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Simulated Annealing is a very successful heuristic for various prob-

lems in combinatorial optimization. In this paper an application of

Simulated Annealing to the 3-coloring problem is considered. In con-

trast to many good empirical results we will show for a certain class of

graphs that the expected �rst hitting time of a proper coloring, given

an arbitrary cooling scheme, is of exponential size.

These results are complementary to those in [13], where the con-

vergence of Simulated Annealing to an optimal solution in exponential

time is proved.

1 Introduction

Simulated Annealing has been a very successful general algorithm for the

solution of large combinatorial optimization problems. It is a random local

search heuristic, that has received much attention, since it was �rst intro-

duced in [8].

In this paper we consider the Simulated Annealing algorithm applied

to the 3-coloring problem which is known to be NP-complete [2]. Let G =

(V;E) be an undirected graph with n vertices. A 3-coloring ofG is a mapping

f : V ! f1; 2; 3g. f is a proper 3-coloring, if f(u) 6= f(v) for all (u; v) 2 E.

The graph 3-coloring problem is to answer the question whether a given

graph G has a proper 3-coloring. According to the experimental results in

[7], Simulated Annealing is a very successful heuristic for this problem. In

�
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contrast to these practical observations we will show the existence of two

classes of graphs, where the expected �rst hitting time of a proper coloring

is of exponential size. For the �rst class of graphs we assume a �xed cooling

temperature for the Simulated Annealing algorithm. We can show for the

�rst time an exponential �rst hitting time nearly without any limitations on

the starting state. In the second class there is one natural starting state given

(the empty coloring). Here, we proof an exponential �rst hitting time of the

maximum coloring even for an arbitrary cooling schedule. There are only

few negative results concerning the e�ciency of Simulated Annealing applied

to problems in combinatorial optimization. Observations of similar avour

have been established by Jerrum [6] for the clique problem on random

graphs and by Sasaki and Hajek [16] for the matching problem.

This shows that the exponential running time bounds for Simulated An-

nealing proved by the authors in [13] are essentially tight.

2 A Homogeneous Approach

First, we consider a special case of Simulated Annealing called Metropolis

algorithm [10]. It performs the Simulated Annealing strategy with �xed

temperature T 2 R

+

. We describe one natural way to apply the algorithm

to the 3-coloring problem.

To start the algorithm, let an arbitrary coloring f be given. c(f) denotes

the number of \bad" edges (u; v) with f(u) = f(v). We choose uniformly at

random a vertex v 2 V and a color j 2 f1; 2; 3g and color the vertex with

j. We move to the resulting coloring f

0

, if c(f

0

) � c(f). If c(f

0

) > c(f),

we move to f

0

with probability exp((c(f) � c(f

0

))=T ) and stay at f with

probability 1 � exp((c(f) � c(f

0

))=T ). We call the neighborhood structure

de�ned by all possible transitions N . The sequence of states visited by the

algorithm forms a Markov chain (X

t

)

t2N

on the state space 
 of all colorings.

It is easily seen that this Markov chain is irreducible and aperiodic, hence

ergodic. Therefore it exists a unique probability vector �

T

with �

T

P = �

T

,

where P is the transition matrix of the chain with

8(f; g) 2 


2

p

fg

=

8

>

<

>

:

minf1; e

c(f)�c(g)

T

g

1

3n

for f 6= g; (f; g) 2 N

0 for f 6= g; (f; g) =2 N

1�

P

h6=f

p

fh

for f = g

The important fact is that the distribution of the chain P (X

t

= :) tends to

�

T

as t!1. It is easily veri�ed that the Gibbs-distribution

�

T

f

=

e

�c(f)

T

P

h2


e

�c(h)

T
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is the stationary distribution of the chain. By letting T ! 0 we can see

that �

T

converges to the uniform distribution concentrated on the optimal

solutions. Therefore we could expect a good asymptotic performance of the

chain, if we choose a very \deep" temperature T that is only slightly larger

than 0 [9].

In the following we are interested in the performance of the chain de-

pending on the problem size., i.e. convergence bounds of the chain after a

�nite number of steps. We will show in this section, that at least for general

graphs good performance bounds do not exist by de�ning a class of graphs,

where the expected �rst hitting time of a proper coloring will be of expo-

nential size, even when we assume, that the starting state could be chosen

uniformly at random from all possible starting states. Our example gives a

stronger evidence of the sometimes bad performance of Simulated Annealing

than those in [6] and [16], where only the existence of one starting state with

exponential �rst hitting time of the optimum is shown.

LetG

n

= (V

n

; E

n

) with V

n

= fx; z; y

1

; : : : ; y

n

g andE

n

= f(x; y

i

); (y

i

; z); i =

1; : : : ; ng [ f(x; z)g (Fig. 1). Obviously the graph G

n

has only one proper

y

x

y

z

1

n

Figure 1: Graph G

n

partition in 3 parts and therefore only 6 proper colorings.

Theorem 1 Almost all colorings f of G

n

have an expected �rst hitting time

H

f

of a proper 3-coloring of G

n

of exponential size, when f is selected as a

starting state.

Before we proof the theorem, we want to present the idea of the proof

and show some helpful lemmata. In the following we will de�ne a mapping
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g : 
 ! N from the set of all possible colorings to the natural numbers. A

proper coloring will have the value g(f) = 0 and nearly all others will have

positive values. A transition of the Markov chain will change the value of

g by at most 1. We will consider the process g(X

t

), that is not necessarily

Markovian any more and show under the hypothesis X

t

= f with certain

colorings f that the expected value after one transition step is greater than

g(X

t

) + �; � > 0. Then we are able to prove with the help of a result in [4]

about hitting time bounds implied by drift analysis, that the expected �rst

hitting time of a coloring X

t

= f with g(f) = 0 is of exponential size, given

a certain starting state. By specializing Theorem 2.3 of [4] on the discrete

state space we get:

Theorem 2 [Hajek] Let (Y

j

)

j2N

a sequence of random variables with val-

ues in N and a; b 2 R; b < a. The conditions

C1 E(jY

j+1

� Y

j

j jY

j

= i

j

; : : : ; Y

0

= i

0

) � s

C2 E(Y

j+1

� Y

j

� �; Y

j

< a;H

b

> jjY

j

= i

j

; : : : ; Y

0

= i

0

) � 0

with � > 0;H

b

= minfjjY

j

= bg (�rst hitting time of b)

imply

9D; � 2 R 8i

0

� a; t 2 N P (H

b

= tjY

0

= i

o

) � De

�(b�a)

(D; � depend only on s and �, not on a or b).

2

Suppose f is a coloring of G

n

with 3 colors. Then the set fy

1

; : : : y

n

g

of nodes can be divided in at most 3 parts according to the coloring. Let

g(f) : 
! N be the size of the second largest part.

Lemma 3 Let c =

1

4

e

�2=T

2+e

�2=T

; � =

e

�2=T

12

and f a coloring of G

n

with 0 <

g(f) � cn. Let X

t

= f . Then

E(g(X

t+1

)� g(X

t

)) � �

follows.

Proof: Let g(f) = k. By considering the transition probabilities of the graph

we get:

P (g(X

t+1

) = k + 1) �

e

�2=T

3(n+ 2)

(n� k)
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and

P (g(X

t+1

) = k � 1) �

2

3(n+ 2)

k:

Therefore we can conclude

E(g(X

t+1

)� g(X

t

))

�

 

e

�2=T

3(n+ 2)

(n� k)�

2

3(n+ 2)

k

!

�

e

�2=T

12

= �

as required. 2

To count those colorings with g(f) > cn the following version of the

Cherno� bound [12] is helpful. Let B(n; p) denote the binomial distribution.

By de�nition, if x 2 B(n; p), then P (x = k) =

�

n

k

�

p

k

(1� p)

n�k

.

Proposition 4 If x 2 B(n; p), then for all �; 0 < � < 1; P (x � (1��)np) <

e

��

2

np=2

and P (x � (1 + �)np) < e

��

2

np=3

.

Lemma 5 Let c be as in Lemma 3. All but an exponential small fraction

of the colorings of G

n

satisfy g(f) > cn.

Proof: Let z and y be colored arbitrarily and Y

r

be the set of vertices y

i

, that

are colored red. By assuming, that every coloring of fy

1

; : : : ; y

n

g has the

same probability 1=3

n

, we get, that the color red is B(n; 1=3) distributed.

Therefore it follows with the last proposition:

P (jY

r

j < cn) < e

�(1�3c)

2

n=6

< e

�n=96

:

Because we could argue symmetrically for the other colors, we get:

P (g(f) < cn) � 3e

�n=96

as required. 2

Now we are able to proof the main theorem:

Proof: Let X

0

= f

0

with g(f

0

) > cn be the starting state of the Metropolis-

process. We consider only a subprocess of the actual Markov chain. Let

Z

j

be the points of time, when the value g of the actual coloring changes:
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Z

0

= 0 and for all j 2 N Z

j

= minfj > Z

j�1

jg(X

j

) 6= g(X

Z

j�1

)g. Suppose

f is a coloring with 0 < g(F ) < cn. We get with Lemma 3 for all j 2 N:

E(g(X

Z

j+1

)� g(X

Z

j

)jX

Z

j+1

�1

= f;X

Z

j+1

�2

; : : : ;X

0

) � �:

By the summation of the disjoint, given events we get:

E(g(X

Z

j+1

)� g(X

Z

j

)� �j0 < g(X

Z

j

) < cn;X

Z

j

; : : : ;X

Z

0

) � 0

and it follows

E(g(X

Z

j+1

)�g(X

Z

j

)��j0 < g(X

Z

j

) < cn; g(X

Z

j

) = i

j

; : : : ; g(X

z

0

) = i

0

) � 0:

With Y

j

= g(X

Z

j

); a = cn and H

0

= minftjY

t

= 0g we obtain

E(Y

j+1

� Y

j

� �; Y

j

< a;H

0

> jjY

j

= i

j

; : : : ; Y

0

= i

0

) � 0

as required for condition C1 of Theorem 2. Due to jY

j+1

�Y

j

j � 1 condition

C2 is also ful�lled and it follows:

9D; � 2 R 8i

0

� a; k 2 N P (H

0

= kjY

0

= i

o

) � De

�(�a)

=: �

Using the fact that X

0

= f

0

we get

P (H

0

= tjY

0

= g(f

0

)) = P (H

0

= tjX

0

= f

0

)

and

P (H

0

> tjX

0

= f

0

) = 1�

t

X

k=1

P (H

0

= kjX

0

= f

0

) � maxf0; 1 � t�g:

Combining the last results yields

E(H

0

jX

0

= f

0

) =

1

X

t=0

P (H

0

> tjX

0

= f

0

) �

1

X

t=0

maxf0; 1 � t�g �

1

2�

:

Because X

t

= (proper 3-coloring) implies g(X

t

) = 0

E(H

f

0

jX

0

= f

0

) �

1

2�

=

De

�cn

2

= e


(n)

follows. 2

Remark: We suspect, that one can establish exponential �rst hitting

time even for an arbitrary time dependent sequence T

t

of temperatures.

Unfortunately we have not been able to prove this inhomogeneous case for

X

t

by now. But in the next section we establish this for another application

of the Simulated Annealing algorithm to the 3-coloring problem.
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3 A di�erent Approach

In this section we consider another approach for solving the 3-coloring prob-

lem. According to some positive experimental results [7] we try to �nd a

maximum 3-colorable induced subgraph of a given graph G = (V;E) (of

maximal cardinality). Obviously the problem is also NP-hard.

Therefore the state space 
 of the corresponding Markov chain (X

t

)

t2N

consists of all proper 3-colorings of arbitrary subgraphs of G. Let (T

t

)

t2N

be

an arbitrary sequence of temperatures, so that we are not concerned with

the homogeneous case any more. Given a state f 2 
 at time t, we choose

uniformly at random a vertex v 2 V . If v is already colored, we remove v

from the coloring with probability exp(1=T

t

) and stay at f with probability

1�exp(1=T

t

). If v is not yet colored, we choose one of the 3 colors uniformly

at random and try to color v. If we get a proper coloring, we move to this

coloring. Otherwise we stay at f .

3.1 Convergence to the optimal solution

In this subsection we briey describe the known theoretical bounds of the

convergence of the distribution of the Markov chain to a distribution, that

is concentrated on the optimal states (i.e. maximal 3-colorable subgraphs).

We start with a description of the underlying inhomogeneous Markov chain.

According to the above de�ned strongly connected neighborhood struc-

ture N � 


2

of the 3-colorings of subgraphs of G we get the following

transition probabilities. For technical reasons we also assume, that we stay

at each state with probability at least 1=2, so that we obtain:

8(f; g) 2 


2

p

(t)

fg

=

8

>

<

>

:

minf1; e

jgj�jf j

T

t

g

1

2n

for f 6= g; (f; g) 2 N

0 for f 6= g; (f; g) =2 N

1�

P

f

0

6=f

p

ff

0

for f = g

where jf j = ]fvjv is colored by fg. Clearly p

(t)

ff

� 1=2, so that the chain is

aperiodic. Assuming �xed transition probabilities p

t

fg

(�xed temperature

T

t

) the resulting homogeneous chain is also ergodic and

�(t)

f

=

e

jf j

T

t

P

g

e

jgj

T

t

=

t

jf j



P

g

t

jgj
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is the stationary distribution. Let c

max

= maxfjf j jf 2 
g. Obviously

�

�

= lim

t!1

�(t)

f

= lim

t!1

1

P

g

t

jgj�jf j



=

�

0; if jf j < c

max

1

]ff jjf j=c

max

g

; if jf j = c

max

The limit distribution is therefore a constant probability vector, which prob-

ability charges are concentrated on the global optima of the solution space.

Almost all results in the inhomogeneous case assume a logarithmic cool-

ing schedule T

t

= = ln(t), where  is a problem-dependent parameter.

Asymptotic results have been published by Hajek [5] and Tsitsiklis [17],

who were even been able to �nd necessary and su�cient conditions for the

convergence of Simulated Annealing. However, since we are concerned with

�nite time bounds, these asymptotic results are not helpful for us.

Anily and Federgruen [1], Gidas [3] and Mitra et al. [11] have

obtained independently similar deterministic upper bounds for the proximity

of the probability distribution of the state space after the generation of

t transitions to the uniform distribution on the set of optimal states �

�

.

Applied to the 3-coloring problem the bound of Mitra [11] for example

would yield:

t � c

1

1

�

n(3n)

n

)

X

f

jP (X(t) = f)� �

�

f

j � �

for a c

1

2 N. In [13] the authors could improve these running time bounds

by an application of the theory of rapidly mixing Markov chains. They

could guarantee the same inequality with a considerably smaller bound t �

�

�n

exp(n

c

2

) with c

2

2 N.

In the following section we will show that there is no hope to further

improve this bound, i.e. we will prove that the exponential bound in [13] is

essentially tight.

3.2 Negative Results

We will show in this section, that there will not exist better than exponen-

tial performance bounds of Simulated Annealing in general for the 3-coloring

problem. In the following we give an example of a class of graphs, where

the expected �rst hitting time of a maximal 3-colorable subgraph is of ex-

ponential size under the hypothesis X

0

= ;, i.e. we start with the empty

coloring, and an arbitrary cooling schedule.

Consider the following family of graphs:
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Let G

r

= (R

1

[ R

2

; E

r

) with R

1

= fr

i

; 1 � i � ng; R

2

= fr

jk

; 1 � j; k �

n; j 6= kg and E

r

= f(r

jk

; r

k

); k 2 f1; : : : ; ngr fjgg [ f(r

jk

; r

lm

); k;m; j; l 2

f1; : : : ; ng; j 6= l; k 6= lg[f(r

jk

; r

j

); k 2 f1; : : : ; nrfjggg. De�ne now G

b

and

G

g

as copies of G

r

. G

n

is formed by considering G

r

; G

b

; G

g

as subgraphs and

adding all edges between vertices, that are in di�erent graphs G

�

. Despite

the long description G

n

has a quite simple structure: (R

1

[ G

1

[ B

1

) is a

complete 3-partite graph with 3n vertices. Every part R

1

; G

1

; B

1

has an

additional set R

2

; G

2

; B

2

of vertices with the same structure.

2R R

r

r

r

r r

r

r

r

1

2

3

n

1

2

3

n

*

*

*

*

1

Figure 2: Graph G

r

Lemma 6 The subgraph induced by R

1

[B

1

[G

1

is the maximal 3-colorable

subgraph of G

n

.

Proof: G(R

1

[B

1

[g

1

) is obviously 3-colorable. Because every set of vertices

colored with the same color has to be independent, we look for independent

sets of size at least n. As every edege between G

r

, G

b

and G

g

is realized,

every independent set is completely in one of these subgraphs. Due to

symmetry we only have to look at G

r

.

Let U be an independent set in G(R

1

[R

2

). If R

2

\U = ; then U � R

1

and jU j = n, R

1

= U . If R

2

\U 6= ;, then there exists exactly one j with

fr

jk

; k 2 f1; : : : ; ngrfjgg\U 6= ; and r

j

=2 U , because G(R

2

) is a complete

n-partite graph.

Suppose now fr

i

1

; : : : ; r

i

k

g = U\R

1

. Then we obtain withA = f1; : : : ; ngr

fi

1

; : : : ; i

k

gr fjg: U � fr

i

1

; : : : ; r

i

k

; r

jl

; l 2 Ag. Hence jU j � n� 1.

This implies, that the only independent sets of size of at least n are R

1

,

G

1

and B

1

and the Lemma follows. 2
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Similar to the �rst section we will de�ne a mapping ! : 
 ! N with

!(;) = n and !(maximal coloring) = 0. We will consider the process !(X

t

),

that is not necessarily Markovian any more and show under the hypothesis

X

t

= f with !(X

t

) < a, that the expected value after one transition step

is greater than !(X

t

) + �; � > 0. Moreover the di�erence j!(X

t

)� !(X

t�1

)j

is bounded. Then we are able to prove with the help of Theorem 2, that

the expected �rst hitting time of a coloring X

t

= f with !(f) = 0 is of

exponential size, given a starting state h with !(h) > a.

Suppose f is a proper 3-coloring of a subgraph of G

n

and F is the set of

the colored vertices. Let

!

r

(F ) = 3]F \R

2

+maxf]funcolored vertices in R

1

g � 1; 0g

and de�ne !

b

(F ) and !

g

(F ) analogously. Then we can de�ne

!(F ) = maxf!

r

(F ); !

g

(F ); !

b

(F )g:

It is easily seen, that !(;) = n�1 and !(R

1

[G

1

[B

1

) = 0. Let !(F ) < n=2.

Then we can derive from the structure of G

n

, that all vertices, that are

colored with the same color, must be contained in one of the sets R

1

[

R

2

; G

1

[ G

2

; B

1

[ B

2

. We consider now those transitions, that color an

additional vertex. Let

M

[

(F ) = fv 2 V

n

j!(F [ fvg) 6= !(F )g

M

+

[

(F ) = fv 2 V

n

j!(F [ fvg) > !(F )g

M

�

[

(F ) = fv 2 V

n

j!(F [ fvg) < !(F )g:

(F [ fvg denotes the set of colored vertices obtained by coloring the addi-

tional vertex v.)

Lemma 7 Suppose 0 < !(F ) < n=2. Then ]M

�

[

(F ) � ]M

+

[

(F ).

Proof: First we suppose !(F ) = !

r

(F )^!(F ) > !

b

(F )^!(F ) > !

g

(F ) We

get M

�

[

(F ) � R

1

from the construction of G

n

. Let fr

i

1

; : : : ; r

i

k

g =M

�

[

(F ).

Because !(F ) > 0, we obtain jM

�

[

j � 2. Let r

i

1

; r

i

2

2 M

�

[

. If F \ R

2

= ;,

fr

i

1

i

2

; r

ji

1

; j 2 fi

2

; : : : ; i

k

gg � M

+

[

(F ). If F \ R

2

6= ;, then there exists

exactly one j =2 fi

1

; : : : ; i

k

g with F \ R

2

� fr

ji

; i 2 f1; : : : ; ng r fjgg and

fr

ji

; i 2 fi

1

; : : : ; i

k

gg �M

+

[

(F ). Thus the claim follows.

If the maximum in ! is reached in more than one value !(F ) = !

r

(F ) =

!

b

(F ) then M

�

[

= ; and the claim follows trivially. The other cases follow

by symmetry. 2
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Now we consider the transitions, that remove a vertex from a coloring.

Let

M

r

(F ) = fv 2 V

n

j!(F r fvg) 6= !(F )g

M

+

r

(F ) = fv 2 V

n

j!(F r fvg) > !(F )g

M

�

r

(F ) = fv 2 V

n

j!(F r fvg) < !(F )g:

(F r fvg denotes the set of colored vertices obtained by uncoloring v in the

given coloring f .)

Lemma 8 Suppose !(F ) < n=12. If M

�

r

6= ; is ful�lled, then ]M

�

r

� n=36

and ]M

+

r

� 11=12n � 1 follows.

Proof: First we suppose !(F ) = !

r

(F ) ^ !(F ) > !

b

(F ) ^ !(F ) > !

g

(F ).

Then ]M

�

r

= jF \R

2

j � n=36. Moreover we obtain M

+

r

� F \R

1

from the

construction of G

n

and !(F ) < n=12 yields ]funcolored vertices in R

1

g �

n=12 + 1. Then follows ]M

+

r

� ]F \ R

1

� 11=12n � 1 as required. If

!(F ) = !

r

(F ) = !

b

(F ), then M

�

r

= ; and the Lemma follows trivially. The

remaining cases follow by symmetry. 2

Combining these two Lemmata we will now show, that the expected value

of the di�erence !(X

t+1

�!(X

t

), given either a ]F -increasing or -decreasing

move, is separated from 0.

Lemma 9 Let 0 < !(F ) < n=12. Then

1.

P

[

(F ) = jM

[

(F )j

�1

P

v2M

[

(F )

(!(F [ fvg)�!(F )) � 1, if M

[

(F ) 6=

;.

2.

P

r

(F ) = jM

r

(F )j

�1

P

v2M

r

(F )

(!(Frfvg)�!(F )) � 3=4, ifM

r

(F ) 6=

;.

Proof: Straightforward calculation with the help of Lemma 7 and 8:

1.

X

[

(F ) = jM

[

(F )j

�1

0

@

X

v2M

�

[

(F )

(!(F [ fvg)) � !(F )

X

v2M

+

[

(F )

(!(F [ fvg) � !(F ))

1

A

� jM

[

(F )j

�1

�

(�1)jM

�

[

(F )j+ 3jM

+

[

(F )j

�

� 1

12



2. analogously

2

Finally we can prove the main theorem.

Theorem 10 Let H

m

= minft 2 NjX

t

= maximal 3-coloringg.

Then E(H

m

jX

0

= ;) = exp(
(n)).

Proof: The argumentation is analogous to that in the proof of Theorem

1. First we de�ne the points of time Z

j

, when the value ! of the actual

coloring changes: Z

0

= 0 and for all j 2 N Z

j

= minfj > Z

j�1

j!(X

j

) 6=

!(X

Z

j�1

)g. Suppose f is a 3-coloring with 0 < !(F ) < n=12. Let M

t

= +

, if the tth transition colors an uncolored vertex, M

t

= � , if a vertex is

removed from the coloring and M

t

= 0, if the chain stays in the same state.

We get with Lemma 9 for all j 2 N; f 2 
 with 0 < !(F ) < n=12:

E(!(X

Z

j+1

)� !(X

Z

j

)jX

Z

j+1

�1

= f;M

Z

j+1

�1

= +;X

Z

j+1

�2

; : : : ;X

0

) � 1

and analogously

E(!(X

Z

j+1

)� !(X

Z

j

)jX

Z

j+1

�1

= f;M

Z

j+1

�1

= �;X

Z

j+1

�2

; : : : ;X

0

) � 3=4

By the summation of the disjoint, given events we get:

E(!(X

Z

j+1

)� !(X

Z

j

)� 3=4j0 < !(X

Z

j

) < n=12;X

Z

j

; : : : ;X

Z

0

) � 0

due to

E(f j

_

[A

i

) =

P

i

P (A

i

)E(f jA

i

)

P (

_

[A

i

)

and it follows that

E(!(X

Z

j+1

)�!(X

Z

j

)�3=4j0 < !(X

Z

j

) < n=12; !(X

Z

j

) = i

j

; : : : ; !(X

z

0

) = i

0

)

is not negative. With Y

j

= !(X

Z

j

); a = n=12; � = 3=4 and H

0

= minftjy

t

=

0g we obtain

E(Y

j+1

� Y

j

� �; Y

j

< a;H

0

> jjY

j

= i

j

; : : : ; Y

0

= i

0

) � 0

as required for condition C1 of Theorem 2. Due to jY

j+1

�Y

j

j � 3 condition

C2 is also ful�lled and it follows

9D; � 2 R 8i

0

� a; t 2 N P (H

0

= tjY

0

= i

o

) � De

�(�a)

=: �

Using the fact that !(;) = n� 1 and X

0

= ; we get

P (H

0

= tjY

0

= n� 1) = P (H

0

= tjX

0

= ;)

13



and

P (H

0

> tjX

0

= ;) = 1�

t

X

k=1

P (H

0

= kjX

0

= ;) � maxf0; 1 � t�g

(We could assume P (H

0

<1jX

0

= ;) = 1, because otherways the proof of

the claim would be trivial). Combining the last results yields

E(H

0

jX

0

= ;) =

1

X

t=0

P (H

0

> tjX

0

= ;) �

1

X

t=0

maxf0; 1 � t�g �

1

2�

:

Because X

t

= (maximal 3-coloring) implies !(X

t

) = 0, it follows

E(H

m

jX

0

= ;) �

1

2�

= De

�n

as required. 2

4 Closing Remarks

We have showed showed that there is no hope to further improve the expo-

nential running time bounds for Simulated Annealing.

As already pointed out, we suspect that an exponential �rst hitting time

can be established in the case of the �rst approach even for arbitrary cooling

schedules and not only for the Metropolis process with constant tempera-

ture. A similar de�nition of ! with constant values on the energy levels as

in the second approach does not seem to be applicable, since the di�erence

c(f)� c(f

0

) of two neighboring colorings is not bounded by a constant.

Despite the negative results in this paper we believe, that the perfor-

mance of Simulated Annealing on certain random graphs is much better

than on the graphs considered in this paper. The reason for this is the

smooth structure of these graphs, the ratio of optimal to near-optimal so-

lutions is not so extremely bad as here. The authors have succeeded to

show convergence of the Metropolis process on certain random graphs with

high probability [15], but the proof, that Annealing is bene�cial for some

combinatorial optimization problem, is still missing.
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