
Angewandte Mathematik und

Informatik

Universit

�

at zu K

�

oln

Report No. 97-287

On computing all minimal solutions

for feedback problems

by

B. Schwikowski, E. Speckenmeyer

1997

B. Schwikowski

DKFZ, Abt. Theoretische Bioinformatik, INF 280,

D-69120 Heidelberg

GMD-SCAI, D-53757 St. Augustin

E-mail: schwikowski@dkfz-heidelberg.de

E. Speckenmeyer

Universit�at K�oln

Institut f�ur Informatik

Pohligstr. 1

D-50969 K�oln

1991 Mathematics Subject Classi�cation: 68Q25,05C85,05C38,05C20,68Q35,05A15

Keywords: feedback problem;directed graph;exact enumeration problem

On computing all minimal solutions

for feedback problems

Benno Schwikowski

�

DKFZ{TBI, INF 280, D{69120 Heidelberg, and

GMD-SCAI, D{53757 St. Augustin

and

Ewald Speckenmeyer

Inst. f. Informatik, Pohligstr. 1, D{50969 K�oln

Abstract

We present an algorithm that generates all (inclusion-wise) minimal

feedback vertex sets of a directed graph G = (V;E). The feedback

vertex sets of G are generated with a polynomial delay of O

�

jV j

2

(jV j+

jEj)

�

. Variants of the algorithm generate all minimal solutions for the

undirected case and the directed feedback arc set problem, both with

a polynomial delay of O

�

jV j jEj (jV j+ jEj)

�

.

1 Introduction

Generating all admissible con�gurations is a well-examined problem for

many combinatorial problems. Typically, solutions are subsets of a �nite

set, and the set of solutions is monotone, i.e. the supersets of admissible so-

lutions are also admissible. This is the case for the feedback problems that

we examine, and thus the enumeration of all minimal admissible solutions

provides a generic nonredundant description of the solution space.

For a directed graph, a feedback vertex set is a subset of its vertices

that contains at least one vertex of any directed cycle. Finding all minimal

feedback vertex sets is computationally demanding, since �nding a feedback

vertex set with minimum cardinality is NP-hard [4], and the output itself

can have exponential size.

Related problems. Minimal feedback vertex sets are intimately related

to the extremal solutions of other combinatorial optimization problems. A

set F of vertices in an undirected graph G = (V;E) is a vertex cover i�

F is a feedback vertex set in the directed graph G

0

that has two directed

arcs for each undirected arc in G. Thus, �nding feedback vertex sets is a

generalization to the problem of �nding vertex covers. Further, if and only if

�

Corresponding author. E-mail: schwikowski@dkfz-heidelberg.de

1

v
1

v
2

v
n–1

v
n

v
3

v
4

Figure 1: This graph has 2

n=2

di�erent minimal feedback vertex sets

F is a vertex cover, V �F is an independent set, and only in this case, V �F

is a clique in the complement graph of G. Due to these close relationships,

�nding minimal feedback vertex sets can be regarded a generalization to

the problem of �nding minimal vertex covers, maximal independent sets, or

maximal cliques in a graph.

Previous results for maximal independent sets and maximal

cliques. Several authors [5, 3, 8] have stated algorithms that compute

all maximal independent sets of a given graph. Some algorithms only need

polynomial delay, where the time between the output of two successive con-

�gurations is bounded by a polynomial in the input size. Algorithms for

generating all (maximal) cliques are surveyed in [6] and [7].

Our results. Our enumeration procedure of generating all minimal feed-

back vertex sets for a directed graph G = (V;E) relies on an exhaustive

search in a superstructure graph �, whose vertices represent the minimal

feedback vertex sets of G. The vertex v

F

of � representing the minimal

feedback vertex set F of G is connected by an arc to the vertex v

F

00
, of �,

representing the minimal FVS F

00

of G, if F

00

can be obtained by a local

operation from F as follows. Delete a vertex v from F and add all vertices

w to F reachable from F via an arc (v; w). Denote the feedback vertex set

obtained in this way by F

0

, which is not necessarily a minimal feedback ver-

tex set. Determine a minimal feedback vertex set F

00

� F

0

in an arbitrarily

but �xed way. Note that the superstructure graph � de�ned in this way has

exactly one successor vertex F

00

for every minimal feedback vertex set F and

every v 2 F .

We will show in section 2 that � is strongly connected and has a diameter

of at most jV j. Applying exhaustive search to � then yields our main result,

that all minimal feedback vertex sets of a directed graphG can be determined

in time O

�

jV j

2

(jV j + jEj)

�

for each vertex in �, see Theorem 1. In the

sections 3 and 4 we apply this technique for enumerating all minimal feedback

vertex sets of undirected graphs and for enumerating all minimal feedback

2

arc sets of directed graphs. Since previous approaches for approximating

these problems are completely di�erent from each other [2], it is remarkable

that we can apply the same technique to all three enumeration problems.

2 Feedback vertex sets of directed graphs

A feedback vertex set (FVS) of a directed graph G = (V;E) is a set F � V

where C \ F 6= ; for any directed cycle C of G. F is a minimal feedback

vertex set (MFVS) if there is no feedback vertex set F

0

6= F , F

0

� F .

Our algorithm exploits a simple relation between MFVSs that allows for

generating all MFVSs by local modi�cation.

Let F be a MFVS of G, v 2 F . By N

+

(v) we denote the set of vertices

v

0

2 V with (v; v

0

) 2 E. The FVS F

0

= (F � v) [N

+

(v) contains at least

one MFVS F

00

as a subset. We call each MFVS F

00

� F � v [N

+

(v) a

(v-)successor of F .

For any MFVS F and v 2 F there can be an exponential number of

v-successors F

00

. This can be seen by adding to the graph G

n

in Figure 1

the arcs (v

1

; v

2

); (v

1

; v

3

); : : : ; (v

1

; v

n

). Observe that F = fv

1

; v

3

; : : : ; v

n�1

g

is a MFVS of the resulting graph G

0

n

. Further, each set F

00

of vertices

that contains v

1

, v

n

and exactly one vertex of each set fv

2i�1

; v

2i

g, i =

2; : : : ; n=2 � 1, is a v

1

-successor of F . Hence there are 2

n

2

�2

di�erent v

1

-

successors of F in G

n

.

For our purpose we will just need one v-successor of a MFVS F that can

be chosen arbitrarily. We assume that a successor function �

G

: 2

V

�V �!

2

V

assigns some �xed v-successor F

00

0

of F to any such pair (F; v). We also

call F

00

0

= �

G

(F; v) a �

G

-successor of F .

Transforming MFVSs. We now present an algorithm that, given two

arbitrary MFVSs, F and F

�

, transforms F into F

�

by generating �

G

-

successors.

Algorithm Transform-Directed-MFVS (G = (V;E); F; F

�

; �

G

)

1 compute a topological order T of G� F

�

;

2 F

0

:= F , k := 0;

3 while F

k

6= F

�

do

4 let v

k

be the minimal vertex of F

k

\ (V � F

�

) with respect to T ;

5 F

k+1

:= �

G

(F

k

; v

k

);

6 k := k + 1;

7 od

8 output (F

0

; : : : ; F

k

);

Note that Transform-Directed-MFVS is not a completely speci�ed

algorithm; the topological ordering in line 1 contains an ambiguity which

3

can be resolved arbitrarily. Yet the following lemma asserts the correctness

of Transform-Directed-MFVS.

Lemma 1. For any directed graph G = (V;E), minimal feedback vertex sets

F and F

�

, and any successor function �

G

of G, Transform-Directed-

MFVS(G;F; F

�

; �

G

) computes a sequence F = F

0

; � � � ; F

s

= F

�

where s �

jV j � jF

�

j, and F

i+1

is a �

G

-successor of F

i

for i = 0; : : : ; s� 1.

Proof: Because of line 3, Transform-Directed-MFVS terminates only

if F

k

= F

�

. Thus it remains to show that Transform-Directed-MFVS

terminates after at most r = jV j � jF

�

j iterations of the while loop.

W.l.o.g. we can assume that jV j = f1; : : : ; ng and (1; : : : ; r) is the topo-

logical order T of G�F

�

. A topological order of V �F

�

always exists, since

F

�

is a feedback vertex set, and thus G� F

�

is acyclic.

Let k be a non-negative integer. Then

(F

k

\ (V � F

�

) = ;) () (F

k

� F

�

) () (F

k

= F

�

);

due to the minimality of F

k

and F

�

. Thus, if the condition in line 3 holds,

the statement in line 4 is well-de�ned.

Further note that v

0

> v

k

holds for all v

0

2 (F

k

� v

k

), because of the

minimality of v

k

w.r.t. T , and v

0

> v

k

for all v

0

2 F

�

. Moreover, v

0

> v

k

also holds for all v

0

2 N

+

(v

k

), according to the fact that v

k

2 V � F

�

and

(1; : : : ; r) is a topological order of G� F

�

.

Therefore we have v

0

> v

k

for all v

0

2 (F

k

� v

k

) [N

+

(v

k

), and thus, all

v

0

2 F

k+1

, because F

k+1

= �

G

(F

k

; v

k

) � F

k

� v

k

[N

+

(v

k

). Particularly,

v

0

> v

k

for v

0

= v

k+1

2 F

k+1

in line 4, hence

v

k+1

> v

k

:

Consequently, v

0

< v

1

< v

2

< : : : Since v

k

2 (V � F

�

) = f1; : : : ; rg for

all non-negative k, the algorithm can perform at most r = jV j � jF

�

j while

loops and outputs F = F

0

; � � � ; F

s

= F

�

with s � jV j � jF

�

j, which proves

the claim. �

Computing all minimal feedback vertex sets. It can now be seen

that all minimal solutions can be generated by exhaustive search in the

superstructure graph �(G; �

G

).

The vertex set of �(G; �

G

) consists of all MFVSs F of G, and for each

such F there are directed arcs from F to each �

G

-successor of F . Starting

with an initial MFVS F = F

0

, all successors of F in �(G; �

G

) are generated

(\expansion" of F). Then a \still unexpanded" solution is determined and

the process reiterates until all generated solutions have been expanded.

Lemma 1 asserts that �(G; �

G

) is strongly connected. Hence indeed all

minimal solutions are generated by an exhaustive search on �(G; �

G

). For

this purpose, the following algorithm uses a queue Q and a dictionary D.

4

Algorithm Generate-MFVS (G; �

G

)

1 compute a minimal admissible solution F

0

;

2 insert F

0

into Q and into D;

3 while Q is not empty do

4 remove any set F from Q;

5 output F ;

6 for each �

G

-successor F

0

of F do

7 if F

0

is not contained in D

8 insert F

0

into D and Q;

9 �

10 od

11 od

Minimizing a feedback vertex set by \removing redundant ver-

tices". Starting from a given FVS X , a MFVS F

0

� X can be computed

by checking for each v 2 X if X�v is a FVS for G and, if this holds, v is re-

moved fromX . When this has been done once for each v 2 X , the remaining

FVS F

0

� X is minimal. Concerning the computational complexity of the

whole operation, a single check for v 2 F can be performed using depth-�rst

search in time O

�

jV j + jEj

�

. Minimizing a FVS can thus be accomplished

in O

�

jV j (jV j+ jEj)

�

.

Overall Computational Complexity. Generating the initial MFVS F

0

in line 1 of Generate-MFVS is accomplished in O

�

jV j (jV j + jEj)

�

by

removing redundant vertices, starting with X = V . Removing redundant

vertices can also be used to compute a �

G

-successor of F in line 6. The

minimization starts with X = F �v [N

+

(v) with v 2 F . One �

G

-successor

is computed in time O

�

jV j (jV j+ jEj)

�

. Using a lexicographical order of V

and tries [1] for the implementation of D, operations on D and Q can be

executed in time O

�

jV j

�

per operation.

For a MFVS F of a directed graph, there are at most jV j �

G

-successors

F

0

to consider in the for loop of lines 6{10. Thus, one while loop is executed

in time O

�

jV j

2

(jV j+jEj)

�

, which makes a polynomial delay for the successive

output of MFVS.

This proves the following theorem.

Theorem 1. Given any directed graph G, Algorithm Generate-MFVS

can be used to compute all minimal feedback vertex sets of G with a polyno-

mial delay of O

�

jV j

2

(jV j+ jEj)

�

.

Note that memory requirements are polynomial for graphs with a poly-

nomial number of MFVS, but potentially exponential for the general case.

5

3 Feedback vertex sets of undirected graphs

The algorithm for the undirected case and its proof of correctness are similar

to the directed case. The concepts adapt to the undirected case as follows.

Let G = (V;E) be an undirected graph. W.l.o.g. we assume G to be

connected. By N(v) we will denote the set of w 2 V s.t. fv; wg 2 E.

In the directed case the proof of correctness relies on the topological

order of the \remainder graph" G � F

�

. There, G � F

�

is successively

\cleared" by replacing a vertex v

k

2 F

k

by a �

G

-successor �

G

(F

k

; v

k

). For

undirected graphs G, the arcs of G� F

�

are undirected. In order to \clear"

G�F

�

, a direction will be associated with each of its arcs, and the additional

directionality will be re
ected by a third parameter in the de�nition of a �

G

-

successor.

Basic de�nitions. For a MFVS F of G, v 2 F , w 2 N(v), observe that

F

0

= F � v [(N(v) � w) is a FVS of G. This is because any cycle that

contains v also contains at least one vertex of N(v)� w.

We call each MFVS F

00

� F �v [(N(v)�w) a (v; w)-successor of F . In

analogy to the directed case, we assume that a function �

G

: 2

V

�V �V �!

2

V

assigns a �xed (v; w)-successor F

00

0

of F to any such triplet (F; v; w).

F

00

0

= �

G

(F; v; w) is also called �

G

-successor of F .

Let us assume that F

�

is a MFVS of G. Then G

0

= G � F

�

is a union

of undirected trees. Choosing a vertex in each tree in G

0

and directing the

arcs away from these \root vertices" yields a directed acyclic graph that we

call T (G

0

).

With each vertex v 2 G

0

we now associate a vertex p

T

(v) from G

0

. When

v is a root vertex in T (G

0

), we set p

T

(v) := w for any w 2 N(v). Otherwise,

v has a unique predecessor w in T (G

0

) and we set p

T

(v) := w.

Given the undirected graph G, two feedback vertex sets F and F

�

and

a successor function �

G

, the following algorithm transforms F into F

�

by

generating �

G

-successors.

Algorithm Transform-Undirected-MFVS (G = (V;E); F; F

�

; �

G

)

1 compute a topological order T of T (G� F

�

);

2 F

0

:= F , k := 0;

3 while F

k

6= F

�

do

4 let v

k

be the minimal vertex of F

k

\ (V � F

�

) with respect to T ;

5 F

k+1

:= �

G

(F

k

; v

k

; p

T

(v

k

));

6 k := k + 1;

7 od

8 output (F

0

; : : : ; F

k

);

The following lemma asserts the correctness of the algorithm.

6

Lemma 2. For any undirected graph G, minimal feedback vertex sets F

and F

�

, and any successor function �

G

of G, Transform-Undirected-

MFVS(G;F; F

�

; �

G

) computes a sequence F = F

0

; � � � ; F

s

= F

�

where s �

jV j � jF

�

j, and F

i+1

is a �

G

-successor of F

i

for i = 0; : : : ; s� 1.

The proof translates almost literally from the directed case.

Algorithm. Analogously to the directed case, Lemma 2 asserts that the

superstructure graph �(G; �

G

) is strongly connected. We conclude that

an exhaustive search on �(G; �

G

) discovers all MFVSs of G. Thus, using

the notion of a �

G

-successor for undirected graphs, algorithm Generate-

MFVS(G; �

G

) indeed generates all MFVSs of G.

Computational complexity. Minimizing a FVS of an undirected graph

can be accomplished by iteratively removing redundant vertices. The proce-

dure is analogous to section 2, taking time O

�

jV j (jV j + jEj)

�

. Further, for

a MFVS F of an undirected graph there are at most 2 jEj �

G

-successors to

consider in the for loop in lines 6{10 of Generate-MFVS. This is because

for each arc fv; wg 2 E there can be at most two �

G

-successors F

0

of F ,

namely �

G

(F; v; w) and �

G

(F;w; v). Thus the delay between the output of

successive MFVSs is O

�

jV j jEj (jV j + jEj)

�

. This establishes the following

theorem.

Theorem 2. Given any undirected graph G, Algorithm Generate-MFVS

can be used to compute all minimal feedback vertex sets of G with a polyno-

mial delay of O

�

jV j jEj (jV j+ jEj)

�

.

4 Minimal feedback arc sets of directed graphs

We can use the algorithm for feedback vertex sets from section 2 to calculate

feedback arc sets. This is based upon the close relationship between the

feedback arc sets of a graph and the feedback vertex sets of its line graph.

The line graph G

0

of a directed graph G = (V;E) is a directed graph G

0

that has a vertex v

0

(e) for each arc e 2 E and an arc e

0

= (v

0

(e

1

); v

0

(e

2

))

for any two arcs e

1

= (x; y) 2 E and e

2

= (y; z) 2 E. Notice that each

cycle in G corresponds to a cycle in G

0

and vice-versa. Hence the feedback

arc sets of G correspond to the feedback vertex sets of G

0

. Since G

0

has

O

�

jEj

�

vertices and O

�

jEj

2

�

arcs, it follows from Theorem 1 that we can

calculate the feedback arc sets G with a time complexity of O

�

jEj

4

�

per

minimal feedback arc set.

We present a variation that only uses time O

�

jV j jEj (jV j + jEj)

�

per

minimal solution. Still, the procedure will be quite similar to the method

outlined in section 2. Basically vertices and arcs exchange their roles.

7

De�nitions. Let G = (V;E) be a directed graph, F � E be a minimal

feedback arc set (MFAS), i.e. G�F = (V;EnF) is acyclic and F is minimal

with this property.

For e = (v; w) 2 E, we set S(e) := w, for X � E we de�ne S(X) :=

[

e2X

S(e). We set A

�

(w) := f(x; w) 2 Eg, and A

+

(w) := f(w; x) 2 Eg.

Notice that, for any w 2 V , each cycle containing an arc in A

�

(w) must

also contain an arc in A

+

(w). Thus, F

0

= F � A

�

(w) [A

+

(w) is a FAS

of G for any w 2 V . We call each MFAS F

00

� F � A

�

(w) [A

+

(w) a

(w-)successor of F .

We assume that an arbitrary w-successor F

00

= �

G

(F;w), of F is �xed

for every MFAS F and w 2 S(F). We call �

G

a successor function and F

00

a �

G

-successor of F . The following algorithm transforms a MFAS F into a

MFAS F

�

by generating �

G

-successors.

Algorithm Transform-Directed-MFAS (G = (V;E); F; F

�

; �

G

)

1 compute a topological order T of G� F

�

;

2 F

0

:= F , k := 0;

3 while F

k

6= F

�

do

4 let v

k

be the minimal vertex of S(F

k

\ (E � F

�

)) with respect to T ;

5 F

k+1

:= �

G

(F

k

; v

k

);

6 k := k + 1;

7 od

8 output (F

0

; : : : ; F

k

);

Figure 2 illustrates the situation in line 4 of the algorithm. The dashed

arcs are the members of the current solution F

k

. By moving from F

k

to a

v

k

-successor F

k+1

, the algorithm iteratively clears the shaded area of dashed

arcs, from left to right.

1 2 3 n

E–F*

F*

Fk

FkE–

Figure 2: Situation during the execution of line 4 in Transform-

Directed-MFAS. v

k

is the leftmost target of a dashed arc in the shaded

area; in this case, v

k

=3

Lemma 3. For any directed graph G = (V;E), minimal feedback arc sets

F and F

�

, and any successor function �

G

of G, Transform-Directed-

MFAS (G;F; F

�

; �

G

) computes a sequence F = F

0

; � � � ; F

s

= F

�

where

s � jV j � 1, and F

i+1

is a �

G

-successor of F

i

for i = 0; : : : ; s� 1.

Proof: Notice that, in line 1, a topological order T of G�F

�

always exists,

8

since F

�

is a feedback arc set, and thus G � F

�

is acyclic. W.l.o.g. we can

assume that jV j = f1; : : : ; ng and T = (1; : : : ; n).

Because of line 3, the algorithm terminates only if F

k

= F

�

. Thus it

remains to show that Transform-Directed-MFAS terminates after at

most jV j � 1 iterations of the while loop.

Let k be a non-negative integer. Then

(F

k

\ (E � F

�

) = ;) () (F

k

� F

�

) () (F

k

= F

�

);

due to the minimality of F

k

and F

�

. Thus, if the condition in line 3 holds,

the statement in line 4 is well-de�ned.

Further note that v

0

> v

k

holds for all v

0

2 S((F

k

�A

�

(v

k

))\ (E�F

�

)),

because of the minimality of v

k

w.r.t. T . Moreover, v

0

> v

k

also holds for

all v

0

2 S(A

+

(v

k

) \ (E � F

�

)), according to the fact that (1; : : : ; n) is a

topological order of G� F

�

.

Hence we have v

0

> v

k

for all v

0

2 S((F

k

�A

�

(v

k

)[A

+

(v

k

))\ (E�F

�

)),

and thus, all v

0

2 S(F

k+1

\ (E �F

�

)), because F

k+1

= �

G

(F

k

; v

k

) � S(F

k

�

A

�

(v

k

)[A

+

(v

k

)). Particularly, v

0

> v

k

holds for v

0

= v

k+1

2 F

k+1

in line 4,

hence

v

k+1

> v

k

:

Consequently, v

0

< v

1

< v

2

< : : : Further observe that 1 is the �rst

vertex of the topological order T of G � F

�

, thus 1 cannot be contained

in S(E � F

�

). But v

0

2 S(E � F

�

) due to line 4 of the algorithm. Hence

v

k

2 f2; : : : ; jV jg for all non-negative k, thus the algorithm can perform at

most jV j� 1 while loops and outputs F = F

0

; � � � ; F

s

= F

�

with s � jV j� 1,

which proves the claim. �

Algorithm. Again the above lemma asserts that the superstructure graph

�(G; �

G

) is strongly connected. Thus, when applied to the feedback arc

set problem, Algorithm Generate-MFVS indeed computes all minimal

feedback arc sets of G for any successor function �

G

.

Computational complexity. We examine the computational complexity

of one while loop in Algorithm Generate-MFVS. Minimizing a feedback

arc set is accomplished by removing redundant arcs, in analogy to the min-

imization procedure of section 2. Since O

�

jEj

�

arcs have to be checked, the

complexity for this operation is in O

�

jEj (jV j+ jEj)

�

. Since there can be at

most jV j �

G

-successors �

G

(F;w) for any MFAS F , the while loop takes at

most time O

�

jV j jEj (jV j+ jEj)

�

.

Theorem 3. Given any directed graph G, Algorithm Generate-MFVS

can be used to compute all minimal feedback arc sets of G with a polynomial

delay of O

�

jV j jEj (jV j+ jEj)

�

.

9

References

[1] E. Fredkin, Trie memory, Comm. ACM 3 (Sep. 1960) 490{499.

[2] D. S. Hochbaum, Various notions of approximations: Good, better,

best and more, in: D. S. Hochbaum, ed., Approximation Algorithms

for NP-hard problems (PWS Publishing, 1995), chap. 9, p. 350.

[3] D. S. Johnson, M. Yannakakis and C. H. Papadimitriou, On generating

all maximal independent sets, Inf. Proc. Lett. 27 (1988) 119{123.

[4] R. M. Karp, Reducibility among combinatorial problems, in: R. E.

Miller and J. W. Thatcher, eds., Complexity of Computer Computations

(Plenum Press, New York, London, 1972), 85{103.

[5] E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Generating

all maximal independent sets: NP-hardness and polynomial-time algo-

rithms, SIAM J. Comput. 9 (1980) 558{565.

[6] P. M. Pardalos and J. Xue, The maximum clique problem, J. Glob. Opt.

(1994) 301{328.

[7] E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms:

Theory and Practice (Prentice-Hall, Englewood Cli�s, USA, 1977),

chap. 8.

[8] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm

for generating all the maximal independent sets, SIAM J. Comput. 6

(Sep. 1977) 505{517.

10

