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Abstract

We present an alternative linear time algorithm that computes an or-

dering that produces a �ll-in that is minimal with respect to the subset

relation. It is simpler than the algorithm in [6] and is easily parallelizable.

The algorithm does not rely on the computation of a breadth-�rst search

tree.

1 Introduction

One of the major problems in computational linear algebra is that of sparse

Gauss elimination. The problem is to �nd a pivoting, such that the number of

zero entries of the original matrix that become non zero entries in the elimination

process is minimized. In case of symmetric matrices, we would like to restrict

pivoting along the diagonal. The problem translates to the following graph

theory problem [16].

Minimum Elimination Ordering

For an ordering < on the vertices, we consider the �ll-in graph G

0

<

= (V;E

0

)

of G = (V;E). G

0

<

contains �rst the edges in E and secondly two vertices x

and y form an edge in G

0

<

if they have a common smaller neighbor in G

0

<

. The

problem of Minimum Elimination ordering is, given a graph G = (V;E), �nd

an ordering <, such that G

0

<

has a minimum number of �ll-in edges. Note that

this problem is NP-complete [22].

For this reason, one considers also the following relaxation of the problem.

Minimal Elimination Ordering

Given a graph G, �nd an ordering <, such that the edge set of G

0

<

is minimal

with respect to inclusion. This problem can be solved in O(nm) time [17].

The problem to get an elimination ordering with a small �ll-in is in particular

interesting for planar graphs, e.g. �nite elements (see for example [9]).

In case that G = G

0

<

(< has no �ll-in edges) < is a perfect elimination or-

dering, and graphs having a perfect elimination ordering are exactly the chordal

graph, i.e. graphs with the property that every cycle of length greater three has

an edge that joins two non consecutive vertices of the cycle.

The Minimal Elimination Ordering problem can be solved in O(nm) time in

general [17] and for planar graphs in linear time [6]. For graphs in general, the

problem to get a minimal elimination ordering can be parallelized. The time

bound is O(log

3

n) on a CRCW-PRAM, and the processor bound is O(nm)

[8]. The problem of the algorithm in [6] is that it strongly relies on breadth-

�rst search. A parallelization can therefore only be done through the quite

complicated breadth-�rst search algorithm of Klein for planar planar graphs

[13].
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In this paper, a quite simple linear time algorithm for the minimal elimi-

nation ordering problem for planar graphs is presented. The algorithm is also

easily parallelizable.

In section 2, we introduce the notation. In section 3, we determine a �rst

"approximation" of a minimal elimination ordering using a spanning tree. In

section 4, we add edges to the given planar graph that are �ll-in edges of any

extension of the minimal elimination approximation computed in 3. We call

these edges level diagonals. Adding level diagonals does not destroy planarity.

In section 5 we discuss the structure of one level of the minimal elimination

ordering approximation computed in section 3. In section 6 we transform the

discussions in section 5 into an algorithm to re�ne each minimal elimination

ordering approximation level. The �nal section gives some concluding remarks.

2 Notation

A graph G = (V;E) consists of a vertex set V and an edge set E. Multiple

edges and loops are not allowed. The edge joining x and y is denoted by xy.

We say that x is a neighbor of y i� xy 2 E. The set of neighbors of x is

denoted by N(x) and is called the neighborhood. More general, for a vertex set

V

0

, N(V

0

) = fy 2 V n V

0

j9x 2 V

0

: xy 2 Eg.

For a subset V

0

of V , G[V

0

] is the subgraph of G induced by V

0

and G� V

0

is the subgraph of G induced by V n V

0

.

Trees are always directed to the root. The notion of the parent, child, an-

cestor, and descendent are de�ned as usual.

We denote by n the number of vertices and by m the number of edges of G.

A graph is called chordal i� each cycle of length greater than three has a

chord, i.e. an edge that joins two nonconsecutive vertices of the cycle. Note that

chordal graphs are exactly those graphs having a perfect elimination ordering

<, i.e. for each vertex v the neighbors w > v induce a complete subgraph, i.e.

they are pairwise joined by an edge [10].

Note that in any chordal graph, the number of maximal cliques is bounded

by n and the number of pairs (x; c) such that x is in the clique c is bounded by

the number of edges and vertices.

The problem of minimum (minimal) elimination ordering is therefore equiv-

alent to the problem to �nd, given a graph G = (V;E), an extension E

0

of E,

such that (V;E

0

) is chordal and jE

0

j is minimum (E

0

is minimal with respect to

the subset relation).

A cut c of G = (V;E) is a subset of V , such that G� c has at least two con-

nected components and the neighborhood of at least two connected components

of G� c is c.

2



3 Minimal Elimination Ordering Approximation

through a Spanning Tree

We start with a result that is also given in [7]. We call an ordered partition

V

1

; : : : ; V

k

an approximation of an ordering < if with x 2 V

i

, y 2 V

j

, and i < j,

we have x < y and an ordering < compatible with V

1

; : : : ; V

k

if V

1

; : : : ; V

k

is an

approximation of <.

Theorem 1 Let T be a spanning tree of G and v

1

; : : : ; v

n

be an enumeration of

the vertex set of T , such that each �nal segment fv

i

; : : : ; v

n

g induces a subtree

of T (e.g. postorder enumeration). Let

V

i

= fyjyv

i

2 E and for j > i yv

j

62 Eg

Then V

1

; : : : ; V

n

; fv

n

g is an approximation of a minimal elimination ordering.

Sketch of Proof: By [15], a maximal set C of non crossing cuts of G is the set

of cuts of a minimal extension of G to a chordal graph, i.e. there is a minimal

elimination ordering <, such that the set of cuts of the chordal graph G

0

<

is

exactly C. It is easily checked that for any connected component C of

S

j<i

V

j

,

the set of neighbors of C outside C is a cut. Q.E.D.

Note that the ordered partition (V

1

; : : : ; V

n

; fv

n

g) can be determined in

O(n +m) time and by a CRCW-PRAM in logarithmic time with a linear pro-

cessor number [18].

Now we consider only the subsequence of nonempty partion elements and

denote it by V

1

; : : : ; V

k

, i.e. V

k

= fv

n

g. Nevertheless, V

i

is the set of neighbors

of a vertex v

i

2 V

i+1

[ : : : [ V

k

that are not in V

i+1

[ : : : [ V

k

. v

1

; : : : ; v

k�1

is

also called the generating sequence of V

1

; : : : ; V

k

.

For graphs in general, the further re�nement has to be done by the general

algorithm of [17], i.e. we get no better theoretical improvement than a time

bound of O(nm), to get a minimal elimination ordering.

For planar graphs, we get a more e�cient solution.

4 Introducing Level Diagonals

As in [6], we would like that the neighborhoods of connected components of

V

<i

=

S

j<i

V

j

form cycles. Let l(v) be the i, such that v 2 V

i

.

Initially E

0

= E is the edge set of G. For a face f , let (v

0

; : : : ; v

l�1

) be the

clockwise cyclic enumeration of the vertices of f . We add an edge v

i

v

j

to E

0

if

for all i

0

with i

0

= i + 1mod l; i+ 2mod l; : : : ; j � 1mod l; j, l(v

i

0

) < l(v

i

) and

l(v

i

0

) < l(v

j

). In other words v

i

v

j

is put into E

0

if one of the two paths from v

i

to v

j

of the cycle surrounding the face f contains only inner vertices that are

in V

�

with � < l(v

i

) and � < l

(

v

j

).
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G

0

= (V;E

0

) is called the level diagonal graph of V

1

; : : : ; V

k

. It is easily

checked that G

0

is planar.

Moreover, we can show that all edges of G

0

that are not in G are �ll-in edges

of any ordering that is compatible with V

1

; : : : ; V

k

. Observe that the neighborhood

of any connected component of G[V

1

[ : : : [ V

i

] in V

i+1

[ : : : [ V

k

is a cycle of

G

0

.

Lemma 1 The edges of E

0

can be determined in linear time and in O(log n)

time with O(n= logn) processors on a CRCW-PRAM.

Proof: Consider any face f . We select a vertex u

0

such that l(u

0

) is maxi-

mum. For each vertex u

i

of f , we determine the next vertex s(u

i

) before u

i

and

the next vertex g(u

i

) after u

i

in a level V

j

with j � l(u

i

). The indices s(i) and

g(i) can be determined in linear time sequentially and in logarithmic time with

a linear workload on a CRCW-PRAM [21].

Q.E.D.

5 The Structure of the Levels V

i

Let v

1

; : : : ; v

k

be the generating sequence of V

1

; : : : ; V

k

.

Note that also in G

0

, V

i

is the set of neighbors of v

i

in G

0

that are not

neighbors of any v

j

with j > i.

One can also observe the following.

Lemma 2 If v and w are in V

i

and in the same connected component of

G

0

[

S

j�i

V

j

] then they are in the same connected component of G

0

[V

i

].

Let F be a connected component of G

0

[V

i

].

We call a vertex of G

0

�F an inner vertex of the face f of G

0

[F ] if it appears

inside f in the given planar embedding. The vertices of f are the vertices at

the boundary of f .

Observe that there is only one face of G

0

[F ] that has vertices of (the con-

nected set)

S

j>i

V

j

as inner vertices. This face is called the outer face of F .

Moreover, all vertices of F are vertices of the outer face of F , i.e. G

0

[F ] is an

outer-planar graph.

Observe also that there if only one face f

F

of G[F [ fv

i

g] that contains

vertices of

S

j>i

V

j

n fv

i

g as inner vertices. The vertices of F of this face form a

subpath of the cycle surrounding f

F

and are called the outer vertices of F (see

�gure 1).

Observe that only outer vertices of F have neighbors in

S

j>i

V

j

that are

di�erent from v

i

.

Outer vertices having neighbors in

S

j>i

V

j

are called strong outer vertices.

Let w

1

; : : : ; w

m

be the path of outer vertices of F and w

�

and w

�

be consecutive

strong outer vertices of F . Then w

�

: : : w

�

is a subpath of a face f

w

�

;w

�

of
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outer vertices

vi

Figure 1: Outer Vertices of a Connected Component F of V

i

G

0

[

S

j�i

V

j

]. Such a face is called a border face of F . The subsequence of strong

outer vertices is denoted by p

1

; : : : ; p

l

. Note that the border faces are uniquely

determined by their strong outer vertices p

�

and p

�+1

.

The essential faces of F are the non-outer and the border faces of F .

One can observe immediately (compare also [6]) the following.

Lemma 3 If an essential face f of F contains inner vertices in

S

j<i

V

j

then the

vertex set of f is made complete in the �ll-in of any ordering that is compatible

with V

1

; : : : ; V

k

.

If an essential face f of F has no inner vertices of

S

j<i

V

j

, we call f empty.

Otherwise we call f full.

It can be checked in logarithmic time and with a linear workload whether a

face is full. We only have to select a vertex u of f and to check whether there

are neighbors of u in G

0

that are between the two neighbors of u in f in the

clockwise enumeration of the neighborhood of u.

We extend G

0

[F ] to a graph G

�

F

containing additional edges p

j

p

j+1

if the

border face containing the consecutive strong outer vertices p

j

and p

j+1

is full.

Observe that G

�

F

is still planar and that all vertices of G

�

F

are on the outer

face of G

�

F

, i.e. also G

�

is outer-planar. Note that the faces of G

�

F

are the

faces of G

0

[F ] and the faces containing all outer vertices of F that are between

two consecutive strong outer vertices p

j

and p

j+1

that share a full face. These

additional faces of G

�

F

are also called full faces of G

�

F

.

The graph G

00

F

is the following extension of G

�

F

: full faces of G

�

F

are made

complete and empty (non-outer) faces of G

�

F

are triangulated. To get a linear

space representation of G

00

F

, we determine an extension G

��

F

where empty faces

are triangulated but full faces are not made complete.

As in [6], we can show the following.

Lemma 4 G

00

F

is a chordal graph.
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p3

v
i

empty
border face

in

Vj ,j<i
full border face

Figure 2: Strong Outer Vertices and Full and Empty Border Faces

full
border faceempty border

face

q
1

q2 q3

q4

vi

becomes a clique in G’’
F

Figure 3: Proper Outer Vertices

The strong outer vertices and full and empty border faces can be observed

in �gure 2.

We call an outer vertex q of F a proper outer vertex of F if it is a strong

outer vertex or on the path between two strong consecutive strong outer vertices

that that do not share a full border face, i.e. if we add v

i

and all edges v

i

w with

w 2 F to G

��

F

then q remains on the outer face.

Proper outer vertices and G

00

F

are illustrated in �gure 3.

6 Algorithm for Further Re�nement

To determine a minimal elimination ordering, we determine for each F , a perfect

elimination ordering of G

00

F

that extends to a minimal elimination ordering of

the graph H

F

consisting of the vertices and edges of G

00

F

, the neighborhood of

F in G

0

as a complete set, and all edges vw between F and its neighborhood

6



that are in G

0

or that share a full border face of F .

The subsequence of the outer vertices w

1

; : : : w

m

containing exactly the

proper outer vertices is denoted by q

1

; : : : ; q

k

.

We select an appropriate q

j

= w

�

as maximum. We determine a perfect

elimination ordering <

F

of G

00

F

, such that

1. non-outer vertices are smaller than outer vertices of F ,

2. non-proper outer vertices are smaller than proper outer vertices, and

3. q

j

is the maximum.

Such an ordering is called consistent with q

j

.

Lemma 5 Given q

j

and G

��

F

, a consistent ordering can be determined in loga-

rithmic time and linear workload.

Sketch of Proof: First we determine an ordering <

F

of the proper outer

vertices, such that for � < j, q

�

<

F

q

�+1

and for � > j, q

�

<

F

q

��1

. Then we

order the non-proper outer vertices in any how.

It remains to order the non-outer vertices of F . We determine a clique tree

T

F

of G

00

F

, i.e. a face tree of G

��

F

. The nodes of the clique tree are the faces and

the bridges of G

��

F

. If f

1

and f

2

share an edge then they are joined by an edge

of T

F

. If G

��

F

� fvg is has more than one connected component then we select

for each connected component c a face or bridge f

c

of c that contains v. We

join the faces and bridges f

c

associated with v by edges, such that they form a

tree. Note that the faces and bridges containing any vertex v form a subtree of

T

F

. T

F

can be determined in logarithmic time with a linear workload.

We select a face containing q

j

as the root of T

F

. We determine a postorder

<

T

on the nodes of T

F

. For each non-outer vertex v, let f

v

be the <

T

-maximum

face or bridge containing v. We determine an ordering <

F

on the non-outer

vertices of F , such that with f

v

<

T

f

w

, we have v <

F

w.

Q.E.D.

Lemma 6 1. If � < j then q

�

<

F

q

�+1

, and if � > j then q

�

<

F

q

��1

.

2. In H

F

, all �ll-in edges of <

F

are between F and H

F

nF , only proper outer

vertices are incident with �ll-in edges of <

F

.

3. In the �ll-in of <

F

, the neighbors of q

j

in H

F

� F are the neighbors of

any q

�

in H

F

� F .

4. For � < j (� > j), the �ll-in neighborhood of q

�

in H

F

�F consists of the

neighborhood of any q

�

, such that � � � (� � �).

7



We denote by N

�

(q

�

) the neighborhood of all q

�

with � � � in H

F

�F , and

by N

�

(q

nu

) the neighborhood all q

�

with � � � in H

F

�F . That means that the

�ll-in neighborhood of any q

�

with � < j is N

�

(q

�

) and the �ll-in neighborhood

of any q

�

with � > j is N

�

(q

�

).

We have to �nd a q

j

, such that the corresponding ordering <

F

is a minimal

elimination ordering of H

F

.

We call a q

j

inappropriate if N

�

(q

j

) � N

�

(q

j+1

) or N

�

(q

j

) � N

�

(q

j�1

), for

some � < j. Otherwise, q

j

is called appropriate.

Lemma 7 If q

j

is appropriate then the corresponding ordering <

F

that is con-

sistent with q

j

is a minimal elimination ordering of H

F

.

We try to �nd an appropriate p

j

(i.e. a strong outer vertex that is appro-

priate).

We determine the neighbor left(F ) of p

1

that is the next neighbor of p

1

in some V

l

, l > i after v

i

in the clockwise enumeration of the neighborhood of

p

1

and the last neighbor right(F ) in some V

l

, l > i before v

i

in the clockwise

enumeration of the neighborhood of the last element p

k

of the sequence of the

strong outer vertices.

If F has only one neighbor 6= v

i

in some V

l

, l > i then any strong outer

vertex is appropriate.

We assume that this is not the case. Then we can show the following.

Lemma 8 p

j

is inappropriate if and only if one of the following conditions is

satis�ed.

1. p

j+1

has left(F ) as a neighbor.

2. The border face of p

j

and p

j+1

is full and contains left(F ).

3. p

j�1

has right(F ) as a neighbor.

4. The border face of p

j

and p

j�1

is full and contains right(F ).

Note that this lemma relies strongly on the planarity of G

0

.

It is also easily checked that we can determine appropriateness in constant

time with a linear workload.

We �nally get the following result.

Theorem 2 For planar graphs, a minimal elimination ordering can be deter-

mined in linear time. Moreover it can be done in logarithmic time with a linear

processor number on a CRCW-PRAM.
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7 Conclusions

This algorithm is an improvement of the algorithm in [6] for the following rea-

sons. As also mentioned in the introduction, the algorithm is easily paralleliz-

able. Moreover, the algorithm might be embeddable into a nested dissection

procedure [2]. It might be possible to get good results if one makes a recursive

partition of the vertex set as done in many nested dissection procedures. The

recursive partition de�nes a metric in an obvious way. One might build up a

minimum spanning tree, and one gets a �rst approximation of a minimal elim-

ination ordering. This approach might also be helpful to solve the sandwich

problem to get a minimal elimination inside a given chordal supergraph (see

[3, 5]).
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