
Semi–preemptive routing on a linear and

circular track

Dirk Räbiger Rainer Schrader

Zentrum für Angewandte Informatik, Universität zu Köln

Weyertal 80, 50931 Köln

Germany

Abstract

The problem of routing a robot (or vehicle) between n stations in the plane in order
to transport objects is well studied, even if the stations are specially arranged, e.g.
on a linear track or circle. The robot may use either all or none of the stations for
reloading. We will generalize these concepts of preemptiveness/nonpreemptiveness
and emancipate the robot by letting it choose k ≤ n reload–stations. We will show
that the problem on the linear and circular track remains polynomial solvable.

Key words: pickup and delivery, dial–a–ride, transportation

1 Introduction

We consider a transportation problem where m heterogeneous objects have to
be moved between n stations in the plane. For each object we have a request
(i, j) indicating that the object is initially located at station i and has to be
moved to its destination j. A station can be source and destination for several
objects. We assume that every station is source or destination of some request,
since otherwise an unused station may be removed.

The transport is done by a robot which can only handle one object at a time.
The robot starts at a predefined initial station and moves back and forth along
the track to pick up objects, transport them, and drop them. We want to find
a motion plan of minimal length so that the robot can move every object from

Email addresses: raebiger@zpr.uni-koeln.de (Dirk Räbiger),
schrader@zpr.uni-koeln.de (Rainer Schrader).

Preprint submitted to Discrete Optimization 17 November 2006

its source to its destination and returns to its initial station afterwards. We
focus on the special cases where the stations are arranged on a line or a circle.

Typically, one distinguishes between a non–preemptive and a preemptive ver-
sion of the problem. In the first case any object may only be dropped at its
destination station once it is picked up. The latter case allows the robot to
drop the object at any intermediate node and pick it up later. We will call
this action a reload. Both cases were solved in [1]. A nice overview of closely
related problems is given in [5].

We generalize the concepts of preemptiveness/nonpreemptiveness by allowing
the use of up to k reload–stations during the transport for some given k ≤ n.
The reload–stations may be exogenously specified in advance and the robot is
allowed to use every such given station for reloads. In a different model only
the number k is given so that the reload–stations have to be endogenously
determined such that the total travel length is minimized.

We will describe polynomial time algorithms for both the endogenous (sec. 2)
and exogenous (sec. 3) cases. The problem is NP–complete on a tree as a
result of the generalization of the non–preemptive case [3]. Thus the proposed
generalization does not make the problem harder if we simply distinguish
between polynomial time solvable and NP–complete problems.

2 The endogenous routing problem on a line or circle

Let S = {0, . . . , n− 1} be a set of n nodes which are either arranged on a line
or on a circle. Between neighboring nodes i and j in this arrangement we have
a nonnegative distance l(i, j) = l(j, i). If the nodes are arranged on a line we
connect the end nodes and put a sufficiently large distance value on this new
edge. We may thus treat the line as a special case of the circle. We assume
that the nodes are numbered clockwise. We often loosely write i + 1 instead
of i + 1 mod n.

The robot starts at station 0 ∈ S, moves the objects and returns to station 0
afterwards. Let R be the set of m requests, where each request is of the form
(i, j). A request will be completed by moving an object from i to j. Each such
move defines a path whose length is the sum of distances between adjacent
nodes.

A move may be interrupted at a reload node. For each reload station installed
we introduce a cost value ∆ ≥ 0. (Although it is easy to extend the results to
∆ < 0 we abandon this case, because any optimal solution will use exactly k
reload nodes.) The total length of a transport plan is the length of the travel

2

plus the costs for opening reload stations.

A request (i, j) will be completed by moving the object either clockwise or
counter-clockwise along the circle. By a result of Atallah and Kosaraju [1] we
may assume that at most one request uses its longer path. So we solve the
robot problem by considering m+1 restricted problems in which the directions
are fixed and at most one specified request r0 ∈ R uses its longer path.

2.1 Graphtheoretic formulation of the problem

From now on we assume that r0 ∈ R and all other directions are fixed. If
reloads are forbidden, the transportation problem reduces to a Chinese post-
man problem where we have to add arcs to the graph (S,R) such that the
resulting graph becomes Eulerian. The cost for adding an arc is given by its
length. If reloads are allowed, we have a second operation to extend the orig-
inal graph. We say that an arc (u, v) crosses a node x ∈ S if the associated
path contains x. For the second operation we may choose a node x and replace
every arc (u, v) which crosses x by two arcs (u, x) and (x, u). The cost for this
operation is ∆. If B denotes the set of chosen reload nodes, the extension is
valid if |B| ≤ k.

Every solution to the transportation problem describes an extension of (S,R)
to a Eulerian graph with at most k nodes chosen as reload nodes. The arc
multiset of the extended graph consists of three types of arcs. For each r ∈ R
there is path Pr representing r. Let AR be the corresponding multiset of arcs.
In order to make the graph connected we will introduce a set AC of pairs of
antiparallel arcs. Since in (S,AR ∪ AC) the node balances are the same as
in the original graph, there will be a third set Aψ of arcs needed to balance
the graph. Together with AC , these arcs correspond to “empty” moves of the
robot arm without transporting an object.

Atallah and Kosaraju [1] have shown that the creation of the arc sets can
be done in two separate steps: we first balance the node degrees and then
make the graph strongly connected. Referring to the circle we call the section
between the station i and i+1 the interval i. Atallah and Kosaraju define the
flux φ(i) across an interval i as

φ(i) = |{a ∈ A crossing i clockwise}|−|{a ∈ A crossing i counter-clockwise}|.

Note that φ(i) also counts arcs crossing i which do neither end in station i
nor in station i + 1. The φ(i)’s can all be computed in time O(m). Atallah
and Kosaraju show that the graph is degree balanced if and only if the flux is
constant over i, i.e. φ(i) = φ(j) for all i, j = 0, . . . , n−1. Moreover, for a given
value ψ, the graph can be balanced at a minimum cost by adding |ψ − φ(i)|

3

0

1

2

35

6

7

0

1

2

3

6

7

5

φ(7)=0 φ(0)=1

φ(1)=2

φ(2)=1

φ(3)=0φ(4)=0

φ(5)=−1

φ(6)=0

φ(0)=0φ(7)=0

φ(6)=0 φ(1)=0

φ(2)=0

φ(3)=0φ(4)=0

φ(5)=0

(b)(a)

4 4

Fig. 1. (a) graph with requests (solid) and flux values (b) same graph with added
augmenting arcs (dashed)

many copies of the arc (i, i+1) to Aψ if φ(i) < ψ (copies of (i+1, i) if φ(i) > ψ
resp.) for all intervals i. Figure 1 illustrates an example.

It is not yet clear which value we should choose for ψ. The following Lemma
reduces the number of choices for ψ to just a few. It allows us to fix a value
and enumerate all possible choices.
Lemma 1 (Atallah and Kosaraju [1]) (1) There exists an optimal aug-

mentation with ψ ∈ [−m− 1, m+ 1].
(2) In any optimal transport graph, at most one object is moved to its desti-

nation along the major arc.
(3) If an optimal transport graph contains a major arc, then its flux value ψ

equals either 1 or −1.
(4) If the node set is arranged on a line, then ψ = 0.

In the following we assume that r0 ∈ R and some value ψ is fixed. In G =
(S, Aψ ∪ R) all nodes are degree balanced. It remains to make the graph
strongly connected. For this, we may replace arcs r by paths Pr and add
antiparallel arcs from AC . Since the cost function is additive, we may assume
that the antiparallel arcs are all of the form (i, i+ 1), (i+ 1, i).

Let Ki denote the strongly connected components of G. For i ∈ S let K(i) be
the connected component containing i. Since G is balanced the Ki’s are the
connected components of the underlying undirected graph. In particular, the
endpoints of an arc are in the same component.

We construct a directed auxiliary graph H = (V,Er∪̇Eb) with colored arcs
and arc weights. The nodes vi ∈ V correspond to the strongly connected com-
ponents Ki where v0 is the node corresponding to the connected component
K0 containing the start node 0. The arcs are either colored red (e ∈ Er) or
blue (e ∈ Eb). Consider two different nodes u, v ∈ V :

• create a red arc (u, v) ∈ Er with cost c(u, v) = 2l(i, j), if there exist nodes

4

i, j ∈ S which are neighbors on the circle but in different connected com-
ponents K(i) = Ku, K(j) = Kv. If there are several candidates choose i, j
such that l(i, j) is minimal.

• create a blue arc (u, v) ∈ Eb with cost c(u, v) = ∆ if there exists a request
arc (i, `) ∈ R with K(i) = K(`) = Ku which crosses a node j ∈ S with
K(j) = Kv.

Let G = (V,Er∪̇Eb) be a directed multigraph and v0 ∈ V be some node. An
arborescence T ⊆ Er ∪ Eb is called a (k, v0)–arborescence if it is rooted in
v0 ∈ V and contains at most k blue arcs. We will use (k, v0)–arborescences
to solve the robot problem. Let G = (S, Aψ ∪ R) be the balanced graph of
the transportation problem, H the auxiliary graph as above and γ := l(Aψ)+
l(AR).

Theorem 2 Let T be a minimum cost (k, v0)–arborescence of H. Then an
optimal robot schedule has cost c(T)+ γ. It can be constructed from T in time
O(n).

PROOF. We first show that for any (k, v0)–arborescence T we can construct
a transport graph GT = (S, Aψ ∪AR ∪AC , B) with cost c(T) + γ. Initially we
set GT = (S, Aψ ∪R, ∅) with AC = ∅, AR = R, B = ∅ and cost γ. We start in
v0 and traverse the nodes of T in a depth-first-search manner. Let u be some
node and v be a son of u in the search-tree. The arc (u, v) ∈ T is colored either
red or blue.

(1) (u, v) ∈ Er: by definition there exist nodes i, j ∈ S which are neighbors
on the circle with K(i) = Ku and K(j) = Kv. We add two anti–parallel
arcs (i, j), (j, i) to AC . This preserves the degree balance and increases
the cost by c(u, v).

(2) (u, v) ∈ Eb: by definition there exist i, j, ` ∈ S and an arc (i, `) ∈ AR

with K(i) = K(`) = Ku and K(j) = Kv. We add j to B and replace (i, `)
in AR by (i, j), (j, `). Again the degree balance is preserved. The cost of
this operation is ∆.

In each step both operations melt the connected components Ku and Kv to
one connected component. Since T contains a (v0, vi)–path for every vi ∈ V
the extended graph GT will be strongly connected and thus is Eulerian. Since
T uses at most k blue arcs we have |B| = |T ∩ Eb| ≤ k. The cost of GT is as
claimed. T contains at most n

2
nodes and we need O(n) time to traverse T .

Now let T be a minimum cost (k, v0)-arborescence. Suppose GT is not op-
timal. Let G∗

T be an optimal transport graph with l(G∗

T) < l(GT). We con-
struct a (k, v0)–arborescence T ∗ with c(T ∗) < c(T). G∗

T is of the form G∗

T =
(S, A∗

ψ∪̇A
∗

R
∪̇A∗

C , B
∗) where as before A∗

R
consists of arcs or paths represent-

5

ing requests and A∗

C∪̇A
∗

ψ represents the empty moves. A∗

C is a set of pairs of
antiparallel arcs. We again may assume by the additivity of the length func-
tion that these arcs link nodes which are adjacent on the circle. As the arcs
in A∗

R
∪̇A∗

C have no effect on the flux, the remaining arcs in A∗

ψ balance the
graph.

Since the balancing operation described by Atallah and Kosaraju [1] has min-
imal cost, we may assume that Aψ = A∗

ψ. Hence the connected components
of the balanced graph (S, A∗

ψ ∪ R) coincide with the connected components
Ki ⊆ S ofG. We construct an arborescence T ∗ = (V,Er∗∪Eb∗) of the auxiliary
graph as follows.

We shrink the node sets Ki to supernodes ui. Consider an Eulertour starting
with 0 in the Eulerian graph G∗

T . We follow this tour and whenever we en-
ter a connected component for the first time using an arc (i, j), we add this
arc to T ∗. Since the endnodes of arcs in A∗

ψ ∪ R are in the same component,
an arc in the shrunken graph is either in A∗

ψ or an arc on a path represent-
ing a request. If the arc (i, j) is A∗

C and K(j) has not been entered before,
we add a red arc (K(i), K(j)) and cost 2l(i, j) to Er∗. In the other case let
(i0, i1), (i1, i2), . . . , (i`−1, i`) be the path representing the request (i0, i`). For
every component K(ij), j = 1, . . . , l− 1 which has not been reached before we
add the blue arc (K(ij−1), K(ij)) to Eb∗ with cost ∆. Since no two such arcs
have a common endpoint, we cannot add more than |B∗| ≤ k blue arcs to Eb∗.
Since the Eulertour reaches every node in S, T ∗ will be a (k, v0)–arborescence.
Now

l(G∗

T) = l(A∗

ψ) + l(A∗

R
) + l(A∗

C) + |B∗|∆

= l(Aψ) + l(AR) + l(A∗

C) + |B∗|∆

< l(GT)

= l(Aψ) + l(AR) + l(AC) + |B|∆,

we have c(T ∗) ≤ l(A∗

C) + |B∗|∆ < l(AC) + |B|∆ = c(T), in contradiction to
T being optimal. 2

2.2 (k, v0)–arborescences: Solving special instances

Unfortunately, the complexity status of computing a minimum cost (k, v0)–
arborescence in general directed graphs seems to be open. For our specially
structured auxiliary digraphs we will describe a polynomial algorithm. It
is based on dynamic programming by looking at a special case. Let H =
(V,Er∪̇Eb) be an auxiliary digraph with the following property:

6

(H1) every arc (u, v0) ∈ Eb is contained in a directed blue circuit

For an undirected multigraph G = (V,E) with E = Er∪̇Eb a spanning tree T
is a k–tree if |T∩Eb| ≤ k. Gabow and Tarjan [4] have given an algorithm which,
for a given cost function c : E → R, calculates a minimum cost spanning k–
tree T ⊆ E in O(|E| log |V | + |V | log |V |) steps or decides that no such tree
exists. In general, the cost of a minimum spanning k-tree of the underlying
graph will give a lower bound on the cost of a (k, v0)–arborescence. If the
directed graph satisfies (H1) this bound is tight:

Lemma 3 Let the auxiliary digraph H satisfy (H1) and let H ′ = (V,Er′

∪Eb′)
be the underlying undirected graph of H. For a minimum cost k–tree T of H ′

we can construct a (k, v0)–arborescence A for H with cost c(A) = c(T).

PROOF. Let T be a minimum cost k–tree for H ′. Let A be a set of directed
arcs of H chosen as follows: consider some v ∈ V . Let u be the node preceding
v on the path from v0 to v in T . If {u, v} is red, then A contains a red arc
(u, v). If {u, v} is blue and (u, v) ∈ Eb, then A contains the blue arc (u, v).
Otherwise A contains the blue arc (v, u) which we have to traverse against its
orientation. In this case A fails to be an arborescence.

Let z(T) be the number of blue edges {u, v} of T such that H contains both
blue arcs (u, v) and (v, u). If A is not an arborescence we will transform T
into a minimum spanning tree T ′ with the same number of blue edges and
z(T ′) = z(T) + 1. After at most k such steps A is an arborescence.

Assume that A is not an arborescence. On a path P starting in v0 let (v, u) ∈ A
be the first arc which is traversed against its orientation. By construction of
H there is an arc in Kv crossing a node in Ku. Since (u, v) /∈ Eb, no arc
of Ku crosses a node in Kv. This can only happen if on the circle all nodes
` ∈ S with K(`) = Ku lie in a segment defined by two nodes i and j with
K(i) = K(j) = Kv. We distinguish two cases.

(i) 0 is outside the segment between i and j. Since P connects K0 to Ku

without passing through Kv there must be an arc in R crossing i or j. Hence,
for some node w on P , we have (w, v) ∈ Eb and also (v, w) ∈ Eb. Then
T ′ = T r {u, v} ∪ {w, v} is a minimum cost k–tree with z(T ′) = z(T) + 1.

(ii) 0 is inside the segment between i and j. Let Tv be the subtree of nodes
x in T such that the (v0, x)-path goes through v. Since 0 is between i and
j, also (v, v0) ∈ Eb. By (H1), there exists a blue directed path from v0 to v.
Let P be a shortest such path. Then for every arc (w, x) on P we also have
(x, w) ∈ Eb. Since P connects v0 to v there exists an arc (w, x) on P with
x ∈ Tv and w /∈ Tv. Then T ′ = T r {u, v} ∪ {w, x} a minimum cost k–tree
with z(T ′) = z(T) + 1. 2

7

Consider an instance satisfying property (H1). For fixed fixed request r0 and
flux value ψ we construct the auxiliary digraph H and compute a minimum
cost k–tree. This tree can be transformed in O(n2) steps into a minimal (k, v0)–
arborescence using Lemma 3. From this we construct an optimal transport
graph by Theorem 2. The running time for this approach is in O(n2+m logn).

2.3 Solving general instances

The algorithm of the previous subsection can only be used for instances that
fulfill property (H1). We will now solve general instances by using a dynamic
programming approach. The idea for this is to identify a subset S ′ of S con-
taining all nodes of K0, with three properties: (i) S ′ is a segment of the circle,
(ii) S ′ has property (H1) and (iii) there is no arc in R linking a node in S ′ with
a node in S r S ′. These properties will allow us to decompose the problem in
two smaller ones on S ′ and on S r S ′ and merge the solutions appropriately.

We say that a node v in H violates (H1) if there is a directed blue path from
v to v0 but no directed blue path from v0 to v. We successively delete nodes
v which violate (H1) until no such node is left. Observe that the resulting
subgraph may depend on the sequence in which we delete nodes. It is true,
however, that if v violates (H1) in H and u violates (H1) in Hr v then u also
violates (H1) in H. This implies, in particular, that S ′ will always contain K0

and hence is nonempty.

Let U be the set of nodes in the resulting subgraph which can be reached
from v0 and S ′ = {s ∈ S : K(s) ∈ U}. Observe that S ′ is a disjoint union of
connected components of G.

Lemma 4 S ′ is a segment of the circle.

PROOF. Suppose that between two nodes in S ′ there is a node i /∈ S ′. Then
there is such a node i /∈ S ′ which on the circle is a left neighbor of some node
in j ∈ S ′. Then, by construction of U , there is no red arc between Ki and Kj.
Since U is connected there must be a blue arc linking Kj with the part of S ′

which is to the left of i. Since the corresponding arc in R also crosses i, K(i)
is reachable from v0 in H. Hence K(i) does not violate (H1) and could not
have been deleted. 2

If S ′ (S let r be the smallest index such that r /∈ S ′ and ` be the largest
index such that ` /∈ S ′. Then S ′ is the segment between ` + 1 and r − 1. Let
R′ ⊆ R be the subset of arcs linking nodes in S ′ and H ′ be the auxiliary
digraph.

8

Lemma 5 H ′ satisfies (H1).

PROOF. Suppose there is a node u in H ′ with a blue arc (u, v0). Since u does
not violate (H1) in H, there is a directed blue path P from v0 to u in H. If P
no longer exists in H ′, some node x ∈ P was removed. Since we only remove
nodes violating (H1), there is no path from v0 to x in H, a contradiction. 2

Lemma 6 There is no arc in R starting in S ′ and crossing ` or r.

PROOF. We only discuss the right border r, the case ` being similar. Nodes
in S which are linked by an arc (i, j) ∈ R are in the same connected component
of G. So the arc cannot end in r and hence must cross r. Thus there is a blue
arc from K(i) to K(r), in contradiction to the fact that r violates (H1). 2

This, in particular, implies that in any spanning arborescence of H there are
only three possible ways to reach a node in S r S ′ from some node in S ′,
namely through a red arc (` + 1, `), a red arc (r − 1, r) or both. Hence we
distinguish three cases (left exit, right exit, both exits). On the other hand,
there may exist several ways to link S r S ′ back to S ′. This, however, can
only be the case if some request arc crosses S ′. Moreover, if such a request arc
exists, an arc (u, v) with u ∈ T r U and v ∈ U necessarily has to be blue.

We model the three different cases by adding copies of the limiting nodes and
demand arcs (cf. Figure 2):

S1

1
:= S ′ ∪ {`′, `, r} R1

1
:= R′ ∪ {(`′, `), (`, `′), (0, r), (r, 0)}

S1

2
:= S ′ ∪ {`, r, r′} R1

2
:= R′ ∪ (r, r′), (r′, r), (0, `), (`, 0)}

S1

3
:= S ′ ∪ {`′, `, r, r′} R1

3
:= R′ ∪ {(`′, `), (`, `′), (r, r′), (r′, r)}

Request arcs are added in antiparallel pairs to preserve the flux. The distance
between a limiting node and its copy is 0.

Let H1

i be the corresponding auxiliary graphs. Note that they all satisfy prop-
erty (H1).

The corresponding problems on S r S ′ are defined as follows:

S2

1
:= S r (S ′ ∪ r) with start node ` R2

1
:= R r R′

S2

2
:= S r (S ′ ∪ `) with start node r R2

2
:= R r R′

S2

3
:= S r S ′ with start node r R2

3
:= R r R′

9

S’

r0ll’

0

l 0l’

l

r r’

r r’

Fig. 2. The graphs corresponding to S1

i ,R
1

i , i = 1, 2, 3 without arcs drawn inside
S1

i .

In the third case we identify the nodes ` and r. Let H2

i be the corresponding
auxiliary graphs.

As before we assume that the long arc r0 and the flux value ψ are fixed.
For all 0 ≤ p ≤ k we compute minimum cost (p, v0)–arborescences A1

i (p) for
H1

i , i = 1, 2, 3. Since the auxiliary graphs satisfy property (H1) we can apply
the algorithm of Section 2.2. We may assume by induction that we can also
compute minimum-cost (q, v0)– arborescences A2

i (q) for H2

i , i = 1, 2, 3 for all
0 ≤ q ≤ k. Among all arc sets A1

i (p)∪A
2

i (q) with i = 1, 2, 3 and p+ q ≤ k we
choose an arc set A with minimum cost.

Theorem 7 For fixed long arc r0 and flux value ψ A is a minimum (k, v0)–
arborescence of H.

PROOF. First observe that A as defined above is a (k, v0)–arborescence of
H. We assume that there is a minimum-cost (k, v0)– arborescence A∗ of H
which uses the right exit. The two other cases are shown similarly.

Since A∗ uses the right exit, it contains an arc (r − 1, r). If all nodes which
are reachable from r in A∗ are nodes in H rH1

2
then A∗ decomposes into two

arborescences A1 of H1

2
and A2 of H r H1

2
and the claim follows. If not, by

the remarks above, there is a blue arc (u, v) with u ∈ H r H1

2
and v ∈ H1

2
.

We claim that we can replace (u, v) by a blue arc (w, v) with w ∈ H1

2
. This

yields an arborescence A′ of the same cost and the proof follows by induction.

Consider the problem S1

2
with demand set R1

2
. If the connected component

Kv has a node which lies between ` and 0, then the artificial demand (`, 0)
implies that there is a blue arc (v0, v) in H1

2
. If all nodes of Kv lie between

0 and r then they have been passed or being crossed on the path from 0 to
r. Hence there must exist a request arc in some component Kw crossing the

10

nodes in Kv. Thus (w, v) is a blue arc in H1

2
. 2

By Theorem 7 we can reduce the problem to the solution of 3k problems
satisfying property (H1) and further 3k smaller problems. Since the latter
problems are defined on three different instances this approach seems to branch
and thus to have an exponential running time. We will fix the problem with
the help of the following Lemma.

Lemma 8 Let ` and r be as defined above. Then either K(`) = K(r) or H
has a blue directed circuit containing K(`) and K(r).

PROOF. By definition of ` there exists a blue directed (K(`), v0)–path P .
Then P contains an arc (u, v) with u ∈ TrU and v ∈ U . By construction, there
exists a request (i, j) ∈ R starting in K(i) = Ku crossing a node j ∈ K(0).
Since S ′ is closed under connected components, (i, j) must cross all nodes of
S ′. So either K(r) = K(`) or (i, j) also crosses `. In the latter case there is a
blue directed path from K(r) to K(`) and, by symmetry, there is also a path
from K(`) to K(r). 2

Lemma 8 implies that a node u violates (H1) with respect to ` if and only
if u violates (H1) with respect to r. So when we solve the three different
subproblems (S2

i ,R
2

i) as before by splitting off segments S ′2

i satisfying (H1),
we can do it in such a way that we generate identical segments. Hence the
branching process stops after two steps and returns to a unique subproblem
(S2,R2) = (S2

1
r S ′2

1
,R2

1
r R′2

1
).

The algorithm to compute a minimum cost transport plan may be summarized
as follows:

(1) enumerate all relevant combinations r0 and ψ (cf. Lemma 1)
(2) if S ′ = S solve the problem as in Section 2.2
(3) if S ′ 6= S
(4) solve the problems (S1

i ,R
1

i , k1) for all k1 ≤ k and i = 1, 2, 3 as in Section
2.2

(5) solve the problems (S ′2

i ,R
′2

i , k2) for all k2 ≤ k and i = 1, 2, 3 as in Section
2.2

(6) solve the problems (S2,R2, k3) for all k3 ≤ k recursively
(7) combine the solutions (S1

i ,R
1

i , k1), (S ′2

i ,R
′2

i , k2) and (S2,R2, k3) for i =
1, 2, 3 and k1 + k2 + k3 ≤ k

(8) select one with minimal cost

Theorem 9 The transportation problem on a circle with n stations and m
requests can be solved in O(m2n2 logn) steps.

11

PROOF. The correctness of the above algorithm follows from the preceding
remarks. By Lemma 1 at most one move uses its major arc. If a major arc is
used then the flux value is either −1 or 1. If no major arc is used then the flux
value is between −(m+1) andm+1. So all relevant combinations of major arcs
and flux values can be enumerated in O(m) steps. If S ′ = S then the problem
satisfies property (H1) and can be solved in O(n2 +m log n) steps. If not, we
compute arborescences for 6k subproblems with property (H1). This process
is repeated at most n times. By selecting the best combination, we obtain a
minimal (k, v0)–arborescence. The transformation of this arborescence takes
O(n2) steps, resulting in running time of O(m2n2 log n) 2.

3 Exogenous reload stations

We are now looking at a version of the semi–preemptive routing problem in
which all reload nodes are predetermined, i.e. the set B is part of the input.
Lemma 1 still holds, and we still only have to care about how to connect the
connected components ofG. In the endogenous case we could use a reload node
in order to connect two components as well, but the consequences were more
complicated, because the model implied a multi–criterion objective function.

To solve the exogenous case we construct a directed auxiliary graph H as we
did in section 2.1, but we forget about the coloring of the arcs. We are then
looking for a minimum cost arborescence rooted in v0 which can be found in
O(m+ n logn) time using a fibonacci heap implementation [2].

Theorem 10 Let T be an arborescence rooted in v0 for the uncolored directed
auxiliary graph H = (C,E) constructed as above with cost c(T). T can be used
to construct a transport graph GT for (I, ψ, r) with cost l(GT) = c(T) + γ in
O(n) time. If T is minimal relative to c then GT is minimal to l.

The proof is along the lines of the results in Section 2.3. All possible pairs of
(ψ, r) can be enumerated in O(m) time which guides us to an overall running
time of O(m2 +mn log n).

References

[1] M.J. Atallah and S.R. Kosaraju, Efficient solutions to some transportation
problems with applications to minimizing robot arm travel, SIAM Journal

Computing. 17 (1988) 849–869.

[2] H.N. Gabow and Z. Galil and T. Spencer and R.E. Tarjan, Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs.

12

Combinatoria. 6 (1986) 109–122.

[3] G.N. Frederickson and D.J. Guan, Nonpreemptive ensemble motion planning
on a tree. Journal of Algorithms. 15 (1993) 29–60.

[4] H.N. Gabow and R.E. Tarjan, Efficient algorithms for a family of matroid
intersection problems. Journal of Algorithms. 5 (1984) 80–131.

[5] D.J. Guan, Routing a vehicle of capacity greater than one, Discrete Applied

Mathematics. 81 (1998) 41–57.

13

