
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 99-368

A Fast Layout Algorithm for k-Level Graphs

by

Christoph Buchheim, Michael J�unger and Sebastian Leipert

1999

Partially supported by DFG-Grant Ju204/7-3, Forschungsschwer-

punkt \E�ziente Algorithmen f�ur diskrete Probleme und ihre An-

wendungen".

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

50969 K�oln

1991 Mathematics Subject Classi�cation: 05C85, 68R10, 90C35

Keywords: Sugiyama Algorithm, Hierarchies, Graph Drawing

A Fast Layout Algorithm for k-Level Graphs

Christoph Buchheim

�

Michael J�unger

y

Sebastian Leipert

z

Institut f�ur Informatik, Universit�at zu K�oln

Abstract

In this paper, we present a fast layout algorithm for k-level graphs with given per-

mutations of the vertices on each level. The algorithm can be used in particular as a

third phase of the Sugiyama algorithm [STT81]. The Sugiyama algorithm computes a

layout for an arbitrary graph by (1) converting it into a k-level graph, (2) reducing the

number of edge crossings by permuting the vertices on the levels, and (3) assigning

y-coordinates to the levels and x-coordinates to the vertices. In the layouts generated

by our algorithm, every edge will have at most two bends, and will be drawn vertically

between these bends.

�

buchheim@informatik.uni-koeln.de

y

mjuenger@informatik.uni-koeln.de

z

leipert@informatik.uni-koeln.de

Contents

Introduction 1

1 Preliminaries 3

2 The Layout Algorithm 4

2.1 Properties of the layout . 4

2.2 Description of the algorithm . 5

2.2.1 Placing the virtual vertices . 5

2.2.2 Placing the original vertices . 8

2.2.3 Placing the levels . 15

2.3 An example . 16

2.4 Correctness . 20

2.5 Runtime . 22

Bibliography 23

Introduction

In various �elds of research or business, graph structures arise naturally when dealing with

certain objects and their relations. Often, graphs are used to visualize these relations. For

example, chemists need to draw large molecules, and biologists need to draw evolutionary

trees. Databases are designed using entity-relationship diagrams, and decision support

systems for project management need to visualize PERT-networks and activity trees.

Software engineers want data ow diagrams, subroutine-call graphs and object-oriented

class hierarchies to be visualized.

Usually, the considered graphs are too large to be drawn by hand. For this reason, au-

tomatic graph drawing has become an important area of scienti�c research. The task is

to generate a clearly arranged drawing of a given graph (which requires to formalize the

term \clearly arranged"). For example, a small number of edge crossings or edge bends is

desirable.

Many applications imply a partition of the vertices into k levels such that all edges connect

di�erent levels and in the drawing all vertices of a level receive the same y-coordinate. Such

graphs are called k-level graphs. Another reason for considering k-level graphs is an idea

presented by Sugiyama et. al. in [STT81] that uses k-level graphs in order to draw arbitrary

graphs. The Sugiyama algorithm, that serves as a frame for many other graph drawing

algorithms, processes a graph in three phases. In a �rst phase, the vertices are assigned to

levels 1; : : : ; k, thus transforming the graph into a k-level graph. In the second phase, the

number of edge crossings is reduced by permuting the vertices within the levels. Finally,

the x-coordinates of the vertices are determined in order to produce a nice drawing.

The �rst two phases of the Sugiyama algorithm have been examined intensively. For phase

one we refer to [Sug84], [GKNV93], or [EL91]. Considering phase two, Garey and John-

son [GJ83] showed that the problem of minimizing the number of edge crossings is NP-

complete for k-level graphs, even if k = 2. According to Eades et al. [EMW86], the problem

remains NP-complete even if the order of vertices on one of the two levels is �xed. A lot

of e�ort was spent to design e�cient heuristics or exact methods such as branch and

cut algorithms for crossing reduction in 2-level graphs (see [JM97], or consult [DETT94]

for a list of references). For k > 2, the common strategy is to apply a 2-level heuristic

consecutively. However, this produces unnecessary crossings in general.

Up to now, only little attention has been paid to the third phase. Two approaches have

been presented by Gansner et. al. in [GKNV93]. Assigning nonnegative weights to the

segments of edges between levels, both approaches reduce the weighted sum of all edge

lengths. Long edges get large weights to avoid the so-called \spaghetti e�ect", i.e., to

avoid long edges with too many bends. The �rst approach is heuristic, while the second

computes an optimal placement using the network simplex method.

In this paper we present a new algorithm for the third phase. We draw every long edge

vertically except for its outermost segments. This improves readability and avoids the

spaghetti e�ect. Our algorithm performs in O(m

0

(logm

0

)

2

), where m

0

is the number of

edge segments in the k-level graph, i.e., the number of edges after adding vertices wherever

an edge crosses a level. An implementation is contained in the AGD-Library [AGD].

1

Finally, we want to demonstrate the importance of the third phase by an example. Figure

1 shows the drawing of a graph that has been taken from [BJM97], p.201. This drawing

has been produced using a simple heuristic for the third phase.

12 3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Figure 1: Old drawing.

Figure 2 shows a drawing of the same graph produced by our new algorithm. For generating

the second drawing we used the same embedding as in the �rst drawing. Thus the levels

and the permutations of the vertices on the levels are the same in both drawings.

12 3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Figure 2: New drawing.

2

1 Preliminaries

A graph G is a pair (V;E) where V is a �nite set and E � ffv; wg j v; w 2 V; v 6= wg.

Elements of V and E are called vertices and edges, respectively. We usually denote an

edge fv; wg by (v; w). For a vertex v 2 V , �

G

(v) = fw 2 V j (v; w) 2 Eg is the set of its

neighbors.

For any nonnegative integer k, a k-level graph G = (V;E; �) is a graphG = (V;E) equipped

with a mapping � : V ! f1; : : : ; kg such that �(v) 6= �(w) for every edge (v; w) 2 E. If

v 2 V is a vertex, �(v) is called the level of v. (This term is motivated by the idea of using

the levels as y-coordinates.)

Let e = (v; w) 2 E be a long edge, that is, let e satisfy j�(v) � �(w)j > 1.

Assume that �(w) > �(v). For every level l 2 f�(v) + 1; : : : ; �(w) � 1g we in-

troduce a virtual vertex �v

l

with �(�v

l

) = l. We split up e into edge segments

(v; �v

�(v)+1

); (�v

�(v)+1

; �v

�(v)+2

); : : : ; (�v

�(w)�1

; w). Applying this to every long edge, we obtain

a set of virtual vertices, disjoint from V , which is denoted by

�

V . Furthermore, we obtain

a set

�

E of edge segments. Obviously, this yields a new k-level graph

�

G = (V [

�

V ;

�

E; �)

without long edges. For the following, let � = �

G

and

�

� = �

�

G

. We will call the vertices

v 2 V original vertices to distinguish them from virtual vertices. An edge segment is called

outer segment if it is incident to an original vertex, otherwise it is called inner segment.

A level embedding of a k-level graph is a mapping that assigns to each l 2 f1; : : : ; kg a

permutation of �

�1

(l) = fv 2 V [

�

V j �(v) = lg. For every vertex v 2 V [

�

V , we de�ne

the left direct sibling of v to be the vertex preceding v in �

�1

(�(v)), according to the given

permutation. If the left direct sibling of v exists, it is denoted by s

�

(v), otherwise we set

s

�

(v) = ?. The right direct sibling s

+

(v) is de�ned analogously.

In a drawing of the graph, two direct siblings v and w must be separated by a minimal

distance m(v; w) > 0 (which may have been given by the user). Usually, a vertex v has

a certain diameter d

v

in a drawing of G. To avoid vertex overlapping, we assume that

m(v; w) > (d

v

+ d

w

)=2. The extension of m to arbitrary pairs of vertices on the same level

is straightforward: Let v

1

; v

2

; : : : ; v

r

be a consecutive sequence of vertices, then we de�ne

m(v

1

; v

r

) =

P

r�1

i=1

m(v

i

; v

i+1

).

A layout or level drawing of an embedded k-level graph is a pair (x; y) of functions V [

�

V ! R, where y satis�es the following conditions: We have y(v) = y(w) if and only if

�(v) = �(w), and y(v) > y(w) if and only if �(v) > �(w). Since y-coordinates are given by

the levels, we place a vertex v by determining x(v). A placement of the vertices v

1

; : : : ; v

r

is thus given by a vector x 2 R

r

. If x(w) � x(v) � m(v; w) whenever s

+

(v) = w, we call

the layout or placement feasible.

A layout (x; y) induces a drawing of the graph if x and y are used as x- and y-coordinates

and if every edge segment e 2

�

E is drawn straightline.

3

2 The Layout Algorithm

In this section, we present our layout algorithm for embedded k-level graphs. We list the

main layout properties in section 2.1. In section 2.2, we give a detailed description of our

algorithm. In section 2.3, we apply the algorithm to an example graph. Correctness and

runtime are examined in sections 2.4 and 2.5.

2.1 Properties of the layout

We now collect the main properties of all layouts (x; y) computed by our algorithm. We

will refer to these properties in the following sections.

(A) The required minimal distances between direct siblings are respected and their order

is not changed.

(B) The required minimal distances between neighboring levels are respected.

(C) Inner segments of long edges are drawn vertically.

There is one exception from these rules. Suppose that two long edges cross each other

at inner segments e

1

= (v

1

; v

2

) and e

2

= (w

1

; w

2

). Then the properties (A) and (C)

cannot be satis�ed simultaneously, see �gure 3. To solve this problem, we have to apply

w
1

v
1

v
2

w
2

w
1

v
1

v
2

w
2

Figure 3: Contradiction between (A) and (C); solving this problem by exchanging v

2

and w

2

.

a preprocessing step. We move the intersection downwards by exchanging the order of

v

2

and w

2

. By repeated application, at least one outer segment will be involved in the

crossing of the two long edges. Traversing the graph downwards level by level, all such

intersections can be removed using linear time. Observe that this strategy changes the

level permutations and may increase the number of edge crossings. To avoid this, the

original permutations can be restored after computing the layout.

We assume for the rest of the paper that long edges never intersect at inner segments.

4

2.2 Description of the algorithm

We now give a description of the layout algorithm LEVEL LAYOUT. Given an embedded

k-level graph G = (V;E; �), we want to compute a layout (x; y) for G satisfying properties

(A) to (C) of section 2.1.

LEVEL LAYOUT consists of three steps. First, PLACE VIRTUAL computes the x-

coordinates of virtual vertices, see section 2.2.1. Next, PLACE ORIGINAL determines

the x-coordinates of original vertices, see section 2.2.2. Finally, all y-coordinates are com-

puted by PLACE LEVELS explained in section 2.2.3.

LEVEL LAYOUT

PLACE VIRTUAL(x);

PLACE ORIGINAL(x);

PLACE LEVELS(x,y);

2.2.1 Placing the virtual vertices

In this section, we explain how to determine the x-coordinates of virtual vertices v 2

�

V . During the computation, the original vertices v 2 V are assigned to preliminary x-

coordinates.

PLACE VIRTUAL places the virtual vertices as close to each other as possible, respecting

properties (A) and (C). Two placements x

�

; x

+

2 R

V [

�

V

are computed by functions

COMPUTE POS LEFT and COMPUTE POS RIGHT, respectively. The �nal placement

is (x

�

+ x

+

)=2.

PLACE VIRTUAL(x)

COMPUTE POS LEFT(x

�

);

COMPUTE POS RIGHT(x

+

);

for all v 2 V [

�

V

set x(v) = (x

�

(v) + x

+

(v))=2;

We only give the description of COMPUTE POS LEFT. The function COM-

PUTE POS RIGHT is analogous. Let

L(v) =

(

fvg for v 2 V

fv

0

2

�

V j v and v

0

belong to the same long edgeg for v 2

�

V :

The set V [

�

V is divided into classes, constructed as follows: Traverse the levels downwards.

For each level l, consider its outermost left vertex v. If v is not contained in a class yet,

we introduce a new class C that is minimal satisfying the following conditions:

(i) v 2 C.

5

(ii) If w 2 C, then L(w) � C.

(iii) If w 2 C and s

+

(w) 6= ? and s

+

(w) is not contained in a class yet, then s

+

(w) 2 C.

The classes are computed by COMPUTE LEFT CLASSES and stored in an array c 2

N

V [

�

V

.

Figure 4 demonstrates the de�nition of the classes at an example. The original and virtual

vertices of the graph are drawn white and black, respectively. Thick lines are inner edge

segments. Outer segments do not a�ect the decomposition into classes, they are drawn as

thin lines. The shaded areas comprise the classes, indexed by the numbers on the left.

1

2

3

5

6

4

Figure 4: The decomposition into (left) classes.

The reason for decomposing the graph into classes is the idea of placing the virtual ver-

tices as close to each other as possible. This is easy if only vertices of a single class are

considered. In this case, all vertices can be placed as far as possible to the left, such that

the leftmost vertex gets position zero. Our strategy is to traverse all classes C by the order

of construction. First, all vertices of C are placed by PLACE LEFT without respecting

vertices of other classes. Then the computed positions are adjusted to those of previously

placed classes by ADJUST LEFT CLASS.

COMPUTE POS LEFT(x

�

)

COMPUTE LEFT CLASSES(c);

for all i = 1 to the number of classes

for all vertices v of class i

if v is not placed yet

PLACE LEFT(v,x

�

,c);

ADJUST LEFT CLASS(i,x

�

,c);

6

COMPUTE LEFT CLASSES(c)

for all levels l = 1 to k

set c

0

= l;

for all vertices v on level l traversed from left to right

if c(v) is not initialized yet

for all v

0

2 L(v) set c(v

0

) = c

0

;

else set c

0

= c(v);

For a vertex v of class C, PLACE LEFT places all vertices in L(v) simultaneously. In order

to satisfy property (C), all vertices in L(v) are placed to the same x-coordinate. Let W =

C \ fs

�

(w) j w 2 L(v)g be the set of vertices in C that are left direct siblings of vertices

in L(v). PLACE LEFT �rst places all vertices in W recursively. If W = ;, all vertices in

L(v) are placed to 0. Otherwise, they are placed to maxfx(w) +m(w; s

+

(w)) j w 2 Wg,

i. e., as far as possible to the left respecting properties (A) and (C).

PLACE LEFT(v,x

�

,c)

set p = �1;

for all v

0

2 L(v)

if s

�

(v

0

) 6= ? and c(s

�

(v

0

)) = c(v

0

)

if s

�

(v

0

) is not placed yet PLACE LEFT(s

�

(v

0

));

set p = maxfp; x

�

(s

�

(v

0

)) +m(s

�

(v

0

); v

0

)g;

if p = �1 set p = 0;

for all v

0

2 L(v) set x

�

(v

0

) = p;

As mentioned above, PLACE LEFT computes relative positions for the vertices of a class

C without respecting vertices of other classes. ADJUST LEFT CLASS adjusts the posi-

tions to previously placed classes. Again, we want to place the classes as close to each

other as possible. Let W

0

= ((V [

�

V) n C) \ fs

+

(w) j w 2 Cg be the set of vertices not

contained in C that are right direct siblings of vertices in C. All vertices in W

0

have been

placed before. ADJUST LEFT CLASS moves all vertices of C by the same distance d to

the right (note that d may be negative):

If W

0

6= ;, d is set to minfx

�

(w)� x

�

(s

�

(w)) �m(s

�

(w); w) j w 2 W

0

g, i.e., the class is

moved as far as possible to the right according to the positions of the vertices in W

0

. This

method is applied to the classes 3 and 4 of �gure 4.

If W

0

= ;, the class C is moved to a position that minimizes

P

jx(v) � x(w)j, where the

sum ranges over edge segments (v; w) 2

�

E such that v 2 C and w belongs to a class placed

in a previous step. To �nd this position, a heap D collects all these values x(v) � x(w).

Then d is chosen as the median in D, or 0, if D is empty. This method is applied to the

classes 1, 2, 5, and 6 of �gure 4.

7

ADJUST LEFT CLASS(i,x

�

,c)

set d =1;

for all vertices v of class i

if s

+

(v) 6= ? and c(s

+

(v)) 6= i

set d = minfd; x

�

(s

+

(v)) � x

�

(v) �m(v; s

+

(v))g;

if d =1

let D be a heap;

for all vertices v of class i

for all w 2

�

�(v)

if c(w) < i push x(w) � x(v) to D;

let d

1

; : : : ; d

s

be the values in D;

if s = 0 set d = 0;

else set d = d

ds=2e

;

for all vertices v of class i

set x

�

(v) = x

�

(v) + d;

2.2.2 Placing the original vertices

In this section we describe how to place original vertices v 2 V . We regard the positions

of virtual vertices computed by PLACE VIRTUAL as �xed.

Consider a maximal original sequence v

1

; : : : ; v

r

, that is, a consecutive sequence of original

vertices such that both s

�

(v

1

) and s

+

(v

r

) are virtual or do not exist. We search for a

placement x(v

1

); : : : ; x(v

r

) that minimizes

P

r

i=1

P

v2

�

�(v

i

)

jx(v) � x(v

i

)j. However, not all

neighbors v 2

�

�(v

i

) can be regarded as �xed in their position. Since our strategy is to pro-

cess all original sequences successively, the layout depends on the order of processing. This

order is encoded by an array D 2 f1;�1; 0g

�

V

, which is initialized to zero and actualized

dynamically by the function ADJUST DIRECTIONS.

PLACE ORIGINAL traverses the graph level by level, �rst in a downward direction,

then, in a second step, in an upward direction. The direction of traversal is given by

d 2 f1;�1g, where 1 is used for downward direction and �1 for upward direction. For

every level, the maximal original sequences are traversed from left to right. The currently

examined sequence v

1

; : : : ; v

r

, bounded by b

�

= s

�

(v

1

) and b

+

= s

+

(v

r

), is placed by

PLACE SEQUENCE if and only if b

�

= ? or b

+

= ? or D(b

�

) = d (see below). If the

sequence is placed, the neighbors regarded as �xed are those of the preceding level, i.e.,

the vertices in

�

�(v

i

; d) = fv 2

�

�(v

i

) j �(v) = �(v

i

)� dg for i = 1; : : : ; r.

Hence, if b

�

= ? or b

+

= ?, we determine positions for v

1

; : : : ; v

r

twice. The distances

between the vertices b

�

; v

1

; : : : ; v

r

; b

+

resulting from the downward traversal are used as

lower bounds for the distances computed in the upward traversal. Using this strategy, we

can take both neighboring levels into account for the �nal placement.

If otherwise b

�

; b

+

2

�

V , the sequence is placed only once. It depends on D(b

�

) whether the

sequence is placed while traversing upwards or while traversing downwards (for technical

reasons, the sequence v

1

; : : : ; v

r

is therefore represented by its left virtual sibling b

�

). It

8

remains to determine D. This is done by ADJUST DIRECTIONS dynamically, using an

array P 2 ftrue; falseg

�

V

. For a virtual vertex v, P (v) is true if and only if the original

sequence to the right of v has been placed already. At the beginning, only original sequences

with x(b

+

)�x(b

�

) = m(b

�

; b

+

) can be regarded as placed; we will refer to such sequences

as �xed sequences.

PLACE ORIGINAL(x)

for all b

�

2

�

V

let b

+

be the next virtual vertex to the right of b

�

;

if b

+

6= ?

set D(b

�

) = 0;

if x(b

+

)� x(b

�

) = m(b

�

; b

+

) set P (b

�

) =true;

else set P (b

�

) =false;

for all d = 1;�1

for all levels l traversed by direction d

if level l contains a virtual vertex

let b

�

be the outermost left virtual vertex of level l;

let v

1

; : : : ; v

r

be the vertices to the left of b

�

;

else

set b

�

= ?;

let v

1

; : : : ; v

r

be all vertices of level l;

PLACE SEQUENCE(x,?,b

�

,d,v

1

,. . . ,v

r

);

for i = 1 to r � 1 set m(v

i

; v

i+1

) = x(v

i+1

)� x(v

i

);

if b

�

6= ? set m(v

r

; b

�

) = x(b

�

)� x(v

r

);

while b

�

6= ?

let b

+

be the next virtual vertex to the right of b

�

;

if b

+

= ?

let v

1

; : : : ; v

r

be the vertices to the right of b

�

;

PLACE SEQUENCE(x,b

�

,?,d,v

1

,. . . ,v

r

);

for i = 1 to r � 1 set m(v

i

; v

i+1

) = x(v

i+1

)� x(v

i

);

set m(b

�

; v

1

) = x(v

1

)� x(b

�

);

else if D(b

�

) = d

let v

1

; : : : ; v

r

be the vertices between b

�

and b

+

;

PLACE SEQUENCE(x,b

�

,b

+

,d,v

1

,. . . ,v

r

);

set P (b

�

)=true;

set b

�

= b

+

;

ADJUST DIRECTIONS(l,d,D,P);

After traversing the sequences of level l, the values of D for the next level l + d are

computed by ADJUST DIRECTIONS. We �rst need to de�ne the notion of a neighboring

sequence. Let S = v

1

; : : : ; v

r

be a maximal original sequence on level l + d. Let v

�

be the

next virtual vertex to the left of S that has a virtual neighbor on level l, and let w

�

be

this neighbor. If no such vertex v

�

exists, set v

�

= w

�

= ?. Analogously we de�ne v

+

and

w

+

. The neighboring sequences of S on level l are the maximal original sequences on level

l between w

�

and w

+

. Furthermore, if w

�

6= ? and w

+

6= ?, S is said to be an interior

9

sequence with respect to l. Otherwise, S is said to be an exterior sequence.

v

w+

+

w

v

-

-
l+d

l
1 2S S

S

l+2d

Figure 5: The neighboring sequences of S.

Figure 5 illustrates the de�nition of neighboring sequences. Again, �lled and un�lled circles

are virtual and original vertices, respectively. The neighboring sequences of S on level l

are S

1

and S

2

. The sequence S is interior with respect to l, but exterior with respect to

l + 2d.

The strategy of ADJUST DIRECTIONS is to traverse all maximal original sequences

S = v

1

; : : : ; v

r

on level l + d where b

�

= s

�

(v

1

) and b

+

= s

+

(v

r

) are virtual. If S is

interior with respect to l and all neighboring sequences of S on level l have been placed

already (to check this we use the array P), we set D(b

�

) to d. This forces the function

PLACE ORIGINAL to place the sequence S while processing the next level l+d. However,

for processing S, all original neighbors w on level l of vertices in S need to be �xed in their

positions. If w belongs to a neighboring sequence of S, this is checked explicitly by the

function ADJUST DIRECTIONS. Otherwise, since S is interior, the edge segment (v; w)

crosses an inner edge segment e 2

�

E. (In �gure 5, e is either (v

�

; w

�

) or (v

+

; w

+

).) Since

e is drawn vertically by PLACE VIRTUAL, the position of w does not a�ect the optimal

placement of S in this case.

ADJUST DIRECTIONS(l,d,D,P)

set v

�

= ?;

for all virtual vertices v

+

on level l + d traversed left to right;

if the neighbor w

+

of v

+

on level l is virtual

if v

�

6= ?

set p = P (w

�

);

for all virtual vertices w between w

�

and w

+

set p = (p and P (w));

if p

set D(v

�

) = d;

for all virtual vertices v between v

�

and v

+

set D(v) = d;

set v

�

= v

+

;

set w

�

= w

+

;

Lemma 1

PLACE ORIGINAL applies PLACE SEQUENCE to all maximal original sequences.

10

Proof. Let S

0

be such a sequence on level l that is bounded by virtual siblings. Assume

that S

0

is not placed in any of the two traversals. If S

0

is interior with respect to l � 1,

it has a neighboring sequence S

�1

on level l � 1 that is not placed in either traversal.

Indeed, no neighboring sequence of S

0

on level l � 1 may be placed while traversing

upwards, since this requires that S

0

is placed before. Hence if all neighboring sequences of

S

0

on level l � 1 were placed by PLACE ORIGINAL, they must have been placed while

traversing downwards. By construction of the function PLACE ORIGINAL, S

0

would

have been placed afterwards. Thus S

�1

is not placed either. Iterated application of the

same argument yields a chain of sequences S

0

; S

�1

; : : : ; S

�p

with S

�p

being exterior with

respect to l � p � 1. Starting at S

0

again and applying the same argument in downward

direction, sequences S

1

; : : : ; S

q

can be found analogously. Thus we have constructed a chain

of sequences S

�p

; : : : ; S

0

; : : : ; S

q

with the following properties:

(i) For �p � i � q, S

i

is not placed by PLACE ORIGINAL.

(ii) S

�p

and S

q

are exterior sequences.

(iii) For �p � i < q, S

i

and S

i+1

are neighboring sequences.

See �gure 6 for an illustration. The �lled circles are virtual vertices and vertical lines

are inner edge segments. A dashed line between two virtual vertices indicates that the

sequence between these vertices is placed by PLACE ORIGINAL.

1
S

0
S

2
S

S
3

S
4

S
-1

S
-2

Figure 6: The chain of sequences S

�p

; : : : ; S

q

.

Because of (i), none of the sequences S

�p

; : : : ; S

q

is �xed, i.e., for any of these sequences,

the bounding virtual vertices have a larger distance than necessary. Because of (ii) and

(iii), this is a contradiction, since the virtual vertices are placed as close to each other as

possible by the function PLACE VIRTUAL.

Next we describe how to place a (not necessarily maximal) consecutive sequence of original

vertices v

1

; : : : ; v

r

, such that b

�

is the next virtual vertex to the left of v

1

and b

+

is the

next virtual vertex to the right of v

r

. This is done by PLACE SEQUENCE. The result is

11

an optimal placement x(v

1

); : : : ; x(v

r

) with respect to

(*) The placement x(v

1

); : : : ; x(v

r

) minimizes

P

r

i=1

P

v2

�

�(v

i

;d)

jx(v) � x(v

i

)j respecting

the minimal distances between b

�

; v

1

; : : : ; v

r

; b

+

.

Our strategy is to apply a divide & conquer algorithm. First, subdivide the sequence

v

1

; : : : ; v

r

at t = br=2c. Then apply PLACE SEQUENCE recursively to the sequences

v

1

; : : : ; v

t

and v

t+1

; : : : ; v

r

. Finally, combine the two optimal placements to an optimal

placement for v

1

; : : : ; v

r

.

PLACE SEQUENCE(x,b

�

,b

+

,d,v

1

,. . . ,v

r

)

if r = 1

PLACE SINGLE(x,b

�

,b

+

,d,v

1

);

if r > 1

set t = br=2c;

PLACE SEQUENCE(x,b

�

,b

+

,d,v

1

,. . . ,v

t

);

PLACE SEQUENCE(x,b

�

,b

+

,d,v

t+1

,. . . ,v

r

);

COMBINE SEQUENCES(x,b

�

,b

+

,d,v

1

,. . . ,v

r

);

PLACE SINGLE �nds a placement for a single vertex that satis�es (*).

PLACE SINGLE(x,b

�

,b

+

,d,v

1

)

let w

1

; : : : ; w

s

be the vertices in

�

�(v

1

; d) from left to right;

if s 6= 0

set x(v

1

) = x(w

ds=2e

);

if b

�

6= ? set x(v

1

) = maxfx(v

1

); x(b

�

) +m(b

�

; v

1

)g;

if b

+

6= ? set x(v

1

) = minfx(v

1

); x(b

+

)�m(v

1

; b

+

)g;

Now let x(v

1

); : : : ; x(v

t

) and x(v

t+1

); : : : ; x(v

r

) be optimal placements. We have to combine

these placements to an optimal placement of the sequence v

1

; : : : ; v

r

. Let m = m(v

t

; v

t+1

).

If x(v

t+1

) � x(v

t

) � m, nothing is to do. Otherwise, we transform the placement step by

step. In each step, we increase the distance between v

t

and v

t+1

by either decreasing x(v

t

)

or increasing x(v

t+1

).

Let p 2 R and 1 � i � t. If x(v

t

) is decreased to position p, x(v

i

) must be decreased to

position x

p

(v

i

) = minfx(v

i

); p�m(v

i

; v

t

)g in order to keep the partial placements feasible.

Let j(p) 2 f1; : : : ; tg be minimal with x

p

(v

j(p)

) < x(v

j(p)

). Hence decreasing x(v

t

) implies

decreasing x(v

j(p)

); : : : ; x(v

t

). Let

r

�

(p) =

t

X

i=j(p)

(#fv 2

�

�(v

i

; d) j x(v) � x

p

(v

i

)g �#fv 2

�

�(v

i

; d) j x(v) < x

p

(v

i

)g):

Thus r

�

(p) is the number of edge segments getting longer when decreasing x(v

t

) past

position p minus the number of edge segments getting shorter. This is called the resistance

12

against decreasing x(v

t

) past p. Observe that r

�

: R! Z is a nonincreasing function with

�nitely many salti. Analogously, we de�ne the resistance r

+

(p) against increasing x(v

t+1

)

past p.

Now we decrease x(v

t

) if r

�

(x(v

t

)) < r

+

(x(v

t+1

)) or increase x(v

t+1

) otherwise. If equality

holds, we may chose an arbitrary direction, the computed layout is a�ected by this decision.

We may assume that we decided to decrease x(v

t

). Then we do this until we have x(v

t+1

)�

x(v

t

) = m or until x(v

t

) arrives at a saltus of the resistance function r

�

. In the latter case,

we determine the new resistance and continue decreasing x(v

t

) or increasing x(v

t+1

) as

above.

COMBINE SEQUENCES computes the salti of r

�

before starting to separate the vertices

v

t

and v

t+1

. For every saltus of length c at position p, COLLECT LEFT CHANGES stores

a pair (c; p) on a heap R

�

. The heap R

�

is sorted in a decreasing order with respect to

the positions p. Analogously COLLECT RIGHT CHANGES stores the salti of r

+

on an

increasing heap R

+

.

For runtime reasons, we only move v

t

and v

t+1

, and adjust the positions of v

1

; : : : ; v

t�1

and v

t+2

; : : : ; v

r

later.

COMBINE SEQUENCES(x,b

�

,b

+

,d,v

1

,. . . ,v

r

)

let R

�

and R

+

be heaps;

COLLECT LEFT CHANGES(R

�

);

COLLECT RIGHT CHANGES(R

+

);

set r

�

= r

+

= 0;

while x(v

t+1

)� x(v

t

) < m

if r

�

< r

+

if R

�

= ; set x(v

t

) = x(v

t+1

)�m;

else

pop (c

�

; x(v

t

)) from R

�

;

set r

�

= r

�

+ c

�

;

set x(v

t

) = maxfx(v

t

); x(v

t+1

)�mg;

else

if R

+

= ; set x(v

t+1

) = x(v

t

) +m;

else

pop (c

+

; x(v

t+1

)) from R

+

;

set r

+

= r

+

+ c

+

;

set x(v

t+1

) = minfx(v

t+1

); x(v

t

) +mg;

for i = t� 1 down to 1

set x(v

i

) = minfx(v

i

); x(v

t

)�m(v

i

; v

t

)g;

for i = t+ 2 to r

set x(v

i

) = maxfx(v

i

); x(v

t+1

) +m(v

t+1

; v

i

)g;

Under the assumption of decreasing x(v

t

), we need to explain how to compute the salti

of r

�

. These are saved to the heap R

�

by COLLECT LEFT CHANGES. For i = 1; : : : ; t,

13

we �rst compute

c

i

= #fv 2

�

�(v

i

; d) j x(v) � x(v

i

)g �#fv 2

�

�(v

i

; d) j x(v) < x(v

i

)g:

Starting with c

i

= 0, we traverse all neighbors v 2

�

�(v

i

; d). If x(v) � x(v

i

), we set

c

i

= c

i

+ 1. Otherwise, we set c

i

= c

i

� 1. In the second case, we have to consider the

change of resistance induced by v

i

passing v (see �gure 7). This coincides with x(v

t

) being

decreased to x(v) +m(v

i

; v

t

). Resistance changes by 2, since the number of edge segments

getting shorter is decreased and the number of edge segments getting longer is increased

by 1. Hence, we have to store (2; x(v) + m(v

i

; v

t

)) on R

�

. Finally, by de�nition, c

i

is

the change of resistance when x(v

i

) starts to be decreased, which coincides with x(v

t

)

being decreased to x(v

i

) +m(v

i

; v

t

) (see �gure 8). Hence we store (c

i

; x(v

i

) +m(v

i

; v

t

))

on R

�

. Finally, we enforce the minimal distance m(b

�

; v

1

) between b

�

and v

1

by adding

(1; x(b

�

) +m(b

�

; v

t

)) to the heap R

�

(see �gure 9).

vi vi

vv

Figure 7: Resistance is 0 (left) and 2 (right).

vi

m m

vt vi vt

Figure 8: Resistance is �1 (left) and 1 (right).

m

v1 v1

m

b- b-

Figure 9: Resistance is �1 (left) and 1 (right).

14

COLLECT LEFT CHANGES(R

�

)

for i = 1 to t

set c = 0;

for all v 2

�

�(v

i

; d)

if x(v) � x(v

i

) set c = c+ 1;

else

set c = c� 1;

push (2; x(v) +m(v

i

; v

t

)) to R

�

;

push (c; x(v

i

) +m(v

i

; v

t

)) to R

�

;

if b

�

6= ? push (1; x(b

�

) +m(b

�

; v

t

)) to R

�

;

2.2.3 Placing the levels

In this section we propose two methods of computing the y-coordinates of the levels.

Let MIN LEVEL DISTANCE be the minimal level distance given by (B) in section 2.1.

In the �rst method, we just place the levels as close to each other as allowed.

PLACE LEVELS(x,y) - �xed distance

set c = 0;

for all levels l = 1 to k

for all vertices v on level l set y(v) = c;

set c = c+MIN LEVEL DISTANCE;

Let l 2 f1; : : : ; k � 1g and consider an edge segment (v; w) 2

�

E with �(v) = l and

�(w) = l + 1. In the algorithm above, the length jx(w) � x(v)j of (v; w) has no inuence

on the distance between l and l + 1. However, long edge segments require a larger level

distance than short ones for a better readability. We consider this by adjusting the level

distance to the longest edge segment connecting the levels.

De�ne the gradient of (v; w) as r(v; w) = jx(w) � x(v)j=jy(w) � y(v)j. Instead of a �xed

level distance, we determine a maximal gradient MAX GRADIENT. The distance between

l and l + 1 is then determined by

maxfr(v; w) j (v; w) 2

�

E and �(v) = l and �(w) = l + 1g = MAX GRADIENT:

Explicitly, it is given by

maxfMAX GRADIENT � jx(w)� x(v)j j (v; w) 2

�

E and �(v) = l and �(w) = l + 1g:

If necessary, the computed level distance is increased to MIN LEVEL DISTANCE.

15

PLACE LEVELS(x,y) - �xed maximal gradient

set c = 0;

for all vertices v on level 1 set y(v) = c;

for all levels l = 2 to k

set d=MIN LEVEL DISTANCE;

for all vertices v on level l � 1

for all neighbors w of v on level l

set d = maxfd;MAX GRADIENT � jx(w) � x(v)jg;

set c = c+ d;

for all vertices v on level l set y(v) = c;

2.3 An example

We will now demonstrate the algorithm by an example. Figure 10 shows an embedded

10-level graph. All vertices are drawn as far as possible to the left, observing minimal

vertex distances.

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

Figure 10: 10-Level graph with a given level embedding.

First we apply PLACE VIRTUAL to place the virtual vertices. Figure 11 shows the place-

ment induced by x

�

, �gure 12 shows the placement induced by x

+

. In �gure 13 we have

the �nal placement of the virtual vertices induced by (x

�

+ x

+

)=2.

Figure 14 shows the results of PLACE ORIGINAL for placing the original vertices. The

maximal original sequences are placed as follows:

The sequences (1,2), (13), (17), (21,22), and (23) are not bounded by virtual vertices,

they are placed in both traversals.

16

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

Figure 11: The placement x

�

.

The sequences (9), (12), (14,15,16), and (20) are �xed.

Traversing downwards, the sequence (18,19) is the only bounded sequence placed by

PLACE ORIGINAL, its neighboring sequence (14,15,16) is �xed.

Traversing upwards, the �rst bounded sequence is (10,11), its only neighboring sequence

(14,15,16) is �xed. The next one is (8), since its neighboring sequence (10,11) has been

placed before. By the same reason, the sequences (6,7), (4,5), and �nally (3) are placed

next.

To compute the y-coordinates we use the second algorithm presented in section 2.2.3. The

layout may still have unnecessary bends. Certain local improvements can be performed

now. For all layout examples occurring in this paper, we reduced the number of unnecessary

bends by moving long edges horizontally (e.g. edge (1,13)) and by straightening long edges

with only one virtual vertex (e.g. edge (1,4)). Figure 15 shows the �nal layout.

17

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

Figure 12: The placement x

+

.

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

Figure 13: The placement of virtual vertices.

18

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

Figure 14: All vertices are placed.

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

Figure 15: Final Layout.

19

2.4 Correctness

In this section we will prove that placements of original sequences computed by

PLACE SEQUENCE satisfy the minimality condition (*) of section 2.2.2. The correctness

of the other parts of our algorithm is obvious.

We use the notation of section 2.2.2. In particular, v

1

; : : : ; v

r

is the original sequence to

be placed, and x is a placement that satis�es (*) for v

1

; : : : ; v

t

and for v

t+1

; : : : ; v

r

, where

1 � t � r. We show that COMBINE SEQUENCES combines the two partial placements

to a placement satisfying (*) for v

1

; : : : ; v

r

.

To simplify the notation, for a placement �x and integers i

�

; i

+

with 1 � i

�

< i

+

� r let

f(�x; i

�

; i

+

) =

i

+

X

i=i

�

X

v2

�

�(v

i

;d)

jx(v)� �x(v

i

)j:

We say that �x is feasible for v

i

�

; : : : ; v

i

+

if the condition �x(v

i+1

) � �x(v

i

) � m(v

i

; v

i+1

)

holds for i = i

�

; : : : ; i

+

� 1. We have that �x satis�es (*) for v

i

�

; : : : ; v

i

+

if and only if �x

minimizes f(�x; i

�

; i

+

) for feasible placements.

We �rst prove a lemma that allows us to restrict our attention to placements that are

determined by the positions of v

t

and v

t+1

:

Lemma 2

Let x be a placement satisfying (*) for v

1

; : : : ; v

t

and for v

t+1

; : : : ; v

r

. Then there exists a

placement x

�

satisfying (*) for v

1

; : : : ; v

r

such that the following conditions hold.

(a) x

�

(v

i

) = minfx(v

i

); x

�

(v

t

)�m(v

i

; v

t

)g for i � t

(b) x

�

(v

i

) = maxfx(v

i

); x

�

(v

t+1

)�m(v

t+1

; v

i

)g for i � t+ 1:

Proof. Let x

�

be a placement satisfying (*) but not necessarily (a) and (b). Set x

�

t+1

= x

�

.

We transform x

�

t+1

into the desired placement by successively adjusting x

�

j+1

(v

j

) to con-

dition (a), for j = t; : : : ; 1, obtaining new placements x

�

t

; : : : ; x

�

1

. In every step, the place-

ment remains feasible, and we have x

�

j

(v

i

) = x

�

j+1

(v

i

) for i = j + 1; : : : ; t, furthermore

f(x

�

j

; 1; t) � f(x

�

j+1

; 1; t). Thus, the �nal placement x

�

1

satis�es (a) and is feasible with

f(x

�

1

; 1; t) � f(x

�

t+1

; 1; t) = f(x

�

; 1; t). For j = t+1; : : : ; r, we proceed analogously, obtain-

ing (b).

Let j � t and m = m(v

j

; v

j+1

). For j < t, we may assume by induction that

x

�

j+1

(v

j+1

) = minfx(v

j+1

); x

�

j+1

(v

t

) � m(v

j+1

; v

t

)g. First, consider the (not necessarily

feasible) placements

x

0

(v

i

) =

(

x(v

i

) for 1 � i � j

x

�

j+1

(v

i

) for j < i � t

and

x

00

(v

i

) =

(

x

�

j+1

(v

i

) for 1 � i � j

x(v

i

) for j < i � t:

20

If the placement x

00

is feasible for v

1

; : : : ; v

t

, we have f(x; 1; t) � f(x

00

; 1; t), since x satis�es

(*) for v

1

; : : : ; v

t

. Thus

f(x

�

j+1

; 1; t) � f(x

�

j+1

; 1; t) + f(x; 1; t)� f(x

00

; 1; t)

= f(x

�

j+1

; 1; t) + f(x; 1; t)� f(x

�

j+1

; 1; j) � f(x; j + 1; t)

= f(x

�

j+1

; j + 1; t) + f(x; 1; j)

= f(x

0

; 1; t):

For obtaining x

�

j

(v

j

) = minfx(v

j

); x

�

j

(v

t

)�m(v

j

; v

t

)g, we distinguish two cases:

(1) x

�

j+1

(v

j

) > minfx(v

j

); x

�

j+1

(v

t

)�m(v

j

; v

t

)g

(2) x

�

j+1

(v

j

) < minfx(v

j

); x

�

j+1

(v

t

)�m(v

j

; v

t

)g.

In case (1), we set x

�

j

= x

0

. Since x

�

j+1

is a feasible placement, the inequality (1) implies

x(v

j

) < x

�

j+1

(v

j

) � x

�

j+1

(v

t

)�m(v

j

; v

t

). In particular, if j < t, we have x

0

(v

j+1

)�x

0

(v

j

) =

x

�

j+1

(v

j+1

) � x(v

j

) � x

�

j+1

(v

j

) + m � x(v

j

) � m. Hence x

0

is feasible for v

1

; : : : ; v

t

and

x

0

(v

j

) = x(v

j

) = minfx(v

j

); x

�

j+1

(v

t

) � m(v

j

; v

t

)g. It remains to show that f(x

0

; 1; t) �

f(x

�

j+1

; 1; t). Using the calculation above, we only have to prove the feasibility of x

00

.

This is trivial if j = t. If j < t, we have x

00

(v

j+1

) � x

00

(v

j

) = x(v

j+1

) � x

�

j+1

(v

j

) �

x

�

j+1

(v

j+1

)� x

�

j+1

(v

j

) �m by the induction hypothesis.

In case (2) we consider for p 2 [0; 1] the placement

x

p

(v

i

) =

(

(1� p)x

�

j+1

(v

i

) + px(v

i

) for 1 � i � j

x

�

j+1

(v

i

) for j < i � t:

By (2) we have x

0

(v

j

) = x

�

j+1

(v

j

) < minfx(v

j

); x

�

j+1

(v

t

) �m(v

j

; v

t

)g � x(v

j

) = x

1

(v

j

),

so that there exists a p

0

2 [0; 1] with x

p

0

(v

j

) = minfx(v

j

); x

�

j+1

(v

t

) � m(v

j

; v

t

)g. We

set x

�

j

= x

p

0

. The placement x

p

0

is feasible if j = t. If j < t, the same follows by

the induction hypothesis since x

p

0

(v

j+1

) � x

p

0

(v

j

) � x

�

j+1

(v

j+1

) � x(v

j

) � x

�

j+1

(v

j+1

) �

x(v

j+1

) +m � m. Again, it remains to show f(x

p

0

; 1; t) � f(x

�

j+1

; 1; t). Since x

00

(v

j+1

) �

x

00

(v

j

) = x(v

j+1

) � x

�

j+1

(v

j

) � x(v

j+1

) � x(v

j

) � m by (2), the placement x

00

is feasible,

so that the above calculation yields f(x

1

; 1; t) = f(x

0

; 1; t) � f(x

�

j+1

; 1; t) = f(x

0

; 1; t).

Finally, p 7! f(x

p

; 1; t) is a convex function, so that f(x

p

0

; 1; t) � f(x

�

j+1

; 1; t).

Theorem 3

The placement

e

x computed by COMBINE SEQUENCES satis�es (*) for v

1

; : : : ; v

r

.

Proof. Assume that

e

x(v

t+1

) �

e

x(v

t

) < m(v

t

; v

t+1

), otherwise there is nothing to show.

For p 2 R let

f

�

(p) =

t

X

i=1

X

v2

�

�(v

i

;d)

jx(v)�minfx(v

i

); p�m(v

i

; v

t

)gj;

and analogously

f

+

(p) =

r

X

i=t+1

X

v2

�

�(v

i

;d)

jx(v) �maxfx(v

i

); p�m(v

t+1

; v

i

)gj:

21

By lemma 2, we only have to consider placements satisfying (a) and (b) in order to check

the minimality of

e

x. By the strategy of COMBINE SEQUENCES, it is clear that

e

x satis�es

(a) and (b) and is feasible for v

1

; : : : ; v

t

. Hence

e

x satis�es (*) if

e

x(v

t

) and

e

x(v

t+1

) minimize

f

�

(

e

x(v

t

))+f

+

(

e

x(v

t+1

)) subject to

e

x(v

t+1

)�

e

x(v

t

) � m(v

t

; v

t+1

). However, the function f

+

is convex and piecewise linear, and the gradient to the left of a position p is the resistance

against moving v

t+1

to position p, as de�ned in 2.2.2 (analogously for f

�

and v

t

). Thus

moving to the direction with lower resistance until

e

x(v

t+1

)�

e

x(v

t

) = m(v

t

; v

t+1

) yields a

minimal placement.

2.5 Runtime

Theorem 4

The algorithm LEVEL LAYOUT presented in section 2.2 can be implemented to run in

O((m

0

+ n

0

)(log (m

0

+ n

0

))

2

) time, where m

0

= j

�

Ej and n

0

= jV [

�

V j.

Proof. The function COMPUTE LEFT CLASSES needs O(n

0

) time for computing the

classes of all vertices. COMPUTE POS LEFT applies PLACE LEFT once to each vertex.

This is clear since PLACE LEFT is only applied if the vertex has not been processed be-

fore. Applied to a class c, ADJUST LEFT CLASS needs O(r) for the �rst and third loop,

where r is the number of vertices in class c. In the second loop, it needs O(r+t log t), where

t is the number of edge segments incident to a vertex of c, since the heap D can contain at

most t items. Hence, ADJUST LEFT CLASS needs O(n

0

+m

0

logm

0

) time in total. Alto-

gether, COMPUTE POS LEFT needs O(n

0

+m

0

logm

0

). Since COMPUTE POS RIGHT

performs analogously, we see that PLACE VIRTUAL can be performed inO(n

0

+m

0

logm

0

)

time.

The �rst loop of PLACE ORIGINAL needs O(n

0

) time. The second loop applies

PLACE SEQUENCE to all maximal original sequences at most twice. PLACE SINGLE

places a single vertex with s incident edge segments in O(s). COMBINE SEQUENCES

combines two sequences including r vertices and s incident edge segments in O((r +

s) log(r+ s)), since at most r+ s+2 changes of resistance are stored on the heap. By the

logarithmic depth of the applied divide & conquer strategy we see that placing a sequence

of r vertices with s incident edges can be performed by PLACE SEQUENCE in O((r +

s) log(r+s) log s). Hence, all calls of PLACE SEQUENCE take O((m

0

+n

0

)(log (m

0

+ n

0

))

2

)

time in total. Since ADJUST DIRECTIONS needs O(n

0

), PLACE ORIGINAL can be per-

formed in O((m

0

+ n

0

)(log (m

0

+ n

0

))

2

) time.

The function PLACE LEVELS needs O(m

0

+ n

0

), so we have the desired bound for the

runtime of LEVEL LAYOUT.

22

References

[AGD] AGD - a library of algorithms for graph drawing.

http://www.mpi-sb.mpg.de/AGD.

[BJM97] F. J. Brandenburg, M. J�unger, and P. Mutzel. Algorithmen zum automatischen

Zeichnen von Graphen. Informatik-Spektrum 20, pages 199{207, 1997.

[DETT94] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing

graphs: an annotated bibliography, 1994. Via ftp from wilma.cs.brown.edu,

�le /pub/papers/compgeo/gdbiblio.ps.Z.

[EL91] P. Eades and X. Lin. Notes on the layer assignment problem for drawing

directed graphs. In Proc. 14th Australian Computer Science Conference, 1991.

[EMW86] P. Eades, B. D. McKay, and N. C. Wormald. On an edge crossing problem.

In Proc. 9th Australian Computer Science Conference, pages 327{334, 1986.

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM

Journal on Algebraic and Discrete Methods, 4(3):312{316, 1983.

[GKNV93] E. R. Gansner, E. Koutso�os, S. C. North, and K.-P. Vo. A technique for draw-

ing directed graphs. IEEE Transactions on Software Engineering, 19(3):214{

230, 1993.

[JM97] M. J�unger and P. Mutzel. 2-layer straightline crossing minimization: Perfor-

mance of exact and heuristic algorithms. Journal of Graph Algorithms and

Applications, 1:1{25, 1997.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of

hierarchical systems. IEEE Transactions on Systems, Man, and Cybernetics,

11(2):109{125, 1981.

[Sug84] K. Sugiyama. A readability requirement on drawing digraphs: Level assign-

ment and edge removal for reducing the total length of lines. International

Institute for Advanced Study of Social Information Science, 1984.

23

