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Abstract. We investigate the computational complexity of finding an
element of a permutation group H ⊆ Sn with a minimal distance to a
given π ∈ Sn, for different metrics on Sn. We assume that H is given by a
set of generators, such that the problem cannot be solved in polynomial
time by exhaustive enumeration. For the case of the Cayley Distance, this
problem has been shown to be NP-hard, even if H is abelian of exponent
two [7]. We present a much simpler proof for this result, which also works
for the Hamming Distance, the lp distance, Lee’s Distance, Kendall’s tau,
and Ulam’s Distance. Moreover, we give an NP-hardness proof for the l∞

distance using a different reduction idea. Finally, we settle the complexity
of the corresponding fixed-parameter and maximization problems.

1 Introduction

For any metric d on Sn, we define the distance of a permutation π ∈ Sn from a
subgroup H of Sn as

d(π,H) = min
τ∈H

d(π, τ) .

If H is not given explicitly, but by a set of generators, one can still decide in
polynomial time whether d(π,H) = 0, i.e., whether π ∈ H [8, 4]. However, it
is not possible in general to compute the distance d(π,H) in polynomial time,
unless P = NP. This was shown by Pinch for the Cayley distance [7]. More
precisely, he showed that the following problem is NP-complete in this case:

Problem 1 (Subgroup distance problem). Given π ∈ Sn, a set of generators of a
subgroup H of Sn, and an integer K, decide whether d(π,H) ≤ K.

In this paper, we present an alternative proof for this result. Furthermore, we
show NP-completeness for several other well-known metrics on Sn, namely the
Hamming Distance, the lp distance, the l∞ distance, Lee’s Distance, Kendall’s
tau, and Ulam’s Distance. We list the corresponding definitions in the following,
but recommend [3] for further information.



– the Hamming Distance between two permutations π and τ is the number of
different entries, i.e., |{i | π(i) 6= τ(i)}|

– the Cayley Distance is defined as the minimum number of transpositions
taking π to τ

– for p ≥ 1, the lp distance is defined by p
√

∑n
i=1(π(i) − τ(i))p

– the l∞ distance is defined as max1≤i≤n |π(i) − τ(i)|
– the Lee Distance is

∑n
i=1 min(|π(i) − τ(i)|, n − |π(i) − τ(i)|)

– Kendall’s tau is the minimum number of pairwise adjacent transpositions
taking π to τ

– Ulam’s Distance is defined as n minus the length of a longest increasing
subsequence in (τπ−1(1), . . . , τπ−1(n))

The subgroup distance problem is related to the weight problem, where one asks
for an element τ ∈ H with a given distance k to the identity. This problem
has been investigated by Cameron and Wu, who showed NP-completeness for
all metrics listed above [2]. If the weight problem is restricted to the Hamming
distance and to the case k = n, the resulting problem is to decide whether the
group H contains a fixed-point free permutation, which has been shown to be
NP-complete by Buchheim and Jünger [1].

2 NP-completeness for the Hamming Distance

In this section, we prove that the subgroup distance problem is NP-complete for
the Hamming distance.

Theorem 1. The subgroup distance problem for the Hamming distance is NP-
complete, even if the permutation group H is abelian of exponent two.

Proof. For the reduction, we use the decision version of the maximum satisfi-
ability problem with clauses of length two (MAX-2-SAT), which is well-known
to be NP-complete [5]. So consider an instance of MAX-2-SAT, consisting of an
integer K ′, of p variables u1, . . . , up and of q clauses c1, . . . , cq of length two. It
is to decide whether there is a truth assignment {u1, . . . , up} → {0, 1} satisfying
at least K ′ clauses.

In order to transform this instance to an instance of the subgroup distance
problem, first define K = 6q − 4K ′. Moreover, construct a domain X and a
permutation π as follows: for every variable ui, introduce a set Xi with 6q + 2
points. These points are swapped pairwisely by π. For each clause j, add a
set Yj = {aj,1, . . . , aj,6} such that π exchanges aj,1 with aj,2, aj,3 with aj,4,
and aj,5 with aj,6. The total size of the domain X, defined as the union of all
sets Xi and Yj , is p(6q + 2) + 6q and thus polynomial.

Next we define generators for the group H. For each variable ui, we define
two generators πi(t) and πi(f). Both exchange all points in Xi in the same way



as π. If ui appears without negation in the first position of a clause cj , then πi(t)
exchanges aj,1 with aj,2 and aj,3 with aj,4; if it appears without negation in the
second position, then it exchanges aj,1 with aj,2 and aj,5 with aj,6. For a negated
appearance, the same is done by πi(f) instead of πi(t). All other points are fixed
by πi(t) and πi(f).

Now let H = 〈πi(t), πi(f) | i = 1, . . . , p〉. It remains to show that d(π,H) ≤ K

if and only if K ′ clauses from c1, . . . , cq can be simultaneously satisfied. First,
let t : {u1, . . . , up} → {0, 1} be a truth assignment satisfying at least K ′ clauses.
Consider

τ =
∏

t(ui)=1

πi(t)
∏

t(ui)=0

πi(f) ∈ H .

By construction, τ agrees with π on each Xi. Moreover, it is readily verified that
on the clause gadget Yj the distance between τ and π is 2 if cj is satisfied by t

and 6 otherwise. In summary, we have

d(π, τ) = 6q − 4 · |{j | cj is satisfied by t}| ≤ 6q − 4K ′ = K .

Now assume that d(π,H) ≤ K. Choose τ ∈ H with d(π, τ) ≤ K. In the
composition of τ , exactly one of the generators πi(t) or πi(f) must appear, for
each variable ui. Indeed, as both πi(t) and πi(f) are involutions and H is abelian,
we can assume that at most one copy of each appears. If for some variable ui

both πi(t) and πi(f) or neither one appeared, the distance between τ and π

on Xi would be 6q + 2 > K.
We can thus define t : {u1, . . . , up} → {0, 1} by setting t(ui) = 1 if and only

if πi(t) appears in the composition of τ . Moreover, this implies that the Hamming
distance between τ and π on all sets Xi is zero. Arguing as above, one can show
that t must satisfy at least K ′ clauses. ut

3 NP-completeness for the l∞ distance

In this section, we will prove that the subgroup distance problem is NP-complete
also for the l∞ distance. For the weight problem, we know that the l∞ distance
behaves differently from all other metrics considered in this paper, see [2]. The
same is true for the subgroup distance problem, as we need a new method to
prove its NP-completeness. The difference between l∞ and other metrics will
become even clearer in Sections 5 and 6.

Theorem 2. The subgroup distance problem for the l∞ distance is NP-complete,
even if the permutation group H is abelian of exponent two.

Proof. We construct a polynomial-time reduction from the NAE-3-SAT problem.
This problem is NP-complete [6]; it is similar to the well known 3-SAT problem
but requires a truth assignment such that in no clause all three literals are equal
in truth value. More precisely, an instance of the NAE-3-SAT problem is given
by p variables u1, . . . , up and q clauses c1, . . . , cq of length three. The question



is whether there is a truth assignment {u1, . . . , up} → {0, 1} such that no clause
has all literals true, or all literals false.

In order to transform this instance into an instance of the subgroup distance
problem, firstly define K = 2. Construct a domain X and a permutation π

as follows: for every variable ui, introduce a set Xi containing 6 points. We
may assume that the points in Xi are labelled from 1 to 6. Then π is acting
on Xi as (1, 4)(2, 5)(3, 6). For each clause cj , we use a gadget Yj of size 4. To
simplify the notation, assume Yj contains nodes 1, 2, 3, 4. Then π is acting on Yj

as (1, 4)(2)(3). Now the domain X is the disjoint union of all Xi and Yj with
suitable adjustments of the labelling.

Next we define generators for the group H. For each variable ui, we define
two generators πi(t) and πi(f). Both exchange all points in Xi in the same way
as π. If ui appears without negation in the first position of a clause cj , then
the action on Yj is πi(t) = (1, 2)(3, 4), where we assume again that the points
in Yj are labelled 1 to 4. If it appears without negation in the second position
then πi(t) = (1, 3)(2, 4); if it appears without negation in the third position then
we have πi(t) = (1, 4)(2, 3). For a negated appearance, the same is done by πi(f)
instead of πi(t). All other points are fixed by πi(t) and πi(f).

Let H = 〈πi(t), πi(f) | i = 1, . . . , p〉. It remains to show that l∞(π,H) ≤ K

if and only if there exists an assignment such that no clause from c1, . . . , cq has
all literals true, or all literals false. First, let t : {u1, . . . , up} → {0, 1} be a truth
assignment satisfying the requirement of NAE-3-SAT. Consider

τ =
∏

t(ui)=1

πi(t)
∏

t(ui)=0

πi(f) ∈ H .

By construction, τ agrees with π on each Xi. Moreover, one can verify that on
the clause gadget Yj , the l∞ distance between τ and π is 3 if all literals in cj

have the same truth value with respect to t. Indeed, in this case the induced
action of τ on Yj is trivial. In all other cases, the distance between τ and π is
either 1 or 2. In summary, we have l∞(π, τ) ≤ 2 if and only if in all clauses either
one or two literals are satisfied.

Now assume that l∞(π,H) ≤ K = 2. Choose τ ∈ H with l∞(π, τ) ≤ 2. In the
composition of τ , exactly one of the generators πi(t) or πi(f) must appear, for
each variable ui. Indeed, as both πi(t) and πi(f) are involutions and H is abelian,
we can assume that at most one copy of each appears. If for some variable ui

both πi(t) and πi(f) or neither one appeared, the distance between τ and π

on Xi would be 3 > K.

We can thus define t : {u1, . . . , up} → {0, 1} by setting t(ui) = 1 if and only
if πi(t) appears in the composition of τ . Moreover, this implies that the l∞
distance between τ and π on all sets Xi is zero. Arguing as above, one can show
that t must satisfy the condition that in all clauses either one or two literals are
satisfied. ut



4 NP-completeness for other distances

We next show that the subgroup distance problem is NP-complete for all other
considered metrics, following the ideas in the proof of Theorem 1. Indeed, we
can use exactly the same construction of variable and clause gadgets and the
same definition of π. We just have to label the points aj,1 to aj,6 consecutively
in each clause gadget Yj .

The crucial point in the proof of Theorem 1 is the following: let x1 (x2) denote
the action on Yj induced by a satisfied literal in the first (second) position of
a clause. Then d(x1, π) = d(x2, π) = d(x1x2, π) = 2 while d(π, e) = 6. Roughly
speaking, if for any metric d we have d(x1, π) = d(x2, π) = d(x1x2, π) = a while
d(π, e) = b for some 0 < a < b, then we can carry over the proof of Theorem 1
with no other change than redefining K = bq − (b − a)K ′ and making sure that
the distance between π and e on each variable gadget is at least bq.

It is readily verified that the parameters a and b can be chosen as follows for
the remaining distances defined in the introduction:

distance a b

Cayley 1 3

lp
p
√

2 p
√

6
Lee 2 6
Kendall’s tau 1 3
Ulam 1 3

In summary, we derive

Theorem 3. The subgroup distance problem is NP-complete for the Cayley
Distance, the lp distance, Lee’s Distance, Kendall’s tau, and Ulam’s Distance,
even if the permutation group H is abelian of exponent two.

For the case of the Cayley Distance, this result has been proved recently by
Pinch [7]. However, the proof given here is much simpler.

5 Fixed parameter K

It is worthwhile to have a look at the variant of the subgroup distance problem
where the parameter K is considered a constant rather than part of the input.
Interestingly, the problem then becomes polynomial for most metrics discussed
above. Indeed, as a membership test can be performed in polynomial time [8, 4],
it suffices to show that the set

X = {τ ∈ Sn | d(τ, e) ≤ K}

can be enumerated in polynomial time. For most metrics considered above, this
can easily be seen to hold: for the Hamming distance, at most K positions may
differ between e and any τ ∈ X. This implies

|X| ≤
(

n

K

)

nK ∈ O(n2K) .



This bound also holds for the Lee distance, as it is always greater or equal
to the Hamming distance. Next observe that the Cayley distance is always
at least half the Hamming distance, while the lp distance is at least the p-th
root of the Hamming distance. Thus |X| is bounded polynomially for these
distances as well. The same result follows for Kendall’s tau, which is greater
or equal to the Cayley distance by definition. Finally, for Ulam’s distance the
set X contains all permutations τ such that there is an increasing subsequence
in (τ−1(1), τ−1(2), . . . , τ−1(n)) of length at least n−K. All these permutations
can be constructed by choosing n−K positions, then n−K numbers to be placed
increasingly on these positions, and an arbitrary permutation of the remaining K

numbers. Thus we derive

|X| ≤
(

n

K

)(

n

K

)

K! ∈ O(K!n2K).

To sum up, we have the following theorem:

Theorem 4. The subgroup distance problem is in P for the Hamming Distance,
the Cayley Distance, the lp distance, Lee’s Distance, Kendall’s tau, and Ulam’s
Distance when K is fixed.

For the l∞ distance, the set X actually has exponential size, even for K = 1:
assume that n is even and consider pairs {1, 2}, {3, 4}, . . . , {n−1, n}. Then each
pair can be swapped independently without increasing the distance to e beyond
one, so that X contains at least 2n/2 points. This is in contrast to all other
metrics, where these swaps would add up (in different ways). In fact, the proof of
Theorem 2 shows that for the l∞ distance the subgroup distance problem remains
NP-complete even if K is fixed to 2. Using an appropriate relabelling, the same
proof shows NP-completeness for every fixed K ≥ 2. If we drop the restriction
that H is of exponent two, we can even show NP-completeness for K = 1.

Theorem 5. The subgroup distance problem for the l∞ distance is NP-complete
for each fixed K ≥ 1, even if the permutation group H is abelian.

Proof. It remains to examine the case K = 1. As in the proof of Theorem 2, we
use a reduction from NAE-3-SAT. The variable gadgets now contain 4 points
each such that π exchanges (1, 3) and (2, 4). The clause gadgets are defined
as follows: for every clause cj , the set Yj consists of three points aj,1, aj,2, aj,3,
numbered consecutively. The permutation π exchanges aj,1 and aj,3.

If ui appears without negation in any position of a clause cj , then πi(t)
permutes (aj,1, aj,2, aj,3) cyclically. For a negated appearance, the same is done
by πi(f) instead of πi(t).

As above, let τ be the permutation corresponding to a truth assignment t.
Then the action of τ on Yj is trivial if and only if either none or all of the literals
in cj are satisfied, and it is cyclic otherwise. It is easy to check that the l∞
distance between τ and π on Yj is 2 in the first case and 1 in the second. ut



6 Maximum subgroup distance

So far we have considered the problem of finding a member of H with minimal
distance to the given permutation π. Alternatively, one might ask for an element
with a maximal distance from π. The corresponding decision problem is

Problem 2 (Maximum subgroup distance problem). Given a permutation π ∈ Sn,
a set of generators of a subgroup H of Sn, and an integer K, decide whether
there is a τ ∈ H with d(π, τ) ≥ K.

This problem is not symmetric to the (minimum) subgroup distance problem
in general. The complexity status of the maximization version cannot be derived
from the complexity status of the minimization version. In particular, we will
show that the maximum subgroup problem for the l∞ distance can be solved
in polynomial time, while we saw above that the minimum subgroup distance
problem is NP-complete for the same metric.

Theorem 6. Given π, τ1, . . . , τm ∈ Sn, we can find some τ ∈ H = 〈τ1, . . . , τm〉
maximizing l∞(π, τ) in polynomial time.

Proof. We have to find a permutation τ ∈ H such that

max
1≤i≤n

|π(i) − τ(i)|

is maximized. Since this value is a priori bounded by n, we can iteratively check
for k = n, n−1, . . . , 1 whether H contains an element τ such that |π(i)−τ(i)| = k

for some point i. The latter holds if and only if there exists a pair of points (i, j)
with |π(i)− j| = k and i and j belong to the same orbit of H. The last property
can be checked in polynomial time, and the first found τ mapping i to j can be
returned. ut

We now argue that the maximum subgroup distance problem is NP-complete
for all other metrics considered above. The idea of the proof for the minimization
variant can be carried over with few changes. The variable and clause gadgets are
the same as before. However, the permutation π is now chosen as the identity e,
instead of exchanging points pairwisely on the variable and clause gadgets. This
makes sure that for every variable exactly one of the two generators πi(f) or πi(t)
is chosen.

Basically, it remains to prove that with these definitions on the clause gadgets
we have d(x1, π) = d(x2, π) = d(x1x2, π) = a > 0; note that d(π, e) = 0 on each
clause gadget by definition of a metric. The corresponding numbers are:

distance a

Hamming 4
Cayley 2

lp
p
√

4
Lee 4
Kendall’s tau 2
Ulam 2



Theorem 7. The maximum subgroup distance problem is NP-complete for the
Hamming Distance, the Cayley Distance, the lp distance, Lee’s Distance,
Kendall’s tau, and Ulam’s Distance, even if the permutation group H is abelian
of exponent two.

In contrast to the minimal subgroup distance problem, which is NP-complete
for the l∞ distance when K is fixed, the fixed parameter version of the maximal
subgroup distance problem is in P for all metrics considered in this paper. Firstly,
it is easy to see from the above discussion that this holds for l∞, so consider
the remaining metrics. Following the arguments of Section 5, we know that the
following set is of polynomial size for all metrics except l∞:

X = {τ ∈ Sn | d(τ, π) ≤ K − 1}

Now to check whether there is an element τ ∈ H with d(τ, π) ≥ K, we can
equivalently check whether H 6⊆ X, i.e., whether |H| 6= |H ∩ X|. As X can be
enumerated in polynomial time and a membership test for H can be performed
in polynomial time, the size of H ∩ X can be computed in polynomial time for
any π ∈ Sn and any H. On the other hand, the size of H can be computed in
polynomial time as well. That is, we have the following theorem:

Theorem 8. The maximal subgroup distance problem is in P for the Hamming
Distance, the Cayley Distance, the lp distance, the l∞ distance, Lee’s Distance,
Kendall’s tau, and Ulam’s Distance when K is fixed.

In fact, the above theorem not only gives us the answer for the decision
problem, but also provides us an algorithm to find a permutation with distance
at least K, if one exists. The key observation is that we can associate an order
on the group H via its Cayley graph w.r.t the generators. Therefore we can
enumerate the elements in H and compute their distance to π. We stop at the
first one whose distance to π is at least K. This algorithm will terminate in
polynomial time because the set H ∩ X is of polynomial size.
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