Angewandte Mathematik und Informatik Universität zu Köln

Report No. 353

An Improved Linear Time Algorithm for Minimal
 Elimination Ordering in Planar Graphs that is Parallelizable
 by
 Elias Dahlhaus

1999

Partially supported by ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT).

Institut für Informatik, Universität zu Köln, Pohligstrasse 1, 50969 Köln, Germany

Abstract

We present an alternative linear time algorithm that computes an ordering that produces a fill-in that is minimal with respect to the subset relation. It is simpler than the algorithm in [6] and is easily parallelizable. The algorithm does not rely on the computation of a breadth-first search tree.

1 Introduction

One of the major problems in computational linear algebra is that of sparse Gauss elimination. The problem is to find a pivoting, such that the number of zero entries of the original matrix that become non zero entries in the elimination process is minimized. In case of symmetric matrices, we would like to restrict pivoting along the diagonal. The problem translates to the following graph theory problem [16].

Minimum Elimination Ordering

For an ordering $<$ on the vertices, we consider the fill-in graph $G_{<}^{\prime}=\left(V, E^{\prime}\right)$ of $G=(V, E) . \quad G_{<}^{\prime}$ contains first the edges in E and secondly two vertices x and y form an edge in $G_{<}^{\prime}$ if they have a common smaller neighbor in $G_{<}^{\prime}$. The problem of Minimum Elimination ordering is, given a graph $G=(V, E)$, find an ordering $<$, such that $G_{<}^{\prime}$ has a minimum number of fill-in edges. Note that this problem is NP-complete [22].

For this reason, one considers also the following relaxation of the problem.

Minimal Elimination Ordering

Given a graph G, find an ordering $<$, such that the edge set of $G_{<}^{\prime}$ is minimal with respect to inclusion. This problem can be solved in $O(n m)$ time [17].

The problem to get an elimination ordering with a small fill-in is in particular interesting for planar graphs, e.g. finite elements (see for example [9]).

In case that $G=G_{<}^{\prime}(<$ has no fill-in edges $)<$ is a perfect elimination ordering, and graphs having a perfect elimination ordering are exactly the chordal graph, i.e. graphs with the property that every cycle of length greater three has an edge that joins two non consecutive vertices of the cycle.

The Minimal Elimination Ordering problem can be solved in $O(\mathrm{~nm})$ time in general [17] and for planar graphs in linear time [6]. For graphs in general, the problem to get a minimal elimination ordering can be parallelized. The time bound is $O\left(\log ^{3} n\right)$ on a CRCW-PRAM, and the processor bound is $O(n m)$ [8]. The problem of the algorithm in [6] is that it strongly relies on breadthfirst search. A parallelization can therefore only be done through the quite complicated breadth-first search algorithm of Klein for planar planar graphs [13].

In this paper, a quite simple linear time algorithm for the minimal elimination ordering problem for planar graphs is presented. The algorithm is also easily parallelizable.

In section 2, we introduce the notation. In section 3, we determine a first "approximation" of a minimal elimination ordering using a spanning tree. In section 4, we add edges to the given planar graph that are fill-in edges of any extension of the minimal elimination approximation computed in 3 . We call these edges level diagonals. Adding level diagonals does not destroy planarity. In section 5 we discuss the structure of one level of the minimal elimination ordering approximation computed in section 3 . In section 6 we transform the discussions in section 5 into an algorithm to refine each minimal elimination ordering approximation level. The final section gives some concluding remarks.

2 Notation

A graph $G=(V, E)$ consists of a vertex set V and an edge set E. Multiple edges and loops are not allowed. The edge joining x and y is denoted by $x y$.

We say that x is a neighbor of y iff $x y \in E$. The set of neighbors of x is denoted by $N(x)$ and is called the neighborhood. More general, for a vertex set $V^{\prime}, N\left(V^{\prime}\right)=\left\{y \in V \backslash V^{\prime} \mid \exists x \in V^{\prime}: x y \in E\right\}$.

For a subset V^{\prime} of $V, G\left[V^{\prime}\right]$ is the subgraph of G induced by V^{\prime} and $G-V^{\prime}$ is the subgraph of G induced by $V \backslash V^{\prime}$.

Trees are always directed to the root. The notion of the parent, child, ancestor, and descendent are defined as usual.

We denote by n the number of vertices and by m the number of edges of G.
A graph is called chordal iff each cycle of length greater than three has a chord, i.e. an edge that joins two nonconsecutive vertices of the cycle. Note that chordal graphs are exactly those graphs having a perfect elimination ordering $<$, i.e. for each vertex v the neighbors $w>v$ induce a complete subgraph, i.e. they are pairwise joined by an edge [10].

Note that in any chordal graph, the number of maximal cliques is bounded by n and the number of pairs (x, c) such that x is in the clique c is bounded by the number of edges and vertices.

The problem of minimum (minimal) elimination ordering is therefore equivalent to the problem to find, given a graph $G=(V, E)$, an extension E^{\prime} of E, such that $\left(V, E^{\prime}\right)$ is chordal and $\left|E^{\prime}\right|$ is minimum (E^{\prime} is minimal with respect to the subset relation).

A cut c of $G=(V, E)$ is a subset of V, such that $G-c$ has at least two connected components and the neighborhood of at least two connected components of $G-c$ is c.

3 Minimal Elimination Ordering Approximation through a Spanning Tree

We start with a result that is also given in [7]. We call an ordered partition V_{1}, \ldots, V_{k} an approximation of an ordering < if with $x \in V_{i}, y \in V_{j}$, and $i<j$, we have $x<y$ and an ordering $<$ compatible with V_{1}, \ldots, V_{k} if V_{1}, \ldots, V_{k} is an approximation of $<$.

Theorem 1 Let T be a spanning tree of G and v_{1}, \ldots, v_{n} be an enumeration of the vertex set of T, such that each final segment $\left\{v_{i}, \ldots, v_{n}\right\}$ induces a subtree of T (e.g. postorder enumeration). Let

$$
V_{i}=\left\{y \mid y v_{i} \in E \text { and for } j>i y v_{j} \notin E\right\}
$$

Then $V_{1}, \ldots, V_{n},\left\{v_{n}\right\}$ is an approximation of a minimal elimination ordering.
Sketch of Proof: By [15], a maximal set \mathcal{C} of non crossing cuts of G is the set of cuts of a minimal extension of G to a chordal graph, i.e. there is a minimal elimination ordering $<$, such that the set of cuts of the chordal graph $G_{<}^{\prime}$ is exactly \mathcal{C}. It is easily checked that for any connected component C of $\bigcup_{j<i} V_{j}$, the set of neighbors of C outside C is a cut.
Q.E.D.

Note that the ordered partition $\left(V_{1}, \ldots, V_{n},\left\{v_{n}\right\}\right)$ can be determined in $O(n+m)$ time and by a CRCW-PRAM in logarithmic time with a linear processor number [18].

Now we consider only the subsequence of nonempty partion elements and denote it by V_{1}, \ldots, V_{k}, i.e. $V_{k}=\left\{v_{n}\right\}$. Nevertheless, V_{i} is the set of neighbors of a vertex $v_{i} \in V_{i+1} \cup \ldots \cup V_{k}$ that are not in $V_{i+1} \cup \ldots \cup V_{k} . v_{1}, \ldots, v_{k-1}$ is also called the generating sequence of V_{1}, \ldots, V_{k}.

For graphs in general, the further refinement has to be done by the general algorithm of [17], i.e. we get no better theoretical improvement than a time bound of $O(n m)$, to get a minimal elimination ordering.

For planar graphs, we get a more efficient solution.

4 Introducing Level Diagonals

As in [6], we would like that the neighborhoods of connected components of $V_{<i}=\bigcup_{j<i} V_{j}$ form cycles. Let $l(v)$ be the i, such that $v \in V_{i}$.

Initially $E^{\prime}=E$ is the edge set of G. For a face f, let $\left(v_{0}, \ldots, v_{l-1}\right)$ be the clockwise cyclic enumeration of the vertices of f. We add an edge $v_{i} v_{j}$ to E^{\prime} if for all i^{\prime} with $i^{\prime}=i+1 \bmod l, i+2 \bmod l, \ldots, j-1 \bmod l, j, l\left(v_{i^{\prime}}\right)<l\left(v_{i}\right)$ and $l\left(v_{i^{\prime}}\right)<l\left(v_{j}\right)$. In other words $v_{i} v_{j}$ is put into E^{\prime} if one of the two paths from v_{i} to v_{j} of the cycle surrounding the face f contains only inner vertices that are in V_{ν} with $\nu<l\left(v_{i}\right)$ and $\nu<l\left(v_{j}\right)$.
$G^{\prime}=\left(V, E^{\prime}\right)$ is called the level diagonal graph of V_{1}, \ldots, V_{k}. It is easily checked that G^{\prime} is planar.

Moreover, we can show that all edges of G^{\prime} that are not in G are fill-in edges of any ordering that is compatible with V_{1}, \ldots, V_{k}. Observe that the neighborhood of any connected component of $G\left[V_{1} \cup \ldots \cup V_{i}\right]$ in $V_{i+1} \cup \ldots \cup V_{k}$ is a cycle of G^{\prime}.

Lemma 1 The edges of E^{\prime} can be determined in linear time and in $O(\log n)$ time with $O(n / \log n)$ processors on a CRCW-PRAM.

Proof: Consider any face f. We select a vertex u_{0} such that $l\left(u_{0}\right)$ is maximum. For each vertex u_{i} of f, we determine the next vertex $s\left(u_{i}\right)$ before u_{i} and the next vertex $g\left(u_{i}\right)$ after u_{i} in a level V_{j} with $j \geq l\left(u_{i}\right)$. The indices $s(i)$ and $g(i)$ can be determined in linear time sequentially and in logarithmic time with a linear workload on a CRCW-PRAM [21].
Q.E.D.

5 The Structure of the Levels V_{i}

Let v_{1}, \ldots, v_{k} be the generating sequence of V_{1}, \ldots, V_{k}.
Note that also in G^{\prime}, V_{i} is the set of neighbors of v_{i} in G^{\prime} that are not neighbors of any v_{j} with $j>i$.

One can also observe the following.
Lemma 2 If v and w are in V_{i} and in the same connected component of $G^{\prime}\left[\bigcup_{j \leq i} V_{j}\right]$ then they are in the same connected component of $G^{\prime}\left[V_{i}\right]$.

Let F be a connected component of $G^{\prime}\left[V_{i}\right]$.
We call a vertex of $G^{\prime}-F$ an inner vertex of the face f of $G^{\prime}[F]$ if it appears inside f in the given planar embedding. The vertices of f are the vertices at the boundary of f.

Observe that there is only one face of $G^{\prime}[F]$ that has vertices of (the connected set) $\bigcup_{j>i} V_{j}$ as inner vertices. This face is called the outer face of F. Moreover, all vertices of F are vertices of the outer face of F, i.e. $G^{\prime}[F]$ is an outer-planar graph.

Observe also that there if only one face f_{F} of $G\left[F \cup\left\{v_{i}\right\}\right]$ that contains vertices of $\bigcup_{j>i} V_{j} \backslash\left\{v_{i}\right\}$ as inner vertices. The vertices of F of this face form a subpath of the cycle surrounding f_{F} and are called the outer vertices of F (see figure 1).

Observe that only outer vertices of F have neighbors in $\bigcup_{j>i} V_{j}$ that are different from v_{i}.

Outer vertices having neighbors in $\bigcup_{j>i} V_{j}$ are called strong outer vertices. Let w_{1}, \ldots, w_{m} be the path of outer vertices of F and w_{ν} and w_{μ} be consecutive strong outer vertices of F. Then $w_{\nu} \ldots w_{\mu}$ is a subpath of a face $f_{w_{\nu}, w_{\mu}}$ of

Figure 1: Outer Vertices of a Connected Component F of V_{i}
$G^{\prime}\left[\bigcup_{j \geq i} V_{j}\right]$. Such a face is called a border face of F. The subsequence of strong outer vertices is denoted by p_{1}, \ldots, p_{l}. Note that the border faces are uniquely determined by their strong outer vertices p_{ν} and $p_{\nu+1}$.

The essential faces of F are the non-outer and the border faces of F.
One can observe immediately (compare also [6]) the following.
Lemma 3 If an essential face f of F contains inner vertices in $\bigcup_{j<i} V_{j}$ then the vertex set of f is made complete in the fill-in of any ordering that is compatible with V_{1}, \ldots, V_{k}.

If an essential face f of F has no inner vertices of $\bigcup_{j<i} V_{j}$, we call f empty. Otherwise we call f full.

It can be checked in logarithmic time and with a linear workload whether a face is full. We only have to select a vertex u of f and to check whether there are neighbors of u in G^{\prime} that are between the two neighbors of u in f in the clockwise enumeration of the neighborhood of u.

We extend $G^{\prime}[F]$ to a graph G_{F}^{*} containing additional edges $p_{j} p_{j+1}$ if the border face containing the consecutive strong outer vertices p_{j} and p_{j+1} is full. Observe that G_{F}^{*} is still planar and that all vertices of G_{F}^{*} are on the outer face of G_{F}^{*}, i.e. also G^{*} is outer-planar. Note that the faces of G_{F}^{*} are the faces of $G^{\prime}[F]$ and the faces containing all outer vertices of F that are between two consecutive strong outer vertices p_{j} and p_{j+1} that share a full face. These additional faces of G_{F}^{*} are also called full faces of G_{F}^{*}.

The graph $G_{F}^{\prime \prime}$ is the following extension of G_{F}^{*} : full faces of G_{F}^{*} are made complete and empty (non-outer) faces of G_{F}^{*} are triangulated. To get a linear space representation of $G_{F}^{\prime \prime}$, we determine an extension $G_{F}^{* *}$ where empty faces are triangulated but full faces are not made complete.

As in [6], we can show the following.
Lemma $4 G_{F}^{\prime \prime}$ is a chordal graph.

Figure 2: Strong Outer Vertices and Full and Empty Border Faces

Figure 3: Proper Outer Vertices

The strong outer vertices and full and empty border faces can be observed in figure 2.

We call an outer vertex q of F a proper outer vertex of F if it is a strong outer vertex or on the path between two strong consecutive strong outer vertices that that do not share a full border face, i.e. if we add v_{i} and all edges $v_{i} w$ with $w \in F$ to $G_{F}^{* *}$ then q remains on the outer face.

Proper outer vertices and $G_{F}^{\prime \prime}$ are illustrated in figure 3.

6 Algorithm for Further Refinement

To determine a minimal elimination ordering, we determine for each F, a perfect elimination ordering of $G_{F}^{\prime \prime}$ that extends to a minimal elimination ordering of the graph H_{F} consisting of the vertices and edges of $G_{F}^{\prime \prime}$, the neighborhood of F in G^{\prime} as a complete set, and all edges $v w$ between F and its neighborhood
that are in G^{\prime} or that share a full border face of F.
The subsequence of the outer vertices $w_{1}, \ldots w_{m}$ containing exactly the proper outer vertices is denoted by q_{1}, \ldots, q_{k}.

We select an appropriate $q_{j}=w_{\nu}$ as maximum. We determine a perfect elimination ordering $<_{F}$ of $G_{F}^{\prime \prime}$, such that

1. non-outer vertices are smaller than outer vertices of F,
2. non-proper outer vertices are smaller than proper outer vertices, and
3. q_{j} is the maximum.

Such an ordering is called consistent with q_{j}.
Lemma 5 Given q_{j} and $G_{F}^{* *}$, a consistent ordering can be determined in logarithmic time and linear workload.

Sketch of Proof: First we determine an ordering $<_{F}$ of the proper outer vertices, such that for $\nu<j, q_{\nu}<_{F} q_{\nu+1}$ and for $\nu>j, q_{\nu}<_{F} q_{\nu-1}$. Then we order the non-proper outer vertices in any how.

It remains to order the non-outer vertices of F. We determine a clique tree T_{F} of $G_{F}^{\prime \prime}$, i.e. a face tree of $G_{F}^{* *}$. The nodes of the clique tree are the faces and the bridges of $G_{F}^{* *}$. If f_{1} and f_{2} share an edge then they are joined by an edge of T_{F}. If $G_{F}^{* *}-\{v\}$ is has more than one connected component then we select for each connected component c a face or bridge f_{c} of c that contains v. We join the faces and bridges f_{c} associated with v by edges, such that they form a tree. Note that the faces and bridges containing any vertex v form a subtree of $T_{F} . T_{F}$ can be determined in logarithmic time with a linear workload.

We select a face containing q_{j} as the root of T_{F}. We determine a postorder $<_{T}$ on the nodes of T_{F}. For each non-outer vertex v, let f_{v} be the $<_{T}$-maximum face or bridge containing v. We determine an ordering $<_{F}$ on the non-outer vertices of F, such that with $f_{v}<_{T} f_{w}$, we have $v<_{F} w$.
Q.E.D.

Lemma 6 1. If $\mu<j$ then $q_{\mu}<_{F} q_{\mu+1}$, and if $\mu>j$ then $q_{\mu}<_{F} q_{\mu-1}$.
2. In H_{F}, all fill-in edges of $<_{F}$ are between F and $H_{F} \backslash F$, only proper outer vertices are incident with fill-in edges of $<_{F}$.
3. In the fill-in of $<_{F}$, the neighbors of q_{j} in $H_{F}-F$ are the neighbors of any q_{ν} in $H_{F}-F$.
4. For $\nu<j(\nu>j)$, the fill-in neighborhood of q_{ν} in $H_{F}-F$ consists of the neighborhood of any q_{μ}, such that $\mu \leq \nu(\mu \geq \nu)$.

We denote by $N_{\leq}\left(q_{\nu}\right)$ the neighborhood of all q_{μ} with $\mu \leq \nu$ in $H_{F}-F$, and by $N_{\geq}\left(q_{n u}\right)$ the neighborhood all q_{μ} with $\mu \geq \nu$ in $H_{F}-F$. That means that the fill-in neighborhood of any q_{ν} with $\nu<j$ is $N_{\leq}\left(q_{\nu}\right)$ and the fill-in neighborhood of any q_{ν} with $\nu>j$ is $N_{\geq}\left(q_{\nu}\right)$.

We have to find a q_{j}, such that the corresponding ordering $<_{F}$ is a minimal elimination ordering of H_{F}.

We call a q_{j} inappropriate if $N_{\leq}\left(q_{j}\right) \subset N_{\geq}\left(q_{j+1}\right)$ or $N_{\geq}\left(q_{j}\right) \subset N_{\leq}\left(q_{j-1}\right)$, for some $\nu<j$. Otherwise, q_{j} is called appropriate.

Lemma 7 If q_{j} is appropriate then the corresponding ordering $<_{F}$ that is consistent with q_{j} is a minimal elimination ordering of H_{F}.

We try to find an appropriate p_{j} (i.e. a strong outer vertex that is appropriate).

We determine the neighbor $\operatorname{left}(F)$ of p_{1} that is the next neighbor of p_{1} in some $V_{l}, l>i$ after v_{i} in the clockwise enumeration of the neighborhood of p_{1} and the last neighbor $\operatorname{right}(F)$ in some $V_{l}, l>i$ before v_{i} in the clockwise enumeration of the neighborhood of the last element p_{k} of the sequence of the strong outer vertices.

If F has only one neighbor $\neq v_{i}$ in some $V_{l}, l>i$ then any strong outer vertex is appropriate.

We assume that this is not the case. Then we can show the following.
Lemma $8 p_{j}$ is inappropriate if and only if one of the following conditions is satisfied.

1. p_{j+1} has left (F) as a neighbor.
2. The border face of p_{j} and p_{j+1} is full and contains left (F).
3. p_{j-1} has $\operatorname{right}(F)$ as a neighbor.
4. The border face of p_{j} and p_{j-1} is full and contains right (F).

Note that this lemma relies strongly on the planarity of G^{\prime}.
It is also easily checked that we can determine appropriateness in constant time with a linear workload.

We finally get the following result.
Theorem 2 For planar graphs, a minimal elimination ordering can be determined in linear time. Moreover it can be done in logarithmic time with a linear processor number on a CRCW-PRAM.

7 Conclusions

This algorithm is an improvement of the algorithm in [6] for the following reasons. As also mentioned in the introduction, the algorithm is easily parallelizable. Moreover, the algorithm might be embeddable into a nested dissection procedure [2]. It might be possible to get good results if one makes a recursive partition of the vertex set as done in many nested dissection procedures. The recursive partition defines a metric in an obvious way. One might build up a minimum spanning tree, and one gets a first approximation of a minimal elimination ordering. This approach might also be helpful to solve the sandwich problem to get a minimal elimination inside a given chordal supergraph (see $[3,5]$).

References

[1] K. Abrahamson, N. Dadoun, D. Kirkpatrick, T. Przyticka, A Simple Parallel Tree Contraction Algorithm, Journal of Algorithms 10 (1988), pp. 287-302.
[2] A. Agrawal, P. Klein, R. Ravi, Cutting Down on Fill-in Using Nested Dissection, in Sparse Matrix Computations: Graph Theory Issues and Algorithms, A. George, J. Gilbert, J.W.-H. Liu ed., IMA Volumes in Mathematics and its Applications, Vol. 56, Springer Verlag, 1993, pp. 31-55.
[3] J. Blair, P. Heggernes, J.A. Telle, Making an Arbitrary Filled Graph Minimal by Removing Fill Edges, Algorithm Theory-SWAT '96, R. Karlsson, A. Lingas ed., LLNCS 1097, pp. 173-184.
[4] P. Bunemann, A Characterization of Rigid Circuit Graphs, Discrete Mathematics 9 (1974), pp. 205-212.
[5] E. Dahlhaus, Minimal Elimination Ordering inside a Given Chordal Graph, WG 97 (R. Möhring ed.), LLNCS 1335, pp. 132-143.
[6] E. Dahlhaus, Minimal Elimination of Planar Graphs, Algorithm Theory SWAT'98, LLNCS 1432 (1998), pp. 210-221.
[7] E. Dahlhaus, Minimal Elimination Ordering for Graphs of Bounded Degree, submitted.
[8] Elias Dahlhaus, Marek Karpinski, An Efficient Para llel Algorithm for the Minimal Elimination Ordering (MEO) of an Arbitr ary Graph, Theoretical Computer Science 134 (1994), pp. 493-528.
[9] M. Eiermann, O. Ernst, W. Queck, Finite Element Tutorial, TUBergakademie Freiberg.
[10] M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Mathematics 43 (1983), pp. 173-189.
[11] F. Gavril, The Intersection Graphs of Subtrees in Trees Are Exactly the Chordal Graphs, Journal of Combinatorial Theory Series B, vol. 16(1974), pp. 47-56.
[12] J. Gilbert, R. Tarjan, The Analysis of a Nested Dissection Algorithm, Numerische Mathematik 50 (1987), pp. 427-449.
[13] P. Klein, S. Subramanian, A Linear-Processor Polylog-Time Algorithm for Shortest Paths in Planar Graphs, 34-th FOCS (1993), pp. 259-270.
[14] R. Lipton, R. Tarjan, A Separator Theorem for Planar Graphs, SIAM Journal on Applied Mathematics 36 (1979)i pp. 177-189.
[15] Parra, A., Scheffler, P., How to use minimal separators for its chordal triangulation, Proceedings of the $20^{\text {th }}$ International Symposium on Automata, Languages and Programming (ICALP'95), Springer-Verlag Lecture Notes in Computer Science 944, (1995), pp. 123-134.
[16] D. Rose, Triangulated Graphs and the Elimination Process, Journal of Mathematical Analysis and Applications 32 (1970), pp. 597-609.
[17] D. Rose, R. Tarjan, G. Lueker, Algorithmic Aspects on Vertex Elimination on Graphs, SIAM Journal on Computing 5 (1976), pp. 266-283.
[18] Y. Shiloach, U. Vishkin, An $O(\log n)$ Parallel Connectivity Algorithm, Journal of Algorithms 3 (1982), S. 57-67.
[19] R. Tarjan, U. Vishkin, Finding Biconnected Components in Logarithmic Parallel Time, SIAM-Journal on Computing 14 (1984), pp. 862-874.
[20] R. Tarjan, M. Yannakakis, Simple Linear Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM Journal on Computing 13 (1984), pp. 566579.

Addendum: SIAM Journal on Computing 14 (1985), pp. 254-255.
[21] H. Wagener, Triangulating a Monotone Polygon in Parallel, Computational Geometry and its Applications, LNCS 333 (1988), pp. 136-142.
[22] M. Yannakakis, Computing the Minimum Fill-in is NP-complete, SIAM Journal on Algebraic and Discrete Methods 2 (1981), pp. 77-79.

