover, for Q ⊂ V (C)
with |Q| ≥ n− j by assumption holds H(Q′) = Q′ because then |Q′| ≤ j. So, if
there is y ∈ Q not occuring in Ĉ(Q′)′ then y must occur in Ĉ(Q′) hence y ∈ Q′

as Q′ is a hull in C yielding a contradiction.
Now, subformula Ĉ(Q′)′ equals the retract CQ if and only if Q∩V (Ĉ(Q′)) =

∅ because V (Ĉ(Q′)′) = Q meaning Ĉ(Q′)′ = Ĉ(Q) hence V (Ĉ(Q)) = Q and
V (Ĉ(Q′)′) = Q′ are distinct components of C. ut

Lemma 20 If U is an autarky closure in C, and C̀ (C) denotes the set of all
autarky closures in C, then C̀ (C − Ĉ(U)) = {Q− U : Q ∈ C̀ (C)}.

Proof. The proof follows immediately from the fact that V (C − Ĉ(U)) =
V (C)− U , if U is a hull in C. ut

Lemma 21 Let U be a hull in C ∈ CNF that is not autark, and let Q be a hull
in C containing U then Q also is not autark if
(1) (Q− U) ∩ V (Ĉ(U)) = ∅ or
(2) Q− U is not autark for Ĉ(Q)− Ĉ(U).

Clause set structures and satisfiability 17

Proof. In case (1), no variable of Q−U appears in Ĉ(U) thus Ĉ(U) cannot be
satisfied by variables in W outside U . In case (2), let C̃ := Ĉ(U)′ = C − Ĉ(U)

then by Lemma 20, Q′ := Q− U is a hull in C ′. Clearly ˆ̃C(Q) = Ĉ(Q)− Ĉ(U),

thus if Q′ is not autark then ˆ̃C(Q) cannot be satisfied over Q′, hence there is no
way for satisfying Ĉ(Q) over Q. ut

Clearly, if U ⊂ V (C) is autark for C and is a hull then there may be proper
subsets Q of U which already are autark sets. In the specific case that U , in
addition, is a free hull we even have Q ∈ [U] for any Q ⊆ U , because H(Q) =
H(U). So we then ask for the complexity of deciding the autarky of a set Q ∈ [U],
where U is free. For Q = U we are done by Theorem 5.

For each Q ⊆ U , we first claim that the retract CQ is a subset of the hyper-
cube formula WQ. Again it suffices to show V (c) = Q, for each c ∈ CQ. This
can be done easily, as CQ is obtained from CU by taking c ∈ CU and removing
all literals over variables in U −Q yielding c′ ∈ CQ, thus V (c′) = V (c) ∩Q. As
argued in the proof of Theorem 5, we have V (c) = U , for each c ∈ CU , so we
get V (c′) = Q, for each c′ ∈ CQ. As earlier this means that CQ is satisfiable iff
|CQ| ≤ 2|Q|

Lemma 22 Let U be a free hull in C ∈ CNF that is autark. Then for each
i ∈ {0, . . . , j − 1} there are autark sets Q ∈ [U] with |Q| = |U | − i if and only if
|WQ| − |CU | = j, for j ∈ N, 1 ≤ j ≤ 2|U | − 1.

Due to the last result, we immediately obtain:

Corollary 3 Given an integer k, there is an autark subset Q ⊂ U of size at
most k in an autark free hull U of C if and only if |CU | ≤ 2|U | − k − 1.

Assume there are hulls Q,U,U ⊂ Q such that U is free and not autark, Q′ :=
Q − U is free and autark in C ′ := C − C̄(U) and Q′ ∩ V (CU) 6= ∅, then the
problem remains whether Q is autark in C according to Lemma 21.

Let DU := {dγ |Q′∩V (CU) : d ∈ WQ′ − C ′
Q′} ⊂ WQ′∩V (CU), and, for each

c ∈ CU , let π−1(c) := {c̃ ∈ C̄(U) : c̃|U = c} be the fibre over c. Finally, let
π−1

Q′ (c) = {c̃|Q′ : c̃ ∈ π−1(c)} be the collection of fibre clauses over c restricted
to the relevant part, since in general V (CU) ⊆ Q does not hold. Observe that
whenever c ∈ π−1(c) meaning c ∈ C̄(U), then c|′Q ∈ π−1

Q′ (c) is the empty clause
and hence π−1

Q′ (c) is unsatisfiable.

Lemma 23 Under circumstances and definitions mentioned above, Q is autark
in C iff there is d ∈ DU and c ∈ CU such that d satisfies π−1

Q′ (c), i.e., d∩cγ
Q′ 6= ∅,

for all cQ′ ∈ π−1
Q′ (c).

4 Hyperjoin Formulas

Next we define a class of formulas whose members are built by combining a finite
number of hc formulas as follows:

18 Stefan Porschen and Ewald Speckenmeyer

Definition 5 For k ∈ N, k ≥ 2, arbitrarily fixed, let Vi, i ∈ [k], be sets of
propositional variables with Vi∩Vj = ∅, for distinct i, j ∈ [k], and V :=

⋃
i∈[k] Vi.

Let Wi := WVi denote the hc formula over Vi. A hyperjoin (formula) H over
{Wi : i ∈ [k]} is the CNF formula defined as follows: Each clause ci ∈Wi either
is a clause of H or it is part of exactly one clause of H, for all i ∈ [k] such that
there is no clause in H containing two clauses of the same Wi. In other words,
to construct a H out of {Wi : i ∈ [k]} proceed as follows: Arbitrarily choose mi

clauses from Wi, where 0 ≤ mi ≤ |Wi|, for all i ∈ [k], and by arbitrary unions
compose new clauses, such that each chosen clause occurs in exactly one new
clause, which are called the joined clauses in H, and such that each joined clause
contains at most one member of Wi, for i ∈ [k].

For a hyperjoin H over {Wi : i ∈ [k]}, we define for each Wi the joined part
JH(Wi) of Wi in H by JH(Wi) := {c ∈Wi : c 6∈ H}.

As example consider W1, for V1 = {x, y, z}, and W2, for V2 = {s, t, u, v, w}, let
D1 = {xȳz̄, xyz̄}, D2 = {st̄ūvw̄, s̄t̄ūv̄w̄} and as hyperjoin over W1,W2 let

(WV1 −D1) ∪ (WV2 −D2) ∪ {xȳz̄st̄ūvw̄, xyz̄s̄t̄ūv̄w̄}

with joined parts JH(Wi) = Di, i = 1, 2.
Clearly, a hyperjoin H is unsatisfiable if there is i ∈ [k] such that JH(Wi) =

∅. So, from now on (except we explicitly state the contrary) we only consider
hyperjoins such that JH(Wi) 6= ∅, for all i ∈ [k]. Moreover, it is easy to see
that such a hyperjoin H always satisfies H := H(H) = H(H̄), i.e., both H and its
based complement formula are H-formulas. However, observe that H̄, in general,
is no hyperjoin. It is not hard to see that a hyperjoin is always Sperner when
regarded as a hypergraph over its literal set. Thus due to Theorem 2 we have:

Lemma 24 Let H be a hyperjoin over Wi, i ∈ [k], such that its H(H)-based
complement H̄ also is a hyperjoin then H and H̄ are unsatisfiable if H(H) is
non-Sperner.

From the general point of view, the relevant questions are:

(1) Given C ∈ CNF, can efficiently (and constructively) be decided whether C
is a hyperjoin, and in that can we efficiently reveal its construction rule, that
is, can we determine the corresponding hc formulas Wi, i ∈ [k], and its joined
parts in C?

(2) If we know that a hyperjoin H is constructed over Wi with JH(Wi), i ∈ [k],
can we then decide efficiently whether H is satisfiable and can we find a
model in the positive case?

Regarding (1), a hyperjoin H behaves somewhat determined w.r.t. free au-
tarky hulls in the following sense:

Lemma 25 For a hyperjoin H over Wi, i ∈ [k], let x ∈ V :=
⋃

i∈[k] Vi be
arbitrary, then exactly one of the following holds:

(1) H(x) is a free hull, and either

Clause set structures and satisfiability 19

(a) there is i ∈ [k] such that x ∈ Vi and H(x) = H(Vi) = Vi, then the retract
HH(x) = Wi, and H(x) admits no autark assignment in H, or

(b) there is s ∈ N, I ⊆ [k] such that x ∈ VI :=
⋃

i∈I Vi, |Vi| = s, for each
i ∈ [k], and H(x) = H(VI) = VI , then the retract HH(x) is a proper
subset of WVI

, and H(x) admits an autark assignment in H.
Moreover, each free hull U in H is of type (a) or (b), and is refered to,
correspondingly.

(2) H(x) = VI is no free hull, where I ⊆ [k], and x ∈ VI , then there are
y1, . . . , yr ∈ VI , with r ≤ |I|, such that H(yi) is a free hull in Hi of type
(1) or (2), where H1 := H, and Hi := Hi−1 − HH(yi−1), are hyperjoins, for
each 2 ≤ i ≤ r.

Proof. Clearly, for each x ∈ V , H(x) either is a free hull in H or not. In the
second case, H(x) must contain a free hull U , which is disjoint to other free
hulls, due to Lemma 18. Hence, assuming that (1) holds, it is not hard to see
that removing the retract HU from H yields a smaller hyperjoin that, inductively,
can be treated analogously implying that (2) holds. So it remains to verify (1).

Suppose U is a free hull in H then due to Lemma 16, we have H(x) = U ,
for each x ∈ U . Any clause of H containing a variable x ∈ Vi, by construction,
already contains the whole set Vi (disregarding negations). Therefore, for each
hull U there exists a subset I ⊆ [k] such that U = VI :=

⋃
i∈I Vi. However,

since U is free, we have the case |I| = 1 implying that U is of type (1), (a),
and obviously the retract HVi

= Wi being unsatisfiable. The reverse direction is
trivial. Or we have |I| ≥ 2. Since U is free there cannot exist a clause in H that
does not contain all variables in VI . So, each clause c ∈ H such that VI ⊆ V (c)
contains exactly one member of Wi, for all i ∈ I. It is not hard to see that this
can happen if and only if |Vi| = s, for appropriate s ∈ N. Moreover, then the
retract HVI

is a proper subset of WVI
, and therefore admits a model, cf. the

proof of Theorem 5. ut
Now, we can answer the first question stated above:

Theorem 6 Given C ∈ CNF in polynomial time we can check whether C is
a hyperjoin, and in positive case reveal its construction rule, up to satisfiable
substructures corresponding to free hulls in C of type (1), (b).

Proof. Take any x ∈ V and compute H(x) in linear time, in polynomial time,
due to Theorem 5 decide whether H(x) is free. In the latter case check whether
(1) (a) or (b) of Lemma 5 holds. If not, reject the input formula and stop.

Otherwise, H(x) is no free hull in C, then repeat the last step for each variable
in H(x) distinct from x until either a rejection occured or a free hull is found.
Then remove the corresponding retract from C, and continue with the remaining
formula as described above until a rejection is found or we have a decomposition
of free hull retracts of C each of type (1), (a), or (b), due to Lemma 25.

Finally, computing the joined parts between the determined retracts, can be
performed in polynomial time via comparing the retracts with C. ut

Addressing question (2) posed above, first observe that two clauses c1, c2 with
the same base element V (c1). either belong to the same hc formula Wi or each
is composed out of two or more clauses of the same hc formulas.

20 Stefan Porschen and Ewald Speckenmeyer

Lemma 26 A hyperjoin H over W1,W2 is unsatisfiable if and only if |JH(W1)| =
|JH(W2)| ∈ {0, 1}.

Proof. Observe that r := |JH(W1)| = |JH(W2)|, since otherwise a clause of a
hc formula was part of more than one clause of H. The base hypergraph H(H),
has at most three edges, namely B := B(H) := {V1, V2, V := V1 ∪ V2}. H is
unsatisfiable iff there is no compatible f-transversal of the complement formula
H̄ =

⋃
b∈B(Wb−Hb) due to Theorem 1. First, we show that there is no compatible

f-transversal of H̄ if r ∈ {0, 1}. In case r = 0, the assertion certainly is true. If
r = 1, let c = c1 ∪ c2 ∈ H where ci ∈ JH(Wi), i = 1, 2. Hence, π−1

H̄
(Vi) = {ci},

i = 1, 2, and each f-transversal of H̄ must contain c1, c2, as well as any element
clause c′ ∈ π−1

H̄
(V)−{c}. But the only claus of WV that can yield a compatible

f-transversal together with c1, c2 obviously is c ∈ H itself. Hence there is no
compatible f-transversal of H̄ at all.

For the reverse direction, assume r ≥ 2, and let c = c1 ∪ c2, d = d1 ∪ d2 ∈ H
with ci, di ∈Wi, i = 1, 2. Now we claim that F := {c1, d2, c1∪d2} is a compatible
f-transversal of H̄. Indeed, compatibility is obvious, because the union of the
elements in F yields c1 ∪ d2 ∈ WV . It remains to verify that F indeed is a
f-transversal of H̄, obviously it is a f-transversal of the total clause set over
B. Obviously, c1, d2 ∈ H̄, because these are members of joined parts. Moreover,
because each element of JH(Wi), i = 1, 2, is used only once to yield a joined clause
in H there can be no other joined clauses containing c1 or d2. Thus c1 ∪ d2 ∈ H̄
and therefore cγ

1 ∪ dγ
2 is a model of H. ut

Proposition 6 A hyperjoin H over Wi, i ∈ [k], is satisfiable if and only if there
is {ci ∈Wi : i ∈ [k]} such that c 6⊂ c1 ∪ · · · ∪ ck, for each c ∈ H.

Proof. Let H := H(H) = (V,B) be the base hypergraph of H where V :=⋃
i∈[k] Vi. H is satisfiable iff there exists a compatible f-transversal of the based

complement formula H̄ according to Theorem 1. We claim that there exists
such a f-transversal iff there is {ci ∈ Wi : i ∈ [k]} such that c 6⊂

⋃
i∈[k] ci for

each c ∈ H. Clearly, each member b ∈ B can be represented as a symmetric
difference b =

⊕
i∈[k] αi(b)Vi, with αi ∈ {0, 1}, such that αiVi := ∅ iff αi = 0

and αiVi := Vi iff αi = 1. By definition of H, every Vi, i ∈ [k], occurs in the
symmetric difference of exactly one b ∈ B. Each compatible f-transversal F of
the total clause set KH corresponds to a fixed set {ci ∈Wi : i ∈ [k]} determined
F (b) =

⊕
i∈[k] αi(b)ci, αi(b) ∈ {0, 1}, for each b ∈ B. Indeed, let {F (b) : b ∈ B}

be a fixed compatible f-transversal of KH, then clearly, there can occur from each
Wi (i ∈ [k]) at most one member in

⋃
i∈[k] F (b), otherwise F was not compatible.

And since each Vi occurs in a base element it must be exactly one member of
each Wi from which the claim follows immediately. So, there is a compatible f-
transversal of H̄ ⊂ KH if and only if there is a set {c1, . . . , ck} with the property
of the Lemma completing the proof. ut

Though the last result yields an equivalent characterization of satisfiability
of hyperjoins, it yields no obvious polynomial time algorithm which is provided
in the following from a slightly different point of view.

Clause set structures and satisfiability 21

We call a formula C connected if the intersection graph of its base hypergraph
H(C) is connected.

Proposition 7 Let H over Wi, i ∈ [k], k ≥ 2, be a connected hyperjoin. Then
H is satisfiable if there is a pair (i, j) ∈ [k]2, i 6= j, such that for the retract
H(i, j) := HVi∪Vj holds |JH(i,j)(Wi)| = |JH(i,j)(Wj)| ≥ 2.

Proof. If k = 2 we are done because then H is satisfiable iff |JH(W1)| =
|JH(W2)| ≥ 2 due to Lemma 26. Let k ≥ 3. Clearly, since H is connected there
must exist a permutation π of {1, 2, 3, . . . , k} such that the hyperjoin H(r) :=
H(1, . . . , r), i.e., the retract of H constructed over the r first Wi w.r.t. π, is
connected, for each fixed 2 ≤ r ∈ k. In other words, it then is possible to join
the Wi’s step by step until reaching H such that each intermediate hyperjoin is
connected.

Now let Vi, Vj , i 6= j, be such that H(i, j) fulfills |JH(i,j)(Wi)| = |JH(i,j)(Wj)| ≥
2, and therefore is connected. Clearly, w.l.o.g. we can assume that (i, j) = (1, 2)
and moreover that {1, . . . , k} is a permutation as described above. Again, for
r = 2 we are done by Lemma 26 meaning H(2) ∈ SAT. Clearly, because H(3)
by construction is connected, at least one member of W3 is joined to a clause of
H(2), hence JH(3)(W3) 6= ∅. Let t be a model of H(2), and let c ∈ JH(3)(W3) be
arbitrarily chosen then we claim that t ∪ cγ is a model of H(3). From which the
desired implication of the theorem follows inductively. To verify the claim, first
observe that t specifically already satisfies all clauses containing the members
of JH(3)(W3) because they only are enlarged. Hence taking c ∈ JH(3)(W3) arbi-
trarily then cγ satisfies all fragments of W3 except for c but the corresponding
joined clause in H(3) is already satisfied, and the claim holds true. ut

Note that the reverse implication of the assertion above does not hold.
Clearly, if a hyperjoin is disconnected we can consider each component inde-
pendently as decribed previously. However, from the last proof we immediately
can deduce:

Corollary 4 If there is a retract in a connected component of a hyperjoin that
already is found to be satisfiable, then the whole component is satisfiable. ut

To a hyperjoin H over Wi, i ∈ [k], construct an edge.weighted graph G(H), w
as follows: For each Wi build a vertex xi and two distinct vertices xi, xj are
joined by an edge iff for the retract H(i, j) := HVi∪Vj holds |JH(i,j)(Wi)| =
|JH(i,j)(Wj)| > 0, meaning that there exist w ≥ 1 joined clauses in H each
containing a (distinct) member of Wi and of Wj , correspondingly. As weight
assign to the edge the number w. Clearly, a hyperjoin H is a connected formula
iff G(H) is connected.

Proposition 8 For k ≥ 2, a connected hyperjoin H over hc formulas Wi :=
WVi , i ∈ [k], is satisfiable if and only if the sum of edge weights in G(H) is at
least k.

Proof. We proceed by induction on k ≥ 2. The induction base is established
due to Lemma 26. Now let the assertion hold, for each connected hyperjoin

22 Stefan Porschen and Ewald Speckenmeyer

composed of at most k hc formulas, for a fixed k ≥ 2, and assume that H is
connected and is composed over k + 1 hc formulas; set V :=

⋃
i∈[k+1] Vi.

⇒: So let H be satisfiable, and suppose that the sum of edge weights in
G := G(H) is at most k. Because of connectedness this implies that each edge
weight is exactly one, so G has exactly k edges, and therefore is a tree because
of connectedness. W.l.o.g. let Wk+1 be a hc formula corresponding to a leaf
in G having father vertex Wk then H′ := H − HVk+1 is a hyperjoin over k hc
formulas such that G(H′) is a tree having total edge weight k− 1, and therefore,
by induction hypothesis, H′ cannot be satisfiable. On the other hand, let t be a
model of H, and let c corresponds to the unique edge of weight one in G joining
Wk+1 to Wk. Then clearly, c = ck ∪ ck+1 where ck ∈ Wk, ck+1 ∈ Wk+1 are
fixed members, otherwise G would contain a cycle. Since Wk having at least
two clauses is a leaf in G, at least one clause of Wk+1 appears as a clause in
H. Therefore, in order to satisfy these clauses, t has to contain the part cγ

k+1.
Hence, for satisfying c, t clearly has to satisfy ck. It follows that restricting t to
V − Vk+1 yields a model of H′ and therefore a contradiction.
⇐: If G(H) which by assumption is connected has an edge of weight at least

two, then H is satisfiable due to Prop. 26. In the remaining case G(H) has at
least k + 1 edges and each edge has weight exactly one. Then it contains a cycle
having vertices Wi0 , . . . ,Wir−1 , for appropriate r ≤ k + 1, corresponding to the
retract Hr := HV (r), where V (r) :=

⋃r−1
j=0 Vij . For all j, l ∈ {0, . . . , r − 1}, j 6= l,

we then have |JHr(ij ,il)(Wij)| = |JHr(ij ,il)(Wil
)| = 1 if l = j + 1(mod r) and

0 otherwise; let the corresponding joined clauses be ci0,i1 , . . . , cir−1,i0 meaning
that cij ,ij+1 contains a member cij ∈Wij and a member dij+1 ∈Wij+1(mod r),
for 0 ≤ j ≤ r − 1. Now, it is not hard to see that a model for HI is provided by⋃r−1

j=1 dγ
ij

(mod r). Therefore due to Cor. 4 also H is satisfiable completing the
proof. ut

The last result immediately yields a polynomial time algorithm deciding SAT
for hyperjoins and also to find a model, provided we know that the input formula
is a hyperjoin and its construction rule which both can be determined in the sense
of Theorem 6. So we are ready to state the main result of this section

Theorem 7 Given a formula C ∈ CNF, we can decide whether it is a hyperjoin
in polynomial time. In the latter case we are able to decide satisfiability and in
positive case to provide a model both in linear time.

Proof. Suppose we have found in polynomial time, due to Theorem 6, that C
is a hyperjoin. Then we know its construction rule up to free hulls of type (1),
(b). Then we can build the graph G(C) and compute its components in linear
time. Clearly each component containing a detected free hull of type (1), (b), is
satisfiable by Cor. 4, and a model for each such component is given by cγ , where
c is an arbitrary clause in the based-complement of the corresponding hull due to
Theorem 1 that can be found appropriately scanning the hull in linear time. For
each remaining component proceed due to Prop. 8 for deciding its satisfiability,
and in positive case, a model can be provided in linear time depth-first traversing
the graph and taking cγ for determined fragments of hc formulas as executed in
the proof of Prop. 7. ut

Clause set structures and satisfiability 23

References

1. B. Aspvall, M. R. Plass, and R. E. Tarjan, A linear-time algorithm for testing
the truth of certain quantified Boolean formulas, Inform. Process. Lett. 8 (1979)
121-123.

2. C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.
3. E. Boros, Y. Crama, and P. L. Hammer, Polynomial time inference of all valid

implications for Horn and related formulae, Annals of Math. Artif. Intellig. 1
(1990) 21-32.

4. E. Boros, P. L. Hammer, and X. Sun, Recognition of q-Horn formulae in linear
time, Discrete Appl. Math. 55 (1994) 1-13.

5. R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag,
New York, 1999.

6. J. Franco, A. v. Gelder, A perspective on certain polynomial-time solvable classes
of satisfiability, Discrete Appl. Math. 125 (2003) 177-214.

7. H. Kleine Büning and T. Lettman, Propositional logic, deduction and algorithms,
Cambridge University Press, Cambridge, 1999.

8. D. E. Knuth, Nested satisfiability, Acta Informatica 28 (1990) 1-6.
9. H. R. Lewis, Renaming a Set of Clauses as a Horn Set, J. ACM 25 (1978) 134-135.

10. M. Minoux, LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn
Formulae and Computer Implementation, Inform. Process. Lett. 29 (1988) 1-12.

11. B. Monien, and E. Speckenmeyer, Solving satisfiability in less than 2n steps,
Discrete Appl. Math. 10 (1985) 287-295.

12. S. Porschen, and E. Speckenmeyer, Worst case bounds for some NP-complete
modified Horn-SAT problems, in: “Proceedings of the 7th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT’04), Vancouver,
British Columbia, Canada”, Lect. Notes in Comp. Science, Vol. 3542, pp. 251-262,
2005.

13. S. Porschen, E. Speckenmeyer, and B. Randerath, On linear CNF formulas, in:
“A. Biere, C. P. Gomes (Eds.), Proceedings of the 9th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2006), Seattle, WA,
USA”, Lect. Notes in Comp. Science, Vol. 4121, pp. 221-225, Springer-Verlag,
Berlin, 2006.

14. S. Porschen, E. Speckenmeyer, Linear CNF formulas and satisfiability, Techn.
Report zaik2006-520, Univ. Köln, 2006.

15. C. A. Tovey, A Simplified NP-Complete Satisfiability Problem, Discrete Appl.
Math. 8 (1984) 85-89.

